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Abstract: Autonomous driving vehicles rely on sensors for the robust perception of surroundings.
Such vehicles are equipped with multiple perceptive sensors with a high level of redundancy to
ensure safety and reliability in any driving condition. However, multi-sensor systems bring up
the requirements related to sensor calibration and synchronization, which are the fundamental
blocks of any autonomous system. On the other hand, sensor fusion and integration have become
important aspects of autonomous driving research and directly determine the efficiency and accuracy
of advanced functions such as object detection and path planning. Classical model-based estimation
and data-driven models are two mainstream approaches to achieving such integration. Most recent
research is shifting to the latter, showing high robustness in real-world applications but requiring
large quantities of data to be collected, synchronized, and properly categorized. To generalize
the implementation of the multi-sensor perceptive system, we introduce an end-to-end generic
sensor dataset collection framework that includes both hardware deploying solutions and sensor
fusion algorithms. The framework prototype combines camera and range sensors LiDAR and radar.
Furthermore, we present a universal toolbox to calibrate and synchronize three types of sensors
based on their characteristics. The framework also includes the fusion algorithms, which utilize
the merits of three sensors, and fuse their sensory information in a manner that is helpful for object
detection and tracking research. The generality of this framework makes it applicable in any robotic
or autonomous applications, also suitable for quick and large-scale practical deployment.

Keywords: multimodal sensors; autonomous driving; dataset collection framework; sensor
calibration and synchronization; sensor fusion

1. Introduction

Nowadays, technological advancements such as deep learning and the introduction of
autonomous vehicles (AVs) have altered every aspect of our lives, as they have become an integral
part of our economy and daily lives. According to the Boston Consulting Group, the value of the AV
industry in 2035 is projected to be $77 billion [1]. In addition, the Brookings Institution and IHS predict
that by 2050, almost all users will possess AVs [2]. As AVs such as Tesla self-driving cars and AuVe
Tech autonomous shuttles become more prevalent in our daily lives and an alternative to conventional
vehicles, safety and security concerns of AVs are growing [2]. Refining the current techniques can
address concerns regarding AV safety and security. For instance, by enhancing object detection, we
can enhance perception and reduce the probability of accidents.

Improving AV, particularly techniques such as object detection and path planning, requires
field-collected AV data. Because field-collected AV data provides important insights, for example,
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human-machine interactive situations like merges, unprotected turns [3], which is otherwise difficult to
obtain from any simulated environment. Moreover, diverse field-collected data can help AV technology
to mature faster [4]. This is also why the amount of field-collected data for AVs is growing despite
the availability of simulation tools such as CARLA [5] and SUMO (Simulation of Urban Mobility) [6].
Waymo’s open motion [3] and perception [7] dataset and the nuScenes [8] dataset are some of the few
examples.

However, collecting AV field data is a complex and time-consuming task. The difficulty stems from
the multi-sensory (e.g., using multiple sensors such as camera, Light Detection and Ranging(LiDAR),
and radar) nature of AV environments, which are used to overcome the limitations of individual
sensors. For example, the camera input can correct the abnormalities of inertial sensors [9]. However,
the challenge lies in the fact that different sensors, such as LIDAR and radar sensors, have different
sensing rates and resolutions and also require the fusion of multimodal sensory data[10], thereby
making the task of data collection even more difficult. For example, the LiDAR sensor can capture
more than a million three-dimensional (3D) points per second, while radar sensor has poor 3D
resolution [11], which needs to be synchronized before using in other AV tasks such as object detection.
Moreover, the data collection task is often performed alongside other regular duties, making it even
more time-consuming and prone to error, which we conclude from our experience of iseAuto dataset
collection [12].

With respect to the advantages of real-world field data, studies such as those by Jacob et al. [4] (see
Section 2 for more) have focused on data collection frameworks for AVs. However, the work by Jacob
et al. [4] does not consider the radar sensor; therefore, extra effort is required when the data is collected
from a vehicle equipped with the radar sensor. Additional limitations of the work include multi-sensor
fusion of the camera, LiDAR, and radar data to provide rich contextual information. Muller et al. [13]
leverage sensor fusion to provide rich contextual information like velocity, as in our work. However,
the work of Muller et al. [13] does not include the radar sensor, and it is based on the CARLA simulator;
hence its effectiveness with real-world physical AVs is still being determined. Therefore we present our
work, an end-to-end general-purpose AV data collection framework featuring algorithms for sensor
calibration, information fusion, and data space to collect hours of robot-related application that can
generate data-driven models. The novelty of our dataset collection framework is that it covers the
aspects from sensor hardware to the developed dataset that can be easily accessed and used for other
autonomous-driving-related research. We provide detailed hardware specifications and the procedures
to build the data acquisition and processing systems. Our dataset collection framework has backend
data processing algorithms to fuse the camera, LiDAR, radar sensing modalities together.

In summary, the contributions of this work are given below.

*  We present a general purpose scalable end-to-end AV data collection framework for collecting
high-quality multi-sensor radar, LIDAR, and camera data.

¢  The implementation and demonstration of the framework’s prototype, whose source code is
available at: https://github.com/Claud1234/distributed_sensor_data_collector.

*  The dataset collection framework contains backend data processing and multimodal sensor fusion
algorithms.

The remainder of the paper is as follows. Section 2 reviews the autonomous driving dataset,
existing data collection frameworks, and the mainstream multimodal sensor systems related to
autonomous data acquisition. Section 3 introduces the prior and post-processing of our dataset
collection framework, including sensor calibration, synchronization, and fusion. Section 4 presents the
prototype mount used for testing and demonstrating the dataset collection framework. Specifically,
there are detailed descriptions of the hardware and software setups of the prototype mount and the
architecture configurations of the system operating, data communication, and cloud storage. Finally,
Section 5 provided a summary and conclusion.
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2. Related Work

Given the scope of this work, we present relevant studies distinguishing dataset collection
frameworks for autonomous driving research from multimodal sensor systems for data acquisition.
The reason is that many studies typically focus on one aspect or the other, while we intend to merge
these concepts in a general-purpose framework.

2.1. Dataset collection framework for autonomous driving

Recently, data is regarded as a valuable property. For autonomous driving research, collecting
enough data covering different weather and illumination conditions requires a lot of investment.
Therefore, most research groups use open datasets for the experiments. For example, KITTI [14] has
been one of the most successful open datasets for a long time. However, because of the development
of sensor technology and the increasing requirements for datasets to cover more weather and traffic
conditions. The latest datasets, such as Waymo [7] and nuScenes [8], have adopted modern perceptive
sensors and covered various scenarios. Other similar datasets include PandaSet [15], Pixset [16],
and CADC [17]. Although public datasets offer researchers the convenience of obtaining the data,
their limitations in practical and engineering applications must be addressed. Most open datasets
aim to provide well-synchronized, denoised, and ready-to-use data but are reckless in publishing
the details of their hardware configurations and open source the developing tools, which causes
problems for other researchers to create the dataset in their need. As a result, the concepts of dataset
collection frameworks are proposed. These frameworks focus on analyzing the feasibility of modern
sensors and improving the system’s versatility on different platforms. Yan et al. [18] introduced a
multi-sensor platform for vehicles to perceive their surroundings. Details of all the sensors, such as
brand, model, and specifications, were listed in the paper. Robot Operating System (ROS) was used
for calibrating the sensors. Lakshminarayana et al. [19] focused on the protocols and standards for
autonomous driving datasets. The author proposed an open-source framework to regularize datasets’
collection, evaluation, and maintenance, especially for their usage in deep learning. By contrast, the
hardware cost was discussed in [4], as the budget is always critical for the large-scale deployment of a
framework. Therefore, some researchers build the dataset pipelines by simulated vehicles and sensors
to avoid the heavy investment of hardware purchase and repeated human-labor work, for example,
manual object labeling. Moreover, simulation-based data generation frameworks can be used in
applications that are difficult to demonstrate in the real world. For example, Beck et al. [20] developed
a framework to generate camera, LiDAR, and radar data in CARLA [21] simulator to reconstruct the
autonomous-vehicles-involved accidents. Muller et al. [13] used the same CARLA platform to build a
data collection framework to produce data with accurate object labels and contextual information. In
summary, very few works provide a comprehensive end-to-end framework from hardware deployment
to sensor calibration and synchronization, then to the backend camera-LiDAR-radar fusion that can be
easily implemented into the end applications such as motion planning and object segmentation.

2.2. Multimodal sensor system for data acquisition

The data acquisition of the modern autonomous and assisted driving system relies on the
paradigm that multiple sensors are equipped [22]. For autonomous vehicles, most of the onboard
sensors serve the purposes of proprioception (i.e., inertia, positioning) and exteroception (i.e., distance
measurement, light density). As our work concerns only the perceptive dataset collection, the review
of multimodal data acquisition systems focuses on the exteroceptive sensors system for object detection
and environment perception.

From the hardware perspective, exteroceptive sensors such as cameras, LIDAR, and ultrasonic
sensors have to be installed in the exterior of the vehicles, as they require a clear view field and less
interference. For independent autonomous driving platforms, the typical solution is to install the
sensors around the vehicles separately to avoid the body frame’s dramatic changes. The testing vehicle



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2023 d0i:10.20944/preprints202305.1376.v1

40f23

[23] has 15 sensors installed on the front, top and rear sides to ensure the performance and appearance
of the vehicles are not much affected. Other autonomous driving platforms with similar sensor
layout include [24] and [25]. Furthermore, shuttle-like autonomous vehicles such as Navya [26] and
iseAuto [27] also adopt the same principle to fulfill the legal requirements for the real-traffic-deployed
shuttle bus. In contrast, another sensor installation pattern integrates all perceptive sensors as an
individual mount from the vehicle, which is often seen in the works related to dataset collection
and experimental platform validation. [28] and [29] are the popular datasets in which all sensors
are integrated. The experimental platforms examples that have detachable mounts onto the vehicles
are [30] and [31].

The multimodal sensor systems’ software mainly involves the sensors’ calibration and fusion.
Extrinsic and temporal calibration are two primary categories for multi-sensor systems. Extrinsic
calibration concerns the transformation information between different sensor frames, and temporal
calibration focuses on the synchronicity of multiple sensors operating at various frequencies and
latencies. The literature on extrinsic calibration methodologies is rich. For example, An et al. [32]
proposed a geometric calibration framework that combines the planar chessboard and auxiliary 2D
calibration object to enhance the correspondences of 3D-2D transformation. Similarly, Domhof et al.
[33] replaced the 2D auxiliary object with a metallic trihedral corner to provide strong radar reflection,
which aims to reduce the calibration noise for radar sensors. In contrast to the calibration methods
that employ specific targets, there are approaches dedicated to calibrating sensors without a target.
Jeong et al. [34] utilized road markings to estimate sensor motions, then determined the extrinsic
information of sensors. In [35], authors trained a convolutional neural network to substitute humans
to calibrate camera and radar sensors. The model automatically pairs radar point clouds with image
features to estimate challenging rotational information between sensors. The studies of multimodal
sensor fusion for autonomous driving perception and data acquisition were reviewed in [36] and [37].
Recent breakthroughs in deep learning have significantly inspired researchers to fuse the multimodal
data streams in the level of feature and context [38,39]. On the other hand, neural-network-based
fusion approaches require a significant amount of computing power. Remarkably, Pollach et al. [40]
proposed fusing the camera and LiDAR data at a probabilistic low level; the simple mathematical
computation consumes less power and causes low latency. Work [41] focused on the implementation
feasibility of the multi-sensor fusion. Like our work, the authors developed a real-time hybrid fusion
pipeline composed of a Fully Convolutional Neural Network and an Extended Kalman Filter to fuse
the camera, LiDAR, and radar data. Cost efficiency is the crucial point in [42]; the study resulted in a
method that relies on Microsoft Kinect to produce color images and 3D point clouds. However, this
data acquisition and fusion system mainly works for road surface monitoring.

3. Methodology

Our dataset collection framework primarily focuses on exteroceptive sensors mainly used in
robotics for perception purposes, in contrast to sensors such as GPS and wheel-encoder that record the
status information of the vehicle itself. Currently, one of the primary usages of the perceptive sensor
data in the autonomous driving field is the obstacle-type-objects (cars, humans, bicycles) [43] and
traffic-type-objects (traffic signs and road surface) [44] detection and segmentation. The mainstream
research in this field is fusing different sensory data to compensate sensors for each other limitations.
There is already a large amount of research focusing on the fusion of camera and LiDAR sensors
[45], but more attention should be given to the integration of radar data. Although LiDAR sensors
outperform radar sensors from the perspective of the point clouds density and object texture, radar
sensors have the advantages in moving objects detection, speed estimation, and high reliability in harsh
environments such as fog ad dust. Therefore, this framework innovatively exploits the characteristics
of the radar sensors to highlight moving objects in LIDAR point clouds and calculate their relative
velocity. The radar and LiDAR fusion result is then projected onto the camera image to achieve
the final radar-LiDAR-camera fusion. Figure 1 presents the framework architecture and data flow
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overview. The radar, LIDAR, and camera sensors used in the framework’s prototype are T mmwave
AWR1843BOOST, Velodyne VLP-32C, and Raspberry Pi V2, respectively. Detailed descriptions of the
sensor and other hardware are in Section 4. The rest of this section focuses on the methods related to
sensor calibration and synchronization, data processing, and sensor fusion.
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Figure 1. Overview of the framework architecture and data flow. The bold arrow-pointers denote data
flow directions and corresponding protocols.

3.1. Sensor Calibration

For any autonomous vehicle’s perceptive system equipped with both passive (camera) and active
(LiDAR, radar) sensors, the sensor calibration is usually classified as retrieving the intrinsic and
extrinsic parameters.

3.1.1. Intrinsic Calibration

The intrinsic calibration refers to the position and orientation of the sensor in real-world
coordinates by which the relative coordinate for the features detected by the sensor. Among all popular
perceptive sensors in the autonomous driving field, there is already a significant amount of work related
to the intrinsic calibration of the camera and LiDAR sensors [46,47]. LIDAR and camera are the primary
sensors in this work to perceive the surrounding environment; therefore, they are the subject of intrinsic
calibrations. Raspberry Pi V2 is a pinhole camera which is a well-known and widely used model [48,49].
The intrinsic calibration for the pinhole camera estimates the sensor’s internal parameters, such as
focal length and distortion coefficients, that comprise the camera matrix. Referring to the classification
in [50], we use photogrammetric method to calibrate the Raspberry Pi V2 camera. This method relies
on planner patterns with precise geometric information in the 3D real world. For example, using a
checkerboard with known square dimensions, the interior vertex points of the squares are used during
the calibration. In addition, a wide-angle lens (160°) was attached to the Raspberry Pi V2 camera,
resulting in significant image distortion. Therefore, rectifying the images before implementing them
into any post-processing is critical. The open-source ROS ‘camera_calibration” package was used in
this work to calibrate the camera sensor. The ‘camera_calibration” package is built upon the OpenCV
camera calibration and 3D reconstruction modules. It provides the graphic interface for parameter
tuning; and gives the results of distortion coefficients, camera matrix, and projection matrix. Figure 2
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compares the distorted image obtained directly from the camera sensor and the processed rectified
image based on the camera’s intrinsic calibration results.

(b)

Figure 2. Comparing images obtained directly from the sensor to those that have been processed. (a)

Raw distorted image obtained directly from the camera. (b) Rectified image.

As a highly industrialized and intact-sealed product, Velodyne VLP-32C LiDAR sensors are
usually factory calibrated before shipment. Referring to the Velodyne VLP-32C’s user manual, the
range accuracy is claimed to be up to £3cm. In addition, research works such as [51] and [52] used
photogrammetry or planar structures to further calibrate the LIDAR sensors to determine the error
connection. However, considering the sparsity of the LIDAR points from spatial perspective, factory
calibration of the Velodyne LiDAR sensors is sufficient for most the autonomous driving scenarios.
Therefore, no extra calibration work was conducted on the LiDAR sensors in our framework.

Due to the characteristics of radar sensors in sampling frequency and spatial location, the
calibration of radar sensors usually concentrates on the coordinate calibration to match the radar points
and image objects [53]; points filtering to dismiss the noise and faulty detection results [54]; and error
correction to compensate the mathematical errors in measurement [55]. The post-processing towards
of radar data in our work is overlaying radar points with the LiDAR point clouds. Therefore, the
intrinsic calibration for radar sensors focuses on filtering out undesirable detection results and noise. A
sophisticated method for noise and ineffective target filtering was proposed by [56], which developed
the intra-frame clustering and tracking algorithms to classify the valid objects signal from original
radar data. The straightforward approach to calibrate the radar sensors is [54], which filtered the point
clouds by the speed and angular velocity information; thus, the impact of stationary objects can be
reduced in radar detection results. Our work implements a similar direct method to calibrate the TI
mmwave AWR1843BOOST radar sensor. The parameters and thresholds related to the resolution,
velocity, and Doppler shift were fine-tuned in the environments where autonomous vehicles are
operated. Most of the points for static objects were filtered out in radar data (although the noise is
inevitable in detection results). As a result, there is a reduction of the amount of points representing
the dynamic objects in each detection frame (shown in Figure 3). This issue could be addressed by
locating and clustering the objects’ LIDAR points through the corresponding radar detection result.
This part of the work will be detailed in section 3.3.2.

3.1.2. Extrinsic Calibration

For multimodal sensor systems, extrinsic calibration refers to the rigid transformation of the
feature from one coordinate system to another, for example, the transformation of LiDAR points
from the LiDAR coordinate frame to the camera coordinate frame. The extrinsic calibration estimates
transformation parameters between the different sensor coordinates. The transformation parameters
are represented as a 3 x 4 matrix containing the rotation (R) and translation (t) information. Extrinsic
calibration is critical for multi-sensor systems for sensor fusion post-processing. One of the most
important contributions of our work is the backend fusion of the camera, LiDAR, and radar sensors;
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thus, the extrinsic calibration was carried out between these three sensors. The principle of sensor
fusion in our work is filtering out the moving objects’ LIDAR points by applying the radar points,
augmenting the LiDAR point data with the object’s velocity readings from the radar, and then
projecting the enhanced LiDAR point clouds data (that contain the location and speed information
of the moving objects) into camera images. Therefore, there is a need to extract the Euclidean
transformation between radar and LiDAR sensors; and between LiDAR and camera sensors. The
standard solution is to extract the peculiar and sensitive features from the different sensors in the
calibration environment. The targets used in extrinsic calibration usually have specific patterns such
as planar, circular, and checkerboard for simplicity to match the features between point clouds and
images.

Pairwise extrinsic calibration between the LIDAR and camera sensors in our work was inspired
by the work [57]. The target for the calibration is a checkerboard with 9 and 7 squares in two directions.
In practical calibration, several issues were raised and needed to be noted:

*  Before the extrinsic calibration, individual sensors were intrinsically calibrated and published the
processed data as ROS messages. However, to have efficient and reliable data transmission and
save bandwidth, ROS drivers for the LIDAR and camera sensors were programmed to publish
only Velodyne packets and compressed images. Therefore, additional scripts and operations were
required to handle the sensor data to match the ROS message types for the extrinsic calibration
tools. Table 1 illustrates the message types of the sensors and other post-processing.

®  The calibration relies on humans to match the LiDAR point and corresponding image pixel.
Therefore, it is recommended to pick the noticeable features, such as the intersection of the black
and white squares or the corner of the checkerboard.

e  The point-pixel matches should be picked from the checkerboard in different locations covering
all sensors’ full Field of View (FOV). For camera sensors, ensure the pixels from the image edges
were selected. Depth varieties (the distance between the checkerboard and the sensor) are critical
for LiDAR sensors.

e Jtis a matter of fact that human errors are inevitable when pairing points and pixels. Therefore, it
is suggested to select as many pairs as possible and repeat the calibration to ensure high accuracy.

Table 1. ROS message types for sensor drivers and calibration processes.

Sensor Message Type of Topic Message Type of Topic
Published by Driver Subscribed by Calibration
Processes
LiDAR velodyne_msgs/VelodyneScan sensor_msgs/PointCloud2
Velodyne VLP-32C (LiDAR-camera extrinsic)

velodyne_msgs/VelodyneScan
(radar-LiDAR extrinsic)

Camera sensor_msgs/Compressedlmage sensor_msgs/Image
Raspberry Pi V2 (camera intrinsic)
sensor_msgs/Image
(LiDAR-camera extrinsic)

Radar sensor_msgs/PointCloud?2 sensor_msgs/PointCloud2
TI AWR1843BOOST (radar intrinsic)
sensor_msgs/PointCloud2
(radar-LiDAR extrinsic)

Compared with the abundant resource for pairwise LIDAR and camera extrinsic calibration,
relatively little research addressed the multimodal extrinsic calibration that includes the radar sensors.
Radar sensors usually have smaller FoV than the camera and LiDAR sensors, while they also lack
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elevation resolution and sparse point clouds. Therefore, poor informativeness is the primary challenge
for radar’s extrinsic calibration. To address this problem, one of the latest references [58] proposed
a two-step optimization method in which the radar data was reused in the second step to refine
the extrinsic information gained from the first step calibration. However, the pursuit of our work
is a universal pipeline that can be easily adapted to different autonomous platforms. Therefore, A
toolbox bound with the standard ROS middleware is necessary to quickly deploy the pipeline system
and execute the calibrations on autonomous vehicles. In our work, radar sensors were intrinsically
calibrated to filter out most of the points for static objects. A minimum number of points were kept in
each frame to represent the moving objects. A ROS-based tool was developed to compute the rotation
and translation information between the LiDAR and radar coordinate frames. The calibration is based
on the visualization of the Euclidean distance-based clusters of the point clouds data from two sensors.
Corresponding parameters of the extrinsic calibration, such as Euler angles and displacement in X,
Y, and Z directions, were manually tuned until the point cloud clusters overlapped. Please note that
to properly calibrate the radar sensor, a specific calibration environment with minimal interference
is required. Moreover, since the radar sensors are calibrated primarily to react to dynamic objects,
the unique object in the calibration environment should move steadily and ensure the preferable
reflective capability (TI mmwave radar sensors showed higher sensitivity to metallic surfaces than
others during our practical tests). Figure 3 compares the result of LIDAR and radar extrinsic calibration
in visualization. Each pair of figures in the column was captured from a specific environment related
to the research and real-traffic deployment of our autonomous shuttles. The first column (Figure 3
(a) and (d)) shows an indoor laboratory featuring a deficient interference; the only moving object is a
human with a checkerboard. The second and third columns represent the outdoor environment where
the shuttles were deployed. These two pairs also represent the different traffic scenarios. The second
column (Figure 3 (b) and (e)) is the city’s urban area, which has more vehicles and other objects (trees,
street lamps, traffic posts). The distance between the vehicles and sensors is relatively small; in this
condition, radar sensors can produce more points. The third column (Figure 3 (c) and (f)) is in the
open area outside the city, which the vehicles run at a relatively high speed and far away from the
sensors. The color dots represent the radar points, and the white dots are LiIDAR point cloud data. The
pictures in the first row illustrate the Euclidean distance between the LiDAR and radar point clouds
before implementing the extrinsic calibration. The pictures in the second row show the results after
the extrinsic calibration. By comparing the pictures in rows and columns, it is possible to see that the
radar sensors produce less-noisy points data after the specific intrinsic calibration was implemented
onto them. They are also more reactive to the metal surface and objects at a close distance. Moreover,
after the extrinsic calibration of LIDAR and radar sensors, the alignment of the two types of sensors’
point clouds data was obviously improved, which is helpful for the further processing to identify and
filter out the moving objects in LIDAR sensor’s point clouds data by the detection results of the radar
Sensor.
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(e)

Figure 3. Performance of the LIDAR and radar extrinsic calibration in visualization. Color dots are

radar points; white dots are LIDAR point clouds. The first row shows the relative locations of LIDAR
and radar points without the extrinsic calibration. The second row is the results after applying the
radar-LiDAR extrinsic calibration. The scene of (a) and (d) is indoor laboratory. (b) and (e) were
captured in city’s urban area. (c) and (f) are are in the open area outside the city.

3.2. Sensor Synchronization

For autonomous vehicles that involve multi-sensor systems and sensor fusion applications, it
is critical to address the synchronization of multiple sensors with different acquisition rates. The
perceptive sensors’ operating frequencies are usually limited by their own characteristics. For example,
as the passive sensor, camera sensors operate at high frequencies; on the contrary, as the active sensor,
LiDAR sensors usually scan at a rate no more than 20Hz, because of the internal rotating mechanisms.
Although it is possible to set the sensors to work at the same frequencies from the hardware perspective,
the latency of the sensor data streams is also a problem for matching the measurements.

In practical situations, it is not recommended to set all sensor frequencies to the same. For example,
reducing the frame rate of the camera sensors to match the frequencies of the LIDAR sensors means
fewer images are produced. However, it is possible to optimize the hardware and communication
setup to minimize the latency caused by the data transfer and pre-processing delays. The typical
software solution to synchronize sensors matches the message headers’ closest timestamps at the
end-processing unit. One of the most popular open-source approaches, ROS message_filter [59],
developed an adaptive algorithm that first finds the latest message as a reference point among the
heads of all topics (a term in ROS represents the information of sensing modality). The reference point
was defined as the pivot, based on the pivot and a given time threshold, messages were selected out
of all topics in the queues. The whole message-pairing process was shifted along the time domain.
Therefore, the messages that cannot be paired (the difference of timestamps relative to other messages
exceeds the threshold) would be discarded. One of the characteristics of this adaptive algorithm is that
the selection of the reference message was not fixed into one sensor modality stream (shown in Figure
4 (a)). For the systems with multiple data streams, the amount of the synchronized message sets are
always reconciled to the frequency of the slowest sensor.

For any multi-sensor perceptive system, the sensor synchronization principle should correspond
to the hardware configuration and post-processing of the sensor fusion. As discussed in Section 4.1.2
about the sensor configurations of this work, the camera sensor has the highest rate of 15 FPS, and
the LiDAR sensor operates at 10Hz. Both camera and LiDAR sensors work at a homogeneous rate,
contrary to the heterogeneous radar sensors that only produce data when moving objects are in the
detection zone. Therefore, as shown in Figure 4, depending on the practical scenarios, radar data
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can be much sparser than the camera and LiDAR data and also can scatter unevenly along the time
domain. In this case, direct implementation of the synchronization algorithm [59] will cause heft data
loss of the camera and LiDAR sensors. For the generic radar-LiDAR-camera sensor fusion in our work,
we divide the whole process into three modules based on the frequencies of the sensors. The first
module is the fusion of the LIDAR and camera data because these two sensors have constant rates.
The second module is the fusion of the radar and LiDAR sensors as they both produce the point clouds
data. Finally, the last module is the fusion of the result of the second module and the camera data,
achieving the thorough fusion of all three sensory modalities.
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Figure 4. Illustrations of the sensor synchronization logic for message_filter and our algorithms.
These illustrations are based on the real field data collected by our prototype. (a) shows the
manner that message_filter carry out the multi-sensor synchronization, (b) and (c) show the
individual LiDAR-camera and radar-LiDAR synchronization in our work, respectively. (d) is our
final synchronized radar-LiDAR-camera message triplet. The red points in the figure represent the
reference message used for synchronization. Please refer to Section 3.2 for more details.

To address the issues of the hardware setup and fulfill the requirement of fusion principles in our
work. We develop a specific algorithm to synchronize the data of all sensors. Inspired by the work [59],
our algorithm also relies on the timestamps to synchronize the messages. Instead of the absolute
timestamp used in [59], we used relative timestamp to synchronize the message sets. The definitions of
two types of timestamps are:

®  Absolute timestamp is the time when data was produced in sensors. It was usually created by the
ROS drivers of the sensors and was written in the header of each message.

®  Relative timestamp Relative timestamp represents the time data arrives at the central processing
unit. It is the Intel® NUC 11 in our prototype.

Theoretically, the absolute timestamp should be the basis of the sensor synchronization as it
represents the exact moment data was created. However, absolute timestamp is not always applicable
and has certain drawbacks in practical scenarios. First of all, it requires all sensors can assign the
timestamp to each message on the fly, which is sometimes not possible because of the computational
power of the hardware and software limitations. Out of the cost consideration, some basic perceptive
sensors are not integrated with the complex processing ability. For example, our prototype’s Raspberry
Pi V2 camera has no additional computing unit to capture the timestamp. However, because it is a
modular Raspberry camera sensor and directly connected with the ROCK Pi computer through the CSI
socket, the absolute timestamp is available in the header of each image message with the assistance from
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the ROCK Pi computer. On the other hand, the radar sensors used in the prototype have only serial
communications with the computer, and there are no absolute timestamps for point clouds messages.

The second requirement for implementing the absolute timestamp is the clock synchronization
between all computers in the data collection framework. There are two computers in our prototype;
one serves as the primary computer, and the second auxiliary computer is simply for launching the
sensors. There is a need to synchronize the clock of all computers and sensor-embedded computing
units to the precision of millisecond if using the absolute timestamps for sensor synchronization.

To simplify the deployment procedures of this data collection framework, our sensor
synchronization algorithms trade off simplicity with accuracy by using the relative timestamps, which is
the clock time of the primary computer when it receives the sensor data. Consequently, the algorithm is
sensitive to the delay and bandwidth of the Local Area network (LAN). As mentioned in Section 4.1.1,
all sensors and computers of the prototype are physically connected by internet cables and in the same
Gigabyte LAN. In practical tests, before any payload was applied in the communication network, the
average delay times between the primary computer and LiDAR sensor, also the secondary computer
(camera and radar sensors) are 0.662 ms and 0.441 ms, respectively. By contrast, the corresponding
delay times are 0.703 ms and 0.49 ms when data was transferred from sensors to the primary computer.
Therefore, the increasing time delay caused by transferring data in LAN is acceptable in practical
scenarios. For example, the camera and LiDAR sensors’ time synchronization error of the Waymo
dataset is mostly bounded from -6 to 8 ms [7].

The reference frame selection is another essential issue for sensor synchronization, especially
for the acquisition systems with various types of sensors. The essential difference between
message_filter and our algorithms is message_filter selects the nearest upcoming message as
a reference, while our algorithms fix the reference onto the same modality stream (compare the red
dot locations in Figure 4 (a) and (b) (c)). For our prototype, LiDAR and radar are active sensors,
and the camera is the passive sensor. Meanwhile, camera and LiDAR sensors have constant frame
rates but radar sensors produce data at a heterogeneous frequency. Therefore, in this case, single
reference frame is not applicable to synchronize all sensors. To address this problem, we divide the
synchronization process into two steps. The first step is the synchronization of the LiDAR and camera
data, as shown in Figure 4 (b). The LiDAR sensor was chosen as the reference; thus, the frequency
of the LiDAR-camera synchronized message set is the same as the LiDAR sensor’s frame rate. The
LiDAR-camera synchronization is continuous until the radar sensors capture the dynamic objects, then
the second step involves synchronizing the radar and LiDAR data, as shown in Figure 4 (c). The radar
sensor is the reference frame in the second synchronization step, which means every radar message has
a corresponding matched LiDAR message. As all LIDAR messages are synchronized with the unique
camera image; thus, for every radar message, there is a thorough synchronized radar-LiDAR-camera
message set (Figure 4 (d)). The novelty of our synchronization method is separating the LiDAR
and camera synchronization process from the whole procedure. As a result, we fully exploit the
characteristics of density and consistency of the LIDAR and camera sensors, while also keeping the
possibility to synchronize the sparse and heterogeneous sensor.

3.3. Sensor Fusion

Sensor fusion is critical for most autonomous-based systems, as it integrates acquisition data from
multiple sensors to reduce detection errors and uncertainties. Nowadays, most perceptive sensors have
advantages in specific perspectives but also suffer drawbacks when working individually. For example,
camera sensors may provide texture-dense information but are susceptible to changes in illumination;
radar sensors can detect the reliable relative velocities of objects but struggle to produce dense point
clouds; the state-of-the-art LIDAR sensors are supposed to address the limitations of camera and radar
sensors but lack color and texture information Relying on LiDAR data only, makes object segmentation
systems more challenging to carry out. Therefore, the common solution is combining the sensors to
overcome the shortcomings of the independent sensor operation.
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Camera, LiDAR, and radar sensors are considered the most popular perceptive sensors for
autonomous vehicles. Presently, there are three mainstream fusion strategies: camera-LiDAR,
camera-radar, and camera-LiDAR-radar. The fusion of camera and radar sensors has been widely
utilized in industry. Car manufacturers combine cameras, radar, and ultrasonic sensors to perceive
the vehicles’ surroundings. The camera-LiDAR fusion is often used in deep learning in recent years.
The reliable X-Y-Z coordinates of LIDAR data can be projected as three-channel images. The fusion of
the coordinate-projected images and the camera’s RGB images can be carried out in different layers
of the neural networks. Finally, the camera-LiDAR-radar fusion combines the characteristics of all
three sensors to provide excellent resolution of color and texture, precise 3D understanding of the
environment, and velocity information.

In this work, we provide the radar-LiDAR-camera fusion as the backend of the dataset collection
framework. Notably, we divide the whole fusion process into three steps. The first step is the fusion
of the camera and LiDAR sensor because they work at constant frequencies. The second step is the
fusion of the LiDAR and radar point clouds data. The last step combines the fusion result of the first
two steps to achieve the complete fusion of the camera, LIDAR, and camera sensors. The advantages
of our fusion approach are:

*  In the first step, camera-LiDAR fusion can have a maximum amount of fusion results. Only a
few messages were discarded during the sensor synchronization because the camera and LiDAR
sensors have close and homogeneous frame rates. Therefore, the projection of the LiDAR point
clouds to the camera images can be easily adapted as the input data of the neural networks.

®  The second step fusion of the LiDAR and radar points grants dataset the capability to filter out
moving objects from dense LiDAR point clouds and be aware of objects’ relative velocity.

¢  The thorough camera-LiDAR-radar fusion is the combination of the first two fusion stage results,
which consume little computing power and cause minor delays.

3.3.1. LIDAR Camera Fusion

Camera sensors perceive the real world by projecting the objects into the 2D image planes, while
LiDAR point clouds data contains direct 3D geometric information. The study of [60] classified the
fusion of 2D and 3D sensing modalities into three categories: high-level fusion, mid-level fusion, and
low-level fusion. The high-level fusion first requires independent post-processing, such as object
segmentation or tracking for each modality, then fuses the post-processing results; the low-level fusion
is the integration of the basic information in raw data. For example, the 2D /3D geometric coordinates
or image pixel values; the mid-level is an abstraction between high-level and low-level fusion, which
is also known as feature-level fusion.

Our framework’s low-level backend LiDAR-camera fusion focuses on the spatial coordinate
matching of two sensing modalities. Instead of deep learning sensor fusion techniques, we use
traditional fusion algorithms for LIDAR-camera fusion, which means the input of the fusion process is
the raw data, while the output is the enhanced data [61]. One of the standard solutions for low-level
LiDAR-camera fusion is converting 3D point clouds to 2D occupancy grids within the FoV of the
camera sensor. There are two steps of LiDAR-camera fusion in our dataset collection framework.
The first step is transforming the LiDAR data to the camera coordinate system based on the sensors’
extrinsic calibration results; the process follows the equation:

d. 1 0 0 cos(6,) O —sin(6,) cos(6;)  sin(f.) O ay [
|:dy:| =0 cos(By) sin(6y) |: 0 1 0 } |:sin(92) cos(f:) O (|:ay:| - |:cy:|) )]
d. 0 —sin(0x) cos(6:)] |sin(6,) 0  cos(d,) 0 0 1 a, C

where ay,a,, and 4, are the 3D point coordinates as seen from the original frame (before the
transformation); cx, ¢, and c; are the camera frame location coordinates; 0y, 8, and 6, are the Euler
angles of the corresponding rotation of the camera frame; the dy, d, and d; are the resulting 3D point
coordinates as seen from camera frame (after transformation). The following step is the projection of
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the 3D points to 2D image pixels as seen from the camera frame; under assumption, the camera focal
length and the image resolution are known, the following equation performs the projection:

u fo 0 % (de
ol =10 fy F| |dy 2)
1 0 0 1| ]|d.

where dy, dy, and d; are the 3D point coordinates as seen from the camera frame; the f and f,
are camera horizontal and vertical focal length (which is known from the camera specification or
discovered during the camera calibration routine); the % and 4 here are the coordinates of a principal
point (the image center) that derived from image resolution W and H; finally the u and v are the
resulting 2D pixel coordinates. After transforming and projecting the 3d points into a 2d image, the
filtering step removes all the points not falling in the camera view.

The fusion results of each frame are saved as two files. The first is an RGB image with the projected
point clouds, as shown in Figure 5 (a). The 2D coordinate of LiDAR points was used to pick out the
corresponding pixels in the image. The assignment of the pixel color is based on the depth information
of the point, HSV colormap was used to colorize the image. The RGB image is the visualization of
the projection result, which helps evaluate the alignment of the point clouds and image pixels. The
second file contains the projected 2D coordinates and X, Y, and Z axis values of the LiDAR points
within the camera view. All the information was dumped as a pickle file which can be quickly loaded
and adapted to other formats, such as array and tensor. The visual demonstrations of the information
in the second file are Figure 5 (b) (c) (d), represents the LiDAR footprint projections in XY, YZ and XZ
planes, respectively. The color of pixels in each plane is proportionally scaled based on the numerical
3D axes value of the corresponding LiDAR points.

Figure 5. The projection of the LiDAR point clouds onto the camera plane in X, Y, and Z channels. (a)
is RGB image, (b) is X channel projection, (c) is Y channel projection, and (d) is Z channel footprint.
The color map of (a) is HSV, (a) (b) (¢) is JET.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2023 d0i:10.20944/preprints202305.1376.v1

14 of 23

The three LiDAR footprint projections are effectively formatted by: first, projecting the LIDAR
points onto the camera plane; second, by assigning the value of the LiIDAR axis to a projected point.
The overall algorithm can be seen in the following subsequent steps:

1. LiDAR point clouds is stored in sparse triplet format L3*N, where N is the amount of points in
LiDAR data.

2. LiDAR point clouds is transformed to camera reference frame; by multiplying the L with the
LiDAR-to-camera transform matrix Tj,

3. The transformed LiDAR points are projected to the camera plane, preserving the structure of
the original triplet structure; in essence, the transformed LiDAR matrix Lt is multiplied by the
camera projection matrix P; as a result, the projected LIiDAR matrix Ly now contains the LIDAR

point coordinates on the camera plane (pixel coordinates).
4. The camera frame width W and height H are used to cut off all the LiDAR points not visible by

the camera view. Keeping in mind the projected LiDAR matrix Ly from the previous step. We
calculate the matrix row indices where the values satisfy the following;:

e 0<=Yy<H
. 0<=12

The row indices where L. satisfy the expressions are stored in an index array L;4,; the shapes
of the Lt and L, are the same, therefore it is secure to apply the derived indices L, to both
camera-frame-transformed LiDAR matrix LT and camera-projected matrix L.

5. The resulting footprint images XY, YZ and XZ are initialized following the camera frame
resolution W x H; and subsequently populate with black pixels (zero value).

6. Zero-value footprint images are populated as follows:

L4 XY Lidx =L LidX,O
YZ|Liqx| = L|Liax,
® XZ Lidx = idxs

The algorithm 1 illustrates the procedures described above.

Algorithm 1 LiDAR transposition, projection populating the images

L[3 x N] < nextFrame
Tic < conf
P. < conf
Lpr = L* Ty % Pe
Ligy = argwhere(Ly, >= {0,0,0} & Ly, < {W, H, +oo})
Y[W x H] « 0
YZ[W x H| + 0
W x H|+0
1
id:
1

O O N A RPN

- L[ idxs 0]
- L[ idxs 1]
- L[ idxs 2]

x| =
x| =

id
dx}

_
= e

XZ|
XY[L
YZ[L
XZ[L

3.3.2. Radar LiDAR and Camera Fusion

We install millimeter wave (mmwave) radar sensors on the prototype mount, then develop the
fusion algorithms based on them. The purposes of equipping mmwave radar sensors on autonomous
vehicles are to robustify perception against adverse weather, prevent individual sensor failures, and
most importantly, measure the target’s relative velocity based on the Doppler effect. Currently,
mmwave radar and vision fusion is a popular approach for object detection [62]. However, most of the
research relies on advanced image processing methods to extract the features from the data. Therefore,
an extra process is needed to transform the radar points to image-like data. Moreover, data conversion
and deep-learning-based feature extraction consume a great amount of computing power and require
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noise-free sensing streams. As for the fusion of radar and LiDAR data, due to they are the same kind
of point clouds data, one of the common solutions is applying Kalman Filter to the fusion operation
[63]. Another example work [64] first converted the 3D LiDAR point clouds to virtual 2D scans, then
converted the 2D radar scans to general 2D obstacle maps. However, their radar sensor is Mechanical
Pivoting Radar, which differs from our mmwave radar sensors.

In our work, we divide the entire radar-LiDAR-camera fusion operation into two steps. The
first step is the fusion of radar and LiDAR sensors. The second step uses the algorithms proposed
in Section 3.3.1 to fuse the first step’s results and camera images. As discussed in Section 3.1, we
calibrate the radar sensors primarily reactive to the dynamic objects. As a result, the principle of the
radar-LiDAR fusion in our work is selecting the LiDAR point clouds of the moving objects based on
the radar detection results. Figure 6 illustrates four subsequent procedures of the radar-LiDAR fusion.
First, transforming the radar points from the radar frame coordinate to the LiDAR frame coordinate.
Corresponding transformation matrices are attained from the extrinsic sensor calibration. Second,
applying the Density Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to
the LiDAR point clouds to cluster out the points that potentially represent the objects. Third, looking
up the nearest LIDAR point clusters for the radar points that were transformed into the LiDAR frame
coordinate. Fourth, marking out the selected LiDAR point clusters in raw data (arrays contain the X, Y,
and Z coordinate values) and appending the radar’s velocity readings as an extra channel for selected
LiDAR point clusters (or —oo in case a LIDAR point belongs to no cluster).

é seq 4
z Augmenting the selected clusters|
object_id and _ assigning radar velocity|
velocity readings
f A
seq 1 Transformed radar points Lgﬁi\?ﬁ:gto%r: étesrs
mmwave radar »{ Transformation from radar

Radar points (sparse) frame to LiDAR frame

seq 3

_)Nearest Euclidean lookup of the|
lidar clusters to radar points, to]

highlight the moving objects

seq 2
Velodyne LIDAR »{DBSCAN the 3D points to
iDAR point clouds (dense)

LiDAR point clusters

find the clusters of objects

Figure 6. The workflow of radar-LiDAR fusion procedures

Figure 7 demonstrates the relative locations of the original and coordinate-transformed radar
points, also the results of the radar-LiDAR fusion in our work (LiDAR point clusters of the moving
objects). LiDAR sensor is the reference frame of the points scattering in the figure. Green dots
symbolize the original radar points. Red dots stand for the radar points that were transformed into
the LiDAR frame coordinate, which are the result of the first subsequent of our radar-LiDAR fusion.
Blue dots are the LiDAR point clusters of the moving objects. The selection of the LiDAR point
clusters relies on the nearest neighbor lookup based on the Euclidean distance metric that regards
coordinate-transformed radar points as the reference. Due to inherent characteristics and post-intrinsic
calibration, radar sensors in our prototype only produce a handful of points for moving objects in each
frame, which means the computation of the whole radar-LiDAR fusion operation is light and can be
executed on the fly.

The second step of the radar-LiDAR-camera fusion is the continuous process toward the results of
the first step of radar-LiDAR fusion. The LiDAR point clusters that belong to the moving objects will be
projected into the camera plane. Figure 8 (a) visualizes the final outcome of the radar-LiDAR-camera
fusion in our dataset collection framework. LiDAR point clouds representing moving objects were
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filtered from the raw LiDAR data and projected to the camera images. For each frame, moving objects’
LiDAR point clusters were dumped as a pickle file containing 3D-space and 2D-projection coordinates
of the points and the relative velocity information. Because of the sparsity of the radar points data,
direct projection of the radar points to camera images (shown in Figure 8 (b), there are only two radar
points in this frame) has very little practical significance.

LiDAR_clusters
@ radar_orig
@ radar_transformed

H..

| . |
§ e

14 —-0.3
15 1.6

Figure 7. Relative locations of the original radar points (green), transformed radar points (red), and
LiDAR point clusters of the moving object (blue).

(@) (b)

Figure 8. Comparison of the radar-LiDAR-camera (a) and radar-camera (b) fusion.
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4. Prototype Setup

This section presents our prototype for demonstrating and testing the dataset collection
framework. In addition, we provide detailed introductions of hardware installation, framework
operating system, data transferring protocols, and the architecture of cloud services.

4.1. Hardware Configurations

This work aims to develop a general framework for autonomous vehicles to collect sensory data
when performing regular duties. In addition, process the data in formats that can be used in other
autonomous-driving-related technologies, such as sensor-fusion-based object detection and real-time
environment mapping. A Mitsubishi i-MiEV car, was equipped with a mount on the top (shown in
Figure 9 (b)), all the sensors were attached to the mount. To increase the hardware compatibility, two
processing units were used for the prototype mount to initiate the sensors and collect data. The main
processing unit initiates the LIDAR sensor and handles the post-processing of the data, is located inside
the car. Another supporting processing unit connected to the camera and radar sensors, stays on the
mount (outside the car and protected by water-dust-proof shells). The dataset collection framework
was operated upon by the ROS, all sensory data were captured in corresponding ROS formats.

Figure 9. The prototype of the dataset collection framework. (a) is the Mitsubishi i-MiEV testing vehicle

with the sensors mounted on the top. (b) shows the locations of sensors and other hardware. (c) shows
the inside of the waterproof shell, which has one supporting computer, one camera, and two radar
sensors.

4.1.1. Processing unit configurations

Three requirements have to be satisfied for the processing units and sensor components for the
prototype:

e All the sensors must be modular; in a manner that they can work independently and can be easily
interchanged. Therefore, there is a need for independent and modular processing units to initiate

sensors and transfer the data.
¢  Some sensors have hardware limitations. For example, our radar sensors rely on serial ports

for communication, and cable’s length affects the communication performance in practical tests.

Corresponding computer for radar sensors has to stay nearby.
*  The main processing unit hardware must provide enough computation resources to support

complex operations such as real-time data decompression and database writing.

The main computer for the prototype is an Intel® NUC 11 with Core™ i7-1165G7 Processor, and
the supporting computer is a ROCK PI N10 with four Cortex-A53 processors. The main computer
is connected to the LiDAR sensor and 4G router, subscribes to data streams of the camera and radar
sensors (published by supporting processing unit), carries out the data post-processing, and then sends
corresponding information to the remote database server. The supporting computer is connected to
the camera and radar sensors, stays inside the water-dust-proof shell that protects other electronic
devices outside the vehicle (shown in Figure 9 (c)). The communication between the two computers
relies on the LAN.
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4.1.2. Sensor installation

All the sensors installed in the prototype have been used and tested by other
autonomous-driving-related projects [65,66] in the Autonomous Driving Lab. Four perceptive sensors
are installed on the prototype mount: one LiDAR, one camera, and two radars.

Currently, LIDAR and camera sensors are the mainstream in the autonomous driving field.
Although it is a relatively new technology, LIDAR has become an essential sensor for many open
datasets [28,67] and autonomous driving platforms [23,68]. The trend in the research community
towards LiDAR sensors is using high-resolution models to produce the dense point clouds data, the
maximum amount of the vertical channels of the LIDAR sensors can be 128, and the range can reach 240
meters. Correspondingly, dense point clouds data requires a large amount of transferring bandwidth
and processing power. To explicitly demonstrate our dataset collection framework and simplify the
hardware implementation process, the LiDAR sensor used on the prototype is the Velodyne VLP-32C
which has 32 laser beams and vertically 40° FoV. The LiDAR sensor was connected to the main
computer (NUC 11) by ethernet cable.

Camera sensors have a long developing history and are still important in modern autonomous
driving technologies because of their advantages, such as reliability and cost-effectiveness. Moreover,
the recent breakthrough of vision-based deep learning algorithms for object detection and segmentation
has brought the researchers’ focus back to the camera sensor. Therefore, it is critical for our framework
to have the capability to produce and process the camera data. Since the supporting computer (Rock Pi)
has the specific camera serial interface (CSI) socket, the choice of the camera sensor for the prototype
mount is the Raspberry Pi V2 camera with a wide angle (160° diagonal FoV). The camera can capture
3280x2464 pixel static images and up to 90Hz video mode in resolution 640x480.

Radar sensors have been comprehensively used on commercial cars for driving assistance.
However, most of the radar-based assistant functions, such as collision warning and distance control
simply use the character of reflectivity of the radar sensors. Another iconic characteristic of the
mmwave radar sensors is their capability to detect moving objects. The velocity of the moving objects
can be derived based on the Doppler effect. In addition, compared with the LiDAR sensors” point
clouds data that homogeneously project to all surrounding objects and the total amount of points
are counted in millions, radar sensors can only focus on the moving objects and produce much more
sparse point clouds data that is friendly to the data transfer and storage. As mentioned in Section
3, one of the contributions of our work is using the mmwave radar sensors to detect moving objects
and enhance them in LiDAR and camera data. The testing mmwave radar sensor used for our data
collection framework is Texas Instruments mmwave AWR1843BOOST with 76 to 81GHz frequency
coverage and 4GHz available bandwidth.

Figure 9 and Table 2 show all sensors’ aspect and detailed specifications. . Please note that
parameters in Table 2 are the maximum values sensors can manage under the firmware and developing
kit versions used in our experiments. In practical terms, resolution and frame rate were reduced to
meet the bandwidth and computation power limits. The LiDAR sensor operates at 10 Hz, and the
camera runs at 15 Hz with a resolution of 1920x1080. Moreover, the maximum unambiguous range of
the radar sensor was set as 30m and the maximum radial velocity is 15.37m/s. The Corresponding
resolution of range and radial velocity is 0.586 and 0.25m, respectively. To address the common
problems of the radar sensors, such as sparse and heterogeneous point clouds, high level of uncertainty
and noise for moving object detection, there are two radars installed next to each other in the box, as
shown in Figure 9 (c). Camera and radar sensors are in close proximity, so the image and points data
are consistent with each other and produce accurate perceptive results. Unlike the camera and radar
sensors with limited horizontal FoV, LiDAR sensors have 360° horizontal views. To fully utilize this
characteristic of the LIDAR sensors, one of the most popular methods is installing multiple camera
and radar sensors in all directions. For example, the acquisition system of Apolloscape [29] has up to
six video cameras around the vehicle; multiple LIDAR and radar sensors were installed in pairs in [23]
to cover most of the blind spots. It is a fact that the prototype mount in this work only records camera
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and radar data in front view. However, the scope of this work is demonstrating a generic framework
for data collection and enhancement. Future work will include setting more camera-radar modules in
different directions.

Table 2. Specifications of the sensors ion prototype mount.

FoV (°) Range (m)/Resolution Update Rate (Hz)
Velodyne VLP-32 40 (vertical) 200 20
Raspberry Pi V2 160 (D) 3280x2464 90 in 640x480
TI mmwave 100 (H) 4cm (range resolution) 10-100
AWR1843BOOST 40 (V) 0.3m/sec (velocity
resolution)

4.2. Software System

The software infrastructure of the dataset collection framework was adapted from the iseAuto,
the first autonomous shuttle deployed in real-traffic scenarios in Estonia. Based on the ROS and
Autoware [69], the software infrastructure of the iseAuto shuttle is a generic solution for autonomous
vehicles for sensor launching, behavior making, motion planning, and artificial intelligence-related
tasks. The infrastructure contains a set of modules, including human interface, process management,
data logging and transferring. Like the iseAuto shuttle, the pipeline of the dataset collection framework
was operated upon the ROS and captures all the sensory data in the corresponding ROS formats.
As ROS is designed with distributed computing capability, multiple computers can run the same
ROS system with only one master; thus, the ROS data from different slaves is visible to the whole
network. In this work, the supporting computer connected to the camera and radar sensors works as a
ROS slave, and the main computer hosts the ROS master. Complete and bi-directional connectivity
exists between the main and supporting computers on all ports. In addition, the Gigabyte Ethernet
connection guarantees low latency to transfer the camera and radar data from the supporting computer
to the main computer.

4.3. Cloud server

In our work, the cloud server is another important component because it hosts the database
module, which stores the post-processing data. The private cloud server plays a critical role in the
processes of data storage and public service requests. For the iseAuto shuttle, multiple database
architectures were used in the cloud server to store all kinds of data produced by the vehicle. Log
data related to the low-level control system, such as braking, steering, and throttle, were stored
in a PostgreSQL database. Perceptive data from the sensors were stored in a MySQL database set
in parallel in the cloud server. We deploy a similar MySQL database in a remote server to store
original sensory and post-processed data collected by prototype, such as camera-frame-projected and
radar-enhanced LiDAR data. The database module communicates with the main computer through
4G routers. Moreover, we develop the database in a manner to be able to adapt to other autonomous
platforms quickly. There is an interface that allows users to modify the database structure for different
sensors and their corresponding configurations. The data that was stored in the database have the
labels of the timestamps and path in file systems, which will be useful for the database query tasks.
We also deploy this data collection framework onto our autonomous shuttle and publish the data
collected by the shuttles when they are on real-traffic duty. The web page interface to access the data is
https:/ /www.roboticlab.eu/finest-mobility.

5. Conclusions

In conclusion, this study successfully achieves its goals by presenting a comprehensive end-to-end
generic sensor dataset collection framework for autonomous driving vehicles. The framework includes



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2023 d0i:10.20944/preprints202305.1376.v1

20 of 23

hardware deploying solutions, sensor fusion algorithms, and a universal toolbox for calibrating and
synchronizing camera, LIDAR, and radar sensors. By leveraging the strengths of these three sensors
and fusing their sensory information, the framework significantly improves object detection and
tracking research. The generality of this framework allows for its application in various robotic or
autonomous systems, making it suitable for rapid, large-scale practical deployment. The promising
results demonstrate the effectiveness of the proposed framework, which not only addresses the
challenges of sensor calibration, synchronization, and fusion but also paves the way for further
advancements in autonomous driving research. Specifically, we showcase a streamlined and robust
hardware configuration that maintains ample room for customization while preserving a generic
interface for data gathering. Aiming to simplify cross-sensor data processing, we introduce a
framework that efficiently handles message synchronization and low-level data fusion. In addition, we
develop a server-side platform allowing redundant connections from the multiple in-field operational
vehicles recording and uploading the sensors data. Finally, we feature the framework with the basic
web interface allowing to overview and download of the collected data (both raw and processed).
Moreover, the framework has the potential for expansion through the incorporation of high-level
sensor data fusion, which would enable tracking dynamic objects more effectively. This enhancement
can be achieved by integrating LIDAR-camera deep fusion techniques that not only facilitate the fusion
of data from these sensors, but also tackle the calibration challenges between LiDAR and camera
devices. By integrating these advanced methods, the framework can offer even more comprehensive
and efficient solutions for autonomous vehicles and other applications requiring robust and precise
tracking of objects in their surroundings.
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