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B W N e

Abstract: MultiCal is an affordable, high-precision measuring device designed for the on-site
calibration of industrial robots. Its design features a long measuring rod with a spherical tip
that is attached to the robot. By restricting the rod’s tip to multiple fixed points under different
rod orientations, the relative positions of these points are accurately measured beforehand. A
common issue with MultiCal is the gravity deformation of the long measuring rod, which introduces
measurement errors into the system. This problem becomes especially serious when calibrating
large robots, as the length of the measuring rod needs to be increased to enable the robot to move
in a sufficient space. To address this issue, we propose two improvements in this paper. Firstly,
we suggest the use of a new design of the measuring rod that is lightweight yet has high rigidity.
Secondly, we propose a deformation compensation algorithm. Experimental results have shown
that the new measuring rod improves calibration accuracy by 20% to 39%, while by using the
deformation compensation algorithm, the accuracy increases by 6% to 16%. In the best configuration,
the calibration accuracy is similar to that of a measuring arm with a laser scanner, producing an
average positioning error of 0.274 mm and a maximum positioning error of 0.838 mm. The improved
design is cost-affordable, robust, and has sufficient accuracy, making MultiCal a more reliable tool for
industrial robot calibration.

Keywords: calibration device; kinematic calibration; on-site calibration; industrial robot; accuracy
measurement

1. Introduction

Robot calibration involves measuring a robot’s end effector at different joint angles using
high-precision measuring equipment to determine accurate kinematics parameters. Currently,
calibration is typically performed after a robot’s manufacturing, known as in-house calibration. The
advantages of in-house calibration include: First, the calibrated parameters can be embedded directly
into the robot controller [1]. Second, purchasing expensive measuring equipment such as laser trackers
[2], optical CMM [3], and even CMM [4] is cost-effective due to their high use frequency. However,
the accuracy of robots degrades as they are continuously used, so it is necessary to monitor the
robots” accuracy online and conduct on-site recalibration (Figure 1a) when the accuracy is severely
degraded. On-site calibration is especially important for robots with off-line programming and visual
navigation, as the absolute accuracy of a robot, rather than its higher repeatability, ensures that the
motion instructions can be directly used for real tasks. Although some manufacturers provide on-site
calibration services, most still have to rent expensive laser trackers from a local provider of metrology
services [1]. This has spurred many researchers to develop various portable and affordable measuring
devices for on-site robot calibration.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. (a) On-site kinematic calibration for an industrial robot and (b) MultiCal [6]

When it comes to calibration devices, the requirements for on-site equipment differ from those
for in-house calibration. Ideally, on-site equipment should have high calibration accuracy, low cost,
good robustness, portability, good environmental adaptability (able to be used in small robot cells),
versatility (suitable for different-sized robots), while also being able to monitor robot accuracy online.
Note that on-site calibration equipment does not require full automation or extremely high time
efficiency since calibration frequency is not high and manual interventions must be involved (to
arrange the measuring devices). Additionally, the device must measure the robot in a large portion
of its motion space to ensure high calibration accuracy. By keeping these requirements in mind, real
industrial applications can choose the best on-site calibration device to fit their needs.

MultiCal [6] (Figure 1b) is such a measuring device designed for the on-site calibration of industrial
robots. Its design features a long measuring rod with a spherical tip that is attached to the robot. The
calibration procedure of MultiCal involves aligning the rod’s tip to multiple fixed points under different
rod orientations, the relative positions of these points are accurately measured beforehand. However,
for large robot calibration, the measuring rod of MultiCal have to be elongated and may enlarge gravity
deformation of the rod, which increase measurement errors into the system. To address this issue, we
propose two improvements in this paper. Firstly, we suggest a new design of the measuring rod that
is lightweight yet has high rigidity. Secondly, a deformation compensation algorithm is proposed to
reduce the error. The work is based on previously published paper on MultiCal [6]. Details of the
improvements are discussed in the following sections.

The remainder of this paper is organized as follows. Section 2 reviews and analyses related works.
In Section 3, a new design scheme and calibration method of the MultiCal is discussed. Section 4
analyzes the deformation of the measuring rod. Experimental setup and results are proposed in Section
5. Comparisons of different measuring devices and methods are also discussed in the section. Finally,
the paper is concluded in Section 6.

2. Related works

Current calibration devices can be divided into two categories: open-loop and closed-loop,
each utilizing different calibration methods. Open-loop devices require markers to be installed on
the robot’s end effector, and measurements are performed using devices such as laser trackers [2],
optical CMMs [3], CMMs [4], binocular vision [7], and wire draw encoders [8]. This method allows
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for almost unlimited robot poses, and measurements can be automatically collected over a large
workspace. Therefore, these devices (especially laser trackers) are commonly used for in-house
calibration. However, open-loop devices may be obstructed in small robot cells and are often very
expensive (> 50K USD).

Closed-loop devices rely on probes [9], displacement sensors [10], optical sensors [11], precision
balls [12], and standard blocks [13]. A typical closed-loop method is to restrict the robot’s tool center
point (TCP) to a fixed point and then change the orientation of the end effector. These measuring
devices inherently have the advantages of good environmental adaptability and low cost. However,
their major limitation is that the robot must be restricted to a certain pose to collect the measurements,
which lead to degraded calibration accuracy and collision risks.

To overcome the limitations of open-loop calibration devices and make them more suitable for
on-site calibration, closed-loop devices based on multi-point constraints have been proposed. Two
examples of such devices are TriCal [14] and MultiCal [6]. These devices use a similar measurement
process, in which the robot automatically aligns its TCP with multiple fixed points, based on the
feedback of three displacement sensors. By using multi-point constraints, these devices achieve
a stronger constraint and a larger measurement space, resulting in good calibration accuracy and
robustness.

Compared to TriCal, MultiCal uses a precision ball instead of a heavier 3D displacement measuring
device at the end of its measuring rod. This design reduces the rod’s gravity deformation while
allowing for a longer measuring rod, resulting in increased motion space and improved calibration
accuracy for the robot. Although the measurement process of MultiCal is more complex than that of
TriCal due to the need for manual switching of the measuring device to different clamping positions,
it is less prone to collisions and more robust. This is because its displacement sensors have a larger
measurement range of 30 mm, and the multi-position fixture has no vulnerable components that
are critical to system accuracy, such as the extension stems. MultiCal is therefore well-suited for
on-site calibration devices that are not frequently used and typically operated by non-professionals.
However, our previous work [6] showed that even though MultiCal has minimized the load on the
measuring rod as much as possible, its lengthened stainless-steel measuring rod still suffered from
gravity deformation, which could result in decreased calibration accuracy.

Deformation of structural components is a common problem in many measuring or machining
devices, especially those involving slender structural components, which results in a decrease in
measurement or machining accuracy. To address this issue, the conventional method is to estimate
and compensate for deformation errors using elastic modeling [15], finite element analysis (FEA) [16],
experimental measurement [17], or neural network estimation [18]. As the gravity deformation of the
measuring rod is a relatively simple elastic deformation problem, this article adopts the first three
methods based on considerations of robustness and accuracy.

3. Improvement of the calibration devices and methods

This section first describes the detailed design scheme of MultiCal. Then the robot kinematics
model, non-kinematics parameters, calibration algorithm, and compensation algorithm for rod’s
gravity deformation used during calibration are presented.

3.1. Design of MultiCal and measuring rod

The improved design of MultiCal is illustrated in Figure 2a. The device comprises three major
components: (1) a long carbon fiber measuring rod with a spherical tip made up of a precision ceramic
ball installed at the robot’s end, (2) a redesigned 3D displacement measuring device with a um-level
accuracy, and (3) a fixture providing multiple clamping positions that are fixed with respect to (w.r.t.)
the robot’s base. MultiCal adopts the automatic alignment of the TCP (the spherical tip’s center) with
a fixed point based on the feedback from three displacement sensors. Noted that the measuring rod
does not need high dimensional accuracy but high rigidity and lightweight.
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Measuring rod is improved by using new structure and carbon fiber pipes, as depicted in Figure 3a.
Two high-strength aluminum rings connect different carbon fiber pipes, and a stainless-steel bending
pipe is used at the bend. All parts of the rod are bonded with high-strength epoxy resin adhesive.
Pipe holder and ball holder are installed at the first and last ends of the measuring rod using threaded
connectors, which are used for rapid installation and removal with the robot flange and precision ball.
Three different configurations carbon fiber rod (Figure 3b, see Section 1 of supplementary materials for
detail design parameters) is developed to replace previously-used stainless-steel measuring rods in [6].
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Figure 2. (a) MultiCal with the improved measuring rod and (b) a redesigned 3D displacement
measuring device
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Figure 3. (a) Design of carbon fiber measuring rod and (b) different types of rods
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The measuring rod is mounted as an end-effector on the robot, and the position x  of the precision
ball’s center w.r.t. the tool frame {T} (tool parameters) can be calculated by Eq. (1) as nominal values.
As shown in Figure 2b, the 3D displacement measuring device measures the displacement of the center
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of the measuring rod’s spherical tip. Three displacement sensors are installed orthogonally on an
aluminum triaxial mount, ensuring that the sensors” measuring axes are perpendicular to each other.

The measurement process involves making contact between the precision ball and the
square-shaped tips of the sensors. The sensors are zeroed by pushing each square-shaped tip into
contact with a physical stopper (a tungsten steel ball) set on the triaxial mount. In contrast to [6], all
three measuring axes of the sensors are inclined upwards at the same angle (approximately 54.7°)
relative to the plumb axis. This design provides a larger measuring space in the vertical upward
direction, enabling the robot to move more freely.

Using the feedback from the displacement sensors, the robot can adjust its TCP to a fixed point in
k different orientations and ensure that the measured values of all sensors are almost exactly half of
their ranges. The corresponding k sets of joint angles g; (i = 1,2,...,k) and the small displacement
deviation x; (i = 1,2,...,k) are then recorded. This process is designed to automatically [14] or
semi-automatically [6] achieve a point constraint with minimal contact force, resulting in minimal
deformation, fast efficiency, and high measurement accuracy. The constrained point is marked as the
virtual datum point.

The MultiCal system also includes a fixture with multiple clamping positions fixed relative to the
robot base, such as the multi-position fixture shown in Figure 4. This fixture is designed to be compact
and lightweight, making it easy to transport and embed in robot cells. Equipped with multiple fast-lock
mechanisms, which comprises a toggle clamp and three sets of point positioning components made of
tungsten steel. These components, consisting of a single pin and two balls spaced at a certain distance,
ensure assembly accuracy.

Figure 4. Use a multi-position fixture to provide five clamping positions

The fast-lock mechanisms allow users quickly mount the 3D measuring device on different
clamping positions (less than 15 second), repeat the above measurement process, and obtain the
corresponding measurement data X;j and q;; (i = 1,2,..., k; j = 1,2,...,5) (assuming that five
clamping positions are used). The displacement deviation x;; is regarded as the coordinate of the i-th
point measured on the j-th clamping position w.r.t. the device frame {D;} (j = 1,2,...,5). A Hexagon
measuring arm is used to measures the relative positions between different device frames (see Section
2 of supplementary materials for specific method), which can convert the coordinate points in different
frames to a single frame ({ D3} is chosen in this paper), marked as the world frame {W}.
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Specifically, the relative poses between {D3} and the other device frames are recorded as x3;
(j =1,2,4,5), which are 6D pose vectors comprising XY Z coordinates and Euler angles. The equation
for the coordinate conversion is:
i = T(xaj)xij (2)
where T(x3;) is the function transforming the 6D pose vector into a transformation matrix, and
x;’]?eas is the measured coordinates of the measurement point w.r.t. the world frame {W}. The above
process essentially achieves multi-point constraints, thereby providing stronger constraints and making
the kinematics parameter identification more robust. For a large robot, another solution involves
permanently fixing multiple single-position fixtures near the robot base (Figure 1a) and then using an
external measurement device (such as a measuring arm or laser tracker) to measure X3j (Gj=1,245)
before the long-term use of these fixtures.

X

3.2. Calibration method

This section describes the robot kinematic model, the parameters that must be identified, and
the calibration algorithm. In this paper, we use the Staubli TX90 robot (Figure 5) as a representative,
although MultiCal is suitable for calibrating most industrial robots and even machine tools using
various measuring rods.

To begin the calibration process, we first establish a kinematic model and determine the parameters
that require identification. In our previous work [6], we compared different kinematic modeling
methods, including Denavit-Hartenberg (DH), modified DH (MDH) [19], product of exponential (POE)
[20], and finite and instantaneous screw (FIS) [21]. After considering implementation and promotion
difficulty, we ultimately selected the MDH method.

As shown in Table 1, we define the center of the precision ball as the origin of the last frame (TCP),
and add a rotation angle  around the y-axis to the adjacent parallel joints (link 1-2) to eliminate the
singularity. Additionally, d3 must be zero. Furthermore, both 8; and d; are coupled with the 6D base
parameter xp from the robot base frame {0} to the world frame {W} and are thus not included in
parameter identification. The compliance in the gearboxes of all joints, except the first, is modeled as a
linear torsional spring [14], as no torque is applied to the first joint axis when the robot is stationary.
We combine these kinematic and non-kinematic parameters into the parameter vector p that we aim to
identify.

Figure 5. MDH model of the Staubli TX90 robot
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Table 1. MDH parameters of the robot
Link 0/[°] d/[mm)] a/[mm] a/[°] B/1°]
0-1 01 150 50 + éay 90 + dnq 0
1-2 0, +90+4 90, + o —50+ ddy 425 + éap 0+ oy 04682
2-3 03 +90+ 963 + c313 0 das 90 + a3 0
3-4 04+ 0604 +c41y 425+ 6dy day —90 + day 0
4-5 05 + 605 + c5T5 ods dasg 90 + das 0
5-6 6 + 006 + c6T6 100 + z400; + 5Ztool Xtool T 5xtool 0 0
p = (067,647,047, 60", 082, x5, x1, " 3)

where 60, éd, éa, da, and 03, are the errors of the MDH parameters, xp is the vector of robot base
parameters, x7 is the vector of tool parameters, c is the vector of the compliance coefficient of the joint
gearboxes, and T; (s = 2,3, ..., 6) is the torque applied on the five joints, which is calculated using the
iterative Newton-Euler algorithm [14]. Among them, xp is a 6D vector, including XY Z coordinates
and Euler angles, as presented in Eq. (4).

xo =[xz ol B | @

It is worth noting that the error associated with the tool parameters, dx;y,; and dz;4,;, and the tool
angler error, 06, are relatively larger due to the low dimensional tolerance of the measuring rods. The
transformation matrix T} between the tool frame {T} and the world frame {W} can be calculated
based on the robot forward kinematics equation,

T (p,q,7) =Ty ML LT TTY (5)

where TgN , T,?_l (n=1,2,...,6),and T% are the transformation matrix between the robot base frame
and the world frame, adjacent robot link frames, and the robot flange frame and the tool frame,
respectively. Among them, the values of Tj¥ and T? are determined by the robot base parameters xp
and the tool parameters x T, respectively. Based on Eq. (5), the TCP’s nominal coordinates (the position
vector of TW) w.r.t. the world frame {W} can be obtained.

W
‘ T
xl(;ommal — yTV"V =f (p, 9ij, Tij) (6)
W
T
where x4/ ig the nominal coordinate of the i-th point (i = 1,2,..., k) measured on the j-th clamping

position (j =1,2,...,5), and Tij is the vector of torques applied on the robot joints when measuring
this point. Then, a linear error model is established based on the difference between the measured
coordinates xZ.’e”S and the nominal coordinates x%"mmal

least square method, namely.

, and the error vector Ag can be solved by the

meas nominal
X T X l
meas nomina
X2~ X2 y
Ax = . = Jap 7)
meas __ ,nominal
Xk5 X5

ap =7 ax=(117) I ®)
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Since the above linear error model still has errors, g can be optimized iteratively by using the
Levenberg-Marquardt (LM) algorithm, which is commonly used in robot kinematics [22] and has
strong robustness. Essentially, the identification problem becomes an optimization problem.

meas __

Xjj f(p qij, ©j) Hz )

k 5
ﬁ:argminZZ’

i=1j=1

Figure 6a illustrates the TCP offset (Axtcp.) caused by rod gravity and the reaction force F from
the measuring sensors. This reaction force F comprises the contact forces of the three displacement
sensor tips (Fy, Fy, F;), which are accurately measured using a force-measuring device. As the axes
of the three sensors are parallel to the XY Z axis of the device frame {D]-} (j=1,2,...,5), the contact
force values of the three tips when the ball’s center coincides with the virtual datum point are directly
used as the vector value of FP w.r.t. the frame {D;}. Since the TCP is aligned with the same point
fixed w.r.t. the device each time, the vector value of FP (determined by the compression of the springs)
is considered constant in each measurement.

(a) (b)

Figure 6. (a) Measuring rod’s deformation caused by gravity and contact forces; and (b) force
decomposition

The TCP offset vector of the measuring rod when measuring the i-th point on the j-th clamping
position is marked as Ax7-p, which can be decomposed into the XYZ direction of the tool frame {T}.

T
;e
Axrep = |Y1cp (10)
T
TCP

Then the measured coordinates of the TCP can be compensated to obtain the corrected coordinates

11meas of this point.

XZ]

/meas __ .meas W A 1]
X =x 0 — Ry Axpep (11)

! meas

where RY is the rotation matrix between the world frame {W} and the tool frame {T}. We use x'

to replace x"** in Eq. (9), and the calibration after compensation can be conducted.

4. Study on the the measuring rod’s deformation

In this section, we discuss the elastic deformation model of the measuring rod caused by
gravity and contact force, which can degrade the measurement accuracy and require estimation
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and compensation. We then present how the compliance parameters associated with this model are
obtained through a Finite Element Analysis (FEA) and a measurement experiment.

4.1. Elastic deformation model

The simplified measuring rod model and the external force decomposition is depicted in Figure 6b.

The measuring force vector FP of the measuring device mounted on different clamping positions can
be converted into the world frame {W}, namely:

F" = R (x3j) F° (12)

where FV is the measuring force vector (w.r.t. the world frame {W}) of the 3D measuring device

mounted on the j-th clamping position, R(x3;) is the function transforming the Euler angles of the 6D
pose vector x3; into a rotation matrix. After that, Fjw is converted to the tool frame {T}, namely:

F] = RERGR)F" (13)

where Fl]T is the measuring force vector w.r.t. the tool frame {T} when measuring the i-th point on

the j-th clamping position, R! is the rotation matrix of the robot flange frame {6} and the tool frame
{T} (determined by the tool parameters x1), RS is the rotation matrix between the robot base frame
{0} and the flange frame {6} when measuring this point (determined by the robot kinematic model
and joint angles ¢;;), and R), is the rotation matrix between the robot base frame {0} and the world
frame {W} (determined by the base parameters xp). The robot first needs to be calibrated without
considering the rod’s deformation to determine the “rough value” of the MDH parameters. This
process is also called “rough calibration”. Experiments have proved that these MDH parameters are
sufficiently accurate to estimate the measuring rod’s deformation.
The gravitational acceleration vector g can be also converted into the tool frame {T}, namely:

8 = R{RGg’ = RERGg (14)

where gg , 8", and g are the gravitational acceleration vector w.r.t. the tool frame {T}, robot base frame
{0}, and global frame when measuring the i-th point on the j-th clamping position, respectively. Then,
FIJT and glg are decomposed into the XYZ direction of the tool frame {T} (Figure 6b). According to
the principle of linear superposition in material mechanics, we analyze the deformation of the pipes I
and pipes II caused by the XYZ components of Fl]T and gg , respectively, and then add them up. Then,
the offset vector Ax’; of the ball’s center (TCP) caused by the measuring force of the 3D measuring
device mounted on the i-th clamping position can be calculated based on Eq (15) (see Section 3 of
supplementary materials for the detailed derivation process).

L3 L2L
F 1 _ =2 T
Axxij 3El; - 0 , 2EI, F xij
F_ A 10— Li+L3 LiL3 FT..
Axijj x%] 02 3er, T Gn \ 0 | | (15)
szi]. o L] L2 0 L2 + Lle PZZ]
2ET, 3El, T EI,

where E, G, I, and I, are the elastic modulus, shear modulus, moment of inertia, and polar moment
of inertia of the hollow pipes. Each element of the matrix in Eq. (15) can be defined as a compliance
coefficient cf,m (m=1,2,3;n =1,2,3) of the measuring rod in the corresponding direction, namely:

Cfl 0 Cfe,
Axjj=|0 ¢, 0|F =C'Ff (16)

F F
3 0 33
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where CF is the compliance matrix for the measuring force, an inherent property of the measuring rod.
Instead of stiffness, compliance (the reciprocal of stiffness) is used to make the formula more concise.
Note that P;Z;j and szj will only cause TCP offset in the X and Z directions, while F;j will only cause
the TCP offset in the Y direction.

Similarly, the TCP offset vector Axlgj (w.r.t. the tool frame {T}) caused by gravity is calculated

based on Eq (17).
4 272

8 L} 1L2 1 _ LiL; T

Axe] 3L, T SE \ \ 0 iET, Dxij

g _ A _ IE; L3, L4 Ly13 T

Axij B xlél] - , 0 - 8EIZ + 3EIZ + SEIZ + 2G1p \ 0 quZJ (17)
Ax 3L, 1213 L4 L,13 y
Zij —BET, — 2ET, 0 sir; + 2 Taij

where g7 = [qzij, qul- i qL ]-]T is the uniform load exerted by gravity acceleration on the hollow pipe,
determined by gravity acceleration, the section shape of the hollow pipe, and the material density. We
extract the gravity acceleration vector 31‘? in qlg, namely:

¢ 0 o . I
Ax‘l%: 0 o, 2 8ij = C8g;; (18)

g
5 0 o3

where C¢ is the compliance coefficient matrix for gravity, another inherent property of the measuring
rod. In summary, we only need to determine the compliance coefficients chyand ¢85, (m =1,2,3;

= 1,2,3) in CF and C8. Then the final overall TCP offset vector AxTCP can be estimated and
compensated using Eq. (19) and Eq. (11).

Axi%cp = Ax‘igj + Axg = ngl-? + CFPZ-]T (19)

4.2. Determination of rod compliance coefficients

To estimate the rod deformation error using the model derived above, we need to determine the
compliance coefficients of the measuring rod in the XY Z directions. To achieve this, we conducted
both a finite element analysis (FEA, Figure 6a) and a real measurement experiment to obtain these
parameters. Firstly, we imported the 3D model of the measuring rod, built in SolidWorks, into ANSYS
to perform a static deformation analysis. This allowed us to obtained the maximum directional
deformation values of the spherical tip in the XYZ directions, which approximates the TCP offset
values. These values were used to calculate the corresponding compliance coefficients. Secondly, a
two-dimensional stiffness measuring device has been developed to determine the stiffness through
measurements (Figure 7, see Section 4 of supplementary materials for detail design and measurement
results). By putting different weights on the loading frame, we can apply different loads to the
measuring rod and measure its vertical and horizontal TCP offset under the load. The TCP offset
measurement method satisfies the Abbe measuring principle [23] and eliminates errors caused by the
rotation of the loading plate.
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Figure 7. Close-up of the stiffness-measuring device

Moreover, a correction factor r is defined to characterize the difference between the FEA simulated
stiffness and the measured stiffness, namely:

F
Tmn = C,i;l (m:1,2,3,‘1’l:1,2,3) (20)
Cmn

where cl,, is the slope of the fitting lines of the actual measured load-deformation result (Figure 8), and
c,F, is the compliance coefficient obtained by the FEA result. The correction factor 7y, of a measuring
rod in different directions calculated by Eq. (20) is usually different. In the direction with a small
deformation (high stiffness), the correction factor r,,, is more susceptible to the measurement error.
Therefore, we assume the correction factor r,,;, of all directions is a fixed value since the measuring rod
has a certain symmetry. The two directions with the largest deformation are selected (c}, and cf;) to
calculate the overall correction factor ,,;, namely:

F F
Cpp +C33

! F ! F
€y t €33

Trod =

(21)

800
- 2#FEA | y=38.0x
700 - O 2#Meas | y=53.2x-4.0
0 5#Calc | y=286.4x
6007 | & sypEa | y=311.0x
gsoo | * 5#Meas| y=315.8x-34.5
g
-2 400
£
RS 300 -
[
(@)
200
100
0 ;
0 0.5 1 1.5 2 2.5

Load [kg]

Figure 8. Load-deformation result of the 2# (carbon fiber) and 5# (stainless-steel) measuring rods using
the theoretical calculation (Calc), FEA, and real measurement (Meas) methods
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Using normal instruments, it is difficult to measure the deformation of the measuring rod caused
by the gravity. Therefore, we first obtain the compliance coefficients c5,, (m = 1,2,3; n = 1,2,3) in the
simulated environment using the FEA method, and then calculate the approximated actual compliance
coefficients cfy,,, by multiplying o by the overall correction factor 7,4, namely.

F F
/ Cyy +C3q
Cin & TrodCrin = ~ 5= Crin (22)
2 +C33
Finally, all the compliance coefficients used for the deformation compensations are obtained. The
unit used for cy,, is the TCP offset value (unit: pm) corresponding to one gravitational acceleration g.
The compliance index c,,4 is defined and used to evaluate the overall compliance of a measuring rod.

3 3

3 3
Crod = Z C‘?nn + Z Z Cng (23)
1

m=1n= m=1n=1
where F is the magnitude of the measured force.

5. Experiments and Results

In this section, calibration experiments were performed on a Staubli TX90 robot using MultiCal,
and the results were compared to those obtained using two other devices: a 6D binocular vision
measuring system (NDI Polaris Vega, with an accuracy of 3c = 0.2 mm) and a measuring arm with a
laser scanner (Hexagon AS1, with an overall accuracy of 43 pm).

5.1. Measurement of Rod Stiffness

Rod stiffness is determined by both FEA and actual measurement using the device depicted in
Figure 7. Gravitational loads of 0.5 kg, 1 kg, 1.5 kg, and 2 kg are applied and the resulting TCP offset
measurement is repeated five times for each load. The average TCP offset is plotted in Figure 8. We
compare the Y-directional compliance coefficients cgz of the 2# (carbon fiber) and 5# (stainless-steel)
measuring rods as an example. Furthermore, the theoretical TCP offset (denoted as “5# Calc”) of
the 5# measuring rod is also calculated based on Eq.(15), because the structures of the stainless-steel
measuring rods are similar to that of the theoretical model.

As depicted in Figure 8, the carbon fiber measuring rod’s simulated and measured stiffness values
are 8.1 and 5.9 times the stainless-steel measuring rod, respectively. The results prove the advantages
of using carbon fiber measuring rods in reducing deformation and improving measuring accuracy.
The theoretical calculation and FEA results are ideal elastic coefficient equations (y = cx, c is the
compliance coefficient), and their fitting lines pass through the origin since they are all calculated in an
ideal virtual environment. However, both fitting lines of the real measurement results of the 2# and 5#
measuring rods intersect the x-axis when the load is 0.09 kg to 0.11 kg (about 1 N). This is probably
because of the friction in the rails and sliders in the device depicted in Figure 7, making all the actual
loads subtract this frictional force, reducing the overall deformation.

It should be noted that the linear condition of the carbon fiber measuring rod is only met under
small loads (less than 15 N). As the load increases, nonlinear deformations, such as creep, become
more pronounced. Therefore, it is important to avoid excessive loads on the rod, even when using
carbon fiber rods in other closed-loop devices discussed in Section 1. For instance, using a carbon fiber
long mounting bracket in TriCal [14] may not be as advantageous as MultiCal since the measuring
device is considerably heavier than a precision ball.

5.2. Experiments of Calibration

MultiCal is actually a flexible design scheme that allows users to choose appropriate sensors and
design parameters based on the specific needs of the robot being calibrated. In this study, a ceramic
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ball with a diameter of $30 mm and a roundness error of 2 pm was used for the measuring rod. The
displacement sensors employed were the ONOSOKKI GS-4830, with a measuring range of 30 mm, a
resolution of 1 um, and an accuracy of 3 um. Since the first axis of the robot is vertically installed on
the workbench, the gravitational acceleration vector g° is equal to g = [0,0,9.81]" (unit: ms~2). The
total contact force vector FP of the three displacement sensors was measured as [1.10,1.25,1.05]7 (unit:
N) using a high-precision force sensor.

The experiment employed a single multi-position fixture with external dimensions of 500 mm x
300mm x 151 mm and a weight of 7.1 kg. This was found to be more accurate than using multiple
single-position fixtures fixed on the robot workbench, possibly due to insufficient rigidity of the
workbench causing slight deformation during measurement and introducing errors. The overall cost
of MultiCal was less than 5K USD, and its measurement accuracy evaluation has been described in
previous work [6].

Thirty measurement configurations were selected for each measuring device based on the
consideration of calibration accuracy and time efficiency [6]. The configurations were optimized
using the observation index (OI) [24] study in RoboDK and MATLAB, and the maximum OI value for
each rod was recorded as its theoretical calibration performance. Compliance index c,,; and correction
factor r,,; for each measuring rod were determined through the stiffness measurement described
above, and the values are shown in Table 2. The same 30 configurations were used for the carbon fiber
and stainless-steel measuring rods with the same structural dimensions (L; and Lp). Additionally, the
correction factor r,,; showed that the 3# measuring rod had the greatest difference between the real
and simulated stiffness, potentially due to creep deformation of the bonding parts of the rod.

Table 2. Observability index (OI), compliance index c,,4, and correction factor r,,; of different
measuring rods

material rod Lj—Lp Ol Crod Trod

1# 300-450 1.832 57.9 1.226
2#  150-525 1.721 63.1 1.364

carbon

fiber oy 375600 1943 2373 2.302
s 4#  300-450 1.832 5134 1.051
S Leeel’ss 5#  150-525 1721 4037 1.013

6# 375-600 1943 1306.2 1.036

During the calibration process with MultiCal, different measuring rods were installed at the end
of the robot to conduct the measurements. The “rough calibration” was performed based on Eq. (9),
and then calibration with compensation algorithm and different sets of compliance coefficients was
carried out based on Eq. (19) and Eq. (11). The kinematic parameters and joint stiffness parameters
were then obtained by each measuring rod and method.

Afterward, the MultiCal system was removed, and a 6D binocular vision measuring system
(Figure 9) and a measuring arm with a laser scanner were used to conduct traditional calibration
procedures, applying the method described in [6]. A short measuring rod was installed at the robot’s
end during the laser scanner trial to reduce deformation error, and the surface of the rod’s precision ball
was scanned. The spherical center’s position was obtained through a spherical fitting in PolyWorks.
The laser scanner and scanning method were also used for validation, with one hundred sets of robot
configurations selected in a large portion of the robot’s workspace.
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Measuring arm

HEXAGON

6D binocular vision measuring system

(a) (b)

Figure 9. Implement the traditional calibration procedure using (a) a 6D binocular vision measuring
system and (b) a measuring arm with a laser scanner

During the validation, the calibrated kinematic and non-kinematic parameters were imported
into Eq. (9), and only the tool and base parameters were optimized. The final absolute positioning
error was then calculated. The nominal kinematic parameters and the nominal joint compliance
coefficients (which are all zero) were imported into the process, and the average and maximum
absolute positioning errors before calibration were calculated as 2.384 mm and 6.571 mm, respectively.

5.3. Result and Discussion

After conducting the calibration experiment, the results were obtained (Table 3). The measuring
arm with a laser scanner achieved the highest calibration accuracy, while the MultiCal system with
various measuring rods and deformation compensation methods also demonstrated good calibration
performance, improving the robot’s average and maximum positioning accuracy by 74% to 89% and
69% to 88%, respectively. However, the binocular vision system exhibited the poorest calibration
accuracy, likely due to its lower measurement accuracy. Notably, almost all the improvement methods,
including the use of carbon fiber measuring rods and deformation compensation methods, improved
the MultiCal system’s calibration accuracy compared to the previous work presented in [6]. Specifically,
the MultiCal system with the 1# measuring rod and Meas compensation method achieved the highest
calibration accuracy, with an average and maximum positioning accuracy of 0.274 mm and 0.838 mm,
respectively, similar to that of the laser scanner.
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Table 3. Calibration results of the measuring arm with a laser scanner, 6D binocular vision measuring
system, and MultiCal with different measuring rods and deformation compensation methods

Device and Method Mean/[mm] Max/[mm] Median/[mm] SD/[mm]

1# None 0.302 0.893 0.265 0.171
carbon FEA 0.276 0.808 0.256 0.148
fiber Meas 0.274 0.838 0.247 0.157
2# None 0.312 0.866 0.284 0.162
carbon FEA 0.290 0.841 0.280 0.159
fiber Meas 0.286 0.845 0.279 0.153
34 None 0.414 1.038 0.321 0.204
carbon FEA 0.364 0.904 0.308 0.186
fiber Meas 0.362 0.901 0.305 0.186
" None 0.475 1.346 0.431 0.254
i Calc 0.467 1.344 0.433 0.251
S alt“ ‘iss FEA 0.450 1.298 0.422 0.241
stee Meas 0.451 1.296 0.432 0.240
s None* 0.392 0.923 0.341 0.207
stainless | Cale 0.404 0.996 0.350 0.215
el FEA 0.372 0.907 0.318 0.195
Meas 0.371 0.901 0.324 0.193

o None 0.601 2,012 0.564 0.423
] Calc 0.522 2.120 0.502 0.412
s af[“ ‘iss FEA 0.505 1.874 0.482 0.389
stee Meas 0.507 1.867 0.480 0.380
Laser scanner 0.263 0.763 0.232 0.149
Binocular vision 0.707 2.104 0.590 0.488

* This configuration attained the best calibration result in the [6]; The bold number indicates the
best performance

Among the carbon fiber measuring rods, the 1# rod demonstrated the highest calibration accuracy,
achieving 3% to 6% and 24% to 27% higher accuracy compared to the 2# and 3# rods, respectively,
under the same deformation compensation method. This corresponds to the compliance of the 1# rod
being only 83.2% and 22.1% of that of the 2# and 3# rods, respectively. Similarly, for the stainless-steel
measuring rods, the 5# rod achieved the highest calibration accuracy, 16% to 18% and 26% to 35%
higher accuracy than the 4# and 6# rods, respectively, with its compliance being only 80.8% and 31.7%
of that of the 4# and 6# rods, respectively.

Regarding the three compensation methods evaluated, Meas and FEA increased the calibration
performance by 6% to 16% compared to the non-compensation method, while Calc showed the poorest
performance, yielding a positive effect only when using a long rod. Otherwise, Calc could even reduce
the calibration accuracy due to modeling errors.

Surprisingly, the calibration results in this study were more strongly correlated with the stiffness
of the measuring rod than the Ol value. This could be because the OI value was already relatively high,
and the identification error resulting from the singularity of the Jacobi matrix had a smaller effect than
the rod deformation error. For example, the “375-600” rods, which had 7% to 13% higher OI values and
2.5 to 4.5 times higher compliance than the other rods, showed 10% to 35% lower calibration accuracy
than the other rods.

Opverall, using carbon fiber measuring rods with high stiffness (5 to 10 times that of stainless-steel
rods of the same size) improved the calibration accuracy by 20% to 39%. In contrast, the deformation
compensation methods had a more limited effect, increasing the calibration accuracy by only 6% to
16%. Notably, the compensation methods could only increase the calibration results of the 1# and
2# carbon fiber measuring rods with high stiffness by 6% to 10%. This could be due to the fact that
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high-rigidity measuring rods reduce the deformation error at the source and that even if the rod
deforms, the main part of the TCP offset is downward (due to gravity), so its effect on the calibration
accuracy can be largely reduced by optimizing the base parameters xp in Eq. (9). However, using

compensation methods could be essential when calibrating large robots with long or less rigid rods.

To facilitate a better comparison of the different compensation methods, we analyzed the
positioning error distribution obtained by 1# and 4# using different methods (Figure 10 and Figure 11).
The results indicate that the error distributions obtained by different methods are highly similar since
these compensation methods only adjust the measurement coordinates slightly without significantly
affecting the overall measurements. Moreover, the primary effect of deformation compensation is to

reduce the error of large error points and make the error distribution more uniform. In the case of

stainless-steel measuring rods, the results of Meas are comparable to those of FEA since their actual

stiffness is close to the simulated stiffness (the rod correction factors r,,,; are close to one). For carbon

fiber measuring rods with a correction factor r,,; exceeding 1.2, in most cases, Meas is slightly better

than FEA.
09r
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Figure 10. Calibration result of the measuring arm with a laser scanner and the MultiCal with the 1#
carbon fiber measuring rod and different deformation compensation methods
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Figure 11. Calibration result of the MultiCal
deformation compensation methods

with the 4# stainless-steel measuring rod and different
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6. Conclusion

This paper presents the improved design of an in-contact and on-site calibration device, called
MultiCal, which includes a well-designed long carbon fiber measuring rod and a rod deformation
compensation algorithm. The redesigned MultiCal offers higher calibration accuracy, low cost (less
than 5K USD), portability, and good robustness. The methods proposed in this paper can be applied to
most traditional in-contact calibration devices to overcome their similar drawbacks, particularly when
calibrating large robots. The results show that MultiCal achieves a calibration accuracy similar to that
of a measuring arm with a laser scanner, with an average and maximum positioning error of 0.274 mm
and 0.838 mm, respectively.

This paper also compares the newly-designed carbon fiber measuring rod with the
previously-used stainless-steel measuring rod and different deformation compensation methods.
The results indicate that the calibration accuracy can be improved by 20% to 39% when using carbon
fiber measuring rods and by 6% to 16% when applying the deformation compensation algorithm. The
best compensation method involves using the compliance coefficients of the measuring rods obtained
from actual measurements and modified finite element analysis (FEA) results.

In the future, further research will explore the effectiveness of MultiCal in more scenarios,
including the calibration of larger robots or the repeatability and accuracy monitoring of multiple
robots. Additionally, the optimal location and number of clamping positions for 3D measuring devices
require further study.
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