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Abstract: In network analysis, links depict the connections between each pair of network nodes. However, such 

pairwise connections fail to consider the interactions among more agents, which may be indirectly connected. 

Such non-pairwise or higher-order connections can be signified by involving simplicial complexes. The higher-

order connections become even more noteworthy when it comes to neuronal network synchronization, an 

emerging phenomenon responsible for the many biological processes in real-world phenomena. However, 

involving higher-order interactions may considerably increase the computational costs. To confound this issue, 

map-based models are more suitable since they are faster, simpler, more flexible, and computationally more 

optimal. Therefore, this paper addresses the impact of pairwise and non-pairwise neuronal interactions on the 

synchronization state of 10 coupled memristive Hindmarsh-Rose neuron maps. To this aim, electrical, inner 

linking, and chemical synaptic functions are considered as 2- and 3-body interactions in three homogenous and 

two non-homogenous cases. The results show that through chemical pairwise and non-pairwise synapses, the 

neurons achieve synchrony with the weakest coupling strengths. 

Keywords: higher-order network; simplicial complex; synchronization; neuron; map-based model 
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1. Introduction 

The work network refers to a set of nodes or agents interacting through links, which in fact, 

specify the configuration of the nodes’ connection. The study of the behavior of such connected nodes 

becomes more exciting when they have nonlinear dynamics. In mathematical neuroscience, the 

dynamics of each network node are defined by a neuronal model with the purpose of studying the 

brain’s function. As a result, many studies have been devoted to investigating neuronal collective 

behaviors or events that have real-world instances [1, 2]. Among such neuronal collective behaviors, 

synchronization has owned a dominant importance since this emergent phenomenon [3] itself 

includes a variety of subcategories, each of which is responsible for a biological process, disease, or 

function [4-6]. Complete synchronization [7], generalized synchronization [8, 9], phase or anti-phase 

synchronization [10, 11], lag synchronization [12], cluster synchronization [13], and chimera [14, 15] 

are well-known subcategories that have been examined analytically and/or numerically in literature. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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For instance, the necessary conditions for synchronizing the Hindmarsh-Rose (HR) neuron model via 

the diffusive coupling functions are given in  [7]. The synchronization of two pre- and post-synaptic 

HR neurons is investigated in [16]. The synchronization of memristive HR (mHR) neurons with 

electrical and Field couplings is explored in [17]. The necessary conditions for the synchronization of 

the photosensitive FitzHugh-Nagumo (FHN) neurons are analytically and numerically studied in 

[18]. In another study carried out in [19], the synchronization of heterogeneous FHN neurons is 

studied. The effect of memristors as the neuronal synaptic pathways are studied for two HR in [20] 

and FHN in [21] neurons as well. The synchronization of the Morris-Lecar (ML) neurons with 

memristive autapse as the neurons’ self-feedback was taken into account in [22]. Some recent relevant 

studies focused on map-based neurons since it is believed that discrete-time neurons not only are 

able to mimic natural neuron behavior, such as spiking and bursting, but also they are more 

straightforward, faster, more flexible, and of less computational cost [23]. For illustration, the 

synchronization of the Rulkov neuron map under electrical [24, 25], inner linking [24], chemical [26, 

27], hybrid [28, 29], and memristor [30] synapses are thoroughly investigated in the literature. 

Another synchronization study, reported in [31], was conducted on the mHR neuron map in a two-

node structure network under different coupling functions, including bidirectional electrical, 

chemical, inner linking, and hybrid synaptic functions. The intra- and inter-layer synchronization of 

mHR neurons is numerically analyzed in [32]. 

In the literature, it is noticeable that many studies have paid attention to the pairwise interactions 

among neurons, and non-pairwise interactions have been neglected. Nonetheless, such non-pairwise 

or higher-order interactions have been proven to be existed not only among the interconnecting 

neuron population [33] but also among other coupled systems, including physical ones [34-36]. To 

nail the limitation of graph-based networks and to involve the multi-body interactions, the simplicial 

complexes can be considered to define the nodal interactions [36]. In this way, especially in neuronal 

network analysis, the connections that imply actual neuronal connectivity can be described more 

insightfully [37]. Consequently, some studies depict the effect of higher-order interactions on 

network synchronization. For instance, the synchronization of a higher-order network with HR 

neurons with 2- and 3-body interactions are investigated [38]. In this study, electrical and chemical 

higher-order interactions, as well as pairwise electrical connections, were studied, and the necessary 

conditions for the neurons to achieve synchrony are given analytically and numerically. In a similar 

study [39], the synchronization of 𝛽  cells subjected to the 2-node and 3-node interactions was 

investigated. This study considered the higher-order chemical and electrical synapses, while the 2-

node connections were assumed as a hybrid synapse. The impact of considering the degree of the 

higher levels of multi-node interactions was the objective of the study declared in [40]. This study 

focused on the dynamics of the higher-order network of the Rulkov maps with pairwise electrical 

and non-pairwise chemical synapses. The synchronization of a higher-order network of ML neurons 

with geometrical couplings was investigated in [41]. Besides the neuronal network analysis, higher-

order interactions were studied on phase oscillators [42] and mathematical models [37]. 

Inspired by the aforementioned literature, the presented paper is devoted to investigating the 

synchronization of a higher-order network of mHR neuron maps subjected to different pairwise and 

non-pairwise synoptic conditions, including electrical, inner linking, and chemical coupling 

functions. The rest of the paper is organized as follows: the higher-order network is described in 

Section 2. The necessary conditions for synchronizing the mHR neuron under the assumed coupling 

schemes are analytically and numerically given in Section 3. Finally, Section 4 concludes the paper 

and sums up the important findings of the paper.  

2. Higher-order network model 

The addition of simplicial complexes to the network model allows for considering higher-order 

interactions, including multi-body interaction, among the neurons involved in the network. A 

simplicial complex is a set of connected nodes building a topological structure [37]. For instance, 0-

simplexes, 1-simplexes, and 2-simplex are respectively known as nodes, links, and triangles. Hence, 𝑑 -complex structures can model the 𝑑 + 1 -body interactions, which are called higher-order 
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interactions. In general, a map-based network with all possible higher-order interactions, by 

considering simplicial complexes in 1, … , 𝑑 dimensions, can be described as: 𝑿௜௡ାଵ = 𝑭(𝑿௜௡) + 𝜎ଵ ෍ 𝐺௜௝భ(ଵ)𝑯(ଵ)൫𝑿௜௡, 𝑿௝భ௡ ൯ே
௝భୀଵ

+ 𝜎ଶ ෍ ෍ 𝐺௜௝భ௝మ(ଶ) 𝑯(ଶ)൫𝑿௜௡, 𝑿௝భ௡ , 𝑿௝మ௡ ൯ே
௝మୀଵ

ே
௝భୀଵ + ⋯

+ 𝜎ௗ ෍ ෍ 𝐺௜௝భ௝మ(ௗ) 𝑯(ௗ)൫𝑿௜௡, 𝑿௝భ௡ , . . , 𝑿௝೏௡ ൯ே
௝మୀଵ

ே
௝భୀଵ , 

(1) 

where 𝑿 is the state vector and 𝑭(𝑿) is the dynamic vector of the system network. 𝑁 is the network 

size, 𝐺(ௗ) = ቂ𝐺௜௝భ…௝೏(ௗ) ቃே×ே…×ே×ௗାଵ  is the adjacency tensor whose non-zero elements show nodes 𝑖𝑗ଵ … 𝑗ௗ  together form a 𝑑 -simplex, 𝑯(ௗ)  is the coupling function determining the relationships 

among the involved nodes in a 𝑑-dimensional simplicial structure, and 𝜎ௗ is the coupling strength 

of (𝑑 + 1) -body interactions. Note that the superscript 𝑛  shows the number of iterations, and 

subscript 𝑖 indicates the node’s index. 

Taking up to 2-simplexes, Network (1) can be rewritten in a more straightforward form below 𝑿௜௡ାଵ = 𝑭(𝑿௜௡) + 𝜎ଵ ෍ 𝐺௜௝భ(ଵ)𝑯(ଵ)൫𝑿௜௡, 𝑿௝భ௡ ൯ே
௝భୀଵ

+ 𝜎ଶ ෍ ෍ 𝐺௜௝భ௝మ(ଶ) 𝑯(ଶ)൫𝑿௜௡, 𝑿௝భ௡ , 𝑿௝మ௡ ൯ே
௝మୀଵ

ே
௝భୀଵ . (2) 

Here 𝐺௜௝భ(ଵ) = 1 shows there exists a link between two nodes and 𝐺௜௝భ௝మ(ଶ) = 1 presents nodes 𝑖𝑗ଵ𝑗ଶ 

together construct a triangle. Figure 1a is a schematic representation of Network (2) with global 

couplings for 𝑁 = 10 as well as its adjacency matrix 𝐺(ଵ) (Figure 1 b) and adjacency tensor 𝐺(ଶ) 
(Figure 1 c). 

Letting 𝑭(𝑿) describes the dynamics of the mHR neuron map, and 𝐺 determines the all-to-all 

network configuration for 𝑁 = 10 , this paper studies the effect of different pairwise and non-

pairwise interactions (different 𝑯(ଵ)  and 𝑯(ଶ)  conditions) on the network synchronization. The 

mHR map is a three-dimensional neuron model proposed in [43] obtained by discretizing the flow-

based model presented in [44]. According to the dynamics of mHR neuron map 𝑭(𝑿) can be defined 

as 𝑭(𝑿) = ቐ𝑓(𝑥, 𝑦, 𝜙) = 𝑥 + 𝜖(𝑦 − 𝑎𝑥ଷ + 𝑏𝑥ଶ − 𝑚 tanh(𝜙)𝑥)𝑔(𝑥, 𝑦, 𝜙) = 𝑦 + 𝜖(𝑐 − 𝑑𝑥ଶ − 𝑦)                                 ℎ(𝑥, 𝑦, 𝜙) = 𝜙 − 𝜖𝑥                                                         , (3) 

where 𝑥 is the membrane potential, 𝑦 is the resting state, and 𝜙 is the magnetic flux with the 

strength of 𝑚. Other parameters are the constants affecting the dynamics of neurons’ spiking activity. 

Therefore, 𝑎 = 1, 𝑏 = 3, 𝑐 = 1, 𝑑 = 5, 𝜖 = 0.1,  and 𝑚 = 1.4 is selected as the fixed parameter 

settings. 
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Figure 1. (a) A schematic representation of Network (2) with 𝑁 = 10 globally coupled nodes. Black 

nodes, green links, and the light yellow triangle represent 0-simplex, 1-simplex, and 2-simplex 

structures. Also, (b) 𝐺(ଵ)  is the 𝑁 × 𝑁  adjacency matrix, and (c) 𝐺(ଶ)  is the 𝑁 × 𝑁 × 2 adjacency 

tensors. Light yellow matrix elements indicate the existence of a relation among involved nodes, and 

green elements show otherwise. Thus, 𝐺௜௝భ(ଵ) = 1 shows nodes 𝑖 and 𝑗ଵ are connected through a link, 

and nodes 𝐺௜௝భ(ଶ) = 1 shows nodes 𝑖, 𝑗ଵ, and 𝑗ଶ together construct a triangle. 

3. Results 

Using the Master stability function (MSF) analysis, this section provides the necessary conditions 

for synchronizing the globally coupled mHR neurons with higher-order interactions under different 

pairwise and non-pairwise coupling conditions. First, we consider the cases wherein all interactions 

are homogeneous. As a result, electrical synapses, inner linking functions, and chemical synapses are 

considered as the 2-body and 3-body interactions separately. Thereafter, two non-homogeneous cases 

are taken into account wherein electrical and inner linking functions are considered as the 2-body 

connections while chemical 3-body interactions are maintained the same. 

Furthermore, to approve the analytical results obtained through the MSF analysis, time-

averaged synchronization error, henceforth called synchronization error, is regarded as the 

numerical assessment. The synchronization error is calculatable according to the following formula 

𝐸 = 1𝑛(𝑁 − 1) ෍ ෍ฮ𝑿௝௞ − 𝑿௜௞ฮே
௝ୀଵ௝ஷ௜

௡
௞ୀଵ , (4) 

in which ‖… ‖ symbolizes the Euclidean norm and 𝑿 = ሾ𝑥, 𝑦, 𝜙ሿ. 
3.1. Electrical pairwise and electrical non-pairwise interactions 

In the first homogenous case, both 2-body and 3-body interactions are assumed to be electrical. 

Therefore, 𝑯(ଵ)൫𝑿௜௡, 𝑿௝భ௡ ൯ = ൣ𝑥௝భ௡ − 𝑥௜௡, 0,0൧  and 𝑯(ଶ)൫𝑿௜௡, 𝑿௝భ௡ , 𝑿௝మ௡ ൯ = ൣ𝑥௝భ௡ + 𝑥௝మ௡ − 2𝑥௜௡, 0,0൧ . Thus, 

Network (2) can be updated as  
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𝑿௜௡ାଵ
= ⎩⎪⎨

⎪⎧𝑥௜௡ାଵ = 𝑓(𝑿௜௡) + 𝜎ଵ ෍ 𝐺௜௝భ(ଵ)ൣ𝑥௝భ௡ − 𝑥௜௡൧ே
௝భୀଵ + 𝜎ଶ ෍ ෍ 𝐺௜௝భ௝మ(ଶ) ൣ𝑥௝భ௡ + 𝑥௝మ௡ − 2𝑥௜௡൧ே

௝మୀଵ
ே

௝భୀଵ𝑦௜௡ାଵ = 𝑔(𝑿௜௡)                                                                                                                  𝜙௜௡ାଵ = ℎ(𝑿௜௡)                                                                                                                  . 
(5) 

According to the MSF formalism, a network can achieve synchrony when the synchronization 

manifold is stable. In the synchronization state, all neurons follow the same temporal pattern, i.e., 𝑿ଵ௡ = 𝑿ଶ௡ = ⋯ = 𝑿௦௡ . This leads to 𝑯(ଵ)൫𝑿௜௡, 𝑿௝భ௡ ൯ ≡ 0  and 𝑯(ଶ)൫𝑿௜௡, 𝑿௝భ௡ , 𝑿௝మ௡ ൯ ≡ 0 . As a result, the 

synchronization manifold obeys the following relation 𝑿௦௡ାଵ = 𝑭(𝑿௦௡) = ቐ𝑥௦௡ାଵ = 𝑓(𝑿௦௡)𝑦௦௡ାଵ = 𝑔(𝑿௦௡)𝜙௦௡ାଵ = ℎ(𝑿௦௡), (6) 

which is similar to the dynamics of an uncoupled neuron (Eq. 3). To investigate the stability of the 

synchronization manifold, a negligible perturbation is added to the synchronous states. Thus, 𝛿𝑿௜௡ =𝑿௦௡ − 𝑿௜௡ and the dynamics of 𝛿𝑿௜௡ can be obtained through 𝛿𝑿௜௡ାଵ = 𝐷𝑭(𝑿௦௡)𝛿𝑿௜௡+ 𝜎ଵ ෍ 𝐺௜௝భ(ଵ)ൣ𝐷𝑯(ଵ)(𝑿௦௡, 𝑿௦௡)𝛿𝑿௜ + 𝐷𝑯(ଵ)(𝑿௦௡, 𝑿௦௡)𝛿𝑿௝భ൧ே
௝భୀଵ

+ 𝜎ଶ ෍ ෍ 𝐺௜௝భ௝మ(ଶ) ൣ𝐷𝑯(ଶ)(𝑿௦௡, 𝑿௦௡, 𝑿௦௡)𝛿𝑿௜ே
௝మୀଵ

ே
௝భୀଵ+ 𝐷𝑯(ଶ)(𝑿௦௡, 𝑿௦௡, 𝑿௦௡)𝛿𝑿௝భ + 𝐷𝑯(ଶ)(𝑿௦௡, 𝑿௦௡, 𝑿௦௡)𝛿𝑿௝మ൧, 

(7) 

where 𝐷𝑭(𝑿௦௡) is the Jacobian of 𝑭(𝑿௜௡) in the synchronization manifold 𝑿௦௡ that can be defined as 

𝐷𝑭(𝑿) =
⎣⎢⎢
⎢⎢⎢
⎡𝜕𝑓(𝑿)𝜕𝑥 𝜕𝑓(𝑿)𝜕𝑦 𝜕𝑓(𝑿)𝜕𝜙𝜕𝑔(𝑿)𝜕𝑥 𝜕𝑔(𝑿)𝜕𝑦 𝜕𝑔(𝑿)𝜕𝜙𝜕ℎ(𝑿)𝜕𝑥 𝜕ℎ(𝑿)𝜕𝑦 𝜕ℎ(𝑿)𝜕𝜙 ⎦⎥⎥

⎥⎥⎥
⎤

= ൥1 − 𝜖(3𝑎𝑥ଶ − 2𝑏𝑥 + 𝑚 tanh(𝜙)) 𝜖 𝜖𝑚𝑥−2𝑑𝜖 1 − 𝜖 0−𝜖 0 1 ൩. 
(8) 

Applying the assumptions, Eq. (7) becomes 

𝛿𝑿௜௡ାଵ =
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝛿𝑥௜௡ାଵ = 𝐷𝑓(𝑿௦௡)𝛿𝑿௜௡ + 𝜎ଵ ෍ 𝐺௜௝భ(ଵ)ൣ𝛿𝑥௝భ௡ − 𝛿𝑥௜௡൧ே

௝భୀଵ+𝜎ଶ ෍ ෍ 𝐺௜௝భ௝మ(ଶ) ൣ𝛿𝑥௝భ௡ + 𝛿𝑥௝మ௡ − 2𝛿𝑥௜௡൧ே
௝మୀଵ

ே
௝భୀଵ                 𝛿𝑦௜௡ାଵ = 𝐷𝑔(𝑿௦௡)𝛿𝑿௜௡                                               𝛿𝑧௜௡ାଵ = 𝐷ℎ(𝑿௦௡)𝛿𝑿௜௡                                               

. (9) 

Letting 𝐿(ௗ) be the Laplacian matrix of 𝐺(ௗ), then 𝐿(ௗ) = 𝐷(ௗ) − 𝐺(ௗ), where 𝐷(ௗ) is the degree 

tensor whose elements are non-zero only on the main diagonal. 𝐿(ௗ) can be generally defined as  
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𝐿(ௗ) = ⎩⎨
⎧0                         𝑓𝑜𝑟 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝐺௜௝భ(ଵ) = 0−(𝑑 − 1)! 𝑘௜௝భ(ௗ) 𝑓𝑜𝑟 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝐺௜௝భ(ଵ) = 1𝑑! 𝑘௜(ௗ)               𝑓𝑜𝑟 𝑖 = 𝑗                          , (10) 

where 𝑘௜௝భ(ௗ) = ଵ(ௗିଵ)! ∑ … ∑ 𝐺௜௝భ௝మ…௝ಿ(ௗ)ே௝೏సభே௝మసభ . 

Since the coupling function is only applied to the membrane potential, 𝛿𝑥௜௡ାଵ can be extended 

as 𝛿𝑥௜௡ାଵ = 𝐷𝑓(𝑿𝑠𝑛)𝛿𝑿𝑖𝑛+ 𝜎1 ቌ ෍ 𝐷௜௝భ(ଵ)𝛿𝑥𝑗1𝑛ே
௝భୀଵ − ෍ 𝐿௜௝భ(ଵ)𝛿𝑥𝑗1𝑛ே

௝భୀଵ − 𝛿𝑥௜௡ ෍ 𝐺௜௝భ(ଵ)ே
௝భୀଵ ቍ

+ 𝜎ଶ ቌ ෍ ෍ 𝐷௜௝భ௝మ(ଶ) ቂ𝛿𝑥𝑗1𝑛 + 𝛿𝑥𝑗2𝑛 ቃே
௝మୀଵ

ே
௝భୀଵ

− ෍ ෍ 𝐿௜௝భ௝మ(ଶ) ቂ𝛿𝑥𝑗1𝑛 + 𝛿𝑥𝑗2𝑛 ቃே
௝మୀଵ

ே
௝భୀଵ − 2𝛿𝑥௜௡ ෍ ෍ 𝐺௜௝భ௝మ(ଶ)ே

௝మୀଵ
ே

௝భୀଵ ቍ
= 𝐷𝑓(𝑿𝑠𝑛)𝛿𝑿𝑖𝑛 − 𝜎1 ෍ 𝐿௜௝భ(ଵ)𝛿𝑥𝑗1𝑛ே

௝భୀଵ
− 𝜎ଶ ෍ ෍ 𝐿௜௝భ௝మ(ଶ) ቂ𝛿𝑥𝑗1𝑛 + 𝛿𝑥𝑗2𝑛 ቃே

௝మୀଵ
ே

௝భୀଵ . 

(11) 

Since ∑ 𝐿௜௝భ(ଶ)𝛿𝑥𝑗1𝑛ே௝భୀଵ = ∑ 𝐿௜௝మ(ଶ)𝛿𝑥𝑗2𝑛ே௝మୀଵ , we have 

𝛿𝑥௜௡ାଵ = 𝐷𝑓(𝑿𝑠𝑛)𝛿𝑿𝑖𝑛 − 𝜎1 ෍ 𝐿௜௝భ(ଵ)𝛿𝑥𝑗1𝑛ே
௝భୀଵ − 2𝜎ଶ ෍ 𝐿௜௝భ௝మ(ଶ) 𝛿𝑥𝑗1𝑛ே

௝భୀଵ . (12) 

In an all-to-all network configuration, 𝐿(ଶ) = (𝑁 − 2)𝐿(ଵ). Therefore,  𝛿𝑥௜௡ାଵ = 𝐷𝑓(𝑿𝑠𝑛)𝛿𝑿𝑖𝑛 − ൫𝜎1 + 2𝜎ଶ(𝑁 − 2)൯ ෍ 𝐿௜௝భ(ଵ)𝛿𝑥𝑗1𝑛ே
௝భୀଵ . (13) 

Consequently, Eq. (9) can be updated as 

𝛿𝑿௜௡ାଵ = ⎩⎪⎨
⎪⎧𝛿𝑥௜௡ାଵ = 𝐷𝑓(𝑿௦௡)𝛿𝑿௜௡ − ൫𝜎ଵ + 2𝜎ଶ(𝑁 − 2)൯ ෍ 𝐿௜௝భ(ଵ)𝛿𝑥௝భ௡ே

௝భୀଵ𝛿𝑦௜௡ାଵ = 𝐷𝑔(𝑿௦௡)𝛿𝑿௜௡                                                                𝛿𝑧௜௡ାଵ = 𝐷ℎ(𝑿௦௡)𝛿𝑿௜௡                                                                 . (14) 

Note that 𝐷𝑓(𝑿௦௡)𝛿𝑿௜௡  is block diagonal and 𝐿(ଵ)  is diagonalizable. Considering 𝜆௜ , where 𝜆ଵ = 0, 𝜆ଶ = ⋯ = 𝜆ே = 𝑁 is the eigenvalues of 𝐿(ଵ), and new variables 𝜻, the perturbation equations 

(Eq. (14)) can be projected to the linearized system below 

𝜻௡ାଵ = ൞𝜁௫௡ାଵ = 𝐷𝑓(𝑿௦௡)𝜻௡ − 𝑁൫𝜎ଵ + 2𝜎ଶ(𝑁 − 2)൯𝜁௫௡𝜁௬௡ାଵ = 𝐷𝑔(𝑿௦௡)𝜻௡                                                 𝜁థ௡ାଵ = 𝐷ℎ(𝑿௦௡)𝜻௡                                                 . (15) 
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For a synchronization manifold to be stable, System (15) must be stable around the origin. 

According to the Lyapunov analysis, the non-positive values of the maximum Lyapunov exponent 

(Λ) show the synchronization manifold’s stability.  

Figure 2a shows the values of Λ obtained for System (15) as a function of 0 ≤ 𝜎ଵ ≤ 0.01 and 0 ≤ 𝜎ଶ ≤ 0.0007. The regions coded with purple spectra are the stability region for which Λ ≤ 0. In 

the numeric approach, which is demonstrated in Figure 2b in the parameter plane 𝜎ଵ-𝜎ଶ, the stability 

region coded in dark blue color with 𝐸 = 0 is the same as in Figure 2a. Overall, the synchronous and 

asynchronous regions can be distinguished by a linear line such that the more 𝜎ଶ increases, the less 𝜎ଵ is needed to synchronize the neurons and vice versa. Moreover, the results of pure 1-simplex (𝜎ଶ =0) and pure 2-simplex (𝜎ଵ = 0) cases are presented in Figure 1c,d. According to Figure 1c,d, the 

synchronization is acquired for 𝜎ଵ ≥ 0.0072 and 𝜎ଶ ≥ 0.000455. It can be seen that the neurons 

achieve synchrony in weaker strength of 𝜎ଶ (higher-order case), compared to the 𝜎ଵ (pairwise case) 

value needed to synchronize the neurons.  

Figure 3 shows the neuron dynamics in the synchronization state (System (6)) using the phase 

diagram and time series. It should be noted that the neurons’ initial conditions are selected randomly 

around the origin. 

 

Figure 2. First row: (a) The maximum Lyapunov exponent of System (15) and (b) the synchronization 

error of Network (5) with 𝑁 = 10 for 0 ≤ 𝜎ଵ ≤ 0.01 and 0 ≤ 𝜎ଶ ≤ 0.0007. The stability region for 

which Λ ≤ 0 and 𝐸 = 0 is coded in purples spectra and dark blue in the analytical and numerical 

approaches, respectively. Second row: The maximum Lyapunov exponent of System (15) (shown in 

orange) and the synchronization error of Network (5) (shown in navy blue) for the (c) pure 1-simplex 

(𝜎ଶ = 0) and (d) pure 2-simplex (𝜎ଵ = 0) cases. 
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Figure 3. (a) The phase diagram and (b) the time series of the mHR neuron maps in their synchronous 

state described in System (6) for 𝜎ଵ = 0.005 and 𝜎ଶ = 0.0005. Other parameters are  𝑎 = 1, 𝑏 = 3, 𝑐 = 1, 𝑑 = 5, 𝜖 = 0.1, and 𝑚 = 1.4. The initial values are considered randomly around the origin. 

3.2. Inner linking pairwise and inner linking non-pairwise interactions 

According to [24], an inner linking function is a more general and nonlinear form of the electrical 

synapse. Therefore, here another homogenous case is taken into account in which we have 𝑯(ଵ)൫𝑿௜௡, 𝑿௝భ௡ ൯ = ൣ𝑓൫𝑿௝భ௡ ൯ − 𝑓(𝑿௜௡), 0,0൧  and 𝑯(ଶ)൫𝑿௜௡, 𝑿௝భ௡ , 𝑿௝మ௡ ൯ = ൣ𝑓൫𝑿௝భ௡ ൯ + 𝑓൫𝑿௝మ௡ ൯ − 2𝑓(𝑿௜௡), 0,0൧ . Thus, 

the network can be described as 

𝑿௜௡ାଵ =
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑥௜௡ାଵ = 𝑓(𝑿௜௡) + 𝜎ଵ ෍ 𝐺௜௝భ(ଵ)ൣ𝑓൫𝑿௝భ௡ ൯ − 𝑓(𝑿௜௡)൧ே

௝భୀଵ   
+𝜎ଶ ෍ ෍ 𝐺௜௝భ௝మ(ଶ) ൣ𝑓൫𝑿௝భ௡ ൯ + 𝑓൫𝑿௝మ௡ ൯ − 2𝑓(𝑿௜௡)൧ே

௝మୀଵ
ே

௝భୀଵ𝑦௜௡ାଵ = 𝑔(𝑿௜௡)                                                             𝜙௜௡ାଵ = ℎ(𝑿௜௡)                                                             
. (16) 

When all neurons evolve synchronously, 𝑯(ଵ)൫𝑿௜௡, 𝑿௝భ௡ ൯ ≡ 0  and 𝑯(ଶ)൫𝑿௜௡, 𝑿௝భ௡ , 𝑿௝మ௡ ൯ ≡ 0 . 

Therefore, the synchronization manifold is the same as in System (6) and demonstrated in Figure 3. 

To obtain the perturbation equations, similar to the previous case, a small perturbation is added to 

the synchronous neurons’ state and 𝛿𝑿௜௡ = 𝑿௦௡ − 𝑿௜௡ . Using Eq. (7) and considering 𝐿(ௗ) = 𝐷(ௗ) −𝐺(ௗ), the perturbation system can be obtained through 
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𝛿𝑥௜௡ାଵ = 𝐷𝑓(𝑿𝑠𝑛)𝛿𝑿𝑖𝑛 + 𝜎1𝐷𝑓(𝑿𝑠𝑛) ෍ 𝐺𝑖𝑗1(1) ቂ𝛿𝑿𝑗1𝑛 − 𝛿𝑿𝑖𝑛ቃ𝑁
𝑗1=1

+ 𝜎2𝐷𝑓(𝑿𝑠𝑛) ෍ ෍ 𝐺𝑖𝑗1𝑗2(2) ቂ𝛿𝑿𝑗1𝑛 + 𝛿𝑿𝑗2𝑛 − 2𝛿𝑿𝑖𝑛ቃ𝑁
𝑗2=1

𝑁
𝑗1=1= 𝐷𝑓(𝑿𝑠𝑛)𝛿𝑿𝑖𝑛+ 𝜎1𝐷𝑓(𝑿𝑠𝑛) ቌ ෍ 𝐷௜௝భ(ଵ)𝛿𝑿𝑗1𝑛ே

௝భୀଵ − ෍ 𝐿௜௝భ(ଵ)𝛿𝑿𝑗1𝑛ே
௝భୀଵ

− 𝛿𝑿𝑖𝑛 ෍ 𝐺௜௝భ(ଵ)ே
௝భୀଵ ቍ

+ 𝜎ଶ𝐷𝑓(𝑿𝑠𝑛) ቌ ෍ ෍ 𝐷௜௝భ௝మ(ଶ) ቂ𝛿𝑿𝑗1𝑛 + 𝛿𝑿𝑗2𝑛 ቃே
௝మୀଵ

ே
௝భୀଵ

− ෍ ෍ 𝐿௜௝భ௝మ(ଶ) ቂ𝛿𝑿𝑗1𝑛 + 𝛿𝑿𝑗2𝑛 ቃே
௝మୀଵ

ே
௝భୀଵ − 2𝛿𝑿𝑖𝑛 ෍ ෍ 𝐺௜௝భ௝మ(ଶ)ே

௝మୀଵ
ே

௝భୀଵ ቍ
= 𝐷𝑓(𝑿𝑠𝑛)𝛿𝑿𝑖𝑛 − 𝜎1𝐷𝑓(𝑿𝑠𝑛) ෍ 𝐿௜௝భ(ଵ)𝛿𝑿𝑗1𝑛ே

௝భୀଵ
− 𝜎ଶ𝐷𝑓(𝑿𝑠𝑛) ෍ ෍ 𝐿௜௝భ௝మ(ଶ) ቂ𝛿𝑿𝑗1𝑛 + 𝛿𝑿𝑗2𝑛 ቃே

௝మୀଵ
ே

௝భୀଵ . 

(17) 

Considering ∑ 𝐿௜௝భ(ଶ)𝛿𝑥𝑗1𝑛ே௝భୀଵ = ∑ 𝐿௜௝మ(ଶ)𝛿𝑥𝑗2𝑛ே௝మୀଵ  and 𝐿(ଶ) = (𝑁 − 2)𝐿(ଵ)  for the globally coupled 

neurons, the perturbation system becomes 𝛿𝑿௜௡ାଵ
= ⎩⎪⎨

⎪⎧𝛿𝑥௜௡ାଵ = 𝐷𝑓(𝑿௦௡)𝛿𝑿௜௡ − 𝐷𝑓(𝑿௦௡)൫𝜎ଵ + 2𝜎ଶ(𝑁 − 2)൯ ෍ 𝐿௜௝భ(ଵ)𝛿𝑿𝑗1𝑛ே
௝భୀଵ𝛿𝑦௜௡ାଵ = 𝐷𝑔(𝑿௦௡)𝛿𝑿௜௡                                                                               𝛿𝑧௜௡ାଵ = 𝐷ℎ(𝑿௦௡)𝛿𝑿௜௡                                                                                . 

(18) 

Thereafter, the above-mentioned perturbation equations (Eq. (18)) can be stated in the linearized 

form using the new variable 𝜻. 

𝜻௡ାଵ = ൞𝜁௫௡ାଵ = 𝐷𝑓(𝑿௦௡) ቀ1 − 𝑁൫𝜎ଵ + 2𝜎ଶ(𝑁 − 2)൯ቁ 𝜻௡𝜁௬௡ାଵ = 𝐷𝑔(𝑿௦௡)𝜻௡                                                     𝜁థ௡ାଵ = 𝐷ℎ(𝑿௦௡)𝜻௡                                                     . (19) 

Similarly, the maximum Lyapunov exponent of System (19), shown in Figure 4a for  0 ≤ 𝜎ଵ ≤0.012 and 0 ≤ 𝜎ଶ ≤ 0.0009 can provide the necessary conditions to complete synchronization. Also, 

Figure 4b confirms the results obtained through the MSF analysis. It can be observed that the linear 

separator is maintained when the inner linking coupling functions are applied instead of the electrical 

synapses. However, the pure 1-simplex (Figure 4c) and 2-simplex (Figure 4d) cases better show that 

slightly stronger 2- and 3-body coupling strengths ( 𝜎ଵ ≥ 0.0095  and 𝜎ଶ ≥ 0.0006 ) required to 
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synchronize the neurons. Thus, compared to Figure 2a,b, the separating line between the 

synchronous (in purple spectra in Figure 4a and dark blue in Figure 4b) and asynchronous regions is 

shifted towards the higher values of 𝜎ଵ and 𝜎ଶ. In the synchronous region, all neurons behave as 

shown in Figure 3 since the synchronization manifold remains the same as an isolated neuron’s 

dynamics. 

 

Figure 4. First row: (a) The maximum Lyapunov exponent of System (19) and (b) the synchronization 

error of Network (16) with 𝑁 = 10 for 0 ≤ 𝜎ଵ ≤ 0.012 and 0 ≤ 𝜎ଶ ≤ 0.0009. The stability region for 

which Λ ≤ 0 and 𝐸 = 0 is coded in purples spectra and dark blue in the analytical and numerical 

approaches, respectively. Second row: The maximum Lyapunov exponent of System (19) (shown in 

orange) and the synchronization error of Network (16) (shown in navy blue) for the (c) pure 1-simplex 

(𝜎ଶ = 0) and (d) pure 2-simplex (𝜎ଵ = 0) cases. 

3.3. Chemical pairwise and chemical non-pairwise interactions 

Electrical and inner linking functions are, in fact, more suitable to model the physical or the 

short-range neuronal pathway of information. Nonetheless, chemical synapses are proper to model 

either short- or long-range neuronal interactions [31]. Hence, in the last homogenous case, we 

consider 𝑯(ଵ)൫𝑿௜௡, 𝑿௝భ௡ ൯ = ൣ(𝑣௦ − 𝑥௜௡)Γ൫𝑥௝భ௡ ൯, 0,0൧  and 𝑯(ଶ)൫𝑿௜௡, 𝑿௝భ௡ , 𝑿௝మ௡ ൯ = ቂ(𝑣௦ − 𝑥௜௡) ቀΓ൫𝑥௝భ௡ ൯ +Γ൫𝑥௝మ௡ ൯ቁ , 0,0ቃ, where 𝑣௦ = −1.4 is the reversal potential and Γ(𝑥) = ଵଵା௘షೖ(ೣషഇ) with the slope of 𝑘 =50 and the threshold of 𝜃 = −1.4. As a consequence, the network can be expressed as  
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𝑿௜௡ାଵ =
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ 𝑥௜௡ାଵ = 𝑓(𝑿௜௡) + 𝜎ଵ(𝑣௦ − 𝑥௜௡) ෍ 𝐺௜௝భ(ଵ)Γ൫𝑥௝భ௡ ൯ே

௝భୀଵ+𝜎ଶ(𝑣௦ − 𝑥௜௡) ෍ ෍ 𝐺௜௝భ௝మ(ଶ) ൣΓ൫𝑥௝భ௡ ൯ + Γ൫𝑥௝మ௡ ൯൧ே
௝మୀଵ

ே
௝భୀଵ𝑦௜௡ାଵ = 𝑔(𝑿௜௡)                                                          𝜙௜௡ାଵ = ℎ(𝑿௜௡)                                                         

. (20) 

For a network with global couplings, we have ∑ 𝐺௜௝భ(ଵ)ே௝భୀଵ = (𝑁 − 1)  and ∑ ∑ 𝐺௜௝భ௝మ(ଶ)ே௝మୀଵே௝భୀଵ =(𝑁 − 1)(𝑁 − 2) . Accordingly, in the synchronization state wherein 𝑿ଵ௡ = 𝑿ଶ௡ = ⋯ = 𝑿௦௡ , and 𝑯(ଵ)൫𝑿௜௡, 𝑿௝భ௡ ൯ ≡ 𝜎ଵ(𝑁 − 1)(𝑣௦ − 𝑥௦௡)Γ(𝑥௦௡)  and 𝑯(ଶ)൫𝑿௜௡, 𝑿௝భ௡ , 𝑿௝మ௡ ൯ ≡ 2𝜎ଶ(𝑁 − 1)(𝑁 − 2)(𝑣௦ − 𝑥௦௡)Γ(𝑥௦௡) , 

the dynamics of neurons obey the following equations 𝑿௦௡ାଵ = 𝑭(𝑿௦௡)= ቐ 𝑥௦௡ାଵ = 𝑓(𝑿௦௡) + (𝑁 − 1)൫𝜎ଵ + 2𝜎ଶ(𝑁 − 2)൯(𝑣௦ − 𝑥௦௡)Γ(𝑥௦௡)𝑦௦௡ାଵ = 𝑔(𝑿௦௡)                                                                                       𝜙௦௡ାଵ = ℎ(𝑿௦௡)                                                                                     . (21) 

To analyze the stability of the synchronization state expressed in Eq. (21), the general Eq. (7) is 

used. Thus, letting ∑ 𝐺௜௝భ(ଵ)ே௝భୀଵ = (𝑁 − 1), ∑ ∑ 𝐺௜௝భ௝మ(ଶ)ே௝మୀଵே௝భୀଵ = (𝑁 − 1)(𝑁 − 2), and 𝐿(ଶ) = (𝑁 − 2)𝐿(ଵ),  

the purterbation eqauation 𝛿𝑥𝑖𝑛+1 reads 

𝛿𝑥௜௡ାଵ = 𝐷𝑓(𝑿௦௡)𝛿𝑿௜௡ + 𝜎ଵ ෍ 𝐺௜௝భ(ଵ)ൣ(𝑣௦ − 𝑥௦௡)Γ௫(𝑥௦௡)𝛿𝑥௝భ௡ − Γ(𝑥௦௡)𝛿𝑥௜௡൧ே
௝భୀଵ

+ 𝜎ଶ𝐷𝑓(𝑿௦௡) ෍ ෍ 𝐺௜௝భ௝మ(ଶ) ൣ(𝑣௦ − 𝑥௦௡)Γ௫(𝑥௦௡)𝛿𝑥௝భ௡ே
௝మୀଵ

ே
௝భୀଵ+ (𝑣௦ − 𝑥௦௡)Γ௫(𝑥௦௡)𝛿𝑥௝మ௡ − 2Γ(𝑥௦௡)𝛿𝑥௜௡൧= 𝐷𝑓(𝑿௦௡)𝛿𝑿௜௡

+ 𝜎ଵ ൮(𝑣௦ − 𝑥௦௡)Γ௫(𝑥௦௡) ቌ ෍ 𝐷௜௝భ(ଵ)𝛿𝑥௝భ௡ே
௝భୀଵ − ෍ 𝐿௜௝భ(ଵ)𝛿𝑥௝భ௡ே

௝భୀଵ ቍ
− Γ(𝑥௦௡)𝛿𝑥௜௡ ෍ 𝐺௜௝భ(ଵ)ே

௝భୀଵ ൲
+ 𝜎ଶ ൮(𝑣௦ − 𝑥௦௡)Γ௫(𝑥௦௡) ቌ ෍ ෍ 𝐷௜௝భ௝మ(ଶ) ൣ𝛿𝑥௝భ௡ + 𝛿𝑥௝మ௡ ൧ே

௝మୀଵ
ே

௝భୀଵ
− ෍ ෍ 𝐿௜௝భ௝మ(ଶ) ൣ𝛿𝑥௝భ௡ + 𝛿𝑥௝మ௡ ൧ே

௝మୀଵ
ே

௝భୀଵ ቍ − 2Γ(𝑥௦௡)𝛿𝑥௜௡ ෍ ෍ 𝐺௜௝భ௝మ(ଶ)ே
௝మୀଵ

ே
௝భୀଵ ൲. 

(22) 
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Finally, considering ∑ 𝐿௜௝భ(ଶ)𝛿𝑥𝑗1𝑛ே௝భୀଵ = ∑ 𝐿௜௝మ(ଶ)𝛿𝑥𝑗2𝑛ே௝మୀଵ  the perturbation equations can be obtained 

as 

𝛿𝑿௜௡ାଵ =
⎩⎪⎪
⎨⎪
⎪⎧𝛿𝑥௜௡ାଵ = 𝐷𝑓(𝑿௦௡)𝛿𝑿௜௡ + (𝑁 − 1)൫𝜎ଵ + 2𝜎ଶ(𝑁 − 2)൯ ×൫(𝑣௦ − 𝑥௦௡)Γ௫(𝑥௦௡) − Γ(𝑥௦௡)൯𝛿𝑥௜௡                                          −൫𝜎ଵ + 2𝜎ଶ(𝑁 − 2)൯(𝑣௦ − 𝑥௦௡)Γ௫(𝑥௦௡) ෍ 𝐿௜௝భ(ଵ)𝛿𝑥௝భ௡ே

௝భୀଵ         𝛿𝑦௜௡ାଵ = 𝐷𝑔(𝑿௦௡)𝛿𝑿௜௡                                                            𝛿𝑧௜௡ାଵ = 𝐷ℎ(𝑿௦௡)𝛿𝑿௜௡                                                             
. (23) 

Afterward, the expression of the linearized system is  

𝜻௡ାଵ = ⎩⎪⎨
⎪⎧𝜁௫௡ାଵ = 𝐷𝑓(𝑿௦௡)𝜻௡ − ൫𝜎ଵ + 2𝜎ଶ(𝑁 − 2)൯ ×൫(𝑣௦ − 𝑥௦௡)Γ௫(𝑥௦௡) + (𝑁 − 1)Γ(𝑥௦௡)൯𝜁௫௡        𝜁௬௡ାଵ = 𝐷𝑔(𝑿௦௡)𝜻௡                                             𝜁థ௡ାଵ = 𝐷ℎ(𝑿௦௡)𝜻௡                                             . (24) 

The maximum Lyapunov exponent of System (24) and the synchronization error of Network 

(20) are demonstrated in Figure 5a and Figure 5b. From Figure 5a,b, it can be noticed that through 

the first- and second-order chemical interactions, the neurons synchronize for considerably weaker 

strength of the 𝜎ଵ and 𝜎ଶ. This drop is more remarkable for 𝜎ଵ. Interestingly, despite the previous 

cases, here, several lines are needed to separate the synchronous and asynchronous zones. Although 

the stability region is presented in purple spectra in Figure 5a, the light purple color of the significant 

areas reveals that Λ ≅ 0. However, Figure 5b, wherein the dark blue color shows the stability region 

obtained in the numerical approach, manifests that such areas are stable if the initial conditions are 

appropriately selected. The pure 1-simplex (𝜎ଶ = 0) and 2-simplex (𝜎ଵ = 0) cases are also indicated in 

Figure 5c and 5d. Accordingly, different minor and major synchronous regions can be observed 

within the asynchronous zones. Nevertheless, for 𝜎ଵ > 0.00062 in the pure 1-simplex case (Figure 

5c) and 𝜎ଶ > 0.00004 in the pure 2-simplex case (Figure 5d), no asynchronous areas can be observed 

within the synchronous region. Besides, as previously shown (System (21)), the dynamics of the 

neurons in the synchronization state depend on the value of the first- (𝜎ଵ) and second-order (𝜎ଶ) 

coupling strengths. For example, Figure 6 points out that the neurons have periodic bursting behavior 

of period-1 for 𝜎ଵ = 10 and 𝜎ଶ = 0.0001 and of period-2 for 𝜎ଵ = 10 and 𝜎ଶ = 0.00055, both differ 

from the original chaotic dynamics of an uncoupled mHR neuron. The initial conditions are randomly 

chosen around the origin. 
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Figure 5. First row: (a) The maximum Lyapunov exponent of System (24) and (b) the synchronization 

error of Network (20) with 𝑁 = 10 for 0 ≤ 𝜎ଵ ≤ 0.0007 and 0 ≤ 𝜎ଶ ≤ 0.00005. The stability region 

for which Λ ≤ 0 and 𝐸 = 0 is coded in purples spectra and dark blue in the analytical and numerical 

approaches, respectively. Second row: The maximum Lyapunov exponent of System (24) (shown in 

orange) and the synchronization error of Network (20) (shown in navy blue) for the (c) pure 1-simplex 

(𝜎ଶ = 0) and (d) pure 2-simplex (𝜎ଵ = 0) cases. 

 

Figure 6. (a),(c) The phase diagram and (b),(d) the time series of the mHR neuron maps in their 

synchronous state described in System (21) for 𝜎ଵ = 10𝜎ଶ = 0.0001  (first row) and 𝜎ଵ = 10𝜎ଶ =
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0.00055 (second row). Other parameters are 𝑎 = 1, 𝑏 = 3, 𝑐 = 1, 𝑑 = 5, 𝜖 = 0.1, and 𝑚 = 1.4. The 

initial values are considered randomly around the origin. 

3.4. Electrical pairwise and chemical non-pairwise interactions 

As the first homogenous case, we consider the electrical synapses to model the short-range 2-

body connections and chemical synapses as the long-range 3-body interactions. Hence, applying 𝑯(ଵ)൫𝑿௜௡, 𝑿௝భ௡ ൯ = ൣ𝑥௝భ௡ − 𝑥௜௡, 0,0൧ and 𝑯(ଶ)൫𝑿௜௡, 𝑿௝భ௡ , 𝑿௝మ௡ ൯ = ቂ(𝑣௦ − 𝑥௜௡) ቀΓ൫𝑥௝భ௡ ൯ + Γ൫𝑥௝మ௡ ൯ቁ , 0,0ቃ, the network 

dynamics can be obtained from 

𝑿௜௡ାଵ =
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑥௜௡ାଵ = 𝑓(𝑿௜௡) + 𝜎ଵ ෍ 𝐺௜௝భ(ଵ)ൣ𝑥௝భ௡ − 𝑥௜௡൧ே

௝భୀଵ              
+𝜎ଶ(𝑣௦ − 𝑥௜௡) ෍ ෍ 𝐺௜௝భ௝మ(ଶ) ൣΓ൫𝑥௝భ௡ ൯ + Γ൫𝑥௝మ௡ ൯൧ே

௝మୀଵ
ே

௝భୀଵ𝑦௜௡ାଵ = 𝑔(𝑿௜௡)                                                          𝜙௜௡ାଵ = ℎ(𝑿௜௡)                                                         
. (25) 

Substituting 𝑿ଵ௡ = 𝑿ଶ௡ = ⋯ = 𝑿௦௡ , we have and 𝑯(ଵ)൫𝑿௜௡, 𝑿௝భ௡ ൯ ≡ 0  and 𝑯(ଶ)൫𝑿௜௡, 𝑿௝భ௡ , 𝑿௝మ௡ ൯ ≡2𝜎ଶ(𝑁 − 1)(𝑁 − 2)(𝑣௦ − 𝑥௦௡)Γ(𝑥௦௡), in the synchronization state, the synchronization manifold can be 

acquired according to 𝑿௦௡ାଵ = 𝑭(𝑿௦௡)= ቐ𝑥௦௡ାଵ = 𝑓(𝑿௦௡) + 2𝜎ଶ(𝑁 − 1)(𝑁 − 2)(𝑣௦ − 𝑥௦௡)Γ(𝑥௦௡)𝑦௦௡ାଵ = 𝑔(𝑿௦௡)                                                                        𝜙௦௡ାଵ = ℎ(𝑿௦௡)                                                                        . (26) 

System (26) shows that the behavior of the synchronous neurons depends on the value of the 

higher-order coupling strength (𝜎ଶ), which is here of chemical synaptic type. Looking more closely at 

Eq. (14) and Eq. (23), the perturbation equations needed to examine the stability of the synchronous 

state can be written as 

𝛿𝑿௜௡ାଵ =
⎩⎪⎪
⎨⎪
⎪⎧𝛿𝑥௜௡ାଵ = 𝐷𝑓(𝑿௦௡)𝛿𝑿௜௡ + 2𝜎ଶ(𝑁 − 2)(𝑁 − 1) ×      ൫(𝑣௦ − 𝑥௦௡)Γ௫(𝑥௦௡) − Γ(𝑥௦௡)൯𝛿𝑥௜௡                                  −൫𝜎ଵ + 2𝜎ଶ(𝑁 − 2)(𝑣௦ − 𝑥௦௡)Γ௫(𝑥௦௡)൯ ෍ 𝐿௜௝భ(ଵ)𝛿𝑥௝భ௡ே

௝భୀଵ𝛿𝑦௜௡ାଵ = 𝐷𝑔(𝑿௦௡)𝛿𝑿௜௡                                                     𝛿𝑧௜௡ାଵ = 𝐷ℎ(𝑿௦௡)𝛿𝑿௜௡                                                      
. (27) 

Consequently, the linearized system becomes 

𝜻௡ାଵ = ⎩⎪⎨
⎪⎧𝜁௫௡ାଵ = 𝐷𝑓(𝑿௦௡)𝜻௡ − 𝜎ଵ𝑁𝜁௫௡                                            −2𝜎ଶ(𝑁 − 2)൫(𝑣௦ − 𝑥௦௡)Γ௫(𝑥௦௡) + (𝑁 − 1)Γ(𝑥௦௡)൯𝜁௫௡𝜁௬௡ାଵ = 𝐷𝑔(𝑿௦௡)𝜻௡                                                              𝜁థ௡ାଵ = 𝐷ℎ(𝑿௦௡)                                                                   . (28) 

The results of the Lyapunov analysis of System (28) and the synchronization error of Network 

(25) are given in Figure 7a and Figure 7b. The regions coded in purple spectra (Λ ≤ 0) in Figure 7a, 

and the dark blue regions (𝐸 = 0) in Figure 7b are the regions wherein the neurons achieve complete 

synchrony. Compared to homogenous cases, the edges between the synchronous and asynchronous 

regions are not linear. Moreover, two examples of one-dimensional cases for 𝜎ଶ = 0.00004 and 0 ≤𝜎ଵ ≤ 0.01 (Figure 7c) and 𝜎ଵ = 0.008 and 0 ≤ 𝜎ଶ ≤ 0.00005 (Figure 7d). Furthermore, As shown in 

Figure 8, in this case, the synchronous neurons can behave chaotically (for 𝜎ଵ = 0.01 and 𝜎ଶ =0.00001) and periodically (𝜎ଵ = 0.001 and 𝜎ଶ = 0.00004) based on the value of 𝜎ଶ. 
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Figure 7. First row: (a) The maximum Lyapunov exponent of System (28) and (b) the synchronization 

error of Network (25) with 𝑁 = 10 for 0 ≤ 𝜎ଵ ≤ 0.01 and 0 ≤ 𝜎ଶ ≤ 0.00005. The stability region for 

which Λ ≤ 0 and 𝐸 = 0 is coded in purples spectra and dark blue in the analytical and numerical 

approaches, respectively. Second row: The maximum Lyapunov exponent of System (28) (shown in 

orange) and the synchronization error of Network (25) (shown in navy blue) for the (c) 0 ≤ 𝜎ଵ ≤ 0.01 

and 𝜎ଶ = 0.00004 and (d) 𝜎ଵ = 0.008 and 0 ≤ 𝜎ଶ ≤ 0.00005. 

 

Figure 8. (a),(c) The phase diagram and b,d) the time series of the mHR neuron maps in their 

synchronous state described in System (26) for 1000𝜎ଵ = 𝜎ଶ = 0.00001 (first row) and 40𝜎ଵ = 𝜎ଶ =0.00004 (second row). Other parameters are 𝑎 = 1, 𝑏 = 3, 𝑐 = 1, 𝑑 = 5, 𝜖 = 0.1, and 𝑚 = 1.4. The 

initial values are considered randomly around the origin. 
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3.5. Inner linking pairwise and chemical non-pairwise interactions 

In the final case of the study, the electrical function used as the pairwise neuronal interactions 

in the previous case is replaced by the inner linking function. Hence we get 𝑯(ଵ)൫𝑿௜௡, 𝑿௝భ௡ ൯ =ൣ𝑓൫𝑿௝భ௡ ൯ − 𝑓(𝑿௜௡), 0,0൧  and 𝑯(ଶ)൫𝑿௜௡, 𝑿௝భ௡ , 𝑿௝మ௡ ൯ = ቂ(𝑣௦ − 𝑥௜௡) ቀΓ൫𝑥௝భ௡ ൯ + Γ൫𝑥௝మ௡ ൯ቁ , 0,0ቃ . As a consequence, 

the Network (25) changes into 

𝑿௜௡ାଵ =
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑥௜௡ାଵ = 𝑓(𝑿௜௡) + 𝜎ଵ ෍ 𝐺௜௝భ(ଵ)ൣ𝑓൫𝑿௝భ௡ ൯ − 𝑓(𝑿௜௡)൧ே

௝భୀଵ+𝜎ଶ(𝑣௦ − 𝑥௜௡) ෍ ෍ 𝐺௜௝భ௝మ(ଶ) ൣΓ൫𝑥௝భ௡ ൯ + Γ൫𝑥௝మ௡ ൯൧ே
௝మୀଵ

ே
௝భୀଵ  𝑦௜௡ାଵ = 𝑔(𝑿௜௡)                                                          𝜙௜௡ାଵ = ℎ(𝑿௜௡)                                                         

. (29) 

Accordingly, due to the diffusive nature of the pairwise inner linking interactions, the coupling 

functions become 𝑯(ଵ)൫𝑿௜௡, 𝑿௝భ௡ ൯ ≡ 0 and 𝑯(ଶ)൫𝑿௜௡, 𝑿௝భ௡ , 𝑿௝మ௡ ൯ ≡ 2𝜎ଶ(𝑁 − 1)(𝑁 − 2)(𝑣௦ − 𝑥௦௡)Γ(𝑥௦௡), and 

thus, the synchronization manifold remains the same as in System (26). Inspired by Eq. (18) and Eq. 

(23), the stability of the synchronization manifold can be examined by performing the Lyapunov 

analysis on the perturbation system bellow 

𝛿𝑿௜௡ାଵ =
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧𝛿𝑥௜௡ାଵ = 𝐷𝑓(𝑿௦௡)𝛿𝑿௜௡ + 2𝜎ଶ(𝑁 − 2)(𝑁 − 1) ×൫(𝑣௦ − 𝑥௦௡)Γ௫(𝑥௦௡) − Γ(𝑥௦௡)൯𝛿𝑥௜௡                            −2𝜎ଶ(𝑁 − 2)(𝑣௦ − 𝑥௦௡)Γ௫(𝑥௦௡) ෍ 𝐿௜௝భ(ଵ)𝛿𝑥௝భ௡ே

௝భୀଵ        
−𝜎ଵ𝐷𝑓(𝑿௦௡) ෍ 𝐿௜௝భ(ଵ)𝛿𝑿௝భ௡ே

௝భୀଵ                                         𝛿𝑦௜௡ାଵ = 𝐷𝑔(𝑿௦௡)𝛿𝑿௜௡                                              𝛿𝑧௜௡ାଵ = 𝐷ℎ(𝑿௦௡)𝛿𝑿௜௡                                               
. (30) 

Network (30) can then be projected to the linearized system as follows 

𝜻௡ାଵ = ⎩⎪⎨
⎪⎧𝜁௫௡ାଵ = 𝐷𝑓(𝑿௦௡)𝜻௡(1 − 𝜎ଵ𝑁)𝜻௡ − 2𝜎ଶ(𝑁 − 2) ×൫(𝑣௦ − 𝑥௦௡)Γ௫(𝑥௦௡) + (𝑁 − 1)Γ(𝑥௦௡)൯𝜁௫௡                   𝜁௬௡ାଵ = 𝐷𝑔(𝑿௦௡)𝜻௡                                                       𝜁థ௡ାଵ = 𝐷ℎ(𝑿௦௡)𝜻௡                                                        . (31) 

The maximum Lyapunov exponents of System (31) are reported in Figure 9a for 0 ≤ 𝜎ଵ ≤ 0.012 

and 0 ≤ 𝜎ଶ ≤ 0.00005. In the same parameter intervals, the synchronization error of Network (29) is 

presented in Figure 9b. The purple in Figure 9a or dark blue regions in Figure 9b specifies the 

coupling strengths for which the neurons achieve synchrony. However, compared to Figure 7a,b, the 

stability region occupies a more significant area of the parameter plane 𝜎ଵ-𝜎ଶ . Also, Figure 9c,d 

illustrates two one-dimensional examples for 𝜎ଶ = 0.000038 and 0 ≤ 𝜎ଵ ≤ 0.012 (Figure 9c) and 𝜎ଵ = 0.0091  and 0 ≤ 𝜎ଶ ≤ 0.00005  (Figure 9d). Note that, in the synchronous regions, the 

synchronization manifolds shown in Figure 8 can be observed of almost the same value of the 

coupling parameters 𝜎ଵ and 𝜎ଶ since the dynamics of the neurons in the synchronous state remain 

the same as System (26). 
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Figure 9. First row: (a) The maximum Lyapunov exponent of System (31) and (b) the synchronization 

error of Network (29) with 𝑁 = 10 for 0 ≤ 𝜎ଵ ≤ 0.012 and 0 ≤ 𝜎ଶ ≤ 0.00005. The stability region 

for which Λ ≤ 0 and 𝐸 = 0 is coded in purples spectra and dark blue in the analytical and numerical 

approaches, respectively. Second row: The maximum Lyapunov exponent of System (31) (shown in 

orange) and the synchronization error of Network (29) (shown in navy blue) for the (c) 0 ≤ 𝜎ଵ ≤ 0.012 

and 𝜎ଶ = 0.000038 and (d). 𝜎ଵ = 0.0091 and 0 ≤ 𝜎ଶ ≤ 0.00005. 

4. Conclusions 

This paper investigated the impact of different 2- and 3-body interactions on the synchronization 

of mHR neuron maps configured in a higher-order network with global couplings. Therefore, a 

complete network of 𝑁 = 10  mHR neuron maps was considered in which the neurons were 

communicated through the homogenous and non-homogenous pairwise and non-pairwise coupling 

functions. The analysis of the stability of the synchronization state in each studied case was 

performed using the MSF formalism, which led to finding the necessary conditions for 

synchronization. Moreover, to approve the analytic results, the synchronization error of the 

corresponding network was calculated numerically. In homogenous cases, two- and three-neuron 

interactions were considered electrical, inner linking, and chemical, respectively. The results showed 

weaker pairwise and non-pairwise coupling strengths were needed to synchronize the mHR maps 

through chemical synapses. On the other hand, when neurons purely interacted through the inner 

linking functions, the synchronization occurred for the higher values of two-node and three-node 

coupling strengths. Interestingly, the synchronous and asynchronous regions were linearly separable 

in all homogenous cases, yet when chemical synapses were involved, multiple lines could be found 

between the regions. Two non-homogeneous cases were also taken into account, in both of which the 

three-node interactions were kept chemical since they are more suitable for long-range neuronal 

interactions. In the first case, two-node interactions were assumed to be electrical since they are more 

reasonable for short-range interactions. In the second case, the pairwise electrical synapse was 

replaced with the inner linking functions. The result indicated that when the inner linking function 

was considered to link each pair of neurons, the synchronous region occupied a significant part of 

the parameter plane compared to the pairwise electrical connections. 
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