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Abstract: Electric vehicles (EVs) will have a greater need for the amount of electricity needed to 

charge them as their popularity grows. It is anticipated that in order to accomplish this objective, it 

will be essential to implement a variety of solutions for grid transportation that are designed to 

complement one another and to make significant changes to the transmission infrastructure. It is 

possible to reduce the amount of energy that is lost on the power network through strategic 

planning and control, which may include economic models and methods to engage and reward 

users. This would eliminate the need for grid upgrades. Charging electric vehicles can also assist 

alleviate problems with transmission systems that are caused by the allocation of electric vehicles 

(EVs) using bidirectional charging method. The most significant problems that can occur with a 

transmission network are power loss and unstable voltage. Adding EV units to the transmission 

network is typically an effective method for resolving these challenges. As a result, EVs need to have 

the appropriate arrangement and dimensions. This research establishes where and how many 

electric vehicles (EVs) should be in a radial transmission network both before and after the 

adjustment is made. An artificially intelligent (AI) approach, known as a hybrid genetic algorithm 

particle swarm optimization (HGAIPSO), is used both before and after the radial network 

modification to find the optimal EV location and size. When electric vehicles are coordinated in an 

active transmission network, power losses are decreased, voltage profiles are raised, and system 

stability is increased. These benefits can be attributed to the greater use of electric vehicles. The 

simulation found that incorporating EVs into the testing system resulted in a considerable decrease 

in the quantity of power that was wasted. The minimal bus voltage of the system also undergoes 

similar kinds of enhancements. According to the findings of the comparative study, the proposed 

method mitigates both the voltage fluctuations and the power losses that occur in the transmission 

system. For type 1, type 2, and type 3 EV allocations, the IEEE-30 bus test system reduced real power 

loss by 40.70%, 36.24%, and 42.94%, respectively. IEEE-30 bus voltage reaches 1.01 pu. 

Keywords: Electric vehicles; Internal combustion engine; Voltage profile improvement; Load 

Profile; Power Grid 

 

1. Introduction 

Variations in load demand have always made it vital for power transmission networks to be able 

to adapt to changing conditions. Regrettably, this has led to voltage oscillations that exceed the 

permissible variation range at a number of buses, in addition to power losses [1]. As a consequence 

of this, the appropriate location and scale of EV are required in order to enhance the voltage profile 

and decrease electrical power losses. Research indicates that annual growth in global consumption 

will average 1.6 percent between now and 2025 [2]. This growth is expected to continue until 2025. 

As a consequence of this, electric vehicles (EVs) are likely going to play a more significant role in the 

power systems of the future. Electric vehicles are currently seeing increased adoption in the electrical 

transmission network sector as a result of the generally positive effects they have on power systems. 
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Electric vehicle (EV) systems are essential to the development of smart grid technology and form the 

infrastructure of intelligent electrical networks [3]. 

It is essential to do study into the ways in which EVs will alter the technological landscape of 

electrical networks in order to prepare for these changes. It will take some time before an accurate 

assessment of the influence that electric vehicles have on the technical side of power networks can be 

performed [4]. When EVs are integrated into electrical transmission networks, it is necessary to link 

the EVs in such a way as to ensure that there are no power losses and no alterations to the voltage 

profile. Fault currents, voltage oscillations, voltage management interference, etc. can cause these 

issues. Because installing EV units in power systems is difficult, considerable consideration must be 

paid to their siting and sizing to minimize losses and maximize voltage profile. This is necessary in 

order to achieve these two goals. Currently, a number of different optimization strategies for the 

positioning of electric vehicles within the electrical transmission network are being developed with 

the intention of reducing the amount of power that is lost and enhancing the voltage profile [5]. 

1.1. Context, Background, and Motivation 

New competitors entered the market in the early 1990s when many countries implemented open-

energy markets and liberalized electricity generation. Traditional generators generate carbon dioxide, 

contributing to global warming. Solar and wind energy lower emissions compared to fossil fuels like 

coal, gas, and oil. Government incentives encourage IPPs to employ renewable energy. Power system 

design did not initially address EV-integrated transmission system redial design. EVs must be ideally 

placed and sized to fulfill system technical and economic demands. Optimal allocation and sizing are 

mostly used in decision-making algorithms. 

1.2. Problem Statement 

Reconfiguring the electrical transmission network and strategically placing EVs helped optimize 

power loss and voltage profile. HGAIPSO is an AI-based technique that preferentially arranges 

particles; it is used to restructure electric transmission networks in this research. In order to regulate 

reactive power and prevent power outages, this research establishes how EVs should be transmitted 

and injected into electrical grids. Algorithms like PSO, IPSO, and GA are explained. Needs analysis 

for electric vehicle charging stations. It will take some time for energy systems to learn to deal with 

the technical ramifications of EVs. Connecting EVs to electrical transmission networks is necessary to 

mitigate power losses and voltage variations, 

• Bus assignment for electric vehicles in a power system is affected by load characteristics such as 

the reactive power control limit and the power loss sensitivity. 

• For EV placement and sizing, a hybrid GA-IPSO solution solves the load flow problem with 

restrictions. To test the algorithm's performance, the IEEE-30-bus test system is employed. 

1.3. Research Aims and Objectives 

• An improved optimization technique for the upgrade of electrical power networks is proposed 

in this research. Minimum real power loss, maximum reactive power, and steady voltage 

amplitude are just few of the requirements that are considered by the algorithm at each iteration. 

• HGAIPSO algorithm for efficient EV allocation in electrical transmission networks. 

• Optimal sizing and placement of EVs minimizes power losses and smoothest out voltage 

profiles. 

1.5. Paper Structure 

The study has five sections. The introduction covers electrical transmission network basics. This 

section also covers power system losses, voltage profiles, and how EVs effect power system 

performance. In Section 2, we will discuss the many methods used to optimize power systems, as 

well as the elements that affect these methods, the equation for the multi objective function, and the 

constraints that must be adhered to. In the third section, "Methodology," we go over the thought 
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processes that led to the selection of the suggested optimization algorithm, and we describe in depth 

the analysis of each optimization plan, including its parameters, steps in implementation, flow charts, 

and techniques. Section 3 details the algorithm and flowchart. Section 4 discusses results tables and 

graphs. Section 5 concludes. 

2. Literature Review 

2.1. Configurations of EVs 

EVs have the ability to run solely on electric propulsion or in conjunction with an internal 

combustion engine (ICE). The simplest sort of EV relies just on batteries as its source of energy; 

however, there are many variants that make use of a variety of other types of energy sources. These 

automobiles are hybrid electric models (HEVs) [6]. The Technical Committee 69 Electric Road 

Vehicles (ERV) of the International Electrical Technical Commission proposed that cars with two or 

more forms of energy source, storage, or converters can be classified as HEVs as long as at least one 

of them provides electrical energy. This recommendation was made in response to a question posed 

by the Technical Committee 69 ERV of the International Electrical Technical Commission. This 

specification makes it possible to combine ICE and batteries, batteries and flywheels, batteries and 

capacitors, batteries and etc. [7]. in a number of hybrid electric vehicle configurations. As a result, 

regular people and industry professionals started referring to hybrid electric cars (HEVs), ultra-

capacitor-assisted electric vehicles (FCEVs), and fuel cell electric vehicles (FCEVs) to describe 

automobiles that have both an internal combustion engine and an electric motor. These terminologies 

have garnered a significant amount of support, and on the basis of this standard, EVs can be 

categorized as follows [8]: 
• Electric Battery Vehicle (BEV) 

• Hybrid Electric Vehicle (HEV) 

• Plug-in Electric Hybrid Vehicle (PHEV) 

2.1.1. Batteries Electric Vehicles (BEVs) 

Given that a battery is the only source of energy for the powertrain of a BEV Figure 1, the range 

that may be achieved by such a vehicle is directly proportional to the capacity of the battery [9]. A 

BEV is completely carbon dioxide (CO2) emission free because it does not have a tailpipe or other 

source of exhaust emissions. BEVs have the potential to go between 100 and 250 kilometers on a single 

charge, while using 15 to 20 kWh for every 100 kilometers driven. This range is determined by the 

characteristics of the vehicle. There is a range of between 300 and 500 kilometers for battery electric 

vehicle models that have larger battery packs [10]. However, battery electric vehicles (BEVs), in 

comparison to other types of EVs, have a substantial disadvantage due to their significantly reduced 

driving range and dramatically increased charging periods. The most effective way to address this 

issue would be to design and implement an EMS that is suitable for BEVs.  
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Figure 1. The structure of BEV circuit. 

Compared to three previous braking techniques, this one increased range to 20 km/kWh. This 

innovative braking technique could increase range by 4.16 km/kWh compared to mechanical braking 

alone. One technique to expand the range of battery electric vehicles (BEVs) is to increase the battery 

pack's capacity. However, it is possible that a battery pack with a large capacity is not useful because 

it requires a significant amount of space and significantly increases the weight of the vehicle [11]. 

This has a direct impact on the vehicle's performance as well as its fuel economy, and it also raises 

the total cost of the vehicle. An electric three-wheel vehicle that is fully loaded (300 kg) and has a 

lithium-ion battery pack (LIB) that is 16 kWh has a range that is approximately 12.5% less than it 

would have with a half-load (150 kg) (from 200 to 175 km) [12]. 

Examining different driving styles is another method that can be used to extend the range of a 

battery-electric vehicle (BEV) without having to increase the capacity of the battery. Controlling the 

flow of energy and power is one way that one might put this method into action when driving. 

Runtime power management was developed by in [] order to extend the range of battery electric 

vehicles [13]. An algorithm was proposed to cut down on journey time and the amount of gasoline 

used. The fact that this technique is based on a multi-objective algorithm enables it to produce results 

that are superior to those produced by other algorithms that have been examined. In [14] a study 

suggested a velocity profile optimization-based optimal control method to reduce energy 

consumption. The proposed algorithm was able to cut energy consumption by between 8 and 10%, 

thanks to its management of driving duration and speed. These citations provide a workable answer 

to the problem of lowering battery capacity while maintaining a lower overall energy consumption 

[15]. 

2.1.2. Hybrid Electric Cars (HEVs) 

In accordance with the standards set forth by Technical Committee 69 (Electric Road Vehicles) 

of the International Electro-Technical Commission, a hybrid electric vehicle (HEV) is a motor vehicle 

that utilizes two or more energy sources, storage devices, or converters, at least one of which creates 

electricity. Unlike conventional vehicles, HEVs use several energy sources, storage, and/or converters 

[16]. Because BEVs have a limited driving range, hybrid electric vehicles (HEVs), which combine a 

traditional internal combustion engine (ICE) with a battery system, have become an appealing option. 

An electric motor is the only source of propulsion for a series hybrid electric vehicle, as shown in 

Figure 2a. In contrast, both an internal combustion engine (ICE) and an electric motor are connected 

to the gearbox of a parallel hybrid electric vehicle (HEV), which transmits power to the wheels 

simultaneously (see Figure 2b). Many studies have been conducted to determine the amount of fuel 
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that parallel and series hybrid electric vehicles consume as well as how efficiently they use their fuel 

(HEVs). In [17] for instance, compared the amount of gasoline that was consumed by series and 

parallel HEV road sweeper trucks while keeping the same amount of power and traveling the same 

amount of distance. 

 
(a) 

 
(b) 

Figure 2. (a) The structure of series HEV circuit and (b) The structure of parallel HEV circuit. 

Based on the findings of the comparison, the series hybrid design (3.8 L/h) had a lower fuel 

consumption rate than the parallel hybrid design (6.2 L/h). When the vehicle was operating in the 

series hybrid mode, the internal combustion engine (ICE) kept its speed constant throughout the 

transport mode. Due to the fact that there are three different conversions that take (place mechanical, 

electric, and mechanical), parallel HEVs are theoretically considered to have smaller power 

conversion losses than series HEVs do. When the power splitting mode is engaged, it is possible to 

cut losses in the drive train, the engine, and the braking system [19]. This could lead to a gain in fuel 

economy that ranges from 0.3 to 36.7%. In addition to this, the fuel efficiency of parallel HEVs can be 

up to 68 percent better than that of a traditional automobile. This substantial improvement in fuel 

efficiency was made possible, in part, by the implementation of regenerative braking, which refers to 
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the recuperation of energy that would have otherwise been lost. As a consequence of these studies, 

series hybrid electric vehicles (HEVs) have been successfully deployed in transportation mode [20]. 

Mild hybrid electric cars, also known as MHEVs, are another form of hybrid electric vehicle 

(HEV) that are equipped with an electric motor and a battery that has a capacity that is on the lower 

end of the spectrum (10–20 kW) [21]. Although the hardware components of this form of EV and 

other types of HEVs are identical, the control algorithms used by each of these categories of vehicles 

are very different. Because the internal combustion engine is responsible for the majority of the 

production of the vehicle's propulsion energy, a gasoline-powered hybrid electric vehicle (MHEV) is 

distinguished from other types of HEVs by having a lower hybridization power approximately 15% 

and smaller driving electric components. This is due to the fact that the internal combustion engine 

is responsible for the majority of the production of the vehicle's propulsion energy [22]. When it 

comes to energy management, the most difficult obstacle for HEVs to overcome is likely going to be 

the combination of many energy sources and optimization. In order to determine a pattern of a 

driving cycle's energy consumption, a comprehensive modeling system, data from test runs, and 

simulator software that has been approved for commercial use are required. In addition, the data 

from the test runs are necessary in order to obtain the energy consumption [23]. 

2.1.3. Plug-In Electric Hybrid Cars (PHEVs) 

The range of HEVs may be increased, which led to the development of PHEVs. Like HEVs, plug-

in hybrid electric vehicles (PHEVs) have an internal combustion engine (ICE), an electric motor, a 

generator, and a battery. Regenerative braking can be replaced with utility grid charging. PHEVs are 

BEV/HEV hybrids [24]. Figure 3a,b show different plug-in hybrid electric automobiles (PHEVs). 

Hybrid electric vehicles use "series" or "parallel" ICEs to charge the battery or provide traction 

(HEVs). 

 
(a) 
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(b) 

Figure 3. (a) The structure of series PHEV circuit (b) The structure of parallel PHEV circuit. 

Larger battery packs are necessary for PHEVs because they can potentially charge off the grid, 

unlike HEVs. The maximum state-of-charge (SOC) that a hybrid electric vehicle (HEV)'s battery is 

allowed to hold is limited by the charge sustenance mode (CS). Depending on the driver's preference, 

a plug-in hybrid electric vehicle (PHEV) can switch between charge depletion (CD) mode (which 

prioritizes the electric motor over the internal combustion engine) and pure electric (EB) mode [25]. 

Reduce fuel consumption in parallel PHEVs with this research on charge depletion mode. The urban 

dynamometer driving schedule (UDDS) reduced parallel PHEV fuel consumption by 7.1% over 64 

km, 6.3% over 48 km, and 5.6% over 32 km. This study found that the PHEV's CD control technique 

effectiveness increased proportionally with the test distance. 

In the same way as with BEVs, when the battery capacity of PHEVs increases, the primary issue 

shifts to the charging time; as a result, charging strategies are required to maintain the vehicle's 

performance. A fast charger can give a higher DC current capacity for car charging. Both standards 

support quick charging. In [26] a study developed, implemented, and tested the V2G system. A 

vehicle with a fully functional CHAdeMO inter-face (VCI) at the physical and protocol levels was 

able to control communication and electrical transfer between the car and charger. The VCI was fully 

implemented at both the physical and protocol standards. Plug-in hybrid electric vehicles and battery 

electric vehicles could shape the future of transportation by storing energy from the grid in their 

batteries and feeding it back into the transmission network when needed [27]. 

It was possible to achieve optimal charging timing for plug-in hybrid electric vehicles (PHEVs) 

by synchronizing a number of plug-in hybrid electric vehicles (PHEVs) inside a smart grid system. 

The findings revealed that it had an adequate level of robustness and provided values with a standard 

deviation that was less than 1 (= 0.8425). Figure 1 illustrates the configuration of the powertrain used 

in series-parallel hybrid electric vehicles and plug-in hybrid electric vehicles [28]. HEVs and PHEVs 

that run in a series-parallel mode are able to take use of all of the benefits that are associated with 

running in either the series or the parallel mode. These benefits include increased fuel economy, 

increased range, and increased efficiency. A study on the efficiency of fuel usage in series-parallel 

plug-in hybrid electric vehicles was carried out by Zhao and Burke.  

Their research showed that a series-parallel PHEV using the UDDS (city driving) method had a 

fuel economy that was 18.1 km/l lower than a similar series shaft PHEV, which averaged 20.4 km/l. 

This information was derived from comparing the two types of PHEVs using the same driving 

strategy. As a result of energy allocation and power management in a drive system, it provided a 

real-world example of the control method for series-parallel plug-in hybrid electric vehicle (PHEV) 

power management. This was possible since it was based on a drive system. The result brought the 
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overall system's efficiency up by 27.50 percentage points, from 19.3 to 24.6 km/L. Nonetheless, this 

type of vehicle is heavier, has a less sophisticated look, and carries a higher price tag [29]. 

 
(a) 

 
(b) 

Figure 4. Hybrid EV Series-Parallel Circuit Layout: (a) Series-Parallel HEV series-parallel plug-in 

hybrid electric vehicle (b). 

Another type of plug-in hybrid electric car is an extended-range electric vehicle (EREV). In 

contrast to other types of PHEVs, the electric motor always powers the wheels, and the internal 

combustion engine doubles as a generator to keep the vehicle's battery charged whenever it runs low 

or when the vehicle is in motion [30]. It's possible that the decreased consumption of mineral 

resources is due to the vehicle's smaller size and the fact that there are fewer components overall. It 

is possible to achieve minimal fuel consumption since the gasoline is only required to run the 

generator. The fact that the generator is the solitary component that is used in the process of 

providing electricity to the vehicle makes this outcome conceivable. The generator's speed and torque 

can both be adjusted to achieve the highest possible levels of energy efficiency in order to cut down 

on the amount of money spent on fuel [31]. Because of the range ex-tender, EREVs are able to travel 
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further than BEVs; nevertheless, in order to compete with BEVs in terms of energy efficiency, they 

need to be much more compact. 

2.2. Battery Engineering 

The battery is the primary source of energy for electric vehicles, other sources of energy include 

the energy produced by regenerative braking, the energy produced by fuels, and the energy 

produced by various power storages such as a super capacitor. The battery features a versatile 

architecture that allows it to be assembled in either series, parallel, or series-parallel configurations, 

depending on the required amount of voltage and current. In addition, the battery incorporates the 

three standard forms of electric vehicle cells, which are cylindrical, pouch, and prismatic cells [32]. 

While shopping for battery-powered equipment, be sure to give equal consideration to the product's 

expected lifespan, power density, energy density, capacity, and state-of-charge (SOC). The most 

potent power sources for EVs are rechargeable batteries like lithium-ion. Compared to the other two 

batteries, the LIB had a higher specific energy and energy density. Rechargeable batteries were 

developed as a result [33]. 

Lead-acid batteries have a specific gravimetric energy density of 30–50 Wh/kg, making them the 

least efficient. The lifespan of a lead-acid battery is 500–1000 cycles. To go two hundred kilometers, a 

lead-acid battery that weighs at least five hundred kilo-grams is needed to generate one kilo-watt-

hour (kWh) of electricity. Low-performance, tiny cars can use lead-acid batteries. Since their 

invention, lead-acid batteries have been recycled. As usual. This battery's recycling rate is close to 

100% in Western countries and elsewhere. Lead-acid batteries use 85% of the world's lead, and 60% 

of it is recycled. Lead-acid batteries are easily damaged; thus their components can fall out of their 

plastic containers with their acid. The main drawbacks of this battery technology are its poor cold 

performance and memory effects [34]. Another issue is the battery's long recharge time and high self-

discharge rate when idle. The battery's poor charge and discharge efficiency is the biggest issue. 

Ni-Cd batteries need high charge and discharge rates and are memory-prone. The substance is 

toxic and possesses 60–80 Wh/kg specific energy density. Recharging nickel-hydrogen (Ni-H) 

batteries was studied by Chen and colleagues. It was difficult to develop a low-cost grid storage 

material with a longer battery cycle and calendar lifespan. Material needs more cycles [35]. This paper 

proposed a 10,000-cycle manga-nese-hydrogen battery for grid energy storage. Mn2+/MnO2 redox 

cathodes and H+/H2 gas anodes comprise the battery. The battery's areal capacity loading was 

projected to improve tenfold to 35 mAh/cm2 by replacing the Mn2+/MnO2 redox with a nickel-based 

cathode. In place of an expensive platinum catalyst, a less expensive nickel-molybdenum-cobalt alloy 

was used to catalyze the evolution of hydrogen into oxygen in alkaline electrolytes for the anode. 

The sodium-nickel chloride (Na-NiCL2) batteries, also known as the Zero Emissions Batteries 

Research Activity (ZEBRA) batteries, are regarded as safe and inexpensive. Additionally, they are 

able to have nearly all of their capacity depleted without having a negative impact on the amount of 

time they will last. In addition, the energy that is contained within the battery [36]. a value that is 

around 150 Wh/kg. Because a ZEBRA battery may operate at temperatures ranging from 245 to 350 

degrees Celsius, the thermal management and safety challenges associated with this battery are 

under a significant amount of strain. As a storage source, ZEBRA batteries are a good example. Due 

to the cell's chemical reactions' intrinsic safety, multiple tests, including immersion in 900 liters of 

saltwater with a 5% salt content, seismic and vibratory testing, and a 30-minute external fire expo-

sure test that did not harm the modules or cells, showed that fire risk is low. So, it's suitable for 

stationary energy storage. This technique is good for load leveling, voltage management, time 

shifting, and renewable energy power swing reduction due to its three-hour rate discharge length 

[37]. 

The latest battery technology is lithium. Its energy, light weight, low cost, non-toxicity, and rapid 

charging make them the most promising batteries. Anode electrodes in lithium-ion batteries are 

typically made of silicon nanoparticles (SiNPs) due to the high energy density of this material. 

Lithium batteries have the lowest equivalent mass and maximum electrochemical potential. It's also 

efficient and durable. However, it costs over 700 USD per kWh and can cause fires and property 
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damage if overheated. Mass transport constraints in the electrolyte and electrodes will cause severe 

polarization in lithium batteries with improved performance [38]. Polarization is affected differently 

by each activity due to the dynamic and kinetic properties of the material, as well as the design of the 

battery and the mechanism for charging and discharging it. To reduce solid phase diffusion 

polarization, Chen and colleagues reduced the active material's particles. If half of the active material 

particles were present, LIB concentration may be significantly reduced. When the active material 

particles were twice as large, the Li-ion concentration difference was much greater. 

Several lithium-ion batteries (LIBs) have been made worldwide. LTO, LCO, LMO, NMC, and 

LFP are some of them (LFP). LIBs employ a different electrolyte than lithium-polymer batteries (Li-

Po). The LIB, in contrast to the LB, possesses a higher energy density, a cheaper cost, and does not 

have a memory effect. LIBs are cheaper and memory-free. In contrast, the Li-Po battery features a 

structure that is both flexible and adaptable, as well as a low profile and a reduced chance of 

electrolyte leakage. Because doing so improves the efficiency of packaging, it is typically cut into 

multiple different sizes. On the other hand, Li-Po batteries have a lower energy density, a shorter 

lifespan, and a manufacture cost that is significantly higher than average [39]. The characteristics of 

electric vehicle batteries that are now in use are outlined in Table 1, which may be found here. Figure 

5 also illustrates a correlation between the batteries' specific power and specific energy levels. 

Table 1. A comparison of the energy storage capacities of the various batteries found in EVs. 

SPECIFICATION LEAD-ACID 

BATTERY 

NI-MH 

BATTERY 

NA-NICL2 

BATTERY 

LIBS 

Nominal voltage (V) 2.00 1.20 2.40 3.60 

Energy efficiency (%) >80 70 80 >95 

Volumetric energy 

density (Wh/L) 

100 180–220 160 200–400 

Gravimetric energy 

density (Wh/kg) 

30–50 40–110 150 118–250 

Lifecycle 500–1000 <3000 >1200 2000 

Cost (USD/kWh) 100.00 853–1700 482–1000 700.00 
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Figure 5. Graphs showing the power output versus the energy output of a given battery storage 

device. 

2.3. Electric Motor Engineering  

Induction Motor (IM) is well-known for its effectiveness, starting torque, power, simplicity, 

inexpensiveness, roughness, and little amount of required maintenance. IMs can operate in any 

hazardous environment without speed limits. The IM's complex control system struggles with power 

density. Iron, copper, commutation, and stray losses in the magnetic circuit, windings, converter, and 

mechanical components affect this motor's energy efficiency. IM motor losses were examined [40]. In 

order to determine the effectiveness of an IM motor, they utilized a finite element research to map 

out the losses. According to the findings of the study, the motor's efficiency map was decided by each 

loss map. To improve the performance of the IM motor, one researcher advises reducing the spins of 

the stators by one-half 0.75,2.25, and 3.7 kW IM motors were employed. So, the new motor control is 

more efficient than the previous one, which led to an increase in motor performance. The 0.75 kW 

motor changed from having a power output of 78% to 85.39%, the 2.25 kW motor went from having 

an output of 83.23% to having an output of 86.22%, and the 3.7 kW motor went from having an output 

of 86.25% to having an output of 87.62% [41]. 

PM-SM allows its customers to maintain a constant torque while also maximizing efficiency, 

power density, and minimizing power consumption. PM-SM assures dependable performance and 

electrical equilibrium by increasing motor efficiency by 10%. When compared to earlier iterations, 

the PM-SM mechanical packages are noticeably more compact. Because there are no coils or brushes 

in a PM-SM rotor, it operates at a much lower temperature [42]. With its high permeability permanent 

magnets and conductive materials, PM-highly SM is perfect for battery-powered and hybrid vehicles. 

However, this engine is costlier to acquire initially due to its permanent magnet design, since PM 

materials are in short supply and thus pricey. There is still no answer for the issue of energy loss 

during the conversion from PM to SM. This study found that energy was lost least at a 94% efficiency. 

Another form of motor, known as PM-BLDC, is one that is started by rectangular AC and 

features significant pulsing in its torque output. This motor might be able to deliver the highest torque 

in the constant-torque area because it keeps the flux angle between the stator and the rotor relatively 

close to 90 degrees [42]. Maintaining constant power can be accomplished through careful 

manipulation of the phase-advance angle. High power density, efficiency, and heat dissipation 
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characterize the PM-BLDC motor. This motor's traits are these. The PM-BLDC motor's initial cost is 

considerable due to the magnet in the rotor, and the device's field-weakening capability is limited by 

the permanent magnetic field. This method was applied to the two motors that show the most 

promise for usage in hybrid electric vehicles (HEVs) by means of a sophisticated software application 

that simulates vehicles (IM and PM-BLDC). The fuel usage of each motor was 11.8 liters per 100 

kilometers; the PMBLDC used 11.7 liters, and the IM used 11.9 liters. In addition, PM-BLDC had 

fewer overall pollutant emissions than IM did, which came up at 2.68 g/km compared to 2.72 g/km 

for IM. According to the findings, the PM-BLDC motor is more suitable for application in hybrid EVs 

than the IM motor is. 

The SRM is the most recent innovation in electric vehicle motor technology. Compared to the 

alternatives, this setup is the simplest. It's made up of a movable rotor and a stationary stator, with 

the windings located solely on the latter. Because they don't require a permanent magnet, SRM 

motors are less expensive to produce than PM motors. Further, SRM is fault-tolerant, therefore 

malfunctions in one phase will not influence the operation of the others [43]. The reliability of SRM 

10/8 (SRM 5 phases) drives for EVs was tested under abnormal situations including open- and short-

circuit failures in a study published in [83]. The SRM is built with fault resistance and exceptional 

dynamic reactivity in mind. Electric vehicles driven by SRMs were evaluated based on their top 

speeds, torque outputs, and battery charges. SRM could reach the reference velocity under typical 

conditions in 1.23 seconds. Torque was maintained at 485.3 Nm despite a 0.04% decline in SOC 1.26 

seconds into a 1-phase short circuit situation. 

As can be seen in Figure 6, each electric motor has its own optimal operating and braking ranges. 

A study analyzed the different types of electric vehicle (EV) motors and drives in terms of their 

effectiveness, maximum speed, relative cost, and level of dependability (IM, PM-BLDC, PM-SM, 

SRM). The PM-BLDC motor was the most efficient type of motor, while the SRM motor had the 

highest possible speed Figure 7. Although induction motors and brushless DC motors saw the most 

use, the latter was preferred due to their lower prices [44]. Table 3 provides an overview of the model 

specifications of EVs (EVs) that are currently for sale on the market. These specifications include the 

types of EVs, the capacity of their batteries, the electric motors that are employed, the rating of the 

motors, and the total distance traveled. 

 
 

Figure 6. The effectiveness of electric motors and its components. 
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Figure 7. Comparative analysis of the speeds of several motors. 

2.4. Genetic Algorthm 

Using genetic algorithms and unconstrained optimization approaches, GA simulates the concept 

of evolutionary adaptation, allowing a population's offspring to better adapt to their surroundings 

over time. The "evolutionary adaptation principle," as it is now known, was initially proposed by 

Charles Darwin. This is achieved by breaking down the problem at hand into a collection of N-

dimensional sub problems, each of which can be optimized independently of the others [45]. The 

GA's building blocks are genes and chromosomes, and their parameters for the usual sort of 

optimization are expressed as strings of binary code. DNA is organized into chromosomes by 

combining what are basically binary codes, called GA genes, with one another. Based on the n 

chromosomes, which reflect the m optimized parameters, the population in GA is a fair 

representation of the space of feasible solutions. A generalized approach to solving engineering 

problems is shown in Figure 8. Using the steps of a genetic algorithm, a flowchart was created to 

represent the procedure.  
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Figure 8. Procedures for Introducing a Genetic Algorithm. 

In order to determine the size and location of EV units, Auglt, R. Hooshmand, and M. Ataei 

employed GA. The ideal solution can be found using cost-function-based methods, however they are 

time-consuming and resource-intensive to compute. They resolved the cost issue, but cost-function 

analyses could raise doubts about the adequacy of EV unit sizes in some areas. In [46], Rahmat-Allah 

Hooshmand used an RCGA to find the best location for a bank of capacitors in a network that was 

not perfectly balanced. The switching and fixed capacitors in the transmission system lowered the 

power losses and maintained the voltage. 

We found the best capacitor rate by simulating loads of several intensities with off-the-shelf 

capacitors. Reactive power injection was used by Mehrdad Movahed to smooth off voltage profiles 

in end busses that were otherwise very steep in [47]. The best reactive power injection parameters 

were found with the help of genetic algorithms. Thus, the voltage profile was improved, and losses 

were cut down. Radial transmission networks, as stated by Carpinelli in [48], should locate EVs so as 

to incur least system losses. Using both equality and inequality constraints, a GA was able to find a 

solution to an optimization problem with the objective of minimizing real power loss. The location 

of the active power loss is dependent on the amount of real power injected by the EV. They proved 

that more sites within economically viable regions yield better results. Only the passive power loss 
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was included in this formula [49]. Saeed Amin Hajizadeh and Ehsan Hajizadeh Poor [8] found that 

using genetic algorithms lowered power loss and the voltage profile in radial transmission systems. 

It was found by the authors that voltage profile losses can be minimized by strategically deploying 

distributed generating units and capacitors. Shunt capacitors are most effective in transmission 

centers situated close to the load. 

2.5. PSO Algorthm 

PSO is an optimization technique that takes its cues from natural phenomena like bird flocking 

and fish schools. Particle swarm optimization (PSO) generates a population of particles and scatters 

them across the search space (see Figure 9). Particles' fitness scores are used for optimization 

purposes. When particles have experienced their optimum position and solution, they will arrive at 

their optimal position. Based on their past ve-locity, their optimal position, and the optimal position 

of the swarm, particles' present velocities are calculated. According to Amin and Ehsan Hajizadeh 

[50], PSO-based transmission planning is the way to go. They came up with a multi-objective method 

to figure out the best configuration of decentralized power plants to reduce transmission losses. These 

expenditures and the PSO and diet strategy were more evenly matched. Finding the optimal locations 

for shunt capacitors and EV units was the goal of the study [51] by Kai Zou and A. P. Agalgaonkar.  

 

Figure 9. Methodology diagram for PSO. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 May 2023                   doi:10.20944/preprints202305.1375.v1

https://doi.org/10.20944/preprints202305.1375.v1


 16 

 

Their strategy used analytics and statistics to pin down ideal voltage ranges, effectively reducing 

the search area. Transmission line losses can be minimized and voltage profiles can be enhanced by 

implementing a strategy proposed by I. Ziari et al. [52]. When compared to the genetic algorithm and 

nonlinear programming, the proposed method performed better. The accuracy and convergence of 

the PSO algorithm was compared to the GA method, and the authors, Khanjanzadeh et al. [53], 

looked at the impact of EV location and capacity on boosting steady voltage in radial distributed 

systems. The convergence rate of GA was lower than that of PSO. In [53], Varesi suggested a PSO-

based technique for optimizing EV unit allocation within a power system. Using a load flow 

algorithm and PSO, we determined the best mix of EV units in terms of quantity, size, placement, 

and kind. The study looked at two different EVs. The multi-objective PSO method developed by 

Moham-med M. and M. A. Nasab [54] improved EV size and placement. The study used a dual-

metric objective function that measured both power savings and reliability gains. Research into 

electricity losses in action. 

Using the Novel Binary Particle Swarm Optimization (NBPSO) method, N. Mancer, B. Mahdad, 

and K. Srairi enhanced the overall voltage profile in power transmission systems by incorporating 

optimal placement of shunt capacitors subject to limitations [55]. Through a process of near-global 

optimization, the NBPSO technique established the optimum values for and placement of capacitors. 

Incorporating shunt capacitors into the sizing and positioning of capacitors was done. In a recent 

paper, [56], Mehdi Nafar employed discrete particle swarm optimization (DPSO) to improve the 

voltage profiles of a DG&C system and lower the total harmonic distortion (THD). Capacitor 

reactance and system reactance were not allowed to resonate in a harmonic fashion thanks to a term 

in the objective function. Voltage, total harmonic distortion, and the size and number of capacitors 

and generators were all constraints. The suggested algorithm was put through its paces using a 

modified version of IEEE's 33-bus test system. 

2.6. IPSO Algorrthm 

IPSOs were modeled taking into account only real power losses, with the goal of lowering losses 

while keeping the voltage profile and stability margin constant. The optimal placement and sizing of 

several EVs was optimized by N. Singh and S.C. Srivastava using IPSO, as described in [57]. The 

study's authors showed that when applied to the placement of a single EV, the strategy outperformed 

both classical and analytical approaches. Umapathi Reddy et al.'s IPSO-based approach to loss 

reduction in imbalanced radial transmission networks is implemented in [58]. In addition, a 

technique for identifying buses is detailed that makes use of power loss indices (PLI) analysis to 

pinpoint where precisely capacitors should be installed. Each of the IPSO algorithm's n particles 

represents a different candidate solution, and each particle is an m-dimensional real value vector 

with m optimized parameters. These values are the problem space's dimensions. The IPSO procedure 

entails a number of stages. Each unique optimization problem requires a unique implementation of 

the IPSO algorithm. [59]. 

3. Methodology 

3.1. IEEE-30 Bus Electrical Network 

The IEEE-30 bus test is meant to simulate the electrical infrastructure in the central United States, 

representing a subset of the larger American Electric Power System. These buses' potential model 

voltage ranges from 33 to 132 kilovolts. No attention is paid to line restrictions during the IEEE-30 

bus test. The line diagram of the test system is shown in Figure 10, and the bus load injection of the 

IEEE-30 bus test system is shown in Tables 3 and 31. The IEEE website features both of these 

schematics [60]. 
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Figure 10. IEEE-30 bus test system. 

Table 3. Injection bus load table for test system. 

Bus Load (MW) Bus Load (MW) 

1 0.0 16 3.5 

2 21.7 17 9.0 

3 2.4 18 3.2 

4 67.6 19 9.5 

5 34.2 20 2.2 

6 0.0 21 17.5 

7 22.8 22 0.0 

8 30.0 23 3.2 

9 0.0 24 8.7 

10 5.8 25 0.0 

11 0.0 26 3.5 

12 11.2 27 0.0 

13 0.0 28 0.0 

14 6.2 29 2.4 

15 8.2 30 10.6 

3.2. Types of EVs and Number of EVs Used 

This research aims to optimize the placement and size of three distinct classes of electric vehicles 

(EVs) under the condition that EVs are functioning in any of the three scenarios outlined below. 

• In Scenario 1, Type A EV injects active electricity, with the number of EVs to be employed decided 

by the suggested algorithm and one EV installed every selected bus. 
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• Scenario 2: Type B EV that injects both active and reactive power; the quantity of EVs to be employed 

is decided by the proposed method, and one EV is installed per chosen bus. 

• Third scenario, the Type C EV injects active power and absorbs reactive power; the number of EVs 

to be employed is calculated by the proposed algorithm, and one EV is installed for each chosen bus. 

3.3. Development of HGAIPSO Algorithm 

Using this GAIPSO hybrid, EV transmission is maximized. Having electric vehicles on some 

transmission system buses helps cut down on power losses and boost the voltage profile. Buses are 

sensitive to power loss and power flow, both of which determine where EVs go. For rapid picking, 

HGAIPSO requires fewer iterations. Parameters of sensitivity aid HGAIPSO in its search for the EV. 

The IPSO receives the GA output that details the EV positions and sizes for a given solution. In IPSO, 

the first batch of particles comes from the GA. The convergence time of IPSO is reduced. Results from 

IPSO genetic algorithms tend to be very successful. Figure 11 below details the procedures followed 

in practice to optimally distribute EV units across the transmission network via HGAIPSO. 

 

Figure 11. A flow diagram for the proposed algorithm HGAIPSO. 
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3.4. Formulation of System Power Flow Sensitivity Factors 

Change in Reactive Power Flow Analysis 

If second and higher order terms are ignored, and Taylor series approximation is used, the 

change in real line flow is expressed as [61]: ∆𝑄𝐿(𝑖𝑗) = 𝜕𝑄𝐿(𝑖𝑗)𝜕𝛿𝑖 ∆𝛿𝑖 + 𝜕𝑄𝐿(𝑖𝑗)𝜕𝛿𝑗 ∆𝛿𝑗 + 𝜕𝑄𝐿(𝑖𝑗)𝜕𝑣𝑖 ∆𝑉𝑖 + 𝜕𝑄𝐿(𝑖𝑗)𝜕𝑣𝑗 ∆𝑉𝑖 (1) 

As may be seen in the following illustration, the coefficients in the earlier equation are 

determined by applying the partial derivatives of the real power flow with respect to and V: 

 𝜕𝑄𝐿(𝑖𝑗)𝜕𝛿𝑖 = −2𝑔𝑖𝑗2𝑉𝑖𝑉𝑖 𝑠𝑖𝑛(𝛿𝑖𝑗) 
(2) 

 𝜕𝑄𝐿(𝑖𝑗)𝜕𝛿𝑖 = 2𝑔𝑖𝑗2𝑉𝑖𝑉𝑖 𝑠𝑖𝑛(𝛿𝑖𝑗) 
(3) 𝜕𝑄𝐿(𝑖𝑗)𝜕𝛿𝑖  = −2𝑏𝑖𝑗𝑠ℎ𝑉𝑖 − 𝑏𝑖𝑗  (2𝑉𝑖 −  2𝑉𝑗 𝑐𝑜𝑠(𝛿𝑖𝑗)) 

(4) 𝜕𝑄𝐿(𝑖𝑗)𝜕𝛿𝑗  = −2𝑏𝑖𝑗𝑠ℎ𝑉𝑗 − 𝑏𝑖𝑗  (2𝑉𝑗 −  2𝑉𝑖 𝑐𝑜𝑠(𝛿𝑖𝑗)) 
(5) 

where: 

b_ij = nodal voltage of bus I  

v_i is the nodal voltage of bus j 𝑏𝑖𝑗𝑠ℎ is the conductance of the line g and I 

δ_ij is the difference between buses I and j in the phase angle.  

nL stands for the number of lines in the network. 

Formulating the Power Loss Sensitivity Factors 

When determining the real power flow sensitivity factors, one considers how the active power 

injected at any other bus-n affects the real power flow along transmission or transmission lines 

connected between bus-i and bus-j. Reactive power flow sensitivity factors allow one to quantify how 

reactive power flows through transmission or transmission lines connecting buses I and j change in 

response to changes in reactive power injected at any other bus. The matrix form of the equations 

used to represent changes in line flow is [62]: 

 |∆𝑃𝐿𝑖𝑗∆𝑄𝐿𝑖𝑗| =  |𝜕𝑃𝐿𝑖𝑗𝜕𝛿 𝜕𝑃𝐿𝑖𝑗𝜕𝑉𝜕𝑄𝐿𝑖𝑗𝜕𝛿 𝜕𝑄𝐿𝑖𝑗𝜕𝑉 | |∆𝛿∆𝑉| (6) 

Using the Newton Raphson approach, the variables ∆δ and ∆V may be extracted from the load 
flow solution as shown below:  

Jacobian matrix of the full N-R load expressed as; 

 |∆𝑃∆𝑄| =  |𝐽| |∆𝛿∆𝑉| =  |𝐽11 𝐽12𝐽21 𝐽22| |∆𝛿∆𝑉| (7) 

Thus, the variables ∆P and ∆Q were obtained from this equation as follows: 
 |∆𝛿∆𝑉| =  |𝐽|−1 |∆𝑃∆𝑄| =  |𝐽11 𝐽12𝐽21 𝐽22|−1 |∆𝑃∆𝑄| (8) 

Once the derived equation is substituted for the variables ∆P and ∆Q in the equation for the 
change in line flows, the following results: 

 |∆𝑃𝐿(𝑖𝑗)∆𝑄𝐿(𝑖𝑗)| =  |𝜕𝑃𝐿(𝑖𝑗)𝜕𝛿 𝜕𝑃𝐿(𝑖𝑗)𝜕𝑉𝜕𝑄𝐿(𝑖𝑗)𝜕𝛿 𝜕𝑄𝐿(𝑖𝑗)𝜕𝑉 | |𝐽|−1 |∆𝑃∆𝑄| (9) 

The equation 3.47, provides the change in power in both real and reactive terms, can be used to 

compute both the reactive and real power flow sensitivity factors. Following is a representation of 

the actual power flow sensitivity factors [68]:  
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[   
 𝛿𝑃𝐿(𝑖𝑗)𝛿𝑃𝑛𝛿𝑃𝐿(𝑖𝑗)𝛿𝑄𝑛 ]   

 =  |𝑆𝑃−𝑃𝑆𝑃−𝑄| =  |𝐽𝑇|−1 [𝛿𝑃𝐿(𝑖𝑗)𝜕𝛿𝛿𝑃𝐿(𝑖𝑗)𝜕𝑉 ] 

(10) 

The following is a representation of the reactive power flow sensitivity factors: 

 

[   
 𝛿𝑄𝐿(𝑖𝑗)𝛿𝑃𝑛𝛿𝑄𝐿(𝑖𝑗)𝛿𝑄𝑛 ]   

 =  |𝑆𝑄−𝑃𝑆𝑄−𝑄| =  |𝐽𝑇|−1 [𝛿𝑄𝐿(𝑖𝑗)𝜕𝛿𝛿𝑄𝐿(𝑖𝑗)𝜕𝑉 ] 

(11) 

where  

J = The Jacobian matrix of power flow and the superscript T denotes the transpose; 

F (P-P) = The real power flow sensitivity related to the real power injection; 

F (P-Q) = The active flow sensitivity related to the reactive power injection; 

F (Q-P) = The reactive power flow sensitivity related to the active power injection; and 

F (Q-Q) = The reactive power flow sensitivity related to the reactive power injection. 

The four sensitivities in this instance are column vectors with dimensions equal to the number 

of system buses. 

3.4.3. Methods for Selecting Weights in Multi-Objective Optimization 

In a multi-objective function, the designer might assign different weights to different objectives. 

The authors of this study highlight the importance of reducing actual power loss because doing so 

can reduce total operating costs and increase power network efficiency [63]. Since the other two 

factors are also crucial, a study was conducted to determine the best weights combination for the 

multi-objective function by examining the impact of the weights on fitness. In this analysis, we 

assumed that weight values were positive and within the following range, W1 was in the range of 

0.6-0.80, whereas W2 and W3 were constrained to the range of 0.1-0.30. 

This was done to place greater weight on the index for reducing real power loss, while all three 

indices were still taken into account as part of the multi-objective function. Note that in every case, 

the equation |W1| + |W2| + |W3| = 1 must hold true. Table 4: Weights and Measurements. 

The value of 68.81 MVAR was obtained through an estimation of the reactive power in the base 

case by utilizing the Newton Raphson methodology. This value was utilized for valid comparisons. 

The number of EVs in both the optimization work and the comparative work was the same. There is 

a 0-12 MW actual power limit for A, B, and C EVs, a 0-3 MVAR reactive power limit, and a 3-0 MVAR 

reactive power restriction, respectively. 

4. Results, Analysis, and Discussion 

After selecting four distinct EV sizes and locations, the Newton-Raphson technique was applied 

to calculate power losses and voltage levels. Power loss calculations were compared with those made 

using alternative methods. 

Table 5 and Figure 11 show that, for type A EV, the HGAIPSO methodology reduced real power 

loss by 40.7040%, which was much higher than the reductions achieved by GA (25.1002%), PSO 

(31.4187%), or IPSO (31.849%). When comparing the EV obtained using the proposed technique to 

the EV obtained using other methods, the EV obtained using the proposed way showed good results 

with EV allocations for loss reduction. The HGAIPSO method outperforms the GA, PSO, and IPSO 

approaches when it comes to choosing the best location and size for a type A EV to minimize power 

loss across the electrical transmission system. 

Table 5. A comparison of results obtained using Type A EV. 

Method 
Bus 

Number 

EV Size Power Losses 
Power Loss  

Reduction 

%Power Loss  

Reduction 

MW MW MVar MW MVar %MW %MVar 

Without EV   17.8798      

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 May 2023                   doi:10.20944/preprints202305.1375.v1

https://doi.org/10.20944/preprints202305.1375.v1


 21 

 

GA 

10 11.472 

13.3919 - 4.4879 - 25.1002 - 
10 11.904 

19 11.052 

24 11.772 

PSO 

10 11.694 

12.2622 - 5.6176 - 31.4187 - 
15 11.394 

20 11.378 

30 10.577 

IPSO 

10 11.625 

12.1851 - 5.6947 - 31.8499 - 
10 11.956 

22 11.995 

30 11.986 

HGAIPSO 

19 11.7099 

10.6020 - 6.2778 - 40.7040 - 
21 11.9937 

24 11.9960 

30 11.7061 

Figure 13 compares the voltages for the no EVs scenario with the ideal EV placement and sizing 

scenario using GA, PSO, IPSO, and HGAIPSO. The voltages in an IEEE-30 bus system are allowed to 

range from 0.95 pu to 1.1 pu, however an EV could still affect the system's voltage stability. The 

addition of EVs does not cause voltage levels to rise above or fall below the allowable range, as seen 

clearly in Figure 11. All the busses' voltages were clearly within the allowed range of 0.95 pu to 1.1 

pu. With the HGAIPSO method, the bus's voltage has been increased from below the minimum 

required to at least the allowed 1.01 pu. No cases of excessive voltage have been identified. 

 

Figure 12. Using Type, A EVs, we compare the power loss data. 
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Figure 13. Bus voltage results for profile comparison using Type A EV. 

4.2. Scenario 2, Type B EV 

Table 6's columns on fitness and EV size guided our selection of the four best locations for type 

B EVs and their matching optimal sizes. These areas just offered the barest minimum when it came 

to fitness values and the corresponding EV sizes. Here are the four most advantageous places, in 

order of increasing success, along with the corresponding optimal EV sizes: 

EVs on buses 19 and 23 produce 11.7872 megawatts and 2.9609 megavolt-amperes of electricity, 

respectively; EVs on bus 24 produce 12.0001 megawatts and 1.3702 megavolt-amperes of electricity. 

Table 7 and Figure 14 show that real power losses can be reduced by 36.2403% by using the 

HGAIPSO method to optimize the placement and size of this type of EV. This result is far better than 

the outcomes obtained by using GA (32.2923% reduction), PSO (31.5890% reduction), or IPSO 

(33.1638% reduction). We chose these methods for sizing and allocating the EVs to reduce power loss, 

and the resulting sizes are comparable to those found by alternative methods. 

 

Figure 14. Using Type B EVs, we compare the power loss data. 
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Table 7. Comparison of bus voltage using Type B EV. 

Method

. 

Bus 

Number 

EV Size Power Losses 
Power Loss 

Reduction 

%Power Loss 

Reduction 

MW MW MVar MW MVar %MW %MVar 

Without EV   17.8798      

GA 

10 11.35 + j1.22 

12.2260 - 5.6538 - 31.5890 - 
23 11.47 + j1.17 

24 11.92 + j2.04 

30 11.816 + j1.468 

PSO 

10 11.474 + j2.159 

12.1060 - 5.7738 - 32.2923 - 
17 11.981 + j0.919 

20 11.67 + j2.309 

30 11.349 + j3 

IPSO 

10 11.83 + j0.001 

11.9500 - 5.9298 - 33.1648 - 
21 11.433 + j3 

24 11.739 + j3 

30 11.995 + j0.001 

HGAIPSO 

19 
11.7872 + 

j2.9609 

11.4001 - 6.4797 - 36.2403 24.2585 
23 

11.7548 + 

j3.0002 

24 12 + j1.3702 

30 
11.8308 + 

j1.5817 

Voltage Profile 

After deciding where to put the type B EVs and how big they should be, researchers looked at 

the IEEE-30 bus system's voltage profile. Below is a picture that has been labeled Figure 13, which 

depicts the findings from the study of the bus voltage levels. This scenario is contrasted with another 

in which electric vehicles (EVs) were parked in various locations and their performance was 

evaluated using a range of metrics, as well as with a third scenario in which no EVs were present.  

In Figure 15, we see a contrast between the voltages in a world without EVs and those in a world 

where EVs have been optimally placed and scaled using GA, PSO, IPSO, and HGAIPSO. The bottom 

of the figure features this comparison. An EV may be able to disturb the stability of voltages in an 

IEEE-30 bus system even when the voltages are within the allowed limits of 0.95 pu to 1.1 pu. The 

range of legal values is from 0.95 pu to 1.1 pu. Figure 15 shows that illegally high voltage levels were 

not the result of the introduction of EVs. There is evidence to back up this conclusion. As far as can 

be told, all of the bus voltages stayed within the specified range of 0.95 pu to 1.1 pu throughout the 

whole experiment. The HGAIPSO plan worked to reduce the bus's voltage, and as a result, no bus 

voltages were found to have exceeded the allowable limit. 
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Figure 15. Bus voltage profile comparison using Type B EV. 

4.3. Scenario 3, Type C EV 

Four optimal locations for type B EVs and their corresponding optimal sizes were selected based 

on the columns in Table 8 that indicate fitness and EV size. These areas only provide the most 

fundamental information regarding fitness levels and associated EV sizes. According to their relative 

success, the top four sites and the corresponding ideal EV sizes are as follows: 

• Bus 19's EV generates 12.0010 MW and uses 0.4882 MVar of electricity. 

• The electric vehicle (EV) on bus 24 produces 11.9470 MW and consumes 0.5042 MVar of energy.  

• The electric vehicle on bus 21 produces 11.9179 MW and consumes 0.0692 MVar of energy. 

Table 8. Analyzing the Variability of Type C EV Results. 

Method Bus Number 
EV Size Power Losses 

Power Loss 

Reduction 

%Power Loss 

Reduction 

MW MW MVar MW MVar %MW %MVar 

Without EV   17.8798      

GA 

10 9.0384 − j0.0882 

11.5265 - 6.3533 - 35.6967 - 
18 11.1120 − j0.7150 

22 11.7480 − j0.5891 

30 10.0081 − j0.4870 

PSO 

10 11.885 − j0.7970 

11.1056 - 6.7742 - 37.8874 - 
18 10.8811 − j0.3215 

20 11.5631 − j0.8990 

30 11.5310 − j0.3831 

IPSO 

10 12.0215 − j0.5260 

11.2099 - 6.6699 - 37.3041 - 
19 10.8610 − j0.3002 

22 11.9170 − j0.8370 

30 11.9560 − j0.5260 

HGAIPSO 

19 12.0010 − j0.4882 

10.2021 - 7.6777 - 42.9406 24.212 
21 11.9470 − j0.5042 

24 11.9179 − j0.0692 

30 11.3651 − j0.5807 
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Table 8 and Figure 16 show a comparison of the power loss results as a function of the different 

methods. These findings are presented alongside the power losses that resulted from them. The 

power loss is reduced by 42.9406 percentage points greater with the HGAIPSO method than either 

the PSO or IPSO approaches. When compared to GA (35.6967%), PSO (37.12887%), and IPSO 

(37.301%), the results produced with the proposed technique were much better. 

 

Figure 16. Using Type C EVs, we compare the power loss data. 

Figure 17 clearly demonstrates that the bus voltage was greatly increased when the HGAIPSO 

approach was applied. This indicates that the placement and size of the electric cars were optimized 

as a result of their incorporation. By making strategic adjustments to the number and size of type C 

EVs, we were able to increase the bus voltage from 0.973 to 1.01 pu. Type C EV placement and size 

optimization allowed for this to happen. This would indicate that the value of 1.095 pu was selected 

as the limit. The bus voltage profile was subsequently boosted as a direct result of these occurrences, 

which can be seen as a good thing. 

 

Figure 17. Type C EV voltage profile comparison on the bus. 
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5. Conclusions 

After discovering that optimizing the placement and size of EVs would reduce power losses and 

improve voltage profiles, the problem of power losses in systems could be solved. In this paper, we 

present HGAIPSO, a hybridized algorithm designed to enhance voltage profiles while decreasing 

system power losses. By combining the sensitivity factors with the test run on the IEEE-30 bus test 

system, the number of algorithm iterations was successfully decreased. Fourteen buses were selected 

as suitable EV locations for the IEEE-30 bus test. The HGAIPSO method was shown to be more 

effective at reducing it than the GA, PSO, and IPSO approaches in three distinct types of EVs 

connected via the IEEE-30 bus. When using electric vehicles of types, A, B, and C, the actual power 

loss was reduced by 40.7040 percent, 36.2403 percent, and 42.9406 percent, respectively. The greatest 

bus voltage, 1.01 pu, was generated in each of the three scenarios, proving that the voltage profile 

was improved overall. 

This shows that HGAIPSO is superior to GA, PSO, and IPSO when it comes to optimizing the 

value of this parameter, as it decreased the losses experienced by the IEEE-30 bus test system and 

had the potential to improve the voltage profile of the system. Using the HGAIPSO algorithm, the 

effect of transmission generation on power loss and volt-age profile was made crystal clear; 

specifically, the addition of Electric Vehicles to the power system resulted in a decrease in system 

power losses, up to a maximum ideal number of total Electric Vehicles in operation. It is expected 

that if the number of EVs is increased beyond the optimal number, the voltage profile will shift in a 

way that reduces bus voltages while still being within acceptable limits. The objectives of the study 

were accomplished, and the HGAIPSO optimization approach was found to be superior to GA, PSO, 

and IPSO in reducing transmission losses in power grids through optimal placement and sizing of 

electric vehicles (EVs). 

In this research, the transmission network modification problem was approached using a GA 

and PSO hybrid technique, which proved to be both efficient and accurate. In order to preserve the 

unique characteristics of each individual, this plan uses a combination of methods. In addition, the 

system employs a mending strategy to meet the radial requirements for each GA chromosome or 

PSO particle, drastically cutting down on the total amount of solution space. The suggested method 

can find the globally optimal solution, and it converges quickly without ever becoming stuck in a 

local minimum. The newly proposed hybrid method concurrently finds optimal solutions for a large 

number of run iterations while using less computing time on average and having a lower standard 

deviation in losses than earlier methods. The suggested method can find the globally optimal 

solution, and it converges quickly without ever becoming stuck in a local minimum. The newly 

proposed hybrid method concurrently finds optimal solutions for a large number of run iterations 

while using less computing time on average and having a lower standard deviation in losses than 

earlier methods. 
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