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Abstract: MultiCal is an affordable, high-precision measuring device designed for the on-site

calibration of industrial robots. Its design features a long measuring rod with a spherical tip

that is attached to the robot. By restricting the rod’s tip to multiple fixed points under different

rod orientations, the relative positions of these points are accurately measured beforehand. A

common issue with MultiCal is the gravity deformation of the long measuring rod, which introduces

measurement errors into the system. This problem becomes especially serious when calibrating

large robots, as the length of the measuring rod needs to be increased to enable the robot to move

in a sufficient space. To address this issue, we propose two improvements in this paper. Firstly,

we suggest the use of a new design of the measuring rod that is lightweight yet has high rigidity.

Secondly, we propose a deformation compensation algorithm. Experimental results have shown

that the new measuring rod improves calibration accuracy by 20% to 39%, while by using the

deformation compensation algorithm, the accuracy increases by 6% to 16%. In the best configuration,

the calibration accuracy is similar to that of a measuring arm with a laser scanner, producing an

average positioning error of 0.274 mm and a maximum positioning error of 0.838 mm. The improved

design is cost-affordable, robust, and has sufficient accuracy, making MultiCal a more reliable tool for

industrial robot calibration.

Keywords: calibration device; kinematic calibration; on-site calibration; industrial robot; accuracy

measurement

1. Introduction

Robot calibration involves measuring a robot’s end effector at different joint angles using

high-precision measuring equipment to determine accurate kinematics parameters. Currently,

calibration is typically performed after a robot’s manufacturing, known as in-house calibration. The

advantages of in-house calibration include: First, the calibrated parameters can be embedded directly

into the robot controller [1]. Second, purchasing expensive measuring equipment such as laser trackers

[2], optical CMM [3], and even CMM [4] is cost-effective due to their high use frequency. However,

the accuracy of robots degrades as they are continuously used, so it is necessary to monitor the

robots’ accuracy online and conduct on-site recalibration (Figure 1a) when the accuracy is severely

degraded. On-site calibration is especially important for robots with off-line programming and visual

navigation, as the absolute accuracy of a robot, rather than its higher repeatability, ensures that the

motion instructions can be directly used for real tasks. Although some manufacturers provide on-site

calibration services, most still have to rent expensive laser trackers from a local provider of metrology

services [1]. This has spurred many researchers to develop various portable and affordable measuring

devices for on-site robot calibration.
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(a) (b)

Figure 1. (a) On-site kinematic calibration for an industrial robot and (b) MultiCal [6]

When it comes to calibration devices, the requirements for on-site equipment differ from those

for in-house calibration. Ideally, on-site equipment should have high calibration accuracy, low cost,

good robustness, portability, good environmental adaptability (able to be used in small robot cells),

versatility (suitable for different-sized robots), while also being able to monitor robot accuracy online.

Note that on-site calibration equipment does not require full automation or extremely high time

efficiency since calibration frequency is not high and manual interventions must be involved (to

arrange the measuring devices). Additionally, the device must measure the robot in a large portion

of its motion space to ensure high calibration accuracy. By keeping these requirements in mind, real

industrial applications can choose the best on-site calibration device to fit their needs.

MultiCal [6] (Figure 1b) is such a measuring device designed for the on-site calibration of industrial

robots. Its design features a long measuring rod with a spherical tip that is attached to the robot. The

calibration procedure of MultiCal involves aligning the rod’s tip to multiple fixed points under different

rod orientations, the relative positions of these points are accurately measured beforehand. However,

for large robot calibration, the measuring rod of MultiCal have to be elongated and may enlarge gravity

deformation of the rod, which increase measurement errors into the system. To address this issue, we

propose two improvements in this paper. Firstly, we suggest a new design of the measuring rod that

is lightweight yet has high rigidity. Secondly, a deformation compensation algorithm is proposed to

reduce the error. The work is based on previously published paper on MultiCal [6]. Details of the

improvements are discussed in the following sections.

The remainder of this paper is organized as follows. Section 2 reviews and analyses related works.

In Section 3, a new design scheme and calibration method of the MultiCal is discussed. Section 4

analyzes the deformation of the measuring rod. Experimental setup and results are proposed in Section

5. Comparisons of different measuring devices and methods are also discussed in the section. Finally,

the paper is concluded in Section 6.

2. Related works

Current calibration devices can be divided into two categories: open-loop and closed-loop,

each utilizing different calibration methods. Open-loop devices require markers to be installed on

the robot’s end effector, and measurements are performed using devices such as laser trackers [2],

optical CMMs [3], CMMs [4], binocular vision [7], and wire draw encoders [8]. This method allows
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for almost unlimited robot poses, and measurements can be automatically collected over a large

workspace. Therefore, these devices (especially laser trackers) are commonly used for in-house

calibration. However, open-loop devices may be obstructed in small robot cells and are often very

expensive (> 50K USD).

Closed-loop devices rely on probes [9], displacement sensors [10], optical sensors [11], precision

balls [12], and standard blocks [13]. A typical closed-loop method is to restrict the robot’s tool center

point (TCP) to a fixed point and then change the orientation of the end effector. These measuring

devices inherently have the advantages of good environmental adaptability and low cost. However,

their major limitation is that the robot must be restricted to a certain pose to collect the measurements,

which lead to degraded calibration accuracy and collision risks.

To overcome the limitations of open-loop calibration devices and make them more suitable for

on-site calibration, closed-loop devices based on multi-point constraints have been proposed. Two

examples of such devices are TriCal [14] and MultiCal [6]. These devices use a similar measurement

process, in which the robot automatically aligns its TCP with multiple fixed points, based on the

feedback of three displacement sensors. By using multi-point constraints, these devices achieve

a stronger constraint and a larger measurement space, resulting in good calibration accuracy and

robustness.

Compared to TriCal, MultiCal uses a precision ball instead of a heavier 3D displacement measuring

device at the end of its measuring rod. This design reduces the rod’s gravity deformation while

allowing for a longer measuring rod, resulting in increased motion space and improved calibration

accuracy for the robot. Although the measurement process of MultiCal is more complex than that of

TriCal due to the need for manual switching of the measuring device to different clamping positions,

it is less prone to collisions and more robust. This is because its displacement sensors have a larger

measurement range of 30 mm, and the multi-position fixture has no vulnerable components that

are critical to system accuracy, such as the extension stems. MultiCal is therefore well-suited for

on-site calibration devices that are not frequently used and typically operated by non-professionals.

However, our previous work [6] showed that even though MultiCal has minimized the load on the

measuring rod as much as possible, its lengthened stainless-steel measuring rod still suffered from

gravity deformation, which could result in decreased calibration accuracy.

Deformation of structural components is a common problem in many measuring or machining

devices, especially those involving slender structural components, which results in a decrease in

measurement or machining accuracy. To address this issue, the conventional method is to estimate

and compensate for deformation errors using elastic modeling [15], finite element analysis (FEA) [16],

experimental measurement [17], or neural network estimation [18]. As the gravity deformation of the

measuring rod is a relatively simple elastic deformation problem, this article adopts the first three

methods based on considerations of robustness and accuracy.

3. Improvement of the calibration devices and methods

This section first describes the detailed design scheme of MultiCal. Then the robot kinematics

model, non-kinematics parameters, calibration algorithm, and compensation algorithm for rod’s

gravity deformation used during calibration are presented.

3.1. Design of MultiCal and measuring rod

The improved design of MultiCal is illustrated in Figure 2a. The device comprises three major

components: (1) a long carbon fiber measuring rod with a spherical tip made up of a precision ceramic

ball installed at the robot’s end, (2) a redesigned 3D displacement measuring device with a µm-level

accuracy, and (3) a fixture providing multiple clamping positions that are fixed with respect to (w.r.t.)

the robot’s base. MultiCal adopts the automatic alignment of the TCP (the spherical tip’s center) with

a fixed point based on the feedback from three displacement sensors. Noted that the measuring rod

does not need high dimensional accuracy but high rigidity and lightweight.
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Measuring rod is improved by using new structure and carbon fiber pipes, as depicted in Figure 3a.

Two high-strength aluminum rings connect different carbon fiber pipes, and a stainless-steel bending

pipe is used at the bend. All parts of the rod are bonded with high-strength epoxy resin adhesive.

Pipe holder and ball holder are installed at the first and last ends of the measuring rod using threaded

connectors, which are used for rapid installation and removal with the robot flange and precision ball.

Three different configurations carbon fiber rod (Figure 3b, see Section 1 of supplementary materials for

detail design parameters) is developed to replace previously-used stainless-steel measuring rods in [6].

(a) (b)

Figure 2. (a) MultiCal with the improved measuring rod and (b) a redesigned 3D displacement

measuring device

(a) (b)

Figure 3. (a) Design of carbon fiber measuring rod and (b) different types of rods

χT =







xtool

ytool

ztool




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=







L2 sin(γ)

0

L1 − L2 cos(γ)






(1)

The measuring rod is mounted as an end-effector on the robot, and the position χT of the precision

ball’s center w.r.t. the tool frame {T} (tool parameters) can be calculated by Eq. (1) as nominal values.

As shown in Figure 2b, the 3D displacement measuring device measures the displacement of the center
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of the measuring rod’s spherical tip. Three displacement sensors are installed orthogonally on an

aluminum triaxial mount, ensuring that the sensors’ measuring axes are perpendicular to each other.

The measurement process involves making contact between the precision ball and the

square-shaped tips of the sensors. The sensors are zeroed by pushing each square-shaped tip into

contact with a physical stopper (a tungsten steel ball) set on the triaxial mount. In contrast to [6], all

three measuring axes of the sensors are inclined upwards at the same angle (approximately 54.7◦)

relative to the plumb axis. This design provides a larger measuring space in the vertical upward

direction, enabling the robot to move more freely.

Using the feedback from the displacement sensors, the robot can adjust its TCP to a fixed point in

k different orientations and ensure that the measured values of all sensors are almost exactly half of

their ranges. The corresponding k sets of joint angles qi (i = 1, 2, . . . , k) and the small displacement

deviation xi (i = 1, 2, . . . , k) are then recorded. This process is designed to automatically [14] or

semi-automatically [6] achieve a point constraint with minimal contact force, resulting in minimal

deformation, fast efficiency, and high measurement accuracy. The constrained point is marked as the

virtual datum point.

The MultiCal system also includes a fixture with multiple clamping positions fixed relative to the

robot base, such as the multi-position fixture shown in Figure 4. This fixture is designed to be compact

and lightweight, making it easy to transport and embed in robot cells. Equipped with multiple fast-lock

mechanisms, which comprises a toggle clamp and three sets of point positioning components made of

tungsten steel. These components, consisting of a single pin and two balls spaced at a certain distance,

ensure assembly accuracy.

Figure 4. Use a multi-position fixture to provide five clamping positions

The fast-lock mechanisms allow users quickly mount the 3D measuring device on different

clamping positions (less than 15 second), repeat the above measurement process, and obtain the

corresponding measurement data xij and qij (i = 1, 2, . . . , k; j = 1, 2, . . . , 5) (assuming that five

clamping positions are used). The displacement deviation xij is regarded as the coordinate of the i-th

point measured on the j-th clamping position w.r.t. the device frame {Dj} (j = 1, 2, . . . , 5). A Hexagon

measuring arm is used to measures the relative positions between different device frames (see Section

2 of supplementary materials for specific method), which can convert the coordinate points in different

frames to a single frame ({D3} is chosen in this paper), marked as the world frame {W}.
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Specifically, the relative poses between {D3} and the other device frames are recorded as χ3j

(j = 1, 2, 4, 5), which are 6D pose vectors comprising XYZ coordinates and Euler angles. The equation

for the coordinate conversion is:

xmeas
ij = T(χ3j)xij (2)

where T(χ3j) is the function transforming the 6D pose vector into a transformation matrix, and

xmeas
ij is the measured coordinates of the measurement point w.r.t. the world frame {W}. The above

process essentially achieves multi-point constraints, thereby providing stronger constraints and making

the kinematics parameter identification more robust. For a large robot, another solution involves

permanently fixing multiple single-position fixtures near the robot base (Figure 1a) and then using an

external measurement device (such as a measuring arm or laser tracker) to measure χ3j (j = 1, 2, 4, 5)

before the long-term use of these fixtures.

3.2. Calibration method

This section describes the robot kinematic model, the parameters that must be identified, and

the calibration algorithm. In this paper, we use the Staubli TX90 robot (Figure 5) as a representative,

although MultiCal is suitable for calibrating most industrial robots and even machine tools using

various measuring rods.

To begin the calibration process, we first establish a kinematic model and determine the parameters

that require identification. In our previous work [6], we compared different kinematic modeling

methods, including Denavit-Hartenberg (DH), modified DH (MDH) [19], product of exponential (POE)

[20], and finite and instantaneous screw (FIS) [21]. After considering implementation and promotion

difficulty, we ultimately selected the MDH method.

As shown in Table 1, we define the center of the precision ball as the origin of the last frame (TCP),

and add a rotation angle β around the y-axis to the adjacent parallel joints (link 1-2) to eliminate the

singularity. Additionally, d3 must be zero. Furthermore, both θ1 and d1 are coupled with the 6D base

parameter χB from the robot base frame {0} to the world frame {W} and are thus not included in

parameter identification. The compliance in the gearboxes of all joints, except the first, is modeled as a

linear torsional spring [14], as no torque is applied to the first joint axis when the robot is stationary.

We combine these kinematic and non-kinematic parameters into the parameter vector ρ that we aim to

identify.

Figure 5. MDH model of the Staubli TX90 robot
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Table 1. MDH parameters of the robot

Link θ/[◦] d/[mm] a/[mm] α/[◦] β/[◦]

0-1 θ1 150 50 + δa1 90 + δα1 0
1-2 θ2 + 90 + δθ2 + c2τ2 −50 + δd2 425 + δa2 0 + δα2 0 + δβ2

2-3 θ3 + 90 + δθ3 + c3τ3 0 δa3 90 + δα3 0
3-4 θ4 + δθ4 + c4τ4 425 + δd4 δa4 −90 + δα4 0
4-5 θ5 + δθ5 + c5τ5 δd5 δa5 90 + δα5 0
5-6 θ6 + δθ6 + c6τ6 100 + ztool + δztool xtool + δxtool 0 0

ρ =
[

δθT , δdT , δaT , δαT , δβ2, χB, χT , cT
]

(3)

where δθ, δd, δa, δα, and δβ2 are the errors of the MDH parameters, χB is the vector of robot base

parameters, χT is the vector of tool parameters, c is the vector of the compliance coefficient of the joint

gearboxes, and τs (s = 2, 3, . . . , 6) is the torque applied on the five joints, which is calculated using the

iterative Newton-Euler algorithm [14]. Among them, χB is a 6D vector, including XYZ coordinates

and Euler angles, as presented in Eq. (4).

χB =
[

xW
0 , yW

0 , zW
0 , αW

0 , βW
0 , γW

0

]

(4)

It is worth noting that the error associated with the tool parameters, δxtool and δztool , and the tool

angler error, δθ6, are relatively larger due to the low dimensional tolerance of the measuring rods. The

transformation matrix TW
T between the tool frame {T} and the world frame {W} can be calculated

based on the robot forward kinematics equation,

TW
T (ρ, q, τ) = TW

0 T0
1 T1

2 T2
3 T3

4 T4
5 T5

6 T6
T (5)

where TW
0 , Tn−1

n (n = 1, 2, . . . , 6), and T6
T are the transformation matrix between the robot base frame

and the world frame, adjacent robot link frames, and the robot flange frame and the tool frame,

respectively. Among them, the values of TW
0 and T6

T are determined by the robot base parameters χB

and the tool parameters χT , respectively. Based on Eq. (5), the TCP’s nominal coordinates (the position

vector of TW
T ) w.r.t. the world frame {W} can be obtained.

xnominal
ij =







xW
T

yW
T

zW
T






= f

(

ρ, qij, τij

)

(6)

where xnominal
ij is the nominal coordinate of the i-th point (i = 1, 2, . . . , k) measured on the j-th clamping

position (j = 1, 2, . . . , 5), and τij is the vector of torques applied on the robot joints when measuring

this point. Then, a linear error model is established based on the difference between the measured

coordinates xmeas
ij and the nominal coordinates xnominal

ij , and the error vector ∆ρ̆ can be solved by the

least square method, namely.

∆x =













xmeas
11 − xnominal

11

xmeas
12 − xnominal

12
...

xmeas
k5 − xnominal

k5













= J∆ρ̆ (7)

∆ρ̆ = J+∆x =
(

JT J
)−1

JT∆x (8)
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Since the above linear error model still has errors, ρ̆ can be optimized iteratively by using the

Levenberg-Marquardt (LM) algorithm, which is commonly used in robot kinematics [22] and has

strong robustness. Essentially, the identification problem becomes an optimization problem.

ρ̆ = arg min
k

∑
i=1

5

∑
j=1

∥

∥

∥
xmeas

ij − f (ρ, qij, τij)
∥

∥

∥

2
(9)

Figure 6a illustrates the TCP offset (∆xTCP.) caused by rod gravity and the reaction force F from

the measuring sensors. This reaction force F comprises the contact forces of the three displacement

sensor tips (Fx, Fy, Fz), which are accurately measured using a force-measuring device. As the axes

of the three sensors are parallel to the XYZ axis of the device frame {Dj} (j = 1, 2, . . . , 5), the contact

force values of the three tips when the ball’s center coincides with the virtual datum point are directly

used as the vector value of FD w.r.t. the frame {Dj}. Since the TCP is aligned with the same point

fixed w.r.t. the device each time, the vector value of FD (determined by the compression of the springs)

is considered constant in each measurement.

(a) (b)

Figure 6. (a) Measuring rod’s deformation caused by gravity and contact forces; and (b) force

decomposition

The TCP offset vector of the measuring rod when measuring the i-th point on the j-th clamping

position is marked as ∆x
ij
TCP, which can be decomposed into the XYZ direction of the tool frame {T}.

∆x
ij
TCP =







xT
TCP

yT
TCP

zT
TCP






(10)

Then the measured coordinates of the TCP can be compensated to obtain the corrected coordinates

x′meas
ij of this point.

x′meas
ij = xmeas

ij − RW
T ∆x

ij
TCP (11)

where RW
T is the rotation matrix between the world frame {W} and the tool frame {T}. We use x′meas

i

to replace xmeas
i in Eq. (9), and the calibration after compensation can be conducted.

4. Study on the the measuring rod’s deformation

In this section, we discuss the elastic deformation model of the measuring rod caused by

gravity and contact force, which can degrade the measurement accuracy and require estimation
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and compensation. We then present how the compliance parameters associated with this model are

obtained through a Finite Element Analysis (FEA) and a measurement experiment.

4.1. Elastic deformation model

The simplified measuring rod model and the external force decomposition is depicted in Figure 6b.

The measuring force vector FD of the measuring device mounted on different clamping positions can

be converted into the world frame {W}, namely:

FW
j = R

(

χ3j

)

FD (12)

where FW
j is the measuring force vector (w.r.t. the world frame {W}) of the 3D measuring device

mounted on the j-th clamping position, R(χ3j) is the function transforming the Euler angles of the 6D

pose vector χ3j into a rotation matrix. After that, FW
j is converted to the tool frame {T}, namely:

FT
ij = RT

6 R6
0R0

W FW
j (13)

where FT
ij is the measuring force vector w.r.t. the tool frame {T} when measuring the i-th point on

the j-th clamping position, RT
6 is the rotation matrix of the robot flange frame {6} and the tool frame

{T} (determined by the tool parameters χT), R6
0 is the rotation matrix between the robot base frame

{0} and the flange frame {6} when measuring this point (determined by the robot kinematic model

and joint angles qij), and R0
W is the rotation matrix between the robot base frame {0} and the world

frame {W} (determined by the base parameters χB). The robot first needs to be calibrated without

considering the rod’s deformation to determine the “rough value” of the MDH parameters. This

process is also called “rough calibration”. Experiments have proved that these MDH parameters are

sufficiently accurate to estimate the measuring rod’s deformation.

The gravitational acceleration vector g can be also converted into the tool frame {T}, namely:

gT
ij = RT

6 R6
0g0 = RT

6 R6
0g (14)

where gT
ij , g0, and g are the gravitational acceleration vector w.r.t. the tool frame {T}, robot base frame

{0}, and global frame when measuring the i-th point on the j-th clamping position, respectively. Then,

FT
ij and gT

ij are decomposed into the XYZ direction of the tool frame {T} (Figure 6b). According to

the principle of linear superposition in material mechanics, we analyze the deformation of the pipes I

and pipes II caused by the XYZ components of FT
ij and gT

ij , respectively, and then add them up. Then,

the offset vector ∆xF
ij of the ball’s center (TCP) caused by the measuring force of the 3D measuring

device mounted on the i-th clamping position can be calculated based on Eq (15) (see Section 3 of

supplementary materials for the detailed derivation process).

∆xF
ij =







∆xF
xij

∆xF
yij

∆xF
zij






=











L3
1

3EIZ
0 −

L2
1L2

2EIZ

0
L3

1+L3
2

3EIZ
+

L1L2
2

GIP
0

−
L2

1L2

2EIZ
0

L3
2

3EIZ
+

L1L2
2

EIZ

















FT
xij

FT
yij

FT
zij






(15)

where E, G, Iz and Iz are the elastic modulus, shear modulus, moment of inertia, and polar moment

of inertia of the hollow pipes. Each element of the matrix in Eq. (15) can be defined as a compliance

coefficient cF
mn (m = 1, 2, 3; n = 1, 2, 3) of the measuring rod in the corresponding direction, namely:

∆xF
ij =







cF
11 0 cF

13

0 cF
22 0

cF
31 0 cF

33






FT

ij = CFFT
ij (16)
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where CF is the compliance matrix for the measuring force, an inherent property of the measuring rod.

Instead of stiffness, compliance (the reciprocal of stiffness) is used to make the formula more concise.

Note that FT
xij and FT

zij will only cause TCP offset in the X and Z directions, while FT
yij will only cause

the TCP offset in the Y direction.

Similarly, the TCP offset vector ∆x
g
ij (w.r.t. the tool frame {T}) caused by gravity is calculated

based on Eq (17).

∆x
g
ij =







∆x
g
xij

∆x
g
yij

∆x
g
zij






=











L3
1L2

3EIZ
+

L4
1

8EIZ
0 −

L2
1L2

2
4EIZ

0
L4

2
8EIZ

+
L3

1L2

3EIZ
+

L4
1

8EIZ
+

L1L3
2

2GIP
0

−
L3

1L2

6EIZ
−

L2
1L2

2
2EIZ

0
L4

2
8EIZ

+
L1L3

2
2EIZ

















qT
xij

qT
yij

qT
zij






(17)

where qT = [qT
xij, qT

yij, qT
zij]

T is the uniform load exerted by gravity acceleration on the hollow pipe,

determined by gravity acceleration, the section shape of the hollow pipe, and the material density. We

extract the gravity acceleration vector gT
ij in qT

ij , namely:

∆x
g
ij =







c
g
11 0 c

g
13

0 c
g
22 0

c
g
31 0 c

g
33






gT

ij = CggT
ij (18)

where Cg is the compliance coefficient matrix for gravity, another inherent property of the measuring

rod. In summary, we only need to determine the compliance coefficients cF
mn and c

g
mn (m = 1, 2, 3;

n = 1, 2, 3) in CF and Cg. Then the final overall TCP offset vector ∆x
ij
TCP can be estimated and

compensated using Eq. (19) and Eq. (11).

∆x
ij
TCP = ∆x

g
ij + ∆xF

ij = CggT
ij + CFFT

ij (19)

4.2. Determination of rod compliance coefficients

To estimate the rod deformation error using the model derived above, we need to determine the

compliance coefficients of the measuring rod in the XYZ directions. To achieve this, we conducted

both a finite element analysis (FEA, Figure 6a) and a real measurement experiment to obtain these

parameters. Firstly, we imported the 3D model of the measuring rod, built in SolidWorks, into ANSYS

to perform a static deformation analysis. This allowed us to obtained the maximum directional

deformation values of the spherical tip in the XYZ directions, which approximates the TCP offset

values. These values were used to calculate the corresponding compliance coefficients. Secondly, a

two-dimensional stiffness measuring device has been developed to determine the stiffness through

measurements (Figure 7, see Section 4 of supplementary materials for detail design and measurement

results). By putting different weights on the loading frame, we can apply different loads to the

measuring rod and measure its vertical and horizontal TCP offset under the load. The TCP offset

measurement method satisfies the Abbe measuring principle [23] and eliminates errors caused by the

rotation of the loading plate.
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Figure 7. Close-up of the stiffness-measuring device

Moreover, a correction factor r is defined to characterize the difference between the FEA simulated

stiffness and the measured stiffness, namely:

rmn =
cF

mn

c′ F
mn

(m = 1, 2, 3; n = 1, 2, 3) (20)

where cF
mn is the slope of the fitting lines of the actual measured load-deformation result (Figure 8), and

c′ F
mn is the compliance coefficient obtained by the FEA result. The correction factor rmn of a measuring

rod in different directions calculated by Eq. (20) is usually different. In the direction with a small

deformation (high stiffness), the correction factor rmn is more susceptible to the measurement error.

Therefore, we assume the correction factor rmn of all directions is a fixed value since the measuring rod

has a certain symmetry. The two directions with the largest deformation are selected (cF
22 and cF

33) to

calculate the overall correction factor rrod, namely:

rrod =
cF

22 + cF
33

c′ F
22 + c′ F

33

(21)

Figure 8. Load-deformation result of the 2# (carbon fiber) and 5# (stainless-steel) measuring rods using

the theoretical calculation (Calc), FEA, and real measurement (Meas) methods
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Using normal instruments, it is difficult to measure the deformation of the measuring rod caused

by the gravity. Therefore, we first obtain the compliance coefficients c
g
mn (m = 1, 2, 3; n = 1, 2, 3) in the

simulated environment using the FEA method, and then calculate the approximated actual compliance

coefficients c
g
mn by multiplying c

′ g
mn by the overall correction factor rrod, namely.

c
g
mn ≈ rrodc

′ g
mn =

cF
22 + cF

33

c′ F
22 + c′ F

33

c
′ g
mn (22)

Finally, all the compliance coefficients used for the deformation compensations are obtained. The

unit used for c
g
mn is the TCP offset value (unit: µm) corresponding to one gravitational acceleration g.

The compliance index crod is defined and used to evaluate the overall compliance of a measuring rod.

crod =
3

∑
m=1

3

∑
n=1

c
g
mn +

3

∑
m=1

3

∑
n=1

cF
mnF (23)

where F is the magnitude of the measured force.

5. Experiments and Results

In this section, calibration experiments were performed on a Staubli TX90 robot using MultiCal,

and the results were compared to those obtained using two other devices: a 6D binocular vision

measuring system (NDI Polaris Vega, with an accuracy of 3σ = 0.2 mm) and a measuring arm with a

laser scanner (Hexagon AS1, with an overall accuracy of 43 µm).

5.1. Measurement of Rod Stiffness

Rod stiffness is determined by both FEA and actual measurement using the device depicted in

Figure 7. Gravitational loads of 0.5 kg, 1 kg, 1.5 kg, and 2 kg are applied and the resulting TCP offset

measurement is repeated five times for each load. The average TCP offset is plotted in Figure 8. We

compare the Y-directional compliance coefficients cF
22 of the 2# (carbon fiber) and 5# (stainless-steel)

measuring rods as an example. Furthermore, the theoretical TCP offset (denoted as “5# Calc”) of

the 5# measuring rod is also calculated based on Eq.(15), because the structures of the stainless-steel

measuring rods are similar to that of the theoretical model.

As depicted in Figure 8, the carbon fiber measuring rod’s simulated and measured stiffness values

are 8.1 and 5.9 times the stainless-steel measuring rod, respectively. The results prove the advantages

of using carbon fiber measuring rods in reducing deformation and improving measuring accuracy.

The theoretical calculation and FEA results are ideal elastic coefficient equations (y = cx, c is the

compliance coefficient), and their fitting lines pass through the origin since they are all calculated in an

ideal virtual environment. However, both fitting lines of the real measurement results of the 2# and 5#

measuring rods intersect the x-axis when the load is 0.09 kg to 0.11 kg (about 1 N). This is probably

because of the friction in the rails and sliders in the device depicted in Figure 7, making all the actual

loads subtract this frictional force, reducing the overall deformation.

It should be noted that the linear condition of the carbon fiber measuring rod is only met under

small loads (less than 15 N). As the load increases, nonlinear deformations, such as creep, become

more pronounced. Therefore, it is important to avoid excessive loads on the rod, even when using

carbon fiber rods in other closed-loop devices discussed in Section 1. For instance, using a carbon fiber

long mounting bracket in TriCal [14] may not be as advantageous as MultiCal since the measuring

device is considerably heavier than a precision ball.

5.2. Experiments of Calibration

MultiCal is actually a flexible design scheme that allows users to choose appropriate sensors and

design parameters based on the specific needs of the robot being calibrated. In this study, a ceramic
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ball with a diameter of φ30 mm and a roundness error of 2 µm was used for the measuring rod. The

displacement sensors employed were the ONOSOKKI GS-4830, with a measuring range of 30 mm, a

resolution of 1 µm, and an accuracy of 3 µm. Since the first axis of the robot is vertically installed on

the workbench, the gravitational acceleration vector g0 is equal to g = [0, 0, 9.81]T (unit: m s−2). The

total contact force vector FD of the three displacement sensors was measured as [1.10, 1.25, 1.05]T (unit:

N) using a high-precision force sensor.

The experiment employed a single multi-position fixture with external dimensions of 500 mm ×

300 mm × 151 mm and a weight of 7.1 kg. This was found to be more accurate than using multiple

single-position fixtures fixed on the robot workbench, possibly due to insufficient rigidity of the

workbench causing slight deformation during measurement and introducing errors. The overall cost

of MultiCal was less than 5K USD, and its measurement accuracy evaluation has been described in

previous work [6].

Thirty measurement configurations were selected for each measuring device based on the

consideration of calibration accuracy and time efficiency [6]. The configurations were optimized

using the observation index (OI) [24] study in RoboDK and MATLAB, and the maximum OI value for

each rod was recorded as its theoretical calibration performance. Compliance index crod and correction

factor rrod for each measuring rod were determined through the stiffness measurement described

above, and the values are shown in Table 2. The same 30 configurations were used for the carbon fiber

and stainless-steel measuring rods with the same structural dimensions (L1 and L2). Additionally, the

correction factor rrod showed that the 3# measuring rod had the greatest difference between the real

and simulated stiffness, potentially due to creep deformation of the bonding parts of the rod.

Table 2. Observability index (OI), compliance index crod, and correction factor rrod of different

measuring rods

material rod L1 − L2 OI crod rrod

carbon
fiber

1# 300-450 1.832 57.9 1.226
2# 150-525 1.721 63.1 1.364
3# 375-600 1.943 237.3 2.302

stainless
steel

4# 300-450 1.832 513.4 1.051
5# 150-525 1.721 403.7 1.013
6# 375-600 1.943 1306.2 1.036

During the calibration process with MultiCal, different measuring rods were installed at the end

of the robot to conduct the measurements. The “rough calibration” was performed based on Eq. (9),

and then calibration with compensation algorithm and different sets of compliance coefficients was

carried out based on Eq. (19) and Eq. (11). The kinematic parameters and joint stiffness parameters

were then obtained by each measuring rod and method.

Afterward, the MultiCal system was removed, and a 6D binocular vision measuring system

(Figure 9) and a measuring arm with a laser scanner were used to conduct traditional calibration

procedures, applying the method described in [6]. A short measuring rod was installed at the robot’s

end during the laser scanner trial to reduce deformation error, and the surface of the rod’s precision ball

was scanned. The spherical center’s position was obtained through a spherical fitting in PolyWorks.

The laser scanner and scanning method were also used for validation, with one hundred sets of robot

configurations selected in a large portion of the robot’s workspace.
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(a) (b)

Figure 9. Implement the traditional calibration procedure using (a) a 6D binocular vision measuring

system and (b) a measuring arm with a laser scanner

During the validation, the calibrated kinematic and non-kinematic parameters were imported

into Eq. (9), and only the tool and base parameters were optimized. The final absolute positioning

error was then calculated. The nominal kinematic parameters and the nominal joint compliance

coefficients (which are all zero) were imported into the process, and the average and maximum

absolute positioning errors before calibration were calculated as 2.384 mm and 6.571 mm, respectively.

5.3. Result and Discussion

After conducting the calibration experiment, the results were obtained (Table 3). The measuring

arm with a laser scanner achieved the highest calibration accuracy, while the MultiCal system with

various measuring rods and deformation compensation methods also demonstrated good calibration

performance, improving the robot’s average and maximum positioning accuracy by 74% to 89% and

69% to 88%, respectively. However, the binocular vision system exhibited the poorest calibration

accuracy, likely due to its lower measurement accuracy. Notably, almost all the improvement methods,

including the use of carbon fiber measuring rods and deformation compensation methods, improved

the MultiCal system’s calibration accuracy compared to the previous work presented in [6]. Specifically,

the MultiCal system with the 1# measuring rod and Meas compensation method achieved the highest

calibration accuracy, with an average and maximum positioning accuracy of 0.274 mm and 0.838 mm,

respectively, similar to that of the laser scanner.
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Table 3. Calibration results of the measuring arm with a laser scanner, 6D binocular vision measuring

system, and MultiCal with different measuring rods and deformation compensation methods

Device and Method Mean/[mm] Max/[mm] Median/[mm] SD/[mm]

1#
carbon
fiber

None 0.302 0.893 0.265 0.171
FEA 0.276 0.808 0.256 0.148
Meas 0.274 0.838 0.247 0.157

2#
carbon
fiber

None 0.312 0.866 0.284 0.162
FEA 0.290 0.841 0.280 0.159
Meas 0.286 0.845 0.279 0.153

3#
carbon
fiber

None 0.414 1.038 0.321 0.204
FEA 0.364 0.904 0.308 0.186
Meas 0.362 0.901 0.305 0.186

4#
stainless

steel

None 0.475 1.346 0.431 0.254
Calc 0.467 1.344 0.433 0.251
FEA 0.450 1.298 0.422 0.241
Meas 0.451 1.296 0.432 0.240

5#
stainless

steel

None* 0.392 0.923 0.341 0.207
Calc 0.404 0.996 0.350 0.215
FEA 0.372 0.907 0.318 0.195
Meas 0.371 0.901 0.324 0.193

6#
stainless

steel

None 0.601 2.012 0.564 0.423
Calc 0.522 2.120 0.502 0.412
FEA 0.505 1.874 0.482 0.389
Meas 0.507 1.867 0.480 0.380

Laser scanner 0.263 0.763 0.232 0.149

Binocular vision 0.707 2.104 0.590 0.488

* This configuration attained the best calibration result in the [6]; The bold number indicates the
best performance

Among the carbon fiber measuring rods, the 1# rod demonstrated the highest calibration accuracy,

achieving 3% to 6% and 24% to 27% higher accuracy compared to the 2# and 3# rods, respectively,

under the same deformation compensation method. This corresponds to the compliance of the 1# rod

being only 83.2% and 22.1% of that of the 2# and 3# rods, respectively. Similarly, for the stainless-steel

measuring rods, the 5# rod achieved the highest calibration accuracy, 16% to 18% and 26% to 35%

higher accuracy than the 4# and 6# rods, respectively, with its compliance being only 80.8% and 31.7%

of that of the 4# and 6# rods, respectively.

Regarding the three compensation methods evaluated, Meas and FEA increased the calibration

performance by 6% to 16% compared to the non-compensation method, while Calc showed the poorest

performance, yielding a positive effect only when using a long rod. Otherwise, Calc could even reduce

the calibration accuracy due to modeling errors.

Surprisingly, the calibration results in this study were more strongly correlated with the stiffness

of the measuring rod than the OI value. This could be because the OI value was already relatively high,

and the identification error resulting from the singularity of the Jacobi matrix had a smaller effect than

the rod deformation error. For example, the “375-600” rods, which had 7% to 13% higher OI values and

2.5 to 4.5 times higher compliance than the other rods, showed 10% to 35% lower calibration accuracy

than the other rods.

Overall, using carbon fiber measuring rods with high stiffness (5 to 10 times that of stainless-steel

rods of the same size) improved the calibration accuracy by 20% to 39%. In contrast, the deformation

compensation methods had a more limited effect, increasing the calibration accuracy by only 6% to

16%. Notably, the compensation methods could only increase the calibration results of the 1# and

2# carbon fiber measuring rods with high stiffness by 6% to 10%. This could be due to the fact that
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high-rigidity measuring rods reduce the deformation error at the source and that even if the rod

deforms, the main part of the TCP offset is downward (due to gravity), so its effect on the calibration

accuracy can be largely reduced by optimizing the base parameters χB in Eq. (9). However, using

compensation methods could be essential when calibrating large robots with long or less rigid rods.

To facilitate a better comparison of the different compensation methods, we analyzed the

positioning error distribution obtained by 1# and 4# using different methods (Figure 10 and Figure 11).

The results indicate that the error distributions obtained by different methods are highly similar since

these compensation methods only adjust the measurement coordinates slightly without significantly

affecting the overall measurements. Moreover, the primary effect of deformation compensation is to

reduce the error of large error points and make the error distribution more uniform. In the case of

stainless-steel measuring rods, the results of Meas are comparable to those of FEA since their actual

stiffness is close to the simulated stiffness (the rod correction factors rrod are close to one). For carbon

fiber measuring rods with a correction factor rrod exceeding 1.2, in most cases, Meas is slightly better

than FEA.

Figure 10. Calibration result of the measuring arm with a laser scanner and the MultiCal with the 1#

carbon fiber measuring rod and different deformation compensation methods

Figure 11. Calibration result of the MultiCal with the 4# stainless-steel measuring rod and different

deformation compensation methods
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6. Conclusion

This paper presents the improved design of an in-contact and on-site calibration device, called

MultiCal, which includes a well-designed long carbon fiber measuring rod and a rod deformation

compensation algorithm. The redesigned MultiCal offers higher calibration accuracy, low cost (less

than 5K USD), portability, and good robustness. The methods proposed in this paper can be applied to

most traditional in-contact calibration devices to overcome their similar drawbacks, particularly when

calibrating large robots. The results show that MultiCal achieves a calibration accuracy similar to that

of a measuring arm with a laser scanner, with an average and maximum positioning error of 0.274 mm

and 0.838 mm, respectively.

This paper also compares the newly-designed carbon fiber measuring rod with the

previously-used stainless-steel measuring rod and different deformation compensation methods.

The results indicate that the calibration accuracy can be improved by 20% to 39% when using carbon

fiber measuring rods and by 6% to 16% when applying the deformation compensation algorithm. The

best compensation method involves using the compliance coefficients of the measuring rods obtained

from actual measurements and modified finite element analysis (FEA) results.

In the future, further research will explore the effectiveness of MultiCal in more scenarios,

including the calibration of larger robots or the repeatability and accuracy monitoring of multiple

robots. Additionally, the optimal location and number of clamping positions for 3D measuring devices

require further study.
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