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Abstract: In network analysis, links depict the connections between each pair of network nodes. However, such
pairwise connections fail to consider the interactions among more agents, which may be indirectly connected.
Such non-pairwise or higher-order connections can be signified by involving simplicial complexes. The higher-
order connections become even more noteworthy when it comes to neuronal network synchronization, an
emerging phenomenon responsible for the many biological processes in real-world phenomena. However,
involving higher-order interactions may considerably increase the computational costs. To confound this issue,
map-based models are more suitable since they are faster, simpler, more flexible, and computationally more
optimal. Therefore, this paper addresses the impact of pairwise and non-pairwise neuronal interactions on the
synchronization state of 10 coupled memristive Hindmarsh-Rose neuron maps. To this aim, electrical, inner
linking, and chemical synaptic functions are considered as 2- and 3-body interactions in three homogenous and
two non-homogenous cases. The results show that through chemical pairwise and non-pairwise synapses, the
neurons achieve synchrony with the weakest coupling strengths.

Keywords: higher-order network; simplicial complex; synchronization; neuron; map-based model
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1. Introduction

The work network refers to a set of nodes or agents interacting through links, which in fact,
specify the configuration of the nodes’ connection. The study of the behavior of such connected nodes
becomes more exciting when they have nonlinear dynamics. In mathematical neuroscience, the
dynamics of each network node are defined by a neuronal model with the purpose of studying the
brain’s function. As a result, many studies have been devoted to investigating neuronal collective
behaviors or events that have real-world instances [1, 2]. Among such neuronal collective behaviors,
synchronization has owned a dominant importance since this emergent phenomenon [3] itself
includes a variety of subcategories, each of which is responsible for a biological process, disease, or
function [4-6]. Complete synchronization [7], generalized synchronization [8, 9], phase or anti-phase
synchronization [10, 11], lag synchronization [12], cluster synchronization [13], and chimera [14, 15]
are well-known subcategories that have been examined analytically and/or numerically in literature.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202305.1416.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2023 doi:10.20944/preprints202305.1416.v1

For instance, the necessary conditions for synchronizing the Hindmarsh-Rose (HR) neuron model via
the diffusive coupling functions are given in [7]. The synchronization of two pre- and post-synaptic
HR neurons is investigated in [16]. The synchronization of memristive HR (mHR) neurons with
electrical and Field couplings is explored in [17]. The necessary conditions for the synchronization of
the photosensitive FitzHugh-Nagumo (FHN) neurons are analytically and numerically studied in
[18]. In another study carried out in [19], the synchronization of heterogeneous FHN neurons is
studied. The effect of memristors as the neuronal synaptic pathways are studied for two HR in [20]
and FHN in [21] neurons as well. The synchronization of the Morris-Lecar (ML) neurons with
memristive autapse as the neurons’ self-feedback was taken into account in [22]. Some recent relevant
studies focused on map-based neurons since it is believed that discrete-time neurons not only are
able to mimic natural neuron behavior, such as spiking and bursting, but also they are more
straightforward, faster, more flexible, and of less computational cost [23]. For illustration, the
synchronization of the Rulkov neuron map under electrical [24, 25], inner linking [24], chemical [26,
27], hybrid [28, 29], and memristor [30] synapses are thoroughly investigated in the literature.
Another synchronization study, reported in [31], was conducted on the mHR neuron map in a two-
node structure network under different coupling functions, including bidirectional electrical,
chemical, inner linking, and hybrid synaptic functions. The intra- and inter-layer synchronization of
mHR neurons is numerically analyzed in [32].

In the literature, it is noticeable that many studies have paid attention to the pairwise interactions
among neurons, and non-pairwise interactions have been neglected. Nonetheless, such non-pairwise
or higher-order interactions have been proven to be existed not only among the interconnecting
neuron population [33] but also among other coupled systems, including physical ones [34-36]. To
nail the limitation of graph-based networks and to involve the multi-body interactions, the simplicial
complexes can be considered to define the nodal interactions [36]. In this way, especially in neuronal
network analysis, the connections that imply actual neuronal connectivity can be described more
insightfully [37]. Consequently, some studies depict the effect of higher-order interactions on
network synchronization. For instance, the synchronization of a higher-order network with HR
neurons with 2- and 3-body interactions are investigated [38]. In this study, electrical and chemical
higher-order interactions, as well as pairwise electrical connections, were studied, and the necessary
conditions for the neurons to achieve synchrony are given analytically and numerically. In a similar
study [39], the synchronization of f§ cells subjected to the 2-node and 3-node interactions was
investigated. This study considered the higher-order chemical and electrical synapses, while the 2-
node connections were assumed as a hybrid synapse. The impact of considering the degree of the
higher levels of multi-node interactions was the objective of the study declared in [40]. This study
focused on the dynamics of the higher-order network of the Rulkov maps with pairwise electrical
and non-pairwise chemical synapses. The synchronization of a higher-order network of ML neurons
with geometrical couplings was investigated in [41]. Besides the neuronal network analysis, higher-
order interactions were studied on phase oscillators [42] and mathematical models [37].

Inspired by the aforementioned literature, the presented paper is devoted to investigating the
synchronization of a higher-order network of mHR neuron maps subjected to different pairwise and
non-pairwise synoptic conditions, including electrical, inner linking, and chemical coupling
functions. The rest of the paper is organized as follows: the higher-order network is described in
Section 2. The necessary conditions for synchronizing the mHR neuron under the assumed coupling
schemes are analytically and numerically given in Section 3. Finally, Section 4 concludes the paper
and sums up the important findings of the paper.

2. Higher-order network model

The addition of simplicial complexes to the network model allows for considering higher-order
interactions, including multi-body interaction, among the neurons involved in the network. A
simplicial complex is a set of connected nodes building a topological structure [37]. For instance, 0-
simplexes, 1-simplexes, and 2-simplex are respectively known as nodes, links, and triangles. Hence,
d -complex structures can model the d + 1-body interactions, which are called higher-order
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interactions. In general, a map-based network with all possible higher-order interactions, by
considering simplicial complexes in 1, ...,d dimensions, can be described as:
N

_ @
X" =FX!) + o0y Z Gy, HO(XT, X} )

J1=1

N N
2
+ o, Z Z Gijlsz(Z)(X?,Xj"l,Xj’;) + .. O
J1=1j,=1
N

N
@ g@(yn yn n
+O—dz ZGUl]ZH (Xi'le""de )
J1=1Jj2=1
where X is the state vector and F(X) is the dynamic vector of the system network. N is the network

size, G@ = [G'@ i ]
’ Ur-Jalyun. xNxd+1

ijy ..jq together form a d-simplex, H@ is the coupling function determining the relationships
among the involved nodes in a d-dimensional simplicial structure, and o, is the coupling strength
of (d +1)-body interactions. Note that the superscript n shows the number of iterations, and
subscript i indicates the node’s index.

is the adjacency tensor whose non-zero elements show nodes

Taking up to 2-simplexes, Network (1) can be rewritten in a more straightforward form below

N
+1 _ D ga
XM = F(XM) + oy z Gy, HV (X, X} )
ji=1
NN (2)
@) g@(yn yn yn
+ 0y Z Z GijljZH (Xi ’le’ij '
j1=1j2=1

Here GV = 1 shows there exists a link between two nodes and G?. =1 presents nodes ij;j,

ij1 tj1J2

together construct a triangle. Figure 1a is a schematic representation of Network (2) with global
couplings for N = 10 as well as its adjacency matrix G(* (Figure 1 b) and adjacency tensor G®
(Figure 1 c).

Letting F(X) describes the dynamics of the mHR neuron map, and G determines the all-to-all
network configuration for N = 10, this paper studies the effect of different pairwise and non-
pairwise interactions (different H® and H® conditions) on the network synchronization. The
mHR map is a three-dimensional neuron model proposed in [43] obtained by discretizing the flow-
based model presented in [44]. According to the dynamics of mHR neuron map F(X) can be defined
as

f(x,y,¢) =x + e(y —ax® + bx? — mtanh(¢)x)
FX)=19(x,y,¢) =y +e(c—dx* - y) : 3)
h(x'y'¢) = ¢ —E&x
where x is the membrane potential, y is the resting state, and ¢ is the magnetic flux with the
strength of m. Other parameters are the constants affecting the dynamics of neurons’ spiking activity.

Therefore, a=1, b=3, c=1, d=5, €e=0.1, and m = 1.4 is selected as the fixed parameter
settings.
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Figure 1. (a) A schematic representation of Network (2) with N = 10 globally coupled nodes. Black
nodes, green links, and the light yellow triangle represent 0-simplex, 1-simplex, and 2-simplex
structures. Also, (b) G is the N x N adjacency matrix, and (¢) G® is the N x N x 2 adjacency
tensors. Light yellow matrix elements indicate the existence of a relation among involved nodes, and
green elements show otherwise. Thus, Gi(]-ll) =1 showsnodes i and j; are connected through a link,

and nodes Gi(jzl) =1 shows nodes i, j;, and j, together construct a triangle.

3. Results

Using the Master stability function (MSF) analysis, this section provides the necessary conditions
for synchronizing the globally coupled mHR neurons with higher-order interactions under different
pairwise and non-pairwise coupling conditions. First, we consider the cases wherein all interactions
are homogeneous. As a result, electrical synapses, inner linking functions, and chemical synapses are
considered as the 2-body and 3-body interactions separately. Thereafter, two non-homogeneous cases
are taken into account wherein electrical and inner linking functions are considered as the 2-body
connections while chemical 3-body interactions are maintained the same.

Furthermore, to approve the analytical results obtained through the MSF analysis, time-
averaged synchronization error, henceforth called synchronization error, is regarded as the
numerical assessment. The synchronization error is calculatable according to the following formula

n N
1
E ZWZZ”X}(_X?”' @)

k=1j=1
VED

in which [|...|| symbolizes the Euclidean norm and X = [x,y, ¢].

3.1. Electrical pairwise and electrical non-pairwise interactions

In the first homogenous case, both 2-body and 3-body interactions are assumed to be electrical.
Therefore, H(l)(X?,X]’-l1 = [x}i -7, 0,0] and H(z)(X?,Xﬁ,Xj’Z) = [x]’i +xj, — 2x7, 0,0] . Thus,
Network (2) can be updated as
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n+1
Xi

(
[ X = F(X) + oy Z G(l) — x| + o Z z Gl(]zl)]2 [x] + 2]t — 2x] )
4 J1=1Jj2= .

l n+1 — g( X:l)
P = h(XT)
According to the MSF formalism, a network can achieve synchrony when the synchronization

manifold is stable. In the synchronization state, all neurons follow the same temporal pattern, i.e.,

X} =X} =--=X?. This leads to HY(X},X}) =0 and H®(X!, X}, X!')=0. As a result, the
synchronization manifold obeys the following relation
n+1 — f(Xn)
X2 = QXD = {2+t = g(xD), (6)

P = h(KD)
which is similar to the dynamics of an uncoupled neuron (Eq. 3). To investigate the stability of the
synchronization manifold, a negligible perturbation is added to the synchronous states. Thus, 6X} =
X% — X' and the dynamics of §X?' can be obtained through

SXT+1 = DF(X™)6 X!

N
+o, Z GV [DHD (XY, X2)8X; + DHO (X2, X1)6X;, |
J1=1
7)
+ 0, Z Z G2, [DHO(XT, X2, X1)6X;

Ji=1jz=1
+ DH® (X?, X?, X1)6X,, + DH® (X2, X2, XM)6X,, |,

where DF(XY) is the Jacobian of F(X}) in the synchronization manifold X7 that can be defined as
0f(X) of(X) Of(X)]
0x dy 09
dg(X) dg(X) dg(X)
0x dy d¢
oh(X) 0h(X) 0h(X) (8)
| Ox ady d¢

’1 — e(3ax? — 2bx + mtanh(¢)) € emx]

DF(X) =

—2de 1—¢€ 0
—€ 0 1

Applying the assumptions, Eq. (7) becomes

p

SxM*1 = DF(XT)6XT + 0y Z GOlox7 - 67
ji1=1
N N !
n+1l __

6XiT =9 Z Z 1(121)]2 X! + 6x]! —26x7 : ©)
5yn+1 Dg(Xn)é‘Xn
5z = Dh(X)5XT

Letting L(® be the Laplac1an matrix of G, then L@ = D@ — @ where D@ is the degree
tensor whose elements are non-zero only on the main diagonal. L® can be generally defined as
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6
(0 forlqt]andG(l)—O
L@ ={_(d-1)! ki(]‘.ll) fori # jand G(l) =1, (10)
d k(@ fori=j
where kl(]dl) =@ 1),212 1t Z]d 1 L(Jc?jz JN*

n+1

Since the coupling function is only applied to the membrane potential, §x;'** can be extended

as
SxMtt = Df(x")sx’?
N

(1) €3] (1)
z D;; 6xj z Lij 6x} — Z Gy,
J1=1 Jj1=1 j1=1
@3]
Z Z Dlh]z x J1 + 6x]r12]
J1=1jo=
N N (11)
_ (2) _ n )
Z Z 1D, [6x + 623, - 26x] Z Z 2,
J1=1j2= J1=1j2=1
N
1
= DF(X™)8X™ — o, Z L) 6}
Jji=1
N
@3]
_ o, Z z 12, |62 + 6],
Jj1=1j2=1
Since giéx =Xy 1LE§38x we have
2
SxM1 = DF(XV)OXT — o Z L sx - 20, z LY 8xl. (12)
J1=
In an all-to-all network configuration, L® = (N — 2)L(®, Therefore
Sx*1 = DF(XD)EX? — (07 + 20,(N — 2)) Z L8 (13)

J1=
Consequently, Eq. (9) can be updated as

{é‘x"“ Df(XM)6X? — (o, + 20,(N — 2)) Z L) sx]!
SXPHt = J1= . (14)
Syt = Dg(X)5 X!
5zt = Dh(X?)5 X!
Note that Df(X?)SX? is block diagonal and LY is diagonalizable. Considering 1;, where
A = 0,4, =+ = Ay = N is the eigenvalues of LD, and new variables , the perturbation equations
(Eq. (14)) can be projected to the linearized system below
P =Df(XP = N(oy + 20,(N = 2)) 3
M = = Dg(X$)3" : (15)
{p*t = Dh(XP)E™
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For a synchronization manifold to be stable, System (15) must be stable around the origin.
According to the Lyapunov analysis, the non-positive values of the maximum Lyapunov exponent
(A) show the synchronization manifold’s stability.

Figure 2a shows the values of A obtained for System (15) as a function of 0 < ¢y < 0.01 and
0 < g, < 0.0007. The regions coded with purple spectra are the stability region for which A < 0. In
the numeric approach, which is demonstrated in Figure 2b in the parameter plane o¢;-0,, the stability
region coded in dark blue color with E = 0 is the same as in Figure 2a. Overall, the synchronous and
asynchronous regions can be distinguished by a linear line such that the more ¢, increases, the less
0, isneeded to synchronize the neurons and vice versa. Moreover, the results of pure 1-simplex (g, =
0) and pure 2-simplex (o; = 0) cases are presented in Figure 1c,d. According to Figure 1c,d, the
synchronization is acquired for o; = 0.0072 and o, = 0.000455. It can be seen that the neurons
achieve synchrony in weaker strength of ¢, (higher-order case), compared to the o; (pairwise case)
value needed to synchronize the neurons.

Figure 3 shows the neuron dynamics in the synchronization state (System (6)) using the phase
diagram and time series. It should be noted that the neurons’ initial conditions are selected randomly
around the origin.

- A0 x 107 56
5
4
o 13
2
1
0

0.01

0 0.005 0.01 0 2 - ¢
o 02 x10

Figure 2. First row: (a) The maximum Lyapunov exponent of System (15) and (b) the synchronization
error of Network (5) with N =10 for 0 < ¢; < 0.01 and 0 < 0, < 0.0007. The stability region for
which A <0 and E = 0 is coded in purples spectra and dark blue in the analytical and numerical
approaches, respectively. Second row: The maximum Lyapunov exponent of System (15) (shown in
orange) and the synchronization error of Network (5) (shown in navy blue) for the (c) pure 1-simplex
(0, = 0) and (d) pure 2-simplex (g; = 0) cases.
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Figure 3. (a) The phase diagram and (b) the time series of the mHR neuron maps in their synchronous
state described in System (6) for g; = 0.005 and o, = 0.0005. Other parameters are a=1, b =3,
c=1,d=5, € =0.1, and m = 1.4. The initial values are considered randomly around the origin.

3.2. Inner linking pairwise and inner linking non-pairwise interactions

According to [24], an inner linking function is a more general and nonlinear form of the electrical
synapse. Therefore, here another homogenous case is taken into account in which we have
HO(XXE) = [(X1) — X, 00] and HO(KE XX = [F(X0) + F(XE) — 2£ (X2, 00]. Thus,
the network can be described as

p N

= FOW + o ) GPIF() - F]

J1=1
N N
O N Al AR AR E D
Jj1=1j2=1

yitt = g(XP)
(P! = h(X])

When all neurons evolve synchronously, H®(X ?,Xj"l) =0 and H@(X ?,Xj"l,X]-”Z) =0.
Therefore, the synchronization manifold is the same as in System (6) and demonstrated in Figure 3.
To obtain the perturbation equations, similar to the previous case, a small perturbation is added to
the synchronous neurons’ state and §X} = X7 — X?'. Using Eq. (7) and considering L® = D@ —
G@, the perturbation system can be obtained through
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SxM = DF(XM)SX™ + 0y DF(XD) Z Gy [ax;ll - 5X?]
]1—1
+0,Df(X™) Z Z fo)j sx;?l +6X] — 26X?]
J1=1j,=1
= Df(X5)8X7
N N
+ g, Df(XY) Z DX} — Z LY sx:
Jj1=1 Jj1=1
N
— 5x7 Z G
ji=1 (17)
DF(X D(z) SXT + 6XT
+ 0, Df( s) ij1j2 ]'1+ 2
J1=1jo=
_ @ _ )
5 z 1, [0, + o) -2 Y z 6@,
J1=1jp= J1=1j2=

=Df(X))6X! — oy Df(XY) Z LSi@X"
J1=1

— 0,Df(XY) Z Z L2, |oxy +axz|.

J1=1j2=
Considering Y _ 1Lgi6x =X 1L526x and L® = (N —-2)L® for the globally coupled
neurons, the perturbation system becomes

6XT'1+1

(Sx”“ = Df(XM)SX? — DF(X™)(0y + 20,(N — 2)) z L) sxr s)
= J1=1 .

1 Syt = Dg(X2)5XT}

62 Ml = Dh(XM)SXT

Thereafter, the above-mentioned perturbation equations (Eq. (18)) can be stated in the linearized
form using the new variable {.

w1 = DFXY) (1= N(oy + 20,(N — 2))) &
(n+1 — n+1 — Dg(Xn)(n . (19)
{n+1 Dh(X?)(n

Similarly, the maximum Lyapunov exponent of System (19), shown in Figure 4a for 0 < o; <
0.012 and 0 < 0, < 0.0009 can provide the necessary conditions to complete synchronization. Also,
Figure 4b confirms the results obtained through the MSF analysis. It can be observed that the linear
separator is maintained when the inner linking coupling functions are applied instead of the electrical
synapses. However, the pure 1-simplex (Figure 4c) and 2-simplex (Figure 4d) cases better show that
slightly stronger 2- and 3-body coupling strengths (o; = 0.0095 and o, = 0.0006) required to
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synchronize the neurons. Thus, compared to Figure 2ab, the separating line between the
synchronous (in purple spectra in Figure 4a and dark blue in Figure 4b) and asynchronous regions is
shifted towards the higher values of ¢; and ;. In the synchronous region, all neurons behave as
shown in Figure 3 since the synchronization manifold remains the same as an isolated neuron’s
dynamics.

4]

e

w

)

-

0 0.005 0.01

0 0.005 0.01
& a x107*

Figure 4. First row: (a) The maximum Lyapunov exponent of System (19) and (b) the synchronization
error of Network (16) with N =10 for 0 < g; < 0.012 and 0 < 0, < 0.0009. The stability region for
which A <0 and E = 0 is coded in purples spectra and dark blue in the analytical and numerical
approaches, respectively. Second row: The maximum Lyapunov exponent of System (19) (shown in
orange) and the synchronization error of Network (16) (shown in navy blue) for the (c) pure 1-simplex
(0, = 0) and (d) pure 2-simplex (g; = 0) cases.

3.3. Chemical pairwise and chemical non-pairwise interactions

Electrical and inner linking functions are, in fact, more suitable to model the physical or the
short-range neuronal pathway of information. Nonetheless, chemical synapses are proper to model
either short- or long-range neuronal interactions [31]. Hence, in the last homogenous case, we

consider ~ HW(X?,X!) = [(v; —x)I(x]),00] and HP (X}, X}, X)) = [(vs —xM) (F(x]’i) +
F(x]’; ),0,0], where vy = —1.4 is the reversal potential and I'(x) = m with the slope of k =

50 and the threshold of 6 = —1.4. As a consequence, the network can be expressed as
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)
X = FXT) + 0y (v — 1) 2 Gr(
Jj1=1
n+1 __
X = Hou s — 2P Z Z 62 [r(x) + ()] (20)
J1=1 j2=
yitt = g(XP)
k¢n+1 h(Xr-l)

For a network with global couplings, we have Zh 16(1) =(N—-1) and Zh 1212 16(2) =

(N —1)(N —2) . Accordingly, in the synchronization stat;] ' wherein X} =X} =--=X? th{aznd
HO(X}, X7 ) = 0;(N — D) (vs —xDI(x)) and H@(X?, X!, X)) = 20,(N — D)(N — 2)(1;5 —xMI(xD),
the dynamics of neurons obey the following equations
Xn+1 — F(Xn)
Xt = f(XD) + (N = 1) (0 + 20,(N = 2)) (v — x)T (%)

= ys”“ = g(X3)
s = h(Xy)
To analyze the stability of the synchronization state expressed in Eq. (21), the general Eq. (7) is

used. Thus, letting ¥ _, 6 = (W —1), ¥, 2N, G, = (N = 1D(N -2), and L® = (N -2)LO,
n+1

the purterbation eqauation &x;

(21)

reads

Sx™! = DF(XT)SXT + oy Z G(l)[(US — x), (k2 )6x —I(x} )an]
j1=

+ o, Df (X%) Z Z GL(JZ)] [(vs — xT (x)6x]!

J1=1j2=
+ (vg — xML (7 )6x — 2T (x? )6x"]
= DF(X)SXT

+o| (vg —xHL(xF z D(l)é‘x Z L(1)6x

Jj1=1 J1=1
(22)

N

—T(x})ox] z Gl(Jll)

j1=1

N
+ 0y | (vg — x)T (x) Z ZDfJZ)jZ xj: + 0xj, ]
j1= =

N N

_ () n] | _ ()
Z Z Llh]2 oxj: + 6xj, 2l (xH)éx] Z Z Giij,
j1= =

J1=1Jj2=1
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Finally, considering Y _; L(2)6x = L(Z)(Yxn the perturbation equations can be obtained

ij1 12 1
as

(6xM*1 = DF(XM)SXT + (N — 1)(0y + 20, (N — 2)) X
((vs x (xF) = T(x}))Sx]

5X7* = { (0, + 205(N — 2))(vs — x)e (x7) Z L5 23)
Syt = Dg(X™M)5XT!
8z'*' = Dh(X})6XT
Afterward, the expression of the linearized system is
FH = DFXE = (01 + 20, (N = 2)) %
(s — xHD(xd) + (N — DI (xF) ) 3x
(n+1= ( s s Jix\As s )(x (24)

{n+1 — Dg(Xn)(n
(n+1 Dh(Xn)(n

The maximum Lyapunov exponent of System (24) and the synchronization error of Network
(20) are demonstrated in Figure 5a and Figure 5b. From Figure 5a,b, it can be noticed that through
the first- and second-order chemical interactions, the neurons synchronize for considerably weaker
strength of the o; and ;. This drop is more remarkable for o;. Interestingly, despite the previous
cases, here, several lines are needed to separate the synchronous and asynchronous zones. Although
the stability region is presented in purple spectra in Figure 5a, the light purple color of the significant
areas reveals that A = 0. However, Figure 5b, wherein the dark blue color shows the stability region
obtained in the numerical approach, manifests that such areas are stable if the initial conditions are
appropriately selected. The pure 1-simplex (g, = 0) and 2-simplex (o; = 0) cases are also indicated in
Figure 5c and 5d. Accordingly, different minor and major synchronous regions can be observed
within the asynchronous zones. Nevertheless, for o; > 0.00062 in the pure 1-simplex case (Figure
5c)and o, > 0.00004 in the pure 2-simplex case (Figure 5d), no asynchronous areas can be observed
within the synchronous region. Besides, as previously shown (System (21)), the dynamics of the
neurons in the synchronization state depend on the value of the first- (0;) and second-order (o)
coupling strengths. For example, Figure 6 points out that the neurons have periodic bursting behavior
of period-1for o =10 and o, = 0.0001 and of period-2 for o; = 10 and o, = 0.00055, both differ
from the original chaotic dynamics of an uncoupled mHR neuron. The initial conditions are randomly
chosen around the origin.
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Figure 5. First row: (a) The maximum Lyapunov exponent of System (24) and (b) the synchronization
error of Network (20) with N = 10 for 0 < gy < 0.0007 and 0 < g, < 0.00005. The stability region
for which A £0 and E = 0 is coded in purples spectra and dark blue in the analytical and numerical
approaches, respectively. Second row: The maximum Lyapunov exponent of System (24) (shown in
orange) and the synchronization error of Network (20) (shown in navy blue) for the (c) pure 1-simplex

(0, = 0) and (d) pure 2-simplex (g; = 0) cases.
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Figure 6. (a),(c) The phase diagram and (b),(d) the time series of the mHR neuron maps in their
synchronous state described in System (21) for o; = 100, = 0.0001 (first row) and oy = 100, =
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0.00055 (second row). Other parameters are a=1, b=3, c=1, d =5, € = 0.1, and m = 1.4. The
initial values are considered randomly around the origin.

3.4. Electrical pairwise and chemical non-pairwise interactions

As the first homogenous case, we consider the electrical synapses to model the short-range 2-
body connections and chemical synapses as the long-range 3-body interactions. Hence, applying

HO(XEXE) =[x —x,0,0] and HO (X2, X7, X1.) = (v, — %) (T(x) +T(x]2)),0,0], the network

LY

dynamics can be obtained from

p
=fXD +0y ) GJ[xf =]
12
Xit = +0,(vs — x*) G2 [F( ) + F(x”)] (25)
2 ]121]22 J1J2
vt =g(X7)
k¢n+1 h(X?)

Substituting X} =X} = =X?, we have and H®O(X},X!)=0 and H@(X}, X}, X}) =
20,(N — 1)(N — 2)(vs — x)I'(x$), in the synchronization state, the synchronization mamfold can be
acquired according to

Xn+1 — F( Xn)
X3t = f(X3) + 20, (N — DN = 2) (v — x3)T(x)
=1yt = g0
P = h(XT)

System (26) shows that the behavior of the synchronous neurons depends on the value of the
higher-order coupling strength (o), which is here of chemical synaptic type. Looking more closely at
Eq. (14) and Eq. (23), the perturbation equations needed to examine the stability of the synchronous
state can be written as

(26)

(Ox n+1 Df(Xn)6Xn+20'2(N 2)(N—1)X
((vs — X)L (k) = T(x)) ]!

5X?+1 =< —(0‘1 + 20,(N — 2)(vg — x{)Ty (X?)) Z L(1)6x11' (27)

Syl = Dg(X)SXT}
\5z"** = DR(X?)S5X?

Consequently, the linearized system becomes

FH=Df(XP)E" — NGt

=20, (N = 2)((0s = DT (e) + (N = DIG)EE

G+t = Dg(XP" |
\¢3+t = Dh(XD)

The results of the Lyapunov analysis of System (28) and the synchronization error of Network

(25) are given in Figure 7a and Figure 7b. The regions coded in purple spectra (A < 0) in Figure 7a,
and the dark blue regions (E' = 0) in Figure 7b are the regions wherein the neurons achieve complete
synchrony. Compared to homogenous cases, the edges between the synchronous and asynchronous
regions are not linear. Moreover, two examples of one-dimensional cases for g, = 0.00004 and 0 <
oy < 0.01 (Figure7c)and oy = 0.008 and 0 < 0, < 0.00005 (Figure 7d). Furthermore, As shown in
Figure 8, in this case, the synchronous neurons can behave chaotically (for o; = 0.01 and o, =
0.00001) and periodically (g; = 0.001 and o, = 0.00004) based on the value of o,.

(n+1 —

(28)
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Figure 7. First row: (a) The maximum Lyapunov exponent of System (28) and (b) the synchronization
error of Network (25) with N =10 for 0 < ¢g; < 0.01 and 0 < g, < 0.00005. The stability region for
which A <0 and E = 0 is coded in purples spectra and dark blue in the analytical and numerical
approaches, respectively. Second row: The maximum Lyapunov exponent of System (28) (shown in
orange) and the synchronization error of Network (25) (shown in navy blue) for the (¢) 0 < g; < 0.01

and ¢, = 0.00004 and (d) o; = 0.008 and 0 < g, < 0.00005.
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Figure 8. (a),(c) The phase diagram and b,d) the time series of the mHR neuron maps in their
synchronous state described in System (26) for 10000, = 0, = 0.00001 (first row) and 4007 = 0, =
0.00004 (second row). Other parametersare a=1, b=3, c=1, d =5, € = 0.1, and m = 1.4. The
initial values are considered randomly around the origin.
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3.5. Inner linking pairwise and chemical non-pairwise interactions

In the final case of the study, the electrical function used as the pairwise neuronal interactions
in the previous case is replaced by the inner linking function. Hence we get HW(X?, X") =
[f( ) fxm, 00] and H(Z)(Xn X;, X”) = [(vS xt) (F( )+ F( ),0,0]. As a consequence,
the Network (25) changes into
p

X = FOXD) + 0y Z GOl (xg) - Fx]

11—1

X =4 4y (o — ) Z Z G rG) + T ()] 29
J1=1 j2=
yitt=gX)
. ¢n+1 h(X?)
Accordingly, due to the diffusive nature of the pairwise inner linking interactions, the coupling
functions become H®W (X7 X”) =0 and HP (X7}, X7 X”) = 20,(N — 1)(N — 2) (v, — xM)T(x?), and
thus, the synchronization manifold remains the same as in System (26). Inspired by Eq. (18) and Eq.

(23), the stability of the synchronization manifold can be examined by performing the Lyapunov
analysis on the perturbation system bellow

(6xM = DF(XM)SXT + 20,(N — 2)(N — 1) X
((vs — xIT () — T(x))6x

N
~20,(N = ) (v, = LG Y 18

1

SXMHL = 4 it . (30)
—o,Df(X™) 2 LVsx7

J1=
Syt = Dg(Xn)(SX’-“
\8z]'"*! = Dh(X7)6XT
Network (30) can then be pr0]ected to the linearized system as follows
T =Df(XPT (1 — 01N)T" — 20, (N — 2) X
(v = ADIG) + OV = DI
&yt =Dg(X$)¢"
¢+t = DR(XT)E"

The maximum Lyapunov exponents of System (31) are reported in Figure 9a for 0 < g; < 0.012
and 0 < 0, < 0.00005. In the same parameter intervals, the synchronization error of Network (29) is
presented in Figure 9b. The purple in Figure 9a or dark blue regions in Figure 9b specifies the
coupling strengths for which the neurons achieve synchrony. However, compared to Figure 7a,b, the
stability region occupies a more significant area of the parameter plane o;-0,. Also, Figure 9¢,d
illustrates two one-dimensional examples for g, = 0.000038 and 0 < oy < 0.012 (Figure 9c) and
oy = 0.0091 and 0 <0, <0.00005 (Figure 9d). Note that, in the synchronous regions, the
synchronization manifolds shown in Figure 8 can be observed of almost the same value of the

coupling parameters o; and o, since the dynamics of the neurons in the synchronous state remain
the same as System (26).

(n+1 —

(31)
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Figure 9. First row: (a) The maximum Lyapunov exponent of System (31) and (b) the synchronization
error of Network (29) with N =10 for 0 < ¢; £0.012 and 0 < g, < 0.00005. The stability region
for which A £0 and E = 0 is coded in purples spectra and dark blue in the analytical and numerical
approaches, respectively. Second row: The maximum Lyapunov exponent of System (31) (shown in
orange) and the synchronization error of Network (29) (shown in navy blue) for the (c) 0 < g; < 0.012
and 0, = 0.000038 and (d). o; = 0.0091 and 0 < ¢, < 0.00005.

4. Conclusions

This paper investigated the impact of different 2- and 3-body interactions on the synchronization
of mHR neuron maps configured in a higher-order network with global couplings. Therefore, a
complete network of N =10 mHR neuron maps was considered in which the neurons were
communicated through the homogenous and non-homogenous pairwise and non-pairwise coupling
functions. The analysis of the stability of the synchronization state in each studied case was
performed using the MSF formalism, which led to finding the necessary conditions for
synchronization. Moreover, to approve the analytic results, the synchronization error of the
corresponding network was calculated numerically. In homogenous cases, two- and three-neuron
interactions were considered electrical, inner linking, and chemical, respectively. The results showed
weaker pairwise and non-pairwise coupling strengths were needed to synchronize the mHR maps
through chemical synapses. On the other hand, when neurons purely interacted through the inner
linking functions, the synchronization occurred for the higher values of two-node and three-node
coupling strengths. Interestingly, the synchronous and asynchronous regions were linearly separable
in all homogenous cases, yet when chemical synapses were involved, multiple lines could be found
between the regions. Two non-homogeneous cases were also taken into account, in both of which the
three-node interactions were kept chemical since they are more suitable for long-range neuronal
interactions. In the first case, two-node interactions were assumed to be electrical since they are more
reasonable for short-range interactions. In the second case, the pairwise electrical synapse was
replaced with the inner linking functions. The result indicated that when the inner linking function
was considered to link each pair of neurons, the synchronous region occupied a significant part of
the parameter plane compared to the pairwise electrical connections.
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