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Abstract: An accurate and timely precipitation forecast is essential for water resources management
in hydropower, irrigation, and reservoir control. The conventional methods are limited by their
inability to capture the high precipitation variability in time and space. In the present work, a
wavelet-based deep learning approach is adopted to forecast precipitation using the lagged monthly
rainfall, local climate variables, and global teleconnections such as IOD, PDO, NAO, and Nino 3.4
as predictors. The method was tested and validated over the Krishna River Basin in India. Overall,
the forecasting accuracy was higher using the wavelet-based hybrid models than the single-scale
models. The proposed multi-scale model was then applied to the different climatic regions of the
country, and it was shown that the model could forecast the rainfall at reasonable accuracy for
different climate zones of the country.

Keywords: monthly precipitation forecast; wavelet-based machine learning; teleconnections

1. Introduction

Precipitation is the most crucial atmospheric parameter influencing the water cycle [1]. Extreme
floods or severe droughts are caused either due to excessive or deficient precipitation that may
further seed socioeconomic losses. Effective precipitation forecasting is an urgent need to plan water
management activities in a country like India, which is majorly dependent on precipitation for
agricultural activities, as more than 65% of the cultural land in the country is rain-fed.

Forecasting monthly and seasonal precipitation is paramount to providing the information
required for agricultural planning and water management [2,3] for regions that depend on rainfall as
the primary source for agricultural activities. Hence, reliable forecasts are required to help the
farming community decide the type of crop based on the forecasted precipitation quantities. Effective
precipitation forecasts several months in advance can help plan disaster early warning and
preparations [4,5]. Therefore, one of the most important scientific issues in hydrology is precipitation
forecasting, and numerous researchers carried out several works for forecasting monthly and
seasonal forecasting using numerous approaches.

Several methods were developed in the past few decades for forecasting precipitation, and these
methods are typically divided into numeric and empirical models [2,5-7]. Methods that use laws of
physics for climate forecasting are called numeric models. Also, these models include the movement
of wind, clouds, and moisture, which statistical models cannot perceive, making these models more
convincing than statistical data-driven models. These models generally develop the relationship
between land, ocean, and atmospheric variables based on the data obtained from GCMs based on
physical equations [8,9]. Researchers like [10,11] conducted several climatic studies using this
modeling approach. Empirical methods include hydro-meteorological predictand and predictor
variables through mathematical models based on historical data. The developed relationship is then
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used for data sets other than sample data to make forecasts. But due to uncertainty in model structure,
parameters, initial conditions, and complexity, precipitation forecasting using numeric models
cannot produce good precipitation forecasts [13]. Numerous works [7,8,13,14] show that empirical
models have better accuracy in precipitation forecast when compared to physical based models due
to higher uncertainties, whereas statistical models are based on historical data and mathematical
approach. Empirical models are mainly used for seasonal forecasts in agricultural planning.
Empirical models which are used for the development of forecasts are Multiple Linear Regression
(MLR) [13], Artificial Neural Networks (ANN) [15].

It is believed that global teleconnection patterns, also known as large-scale climatic indices like
Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO), NINO 3.4, and Pacific Decadal
Oscillation (PDO), are influencing the rainfall variability across the globe and has been used as
predictors of global precipitation [16].

Most of the above-reported studies have considered the global climatic predictor variables with
historical data to develop precipitation forecasting models [17] but could not produce good reliable
forecasts due to the non-stationary relationship between predictor variables and precipitation. To
address this issue, wavelet analysis (WT) was used, and researchers did several works to develop
models which can produce more reliable forecasts than singular models. Some works include
developing a self-organizing map coupled with WT filters for forecasting monthly precipitation in
Chile by [2,16] developing a wavelet-based non-linear model for forecasting monthly precipitation
with climate data sets as predictors for the Cauvery basin in India. The results show that wavelet-
coupled models produce good and reliable forecasts compared to singular models.

In [15] developed wavelet-based ANN models for forecasting monthly precipitation models for
Australia and showed improved forecasting accuracy using multi-scale models.

In recent years, Extreme learning machines have been used for forecasting drought index,
groundwater levels, and streamflow forecasting by numerous researchers who found that the results
of this model showed reliable forecasts when compared to other forecasting models [18-20]. But the
application of ELM to precipitation forecast was not carried out on a large scale by many works based
on previous literature. Therefore, in this study, the applicability of a new and more effective
precipitation forecast model for seasonal and monthly levels is proposed using Extreme Learning
Machines (ELM) and Wavelet-based Extreme Wavelet Machines (WT-ELM) using large-scale climate
indices and also other climatic predictor variables for Indian region. Recent literature suggests little
work incorporating deep learning methods for precipitation forecasting in the Indian region. The
main objectives of the work area

1. Development of singular ELM and WT-ELM for precipitation forecasting at a monthly and
seasonal level using climate indices and local climatic predictor variables.

2. Comparison of the proposed approach with other methods, such as Multiple Linear
Regression models, Artificial Neural Networks, and the Wavelet Neural Network approach at the
country and basin scale.

2. Study Area and Data Used

To test the proposed approach in this work, a monthly precipitation forecast is carried out for
the Krishna River basin, India, and the methodology is extended to the entire Indian sub-continent.
India is a country that is majorly dependent on rainfall carrying out agricultural activities in the
country India receives an average annual rainfall of 650 mm of rainfall every year, with more than
70% of the rainfall being received during the southwest monsoon (June to September) every year but
the quantity of rainfall received is unreliable. In the case of the Northeast monsoon, the regions in
India which did not receive rainfall during the SW monsoon, like the Tamil Nadu region, fed during
the NE monsoon; around 50 to 60% of rainfall received by this region is during this monsoon. The
rainfall received during the monsoons received is not uniformly spread along the country; thus, there
is a need to determine the quantity received in each region to plan management activities. Climatic
conditions also play a vital role in determining the quantity of rainfall received in a region. Indian
climate is classified into six subtypes based on the Koppen climate classification: alpine tundra in the
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north, arid deserts in the west, and tropical rainforests in the southwest. The presence of microclimate
regions makes the climate of India more diverse. The geographical variation of the Koppen climate
for India is shown in Figure 1.

o L IMiles
0 95190 380 570 760

s

¢

, . g

Legend I BSh Csa M Dsc®

climates_f CIBWh [ Cwa [ Dwb

B AW I Bsk [ Cwb [ 1Dwe

B Am [ /Bwk M Cwc []1EF

B A [ ]cfa HEDMH HMET
Il ch [ Dfc

Figure 1. Koppen Climate classification for India.

Krishna river basin is the 4t largest river basin in India which receives around 400 to 4000mm
of mean annual rainfall, out of which 90% of the rainfall is received during the Southwest monsoon
and around 78% percentage of the area is agricultural land out of the total catchment area of 2,60,401
km?. The basin is divided into three major climatic regions based on the Koppen climate classification,
as shown in Figure 1, which constitute Tropical Monsoon, Tropical Savanna, and Semi-Arid climate.
The precipitation variability in the basin can be understood from Figure 2b, which shows that the
western region receives the highest rainfall.
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Figure 2. (a) Geographical location of selected stations in the Krishna River basin. (b) Precipitation
Variability map and DEM of the Krishna River Basin.

Rainfall Data

Daily rainfall data is available at the spatial resolution of 0.25° x 0.25° gridded data and is
obtained from Indian Metrological Department for each year from 1901 to 2018. This work uses the
entire data to develop a model for forecasting precipitation at the country and basin levels. To
develop models for monthly, the daily precipitation data is converted to monthly precipitation. The

daily precipitation data set is downloaded from the website
http://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html.
Global Predictors Data

In this work, some of the global teleconnections that have been shown to influence precipitation
have been considered. Apart from the global teleconnection patterns, regional climatic variables like
temperature, pressure, and geopotential heights have been considered.
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(1) Indian Ocean Dipole (IOD), also called Indian Nino, is an irregular oscillation of sea
surface temperature in the western Indian Ocean and affects rainfall variability in East Africa, India,
Indonesia, and Southern Australia[22]. IOD is one of the major climate drivers for rainfall in India
and is also referred to as the difference in sea surface temperature (SST) anomalies in the region in
IOD West at 50 E to 70 E and also IOD East at 10 S to 10 N. Data is downloaded from
https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/dmi.long.data and is available at
monthly scale from the period of 1870 to 2018.

(ii)  North Atlantic Oscillation (NAO) is a weather phenomenon that occurs in the North
Atlantic Ocean, and its fluctuations are calculated based on the difference between subpolar low and
subtropical high. Monthly data for these climatic indices can be obtained from the NOAA climate
prediction Centre (CPC). The data is available for each month from 1948 to 2018.

(ili) Nino 3.4 index: El Nino and La Nina events are most commonly defined by Nino 3.4
index. The anomalies of Nino 3.4 are thought to represent east-central Tropical Pacific SSTs. The data
is available from 1870 to 2019 on a monthly scale.

(iv)  Pacific Decadal Oscillation (PDO) is often referred to as El Nino but acts at a larger scale,
with a pattern mostly observed in North Pacific [23]. Extreme phases of the PDO index have been
classified as warm or cool based on the ocean temperature anomalies in the tropical and northeast
Pacific Ocean, and the length of the data available is from 1948 to 2018. The NAO, NINO 3.4, and
PDO data are downloaded from https://www.esrl.noaa.gov/psd/data/climateindices/list/.

Apart from these climate indices, local predictor variables are used for forecasting precipitation.
The details of Global climate and local predictor variables used in this study are shown in Table 1.
The data from the local predictor variables were obtained from the NCEP-NCAR reanalysis dataset.

Table 1. Details of global and local predictor variables used for precipitation forecasting.

Level Predictands

Indian Oceanic Dipole (IOD)
North Atlantic Oscillation (NAO)
NINO
Pacific Decadal Oscillation (PDO)

Global

Mean Sea level pressure (mslp)
Zonal velocity component (p_u)
Meridional velocity component (p_v)
Vorticity (p_z)

Specific humidity (shum)
Relative humidity (rhum)
Surface air temperature (temp)
Zonal velocity component (p5_u)

Local
Meridional velocity component (p5_v)
Vorticity (p5 _z)
Wind direction (p5th)
Geopotential height (p500)
Relative humidity (r500) Wind direction
(p8th)
Geopotential height (p850)
Relative humidity (r850)
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3. Methods

In this work, singular machine learning, deep learning models, and Hybrid models using
wavelet decomposition were developed for monthly precipitation forecasting for the Krishna River
basin as a case study. Later, based on the results from the case study, the best models were applied
at the country level.

This section briefly describes wavelets, extreme learning machines, and hybrid modelling
approaches. A further detailed description of the other traditional methods adopted is explained in
sections Al-to A-2.

3.1. Wavelet Transform (WT)

Wavelet Transform is a mathematical tool that represents and analyzes a time series in both the
time and frequency domains due to its multi-resolution and localization capabilities [24]. In recent
decades the usage of wavelets in various domains of water resources and hydrology increased due
to their capability to study non-stationarity in a time series [23—-25]. Wavelets are broadly classified
into two types: Continuous Wavelet transforms (CWT) and Discrete Wavelet transforms (DWT).
Continuous wavelets transform works on all the scales to analyze a time series, whereas Discrete
wavelet transform uses only dyadic scales. Based on several studies [26-28], Discrete wavelet
transform can be obtained either by Mallet or by d trous wavelet transform and is also referred to as
Maximum Overlap Discrete Wavelet Transform (MODWT). The main concept of MODWT is to fill
the gaps using redundant information in the original series by passing it through a low pass filter to
smoothen the data and retrieve details from the series [30].

Mathematically the smoother version of the original time series x(t)can be understood using
Equation (1)

x(t) = F,(t)
Pe(t) = Xm0 J(M)Pi(t + 2°7m) )
where m is the lowpass with compact support by a Bsspline and defined by the values (1/16, 1/4, 3/8,
1/4,1/16) & for Haar wavelet m is defined at (1/2, 1/2) and k denotes the level of decomposition and
takes the value from 1,2, 3 .... k [30]

The detail component of the smoother version of x(t) for k'* level can be mathematically

expressed as in Equation (2)

die(t) = Pe—1(8) = P (8 )

where P, is the approximation or residual component from wavelet decomposition and
{dy,d, ....d,} represents the additive wavelet decomposition of the data up to resolution level k.
Wavelet decomposition of the time series is carried out using the WMTSA toolbox in MATLAB.

3.2. Extreme Learning Machines (ELM)

Understanding complicated relationships between multiple parameter-dependent variables like
precipitation is difficult due to its strong influence on different climatological parameters. Several
studies have shown the efficacy of ELMs in capturing non-linear relationships using the single
hidden layer feed-forward networks (SLFNSs) to train the datasets. Hung first proposed this method
in 2004 due to its fast learning and high generalization and did not create dependency among the
different layers as in ANNs. The performance of ELMs, such as lower error components and
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generalization in performance, was checked by [31] which justifies the principle of this method. In
this method, the only free component is weighted between the hidden and output layers, and the
hidden nodes need not be similar to neurons [32]. The hidden nodes can be expressed as [31,33]

Y Bihi(aix; + B) = 7 3)
where the output weight vector between k number of nodes to the output nodes is given by B, the
hidden layer activation function is given by G(a, f,x), and Z represents the ELM model's output.
a, 3 are the biases in the ELM algorithm's randomized layers. For the present study, the number of
neurons was selected as 1-20, and the sigmoidal function was chosen as activation function f(x)
following previous studies by [34,35]
f) =

1
1+exp(—x)

(4)

As explained by [31], the approximate set of N sample data sets can be obtained by using
Equation (5)

thv=1||zt = yell )

where z, denote the ELM model output at data points t=1,2,3,..N and y, are the response
variables, i.e., the observed precipitation values used to validate precipitation forecasts.

Finally, the forecasted values of the datasets § canbe obtained by testing the input vector (x;¢s;)
[36] using Equation (6)

9 = X1 Bihi(a Xeese + B (6)

where B represents the estimated output weights from the N data samples used in modelling
processes [31]. For a more detailed understanding of ELM readers, refer to [32]. A typical ELM is
represented in Figure 3.

Hidden layers

X A a G(a,pB,x)
Q
hy B Outputs
L o X, -
Inputs X "
" ¥ h,
> X3
¥ t,
¥ h,
» X ¥

n

Figure 3. Schematic representation of Extreme learning machines.

3.3. Wavelet Hybrid Models

In Wavelet Hybrid models, the decomposed components of the original series and climate
predictor variable are used to improve the quality of precipitation forecast. As mentioned in Section
3.1, decomposition is carried out using Maximal Overlap Discrete Wavelet Transform (MODWT).
The capability of Wavelet models to identify hidden relationships among predictand and predictors
by decomposition of the variables is the main advantage of using Wavelet decomposition.

In this work, Feed Forward Back Propagation Neural network model (FFPBP-NN) based on
previous literature and ELM models are coupled with wavelets to develop wavelet Hybrid Models.
These models are denoted as WT-FFBP-NN and WT-ELM. A detailed description of FFBP-NN and
Multiple Linear Regression models is provided in Appendix A.1 and A.2.
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4. Methodology

STEP: Identification of Significant Variables

Based on the literature, precipitation is assumed to respond to large-scale climate signals and
local predictors with time lags. Auto Correlation Function (ACF) and Cross-Correlation Function
(CCF) are the lags at which the predictor variables influence the precipitation. Based on CCF, the lag
correlation of various predictor variables is determined and used to develop forecasting models.

STEP:1 Selection of predictor variables

After the first step, the climate predictor variables are chosen based on the values of correlation
and Cross-Correlation Function (CCF) to determine the predictor monthly and seasonal subseries of
lag components with precipitation. Some of the sample correlation plots are shown in Figure 4. The
correlation of climatic indices at different lag values is shown in Figure 4 at monthly scales to
determine the lag component at which the indices are closely related to precipitation time series.

Cross correlation of IMD precipitation with predictor variables for grid(16.25,77)
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Figure 4. Sample Cross-correlation between different predictors and precipitation for the grid 2
(16.25N, 77E).

It can be seen that each index has varying relationships with precipitation. Based on these values,
the component of indices to be used in the analysis are selected. These climatic indices and predictors
are selected based on previous works[2], [34,35] Also, along with the lagged values, zero lag
coefficients are also used as the presence of long-term and short-term memory[39].

STEP 2 Standardization

After selecting predictor variables, the data sets are standardized to reduce the effect of the
difference in magnitude between different variables. In this work, the standardization of variables is
carried out using Equation (7)

X—=Xmi
Xstg = o — 7)
Xmax~Xmin
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where x represents the predictor variables, x ;= standardized value of predictor variables, xp;,
and x,,, representthe minimum value and maximum value of predictor variable x.

Step 3: Model development
(a) Single scale models (MLR, FFBP-NN, ELM)

After selecting probable predictors based on correlation and CCF of variables with monthly
precipitation time series based on lag components, the entire data set is divided into 70:30 ratios.
Training of the models is carried out using 70 % of the data set, and validation of the models is carried
out using the remaining 30% of the data, and the performance of these models is evaluated using the
performance measures mentioned in Section 3(c).

(b) Wavelet Hybrid models (WT-FFBP-NN and WT-ELM)

MODWT is applied to the predictor variables after selecting suitable potential predictors to
decompose the data sets at various scales. As mentioned by [30], selecting suitable mother wavelets
and level of decomposition help capture required features that provide information for good results.
An optimum decomposition level and mother wavelet choice are selected based on the works [40]
and [28,35] The lagged decomposed predictor variables are given as input for both WT-FFBP-NN
and WT-ELM models.

(c) Performance Measures

This study verifies the accuracy and confidence limit of the model's forecast using statistical
metrics. The measures used in this study are Root Mean Square Error (RMSE), Correlation (R?), Nash
Sutcliffe Efficiency (NSE), and Most Absolute Error (MAE).

If the values of RMSE are high, the error component in the forecast to the original system is large.
Whereas if the values of NSE and Correlation are nearer to 1, the obtained results are nearer to the
original system. If the values are nearer to 0, the model output is not a correct representation of the
original system. RMSE and MAE represent the error component in the out of the models.

i Root Mean Square Error (RMSE)

RMSE = J%zyzl(xgm—xgim)z X 100% 8)
ii. Correlation (R?)

n obs___obs sim__sim
(xi —xmean)(xi —xmean)

R2 = =1 9)
\/Z?=1(x?bs_x‘ror?esan Z(XiSim_x‘frilZ}m)z
iii. Nash Sutcliffe Efficiency (NSE)
_ - ety

NSE - 1 Z‘{l:l(xiobs_xisimmean)z (10)

iv. Most Absolute Error (MAE)
n obs _y,sim
MAE= 2=l =% Dl (11)
n

where X?PS represent the ith observed data, X;™ represent the simulated data from the models,

X" is the mean of the data set, and n is the number of observations.

5. Results and Discussions

5.1. Forecasting using Single Scale Models

Training and validation of all the models, including hybrid models such as Wavelet Hybrid
models (WT-FFBP-NN and WT-ELM), were done using performance measures (Section 3(c) until
satisfactory results in terms of NSE and RMSE for precipitation forecasting were obtained. To test the
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efficacy of the models, five locations (one from each climate classification) in the Krishna River basin
were selected for the development of models and analysis of precipitation in the basin.

For the Krishna River basin

Results of the models using only global climate indices as predictors

The results obtained from all the models using only the global climate indices and lagged
precipitation data are shown in Table 2. The results show that MLR models obtained correlation
values ranging from 0.30-0.37 and NSE values from 0.11 to 0.16. For FFBP-NN models, the forecast
results showed correlation values ranging from 0.66-0.73 and NSE ranging from 0.44 to 0.52. The
results from the ELM model had a correlation ranging from 0.34-0.56 and NSE in the range of 0.34 -
0.51 for the five stations considered. WT-FFBP-NN model results yielded NSE values of 0.38-0.40
with a correlation of 0.56-0.64.

WT-ELM models showed an improved performance in terms of NSE and CC compared to the
other models, as shown in Table 2.

Table 2. Results for various forecasting models for the Krishna River basin with global climate indices
as inputs. The values for RMSE and MAE are normalized with respect to mean and standard

deviation.
Station MLR
RMSE(mm) Correlation NSE MAE(mm)
1 0.096 0.355 0.164 0.099
2 0.160 0.332 0.124 0.100
3 0.162 0.376 0.137 0.105
4 0.144 0.309 0.157 0.092
5 0.048 0.309 0.119 0.055
FFBP-NN
1 0.090 0.694 0.481 0.058
2 0.091 0.680 0.458 0.063
3 0.092 0.669 0.446 0.065
4 0.063 0.730 0.529 0.032
5 0.052 0.713 0.504 0.036
ELM
1 0.070 0.407 0.407 0.053
2 0.101 0.489 0.403 0.067
3 0.157 0.343 0.343 0.117
4 0.122 0.419 0.419 0.096
5 0.052 0.561 0.515 0.037
WT FFBP-NN
1 0.111 0.598 0.385 0.077
2 0.106 0.644 0.403 0.075
3 0.113 0.572 0.385 0.078
4 0.113 0.567 0.391 0.078
5 0.108 0.636 0.383 0.080
WT ELM

1 0.093 0.785 0.494 0.064
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2 0.088 0.803 0.452 0.063
3 0.125 0.812 0.418 0.088
4 0.096 0.798 0.465 0.063
5 0.113 0.848 0.434 0.076

a. Results of the models using only local climate variables as predictors

Table 3 shows the results of the models for the Krishna River basin at all the selected locations
at a monthly scale with only local predictors variables as inputs. The results show that the MLR model
has correlation values ranging from 0.57 to 0.68 for the five locations, and the NSE values ranged
between 0.32 -0.40.

Table 3. Results for various forecasting models for the Krishna River basin with local predictor
variables as inputs. The values for RMSE and MAE are normalized with respect to mean and standard

deviation.
Station MLR
RMSE(mm) Correlation NSE MAE(mm)
1 0.053 0.573 0.573 0.037
2 0.091 0.536 0.536 0.057
3 0.123 0.597 0.597 0.084
4 0.096 0.646 0.646 0.063
5 0.058 0.442 0.442 0.033
FFBP-NN
1 0.055 0.545 0.545 0.038
2 0.086 0.576 0.576 0.054
3 0.012 0.600 0.600 0.078
4 0.092 0.678 0.678 0.058
5 0.062 0.713 0.362 0.031
ELM
1 0.066 0.473 0.473 0.039
) 0.094 0.496 0.496 0.060
3 0.127 0.565 0.565 0.089
4 0.094 0.653 0.653 0.062
5 0.057 0.423 0.423 0.032
WT FFBP-NN

1 0.109 0.771 0.556 0.069



https://doi.org/10.20944/preprints202305.1373.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2023 do0i:10.20944/preprints202305.1373.v1

12

2 0.082 0.779 0.549 0.057
3 0.084 0.753 0.505 0.063
4 0.061 0.787 0.563 0.041
5 0.070 0.765 0.520 0.052
WT ELM
1 0.118 0.779 0.575 0.087
2 0.086 0.765 0.557 0.065
3 0.078 0.817 0.579 0.054
4 0.075 0.738 0.518 0.056
5 0.084 0.742 0.518 0.063

Comparative results were obtained using FFBP-NN and ELM models where the NSE values
ranged between 0.44-0.52 for the former and 0.43-0.50 for the latter, respectively. However, in the case
of the results from WT-FFBP-NN and WT-ELM show higher values, with NSE values ranging
between 0.50-0.56 and 0.51-0.57, respectively.

c. Results of models with both global climate variables and local predictor variables

In this case, local and global climate variables were considered along with the lagged
precipitation for forecasting.

The results shown in Table 4 show a considerable increase in the model accuracy in terms of
NSE, RMSE, and MAE. Further, it is also observed that the wavelet-based hybrid models, WT-FFBP-
NN and WT-ELM, provided better forecasts than the other models. The best model was the WT-ELM,
with the NSE ranging from 0.62-0.85 and the correlation coefficient in the range of 0.77-0.92.

Table 4. Results for various forecasting models for the Krishna River basin with climate and local
variables as inputs. The values for RMSE and MAE are normalized with respect to mean and standard

deviation.
. MLR
station
RMSE(mm) Correlation NSE MAE(mm)

1 0.053 0.578 0.578 0.037

2 0.090 0.533 0.533 0.057

3 0.122 0.602 0.602 0.084

4 0.096 0.653 0.653 0.063

5 0.059 0.439 0.439 0.034

FFBP-NN

1 0.050 0.616 0.616 0.035

2 0.083 0.604 0.604 0.049

3 0.108 0.691 0.691 0.069

4 0.087 0.714 0.714 0.053

5 0.052 0.5600 0.5600 0.032
ELM

1 0.051 0.680 0.680 0.034
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2 0.065 0.757 0.757 0.042
3 0.090 0.784 0.784 0.064
4 0.075 0.782 0.782 0.047
5 0.037 0.754 0.754 0.026
WT FFBP-NN
1 0.083 0.892 0.741 0.055
2 0.072 0.849 0.648 0.052
3 0.077 0.784 0.595 0.056
4 0.061 0.802 0.636 0.036
5 0.064 0.820 0.591 0.042
WT ELM
1 0.070 0.925 0.852 0.052
2 0.069 0.843 0.697 0.053
3 0.075 0.813 0.625 0.058
4 0.053 0.847 0.700 0.035
5 0.073 0.779 0.625 0.053

It was also observed that the models using only global climate indices as inputs obtained the
highest NSE value of 0.52, and the models using local predictor variables obtained the highest value
of 0.67. Whereas for the models with global climate and local predictor variables as inputs, the NSE
values were increased to an average of 28% compared to those with only local predictor variables.
Therefore, from the results for all the stations, the highest correlation was obtained for WT ELM for
station 1 with a value of 0.92, followed by WT FFBP-NN with the highest NSE value of 0.85. Similarly,
the best results for all the other stations were obtained for WT ELM models. Overall, the values NSE
and correlation show that WT ELM outperformed WT FFBP-NN models and other singular models
in precipitation forecasting for the Krishna River basin.

Overall, it was observed that including both the global and local predictors improved
precipitation accuracy. It was also observed that the results based on the Wavelet-based models were
more accurate compared to the other singular models considered in the study. When these models
were coupled with wavelets, the model could capture the nonlinearity, which helped the WT ELM
models to capture all the necessary details and produce reliable precipitation forecasts.

Further comparing the model results obtained from WT-ELM and WT-FFBP-NN models, the
WT-ELM based showed superior performance. It is clear that by coupling machine learning models
with Wavelets, the forecasting capabilities of the models have increased with the results which
registered low values when modeled with basic models were found to be improved while usage of
WT-based hybrid models for forecasting.

Model Application for the Different Regions in India

Based on the results obtained for the Krishna River basin, the best model was the WT- ELM
model. So, to test the model results for the entire country and generalize the model performance, WT-
ELM models were developed for the chosen 4 locations for each region categorized by IMD based on
precipitation. The results for the selected locations are shown in Table 5.
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Table 5. Results of WT ELM models for India with combined global and local predictor variables. The
values for RMSE and MAE are normalized with respect to mean and standard deviation.

Central India

Station
RMSE(mm) Correlation NSE MAE(mm)
1 0.0718 0.9084 0.8152 0.0059
2 0.0680 0.8751 0.7200 0.0491
3 0.0757 0.9260 0.8538 0.0584
4 0.0755 0.8775 0.7574 0.0567
North India
1 0.0733 0.8437 0.7012 0.0537
2 0.0610 0.8864 0.7733 0.0447
3 0.0800 0.8286 0.6816 0.0581
4 0.0728 0.7804 0.5477 0.0554
Peninsular
1 0.0927 0.8406 0.6619 0.0686
2 0.1009 0.7936 0.6112 0.0780
3 0.0419 0.9324 0.8580 0.0325
4 0.1030 0.8728 0.7602 0.0781
Northwest
1 0.0784 0.9178 0.8401 0.0603
2 0.0628 0.8873 0.7437 0.0448
3 0.0802 0.7611 0.5025 0.0578
4 0.0696 0.8356 0.6765 0.0532

Central India:

The results from the models show that the correlation values found to be 0.90,0.87,0.92 and 0.87,
with the NSE values being 0.81,0.72,0.85,0.75 and the values of MAE showing that the error
component in the forecast is relatively low as the value is nearer to zero. Also, the value of RMSE is
less than 0.08 for all the stations.

North India:

The results from the WT-ELM models show that the correlation values are 0.84,0.88,0.82, and
0.78 with NSE values of 0.70,0.77,0.68, and 0.54, along with low MAE and RMSE values. These low
RMSE and RMSE indicate that the error component in the forecasting model is less.

Peninsular India:

The correlation values from the results show that values are 0.84,0.79,0.92, and 0.87, respectively,
for the four selected stations with NSE values of 0.66,0.61,0.85, and 0.76. The values of MAE were also
found to be low, similar to the results of the remaining regions.

Northwest:

The results indicate that the correlation values in these regions are 0.91,0.88,0.76, and 0.83, with
NSE values of 0.84,0.74,.50, and 0.67.

Based on the results in Tables 3 to 5, the model that produced good results for all the different
input combinations is the WT-ELM model with the highest correlation, highest NSE, and the lowest
error component than linear MLR model, machine learning models like FFBP-NN, ELM, and WT-
FFBP-NN.
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Figure 5. Spatial map of NSE for various models for India using (a) FFBP-NN, (b) ELM, (c¢) WT FFBP-
NN, and (d) WT-ELM models.

Discussion

In this study, wavelet-based hybrid models were tested for their ability to forecast monthly
precipitation, and their performances were compared with those of some key traditional and other
contemporary methods, including MLR, FFBP-NN, and ELM models. Among the different
forecasting methods applied in this study, machine learning methods generally outperform the basic
MLR models. Among the single-scale machine learning models, the ELM model outperformed the
FFBP-NN model. The better performance of the ELM model may be due to its ability to capture the
long- and short-term memory relationship between the climatic variables and precipitation.

Overall, our results manifest that the wavelet-based hybrid models (WT-FFBP-NN and WT-
ELM) are accurate compared to the traditional and other machine-learning methods considered in
this study. This observation is in congruence with the broader understanding of the performance of
the wavelet-based hybrid models, where in wavelets enhance the models' capability to unravel the
multi-scale relationship among the variables. For example, in a recent study,[41] showed that
wavelet-based decomposition helps identify the correlation between different variables, improving
the model skill score. Similarly, in another study by [29], the authors showed that the Wavelet-based
models are accurate for streamflow forecasting. Another study,[42] showed that the wavelet based
Volterra model performed superior to the simple non-linear models for rainfall forecasting.

To understand the possible reasons for improving the performance of the Wavelet-based
models, the correlations between the precipitation and climatic variables with and without wavelet
decomposition. Table 6 shows the values of the same for Grid 2.
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Table 6. Correlation between different climatic variables and precipitation with and without wavelet

decomposition for Grid 2 (Dn indicates the decomposition and its level).

Climat
e Orhgin ) D3 D4 D5 D6 D7 D8 D9 DIo
variab al scale
le
5 0oy 001 005 006 006 008 016 036 042 027 0.12
poz ' 1 1 1 1 1 1 1 1 1 1
0.00 R ) . - " 000 036 014 008
p5th 0.131 000 001 005 006 0.07
1 1 1 1 1
9 9 9 9 9
0.00 0.00 0.01 0.00 A ) ) A . A
p8th -0.019 ) ) . , 002 015 036 040 032 010
9 9 9 9 9 9
hum 01y 002 003 006 012 020 033 040 036 033 017
' 1 1 1 1 1 1 1 1 1 1
hum 014y 001 003 005 010 017 032 042 041 037 016
' 1 1 1 1 1 1 1 1 1 1
X ) ) X ) A 005 001 0.02
temp 0071 0.00 001 004 009 015 019 0.12 ) . )
9 9 9 9 9 9 9
mslp 0.079 003 007 0.13 0.16 014 023 034 038 034 009
9 9 9 9 9 9 9 9 9 9
- 0gpp 002 004 008 015 019 029 043 040 037 0.09
S : 1 1 1 1 1 1 1 1 1 1
. 04 0. 07 0. . - A ) .
vas 0029 ° 0? 0.0 . 0 Of 0.0 . 0 Of 0 0‘;’ 026 039 031 0.13
9 9 9 9
e 0gy; 001 022 002 002 002 000 002 007 004 003
' 1 1 1 1 1 1 1 1 1 1
001 0.02 003 006 008 0.06 . ) ) )
p5 uas -0.159 . . . . ) , 002 037 017 008
9 9 9 9
0.02 0.03 0.02 0.00 ) ) A ) ) .
p5 vas 0.021 | ) | , 001 001 010 026 008 000
9 9 9 9 9 9
p500 0091 0.02 006 011 014 015 020 0.28 036 0.1 0.00
9 9 9 9 9 9 9 9 9 9
p850 0059 0.03 008 0.15 0.9 020 035 046 043 037 008
9 9 9 9 9 9 9 9 9 9
001 004 007 011 018 031 043 042 037 0.12
r500 0.101 1 1 1 1 1 1 1 1 1 1
002 004 007 014 021 032 041 035 030 0.14
r850 0.051 1 1 1 1 1 1 1 1 1 1

# Values in bold show a significant correlation at 95% confidence levels.

The correlation between precipitation and geopotential height (p850) is —-0.06 without applying
wavelet decomposition; conversely, the correlation is on the order of -0.47 to -0.16 between
decompositions of p850 (D4 to DY), and precipitation varies from -0.17 to -0.39. A similar kind of
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correlation can also be observed for several other variables (e.g., uas, p500, mlp). Overall, it is
observed that there is a significant improvement in the correlation, or in other words, wavelets can
unravel the hidden relationships and improve the performance of the forecasting models.

It is pertinent to understand that the NCEP reanalysis data has been used; however, the
methodology can be extended to the weather forecasting model results and used to extend the
forecast lead time.

6. Conclusions

In this study, singular machine learning and Wavelet hybrid models were developed and
applied to predict monthly precipitation for the Krishna River basin using local and global climate
data as predictor variables. Based on the results obtained from evaluation measures, the model with
the best prediction capability was found, and their ability to capture extreme events was identified.
The performance measures showed that WT ELM models captured the events with higher precision
than WT FBP-NN models with lower RMSE and higher NSE values. The outcome of this study
indicates the capability of WT ELM models in forecasting works, and its applicability can be
understood from the results from the case study for the Krishna River basin. Further evaluation of
this model can be understood by adopting a similar methodology to analyze works for various
regions with different climatic and metrological factors.
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Appendix A

A-1 Multiple learning regression (MLR)

Multiple linear regression is a form of linear regression analysis which develops the relationship
between multiple predictor variable (x4, x; x3 ....x,) with respect to predictand variable (y) and
this relationship can be understood using Eq (A-1)

Yy =a;+azx; +a;...a,x,
where aj,a,a;3....a, are calculated using the simple least squares method. A detailed explanation
of the MLR model can be understood by referring to [43].

A-2 ARTIFICIAL NEURAL NETWORKS (ANN)

Artificial Neural Networks are defined signal processing using neurons which save required
experimental data to use for further processes. ANN has been developed to resemble the biological
nervous system and they learn, store and process data sets based on examples. Understanding
complex relationships between inputs and targets, which is not possible using linear algorithms can
be performed easily and with high accuracy using ANNSs [44]. ANNSs have been used for a few
decades in various fields for the analysis of different kinds of problems in hydrology and climatology.
The application of this method can be further understood by seeing works like [30,45—-49]. The ability
of ANN s to learn and simulate the results based on the provided inputs show its capability to solve
complex problems which linear models cannot perform [50]. Further the structure and capabilities of
ANNSs can be understood in detail by referring to [42,51,52]. While training a network, the number
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of neurons is varied numerous times by using the trial-and-error method until the satisfaction of
minimum criteria error [53]. Numerous training functions were available for training Neural
networks to understand and capture input-output relationships. Some of the functions are Feed-
Forward Back Propagation Neural Network (FFBP-NN), Non-linear Auto Regressive with exogenous
inputs Neural Network (NARX-NN), and Generalized Regression Neural Network (GRNN). In this
work, for the application of models, FFBP-NN models were used for forecasting precipitation due to
their higher applicability than other models. For a detailed understanding of this model, readers can
refer to the works of [54,55], among others.

The FFBP-NN is a multiple-layer network which consists of neurons that are stacked in layers
and connected with each other. Inputs and outputs of the networks are the first and last layers of the
networks with hidden layers being the remaining layers that carry information in the form of weights.
In this study, FFBP-NN is trained, which is most widely used, especially in hydrologic applications.
In this model, input data in the layers include input data is given by x;,x,,x3 ....x, and the results
from the output layer are given as y3,y,,¥s ... ¥,. the input neurons are connected with hidden layers
by the weights, which connect the t" neuron and the k*» neuron, represented by w. Whereas w;;
represents the connection between hidden layers and wtthe outputs layer. Being non-linear functions,
ANNSs capture the relationship between the input and output layer and the correlation for output can
be understood [56] by Equation (A-2)

s s’
vi=h szt-fh ZWthk + b, |+ b
t=1 t=1

where f, and f;, denote the activation function in the output layer and the activation function of
nodes in the hidden layer. b,and b; are bias of tth neuron and jth neuron. s and s’ represent the
nodes in the input and hidden layer respectively.

The training algorithm used in the development of FFBP-NN model is Levenberg-Marquardt
(LM) which is assumed to be one of the fastest and accurate due to the recurrence to incorporate
experience in training processes [36].
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