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Abstract: An accurate and timely precipitation forecast is essential for water resources management 

in hydropower, irrigation, and reservoir control. The conventional methods are limited by their 

inability to capture the high precipitation variability in time and space. In the present work, a 

wavelet-based deep learning approach is adopted to forecast precipitation using the lagged monthly 

rainfall, local climate variables, and global teleconnections such as IOD, PDO, NAO, and Nino 3.4 

as predictors. The method was tested and validated over the Krishna River Basin in India. Overall, 

the forecasting accuracy was higher using the wavelet-based hybrid models than the single-scale 

models. The proposed multi-scale model was then applied to the different climatic regions of the 

country, and it was shown that the model could forecast the rainfall at reasonable accuracy for 

different climate zones of the country. 

Keywords: monthly precipitation forecast; wavelet-based machine learning; teleconnections 

 

1. Introduction 

Precipitation is the most crucial atmospheric parameter influencing the water cycle [1]. Extreme 

floods or severe droughts are caused either due to excessive or deficient precipitation that may 

further seed socioeconomic losses. Effective precipitation forecasting is an urgent need to plan water 

management activities in a country like India, which is majorly dependent on precipitation for 

agricultural activities, as more than 65% of the cultural land in the country is rain-fed.  

Forecasting monthly and seasonal precipitation is paramount to providing the information 

required for agricultural planning and water management [2,3] for regions that depend on rainfall as 

the primary source for agricultural activities. Hence, reliable forecasts are required to help the 

farming community decide the type of crop based on the forecasted precipitation quantities. Effective 

precipitation forecasts several months in advance can help plan disaster early warning and 

preparations [4,5]. Therefore, one of the most important scientific issues in hydrology is precipitation 

forecasting, and numerous researchers carried out several works for forecasting monthly and 

seasonal forecasting using numerous approaches. 

Several methods were developed in the past few decades for forecasting precipitation, and these 

methods are typically divided into numeric and empirical models [2,5–7]. Methods that use laws of 

physics for climate forecasting are called numeric models. Also, these models include the movement 

of wind, clouds, and moisture, which statistical models cannot perceive, making these models more 

convincing than statistical data-driven models. These models generally develop the relationship 

between land, ocean, and atmospheric variables based on the data obtained from GCMs based on 

physical equations [8,9]. Researchers like [10,11] conducted several climatic studies using this 

modeling approach. Empirical methods include hydro-meteorological predictand and predictor 

variables through mathematical models based on historical data. The developed relationship is then 
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used for data sets other than sample data to make forecasts. But due to uncertainty in model structure, 

parameters, initial conditions, and complexity, precipitation forecasting using numeric models 

cannot produce good precipitation forecasts [13]. Numerous works [7,8,13,14] show that empirical 

models have better accuracy in precipitation forecast when compared to physical based models due 

to higher uncertainties, whereas statistical models are based on historical data and mathematical 

approach. Empirical models are mainly used for seasonal forecasts in agricultural planning. 

Empirical models which are used for the development of forecasts are Multiple Linear Regression 

(MLR) [13], Artificial Neural Networks (ANN) [15].  

It is believed that global teleconnection patterns, also known as large-scale climatic indices like 

Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO), NINO 3.4, and Pacific Decadal 

Oscillation (PDO), are influencing the rainfall variability across the globe and has been used as 

predictors of global precipitation [16]. 

Most of the above-reported studies have considered the global climatic predictor variables with 

historical data to develop precipitation forecasting models [17] but could not produce good reliable 

forecasts due to the non-stationary relationship between predictor variables and precipitation. To 

address this issue, wavelet analysis (WT) was used, and researchers did several works to develop 

models which can produce more reliable forecasts than singular models. Some works include 

developing a self-organizing map coupled with WT filters for forecasting monthly precipitation in 

Chile by [2,16] developing a wavelet-based non-linear model for forecasting monthly precipitation 

with climate data sets as predictors for the Cauvery basin in India. The results show that wavelet-

coupled models produce good and reliable forecasts compared to singular models. 

In [15] developed wavelet-based ANN models for forecasting monthly precipitation models for 

Australia and showed improved forecasting accuracy using multi-scale models.  

In recent years, Extreme learning machines have been used for forecasting drought index, 

groundwater levels, and streamflow forecasting by numerous researchers who found that the results 

of this model showed reliable forecasts when compared to other forecasting models [18–20]. But the 

application of ELM to precipitation forecast was not carried out on a large scale by many works based 

on previous literature. Therefore, in this study, the applicability of a new and more effective 

precipitation forecast model for seasonal and monthly levels is proposed using Extreme Learning 

Machines (ELM) and Wavelet-based Extreme Wavelet Machines (WT-ELM) using large-scale climate 

indices and also other climatic predictor variables for Indian region. Recent literature suggests little 

work incorporating deep learning methods for precipitation forecasting in the Indian region. The 

main objectives of the work area 

1. Development of singular ELM and WT-ELM for precipitation forecasting at a monthly and 

seasonal level using climate indices and local climatic predictor variables. 

2. Comparison of the proposed approach with other methods, such as Multiple Linear 

Regression models, Artificial Neural Networks, and the Wavelet Neural Network approach at the 

country and basin scale. 

2. Study Area and Data Used 

To test the proposed approach in this work, a monthly precipitation forecast is carried out for 

the Krishna River basin, India, and the methodology is extended to the entire Indian sub-continent. 

India is a country that is majorly dependent on rainfall carrying out agricultural activities in the 

country India receives an average annual rainfall of 650 mm of rainfall every year, with more than 

70% of the rainfall being received during the southwest monsoon (June to September) every year but 

the quantity of rainfall received is unreliable. In the case of the Northeast monsoon, the regions in 

India which did not receive rainfall during the SW monsoon, like the Tamil Nadu region, fed during 

the NE monsoon; around 50 to 60% of rainfall received by this region is during this monsoon. The 

rainfall received during the monsoons received is not uniformly spread along the country; thus, there 

is a need to determine the quantity received in each region to plan management activities. Climatic 

conditions also play a vital role in determining the quantity of rainfall received in a region. Indian 

climate is classified into six subtypes based on the Koppen climate classification: alpine tundra in the 
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north, arid deserts in the west, and tropical rainforests in the southwest. The presence of microclimate 

regions makes the climate of India more diverse. The geographical variation of the Koppen climate 

for India is shown in Figure 1.  

 

Figure 1. Koppen Climate classification for India. 

Krishna river basin is the 4th largest river basin in India which receives around 400 to 4000mm 

of mean annual rainfall, out of which 90% of the rainfall is received during the Southwest monsoon 

and around 78% percentage of the area is agricultural land out of the total catchment area of 2,60,401 

km2. The basin is divided into three major climatic regions based on the Koppen climate classification, 

as shown in Figure 1, which constitute Tropical Monsoon, Tropical Savanna, and Semi-Arid climate. 

The precipitation variability in the basin can be understood from Figure 2b, which shows that the 

western region receives the highest rainfall. 
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(a) 

 
(b) 

Figure 2. (a) Geographical location of selected stations in the Krishna River basin. (b) Precipitation 

Variability map and DEM of the Krishna River Basin. 

Rainfall Data 

Daily rainfall data is available at the spatial resolution of 0.25° x 0.25° gridded data and is 

obtained from Indian Metrological Department for each year from 1901 to 2018. This work uses the 

entire data to develop a model for forecasting precipitation at the country and basin levels. To 

develop models for monthly, the daily precipitation data is converted to monthly precipitation. The 

daily precipitation data set is downloaded from the website 

http://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html. 

Global Predictors Data 

In this work, some of the global teleconnections that have been shown to influence precipitation 

have been considered. Apart from the global teleconnection patterns, regional climatic variables like 

temperature, pressure, and geopotential heights have been considered.  
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(i) Indian Ocean Dipole (IOD), also called Indian Nino, is an irregular oscillation of sea 

surface temperature in the western Indian Ocean and affects rainfall variability in East Africa, India, 

Indonesia, and Southern Australia[22]. IOD is one of the major climate drivers for rainfall in India 

and is also referred to as the difference in sea surface temperature (SST) anomalies in the region in 

IOD West at 50 E to 70 E and also IOD East at 10 S to 10 N. Data is downloaded from 

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/dmi.long.data and is available at 

monthly scale from the period of 1870 to 2018. 

(ii) North Atlantic Oscillation (NAO) is a weather phenomenon that occurs in the North 

Atlantic Ocean, and its fluctuations are calculated based on the difference between subpolar low and 

subtropical high. Monthly data for these climatic indices can be obtained from the NOAA climate 

prediction Centre (CPC). The data is available for each month from 1948 to 2018. 

(iii) Nino 3.4 index: El Nino and La Nina events are most commonly defined by Nino 3.4 

index. The anomalies of Nino 3.4 are thought to represent east-central Tropical Pacific SSTs. The data 

is available from 1870 to 2019 on a monthly scale. 

(iv) Pacific Decadal Oscillation (PDO) is often referred to as El Nino but acts at a larger scale, 

with a pattern mostly observed in North Pacific [23]. Extreme phases of the PDO index have been 

classified as warm or cool based on the ocean temperature anomalies in the tropical and northeast 

Pacific Ocean, and the length of the data available is from 1948 to 2018. The NAO, NINO 3.4, and 

PDO data are downloaded from https://www.esrl.noaa.gov/psd/data/climateindices/list/. 

Apart from these climate indices, local predictor variables are used for forecasting precipitation. 

The details of Global climate and local predictor variables used in this study are shown in Table 1. 

The data from the local predictor variables were obtained from the NCEP-NCAR reanalysis dataset. 

Table 1. Details of global and local predictor variables used for precipitation forecasting. 

Level Predictands 

Global 

Indian Oceanic Dipole (IOD) 

North Atlantic Oscillation (NAO) 

NINO 

Pacific Decadal Oscillation (PDO) 

Local 

Mean Sea level pressure (mslp) 

Zonal velocity component (p_u) 

Meridional velocity component (p_v) 

Vorticity (p_z) 

Specific humidity (shum) 

Relative humidity (rhum) 

Surface air temperature (temp) 

Zonal velocity component (p5_u) 

Meridional velocity component (p5_v) 

Vorticity (p5 _z) 

Wind direction (p5th) 

Geopotential height (p500) 

Relative humidity (r500) Wind direction 

(p8th) 

Geopotential height (p850) 

Relative humidity (r850) 
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3. Methods 

In this work, singular machine learning, deep learning models, and Hybrid models using 

wavelet decomposition were developed for monthly precipitation forecasting for the Krishna River 

basin as a case study. Later, based on the results from the case study, the best models were applied 

at the country level.  

This section briefly describes wavelets, extreme learning machines, and hybrid modelling 

approaches. A further detailed description of the other traditional methods adopted is explained in 

sections A1- to A-2. 

3.1. Wavelet Transform (WT) 

Wavelet Transform is a mathematical tool that represents and analyzes a time series in both the 

time and frequency domains due to its multi-resolution and localization capabilities [24]. In recent 

decades the usage of wavelets in various domains of water resources and hydrology increased due 

to their capability to study non-stationarity in a time series [23–25]. Wavelets are broadly classified 

into two types: Continuous Wavelet transforms (CWT) and Discrete Wavelet transforms (DWT). 

Continuous wavelets transform works on all the scales to analyze a time series, whereas Discrete 

wavelet transform uses only dyadic scales. Based on several studies [26–28], Discrete wavelet 

transform can be obtained either by Mallet or by 𝑎́ trous wavelet transform and is also referred to as 

Maximum Overlap Discrete Wavelet Transform (MODWT). The main concept of MODWT is to fill 

the gaps using redundant information in the original series by passing it through a low pass filter to 

smoothen the data and retrieve details from the series [30]. 

Mathematically the smoother version of the original time series 𝑥(𝑡)can be understood using 

Equation (1) 𝑥(𝑡) = 𝑃𝑜(𝑡) 𝑃𝑘(𝑡) = ∑ 𝑗(𝑚)𝑃𝑘(𝑡 + 2𝑘−1𝑚)∞𝑚=−∞         (1) 

where 𝑚 is the lowpass with compact support by a B3 spline and defined by the values (1/16, 1/4, 3/8, 

1/4, 1/16) & for Haar wavelet 𝑚 is defined at (1/2, 1/2) and 𝑘 denotes the level of decomposition and 

takes the value from 1, 2, 3 …. 𝑘 [30] 

The detail component of the smoother version of 𝑥(𝑡) for 𝑘𝑡ℎ  level can be mathematically 

expressed as in Equation (2) 𝑑𝑘(𝑡) =  𝑃𝑘−1(𝑡) − 𝑃𝑘(𝑡)         (2) 

where 𝑃𝑘  is the approximation or residual component from wavelet decomposition and 

{𝑑1, 𝑑2 … . 𝑑𝑘} represents the additive wavelet decomposition of the data up to resolution level 𝑘. 

Wavelet decomposition of the time series is carried out using the WMTSA toolbox in MATLAB.  

3.2. Extreme Learning Machines (ELM) 

Understanding complicated relationships between multiple parameter-dependent variables like 

precipitation is difficult due to its strong influence on different climatological parameters. Several 

studies have shown the efficacy of ELMs in capturing non-linear relationships using the single 

hidden layer feed-forward networks (SLFNs) to train the datasets. Hung first proposed this method 

in 2004 due to its fast learning and high generalization and did not create dependency among the 

different layers as in ANNs. The performance of ELMs, such as lower error components and 
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generalization in performance, was checked by [31] which justifies the principle of this method. In 

this method, the only free component is weighted between the hidden and output layers, and the 

hidden nodes need not be similar to neurons [32]. The hidden nodes can be expressed as [31,33] ∑ 𝐵𝑖ℎ𝑖(𝛼𝑖𝑥𝑖 + 𝛽𝑖) = 𝑧𝑖𝑘𝑖=1          (3) 

where the output weight vector between 𝑘 number of nodes to the output nodes is given by 𝐵, the 

hidden layer activation function is given by 𝐺(𝛼, 𝛽, 𝑥), and Z represents the ELM model's output. 𝛼, 𝛽 are the biases in the ELM algorithm's randomized layers. For the present study, the number of 

neurons was selected as 1-20, and the sigmoidal function was chosen as activation function f(x) 

following previous studies by [34,35] 𝑓(𝑥) = 11+exp(−𝑥)          (4) 

As explained by [31], the approximate set of N sample data sets can be obtained by using 

Equation (5) ∑ ‖𝑧𝑡 − 𝑦𝑡‖𝑁𝑡=1            (5) 

where 𝑧𝑡  denote the ELM model output at data points t = 1,2,3, … N and 𝑦𝑡  are the response 

variables, i.e., the observed precipitation values used to validate precipitation forecasts.  

Finally, the forecasted values of the data sets 𝑦̂ can be obtained by testing the input vector (𝑥𝑡𝑒𝑠𝑡) 

[36] using Equation (6) 𝑦̂ = ∑ 𝐵̂𝑖ℎ𝑖(𝛼𝑖 .𝑘𝑖=1 𝑥𝑡𝑒𝑠𝑡 + 𝛽𝑖)         (6) 

where 𝐵̂ represents the estimated output weights from the N data samples used in modelling 

processes [31]. For a more detailed understanding of ELM readers, refer to [32]. A typical ELM is 

represented in Figure 3. 

 

Figure 3. Schematic representation of Extreme learning machines. 

3.3. Wavelet Hybrid Models 

In Wavelet Hybrid models, the decomposed components of the original series and climate 

predictor variable are used to improve the quality of precipitation forecast. As mentioned in Section 

3.1, decomposition is carried out using Maximal Overlap Discrete Wavelet Transform (MODWT). 

The capability of Wavelet models to identify hidden relationships among predictand and predictors 

by decomposition of the variables is the main advantage of using Wavelet decomposition.  

In this work, Feed Forward Back Propagation Neural network model (FFPBP-NN) based on 

previous literature and ELM models are coupled with wavelets to develop wavelet Hybrid Models. 

These models are denoted as WT-FFBP-NN and WT-ELM. A detailed description of FFBP-NN and 

Multiple Linear Regression models is provided in Appendix A.1 and A.2.  
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4. Methodology 

STEP: Identification of Significant Variables 

Based on the literature, precipitation is assumed to respond to large-scale climate signals and 

local predictors with time lags. Auto Correlation Function (ACF) and Cross-Correlation Function 

(CCF) are the lags at which the predictor variables influence the precipitation. Based on CCF, the lag 

correlation of various predictor variables is determined and used to develop forecasting models.  

STEP:1 Selection of predictor variables 

After the first step, the climate predictor variables are chosen based on the values of correlation 

and Cross-Correlation Function (CCF) to determine the predictor monthly and seasonal subseries of 

lag components with precipitation. Some of the sample correlation plots are shown in Figure 4. The 

correlation of climatic indices at different lag values is shown in Figure 4 at monthly scales to 

determine the lag component at which the indices are closely related to precipitation time series.  

 

Figure 4. Sample Cross-correlation between different predictors and precipitation for the grid 2 

(16.25N, 77E). 

It can be seen that each index has varying relationships with precipitation. Based on these values, 

the component of indices to be used in the analysis are selected. These climatic indices and predictors 

are selected based on previous works[2], [34,35] Also, along with the lagged values, zero lag 

coefficients are also used as the presence of long-term and short-term memory[39]. 

STEP 2 Standardization 

After selecting predictor variables, the data sets are standardized to reduce the effect of the 

difference in magnitude between different variables. In this work, the standardization of variables is 

carried out using Equation (7) 𝑥𝑠𝑡𝑑 = 𝑥−𝑥𝑚𝑖𝑛𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛          (7) 
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where 𝑥 represents the predictor variables, 𝑥𝑠𝑡𝑑= standardized value of predictor variables, 𝑥𝑚𝑖𝑛  

and 𝑥𝑚𝑎𝑥   represent the minimum value and maximum value of predictor variable 𝑥. 
Step 3: Model development 

(a) Single scale models (MLR, FFBP-NN, ELM) 

After selecting probable predictors based on correlation and CCF of variables with monthly 

precipitation time series based on lag components, the entire data set is divided into 70:30 ratios. 

Training of the models is carried out using 70 % of the data set, and validation of the models is carried 

out using the remaining 30% of the data, and the performance of these models is evaluated using the 

performance measures mentioned in Section 3(c). 

(b) Wavelet Hybrid models (WT-FFBP-NN and WT-ELM) 

MODWT is applied to the predictor variables after selecting suitable potential predictors to 

decompose the data sets at various scales. As mentioned by [30], selecting suitable mother wavelets 

and level of decomposition help capture required features that provide information for good results. 

An optimum decomposition level and mother wavelet choice are selected based on the works [40] 

and [28,35] The lagged decomposed predictor variables are given as input for both WT-FFBP-NN 

and WT-ELM models. 

(c) Performance Measures 

This study verifies the accuracy and confidence limit of the model's forecast using statistical 

metrics. The measures used in this study are Root Mean Square Error (RMSE), Correlation (R2), Nash 

Sutcliffe Efficiency (NSE), and Most Absolute Error (MAE). 

If the values of RMSE are high, the error component in the forecast to the original system is large. 

Whereas if the values of NSE and Correlation are nearer to 1, the obtained results are nearer to the 

original system. If the values are nearer to 0, the model output is not a correct representation of the 

original system. RMSE and MAE represent the error component in the out of the models. 

i. Root Mean Square Error (RMSE) 𝑅𝑀𝑆𝐸 = √1𝑛 ∑ (𝑋𝑖𝑜𝑏𝑠 − 𝑋𝑖𝑠𝑖𝑚)2𝑛𝑖=1   X 100%      (8) 

ii. Correlation (R2)  

𝑅2 = ( ∑ (𝑥𝑖𝑜𝑏𝑠−𝑥𝑚𝑒𝑎𝑛𝑜𝑏𝑠 )(𝑥𝑖𝑠𝑖𝑚−𝑥𝑚𝑒𝑎𝑛𝑠𝑖𝑚 )𝑛𝑖=1√∑ (𝑥𝑖𝑜𝑏𝑠−𝑥𝑚𝑒𝑎𝑛𝑜𝑏𝑠 )2(𝑥𝑖𝑠𝑖𝑚−𝑥𝑚𝑒𝑎𝑛𝑠𝑖𝑚 )2𝑛𝑖=1 )2
       (9) 

iii. Nash Sutcliffe Efficiency (NSE) 𝑁𝑆𝐸 = 1 − ∑ (𝑋𝑖𝑜𝑏𝑠−𝑋𝑖𝑠𝑖𝑚)2𝑛𝑖=1∑ (𝑋𝑖𝑜𝑏𝑠−𝑋𝑖𝑠𝑖𝑚 𝑚𝑒𝑎𝑛)2𝑛𝑖=1         (10) 

iv. Most Absolute Error (MAE) 

MAE= 
∑ |(𝑋𝑖𝑜𝑏𝑠−𝑋𝑖𝑠𝑖𝑚)|𝑛𝑖=1 𝑛                (11) 

where 𝑋𝑖𝑜𝑏𝑠 represent the ith observed data, 𝑋𝑖𝑠𝑖𝑚 represent the simulated data from the models, 𝑋𝑖𝑚𝑒𝑎𝑛  is the mean of the data set, and n is the number of observations. 

 

5. Results and Discussions 

5.1. Forecasting using Single Scale Models 

Training and validation of all the models, including hybrid models such as Wavelet Hybrid 

models (WT-FFBP-NN and WT-ELM), were done using performance measures (Section 3(c) until 

satisfactory results in terms of NSE and RMSE for precipitation forecasting were obtained. To test the 
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efficacy of the models, five locations (one from each climate classification) in the Krishna River basin 

were selected for the development of models and analysis of precipitation in the basin. 

For the Krishna River basin 

Results of the models using only global climate indices as predictors 

The results obtained from all the models using only the global climate indices and lagged 

precipitation data are shown in Table 2. The results show that MLR models obtained correlation 

values ranging from 0.30-0.37 and NSE values from 0.11 to 0.16. For FFBP-NN models, the forecast 

results showed correlation values ranging from 0.66-0.73 and NSE ranging from 0.44 to 0.52. The 

results from the ELM model had a correlation ranging from 0.34-0.56 and NSE in the range of 0.34 -

0.51 for the five stations considered. WT-FFBP-NN model results yielded NSE values of 0.38-0.40 

with a correlation of 0.56-0.64.  

WT-ELM models showed an improved performance in terms of NSE and CC compared to the 

other models, as shown in Table 2.  

Table 2. Results for various forecasting models for the Krishna River basin with global climate indices 

as inputs. The values for RMSE and MAE are normalized with respect to mean and standard 

deviation. 

Station 
MLR 

RMSE(mm) Correlation NSE MAE(mm) 

1 0.096 0.355 0.164 0.099 

2 0.160 0.332 0.124 0.100 

3 0.162 0.376 0.137 0.105 

4 0.144 0.309 0.157 0.092 

5 0.048 0.309 0.119 0.055 

 
 

FFBP-NN 

1 0.090 0.694 0.481 0.058 

2 0.091 0.680 0.458 0.063 

3 0.092 0.669 0.446 0.065 

4 0.063 0.730 0.529 0.032 

5 0.052 0.713 0.504 0.036 

 ELM 

1 0.070 0.407 0.407 0.053 

2 0.101 0.489 0.403 0.067 

3 0.157 0.343 0.343 0.117 

4 0.122 0.419 0.419 0.096 

5 0.052 0.561 0.515 0.037 

 WT FFBP-NN 

1 0.111 0.598 0.385 0.077 

2 0.106 0.644 0.403 0.075 

3 0.113 0.572 0.385 0.078 

4 0.113 0.567 0.391 0.078 

5 0.108 0.636 0.383 0.080 

 WT ELM 

1 0.093 0.785 0.494 0.064 
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2 0.088 0.803 0.452 0.063 

3 0.125 0.812 0.418 0.088 

4 0.096 0.798 0.465 0.063 

5 0.113 0.848 0.434 0.076 

a. Results of the models using only local climate variables as predictors 

Table 3 shows the results of the models for the Krishna River basin at all the selected locations 

at a monthly scale with only local predictors variables as inputs. The results show that the MLR model 

has correlation values ranging from 0.57 to 0.68 for the five locations, and the NSE values ranged 

between 0.32 -0.40.  

Table 3. Results for various forecasting models for the Krishna River basin with local predictor 

variables as inputs. The values for RMSE and MAE are normalized with respect to mean and standard 

deviation. 

Station 
MLR 

RMSE(mm) Correlation NSE MAE(mm) 

1 0.053 0.573 0.573 0.037 

2 0.091 0.536 0.536 0.057 

3 0.123 0.597 0.597 0.084 

4 0.096 0.646 0.646 0.063 

5 0.058 0.442 0.442 0.033 

 FFBP-NN 

1 0.055 0.545 0.545 0.038 

2 0.086 0.576 0.576 0.054 

3 0.012 0.600 0.600 0.078 

4 0.092 0.678 0.678 0.058 

5 0.062 0.713 0.362 0.031 

 ELM 

1 0.066 0.473 0.473 0.039 

2 0.094 0.496 0.496 0.060 

3 0.127 0.565 0.565 0.089 

4 0.094 0.653 0.653 0.062 

5 0.057 0.423 0.423 0.032 

 WT FFBP-NN 

1 0.109 0.771 0.556 0.069 
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2 0.082 0.779 0.549 0.057 

3 0.084 0.753 0.505 0.063 

4 0.061 0.787 0.563 0.041 

5 0.070 0.765 0.520 0.052 

 WT ELM 

1 0.118 0.779 0.575 0.087 

2 0.086 0.765 0.557 0.065 

3 0.078 0.817 0.579 0.054 

4 0.075 0.738 0.518 0.056 

5 0.084 0.742 0.518 0.063 

Comparative results were obtained using FFBP-NN and ELM models where the NSE values 

ranged between 0.44-0.52 for the former and 0.43-0.50 for the latter, respectively. However, in the case 

of the results from WT-FFBP-NN and WT-ELM show higher values, with NSE values ranging 

between 0.50-0.56 and 0.51-0.57, respectively.  

c. Results of models with both global climate variables and local predictor variables 

In this case, local and global climate variables were considered along with the lagged 

precipitation for forecasting.  

The results shown in Table 4 show a considerable increase in the model accuracy in terms of 

NSE, RMSE, and MAE. Further, it is also observed that the wavelet-based hybrid models, WT-FFBP-

NN and WT-ELM, provided better forecasts than the other models. The best model was the WT-ELM, 

with the NSE ranging from 0.62-0.85 and the correlation coefficient in the range of 0.77-0.92.  

Table 4. Results for various forecasting models for the Krishna River basin with climate and local 

variables as inputs. The values for RMSE and MAE are normalized with respect to mean and standard 

deviation. 

station 
MLR 

RMSE(mm) Correlation NSE MAE(mm) 

1 0.053 0.578 0.578 0.037 

2 0.090 0.533 0.533 0.057 

3 0.122 0.602 0.602 0.084 

4 0.096 0.653 0.653 0.063 

5 0.059 0.439 0.439 0.034 

 FFBP-NN 

1 0.050 0.616 0.616 0.035 

2 0.083 0.604 0.604 0.049 

3 0.108 0.691 0.691 0.069 

4 0.087 0.714 0.714 0.053 

5 0.052 0.5600 0.5600 0.032 

 ELM 

1 0.051 0.680 0.680 0.034 
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2 0.065 0.757 0.757 0.042 

3 0.090 0.784 0.784 0.064 

4 0.075 0.782 0.782 0.047 

5 0.037 0.754 0.754 0.026 

 WT FFBP-NN 

1 0.083 0.892 0.741 0.055 

2 0.072 0.849 0.648 0.052 

3 0.077 0.784 0.595 0.056 

4 0.061 0.802 0.636 0.036 

5 0.064 0.820 0.591 0.042 

 WT ELM 

1 0.070 0.925 0.852 0.052 

2 0.069 0.843 0.697 0.053 

3 0.075 0.813 0.625 0.058 

4 0.053 0.847 0.700 0.035 

5 0.073 0.779 0.625 0.053 

It was also observed that the models using only global climate indices as inputs obtained the 

highest NSE value of 0.52, and the models using local predictor variables obtained the highest value 

of 0.67. Whereas for the models with global climate and local predictor variables as inputs, the NSE 

values were increased to an average of 28% compared to those with only local predictor variables. 

Therefore, from the results for all the stations, the highest correlation was obtained for WT ELM for 

station 1 with a value of 0.92, followed by WT FFBP-NN with the highest NSE value of 0.85. Similarly, 

the best results for all the other stations were obtained for WT ELM models. Overall, the values NSE 

and correlation show that WT ELM outperformed WT FFBP-NN models and other singular models 

in precipitation forecasting for the Krishna River basin.  

Overall, it was observed that including both the global and local predictors improved 

precipitation accuracy. It was also observed that the results based on the Wavelet-based models were 

more accurate compared to the other singular models considered in the study. When these models 

were coupled with wavelets, the model could capture the nonlinearity, which helped the WT ELM 

models to capture all the necessary details and produce reliable precipitation forecasts. 

Further comparing the model results obtained from WT-ELM and WT-FFBP-NN models, the 

WT-ELM based showed superior performance. It is clear that by coupling machine learning models 

with Wavelets, the forecasting capabilities of the models have increased with the results which 

registered low values when modeled with basic models were found to be improved while usage of 

WT-based hybrid models for forecasting. 

Model Application for the Different Regions in India 

Based on the results obtained for the Krishna River basin, the best model was the WT- ELM 

model. So, to test the model results for the entire country and generalize the model performance, WT-

ELM models were developed for the chosen 4 locations for each region categorized by IMD based on 

precipitation. The results for the selected locations are shown in Table 5. 
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Table 5. Results of WT ELM models for India with combined global and local predictor variables. The 

values for RMSE and MAE are normalized with respect to mean and standard deviation. 

Station 
Central India 

RMSE(mm) Correlation NSE MAE(mm) 

1 0.0718 0.9084 0.8152 0.0059 

2 0.0680 0.8751 0.7200 0.0491 

3 0.0757 0.9260 0.8538 0.0584 

4 0.0755 0.8775 0.7574 0.0567 

 North India 

1 0.0733 0.8437 0.7012 0.0537 

2 0.0610 0.8864 0.7733 0.0447 

3 0.0800 0.8286 0.6816 0.0581 

4 0.0728 0.7804 0.5477 0.0554 

 Peninsular 

1 0.0927 0.8406 0.6619 0.0686 

2 0.1009 0.7936 0.6112 0.0780 

3 0.0419 0.9324 0.8580 0.0325 

4 0.1030 0.8728 0.7602 0.0781 

 Northwest 

1 0.0784 0.9178 0.8401 0.0603 

2 0.0628 0.8873 0.7437 0.0448 

3 0.0802 0.7611 0.5025 0.0578 

4 0.0696 0.8356 0.6765 0.0532 

Central India: 

The results from the models show that the correlation values found to be 0.90,0.87,0.92 and 0.87, 

with the NSE values being 0.81,0.72,0.85,0.75 and the values of MAE showing that the error 

component in the forecast is relatively low as the value is nearer to zero. Also, the value of RMSE is 

less than 0.08 for all the stations. 

North India: 

The results from the WT-ELM models show that the correlation values are 0.84,0.88,0.82, and 

0.78 with NSE values of 0.70,0.77,0.68, and 0.54, along with low MAE and RMSE values. These low 

RMSE and RMSE indicate that the error component in the forecasting model is less. 

Peninsular India: 

The correlation values from the results show that values are 0.84,0.79,0.92, and 0.87, respectively, 

for the four selected stations with NSE values of 0.66,0.61,0.85, and 0.76. The values of MAE were also 

found to be low, similar to the results of the remaining regions. 

Northwest: 

The results indicate that the correlation values in these regions are 0.91,0.88,0.76, and 0.83, with 

NSE values of 0.84,0.74,.50, and 0.67. 

Based on the results in Tables 3 to 5, the model that produced good results for all the different 

input combinations is the WT-ELM model with the highest correlation, highest NSE, and the lowest 

error component than linear MLR model, machine learning models like FFBP-NN, ELM, and WT-

FFBP-NN.  
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(a) (b) 

  
(c) (d) 

Figure 5. Spatial map of NSE for various models for India using (a) FFBP-NN, (b) ELM, (c) WT FFBP-

NN, and (d) WT-ELM models. 

Discussion 

In this study, wavelet-based hybrid models were tested for their ability to forecast monthly 

precipitation, and their performances were compared with those of some key traditional and other 

contemporary methods, including MLR, FFBP-NN, and ELM models. Among the different 

forecasting methods applied in this study, machine learning methods generally outperform the basic 

MLR models. Among the single-scale machine learning models, the ELM model outperformed the 

FFBP-NN model. The better performance of the ELM model may be due to its ability to capture the 

long- and short-term memory relationship between the climatic variables and precipitation.  

Overall, our results manifest that the wavelet-based hybrid models (WT-FFBP-NN and WT-

ELM) are accurate compared to the traditional and other machine-learning methods considered in 

this study. This observation is in congruence with the broader understanding of the performance of 

the wavelet-based hybrid models, where in wavelets enhance the models' capability to unravel the 

multi-scale relationship among the variables. For example, in a recent study,[41] showed that 

wavelet-based decomposition helps identify the correlation between different variables, improving 

the model skill score. Similarly, in another study by [29], the authors showed that the Wavelet-based 

models are accurate for streamflow forecasting. Another study,[42] showed that the wavelet based 

Volterra model performed superior to the simple non-linear models for rainfall forecasting. 

To understand the possible reasons for improving the performance of the Wavelet-based 

models, the correlations between the precipitation and climatic variables with and without wavelet 

decomposition. Table 6 shows the values of the same for Grid 2.  
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Table 6. Correlation between different climatic variables and precipitation with and without wavelet 

decomposition for Grid 2 (Dn indicates the decomposition and its level). 

Climat

ic 

variab

le 

Origin

al scale  
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

p5zas 0.011 
0.01

1 

0.05

1 

0.06

1 

0.06

1 

0.08

1 

0.16

1 

0.36

1 

0.42

1 

0.27

1 

0.12

1 

p5th 0.131 
0.00

1 

-

0.00

9 

-

0.01

9 

-

0.05

9 

-

0.06

9 

-

0.07

9 

0.00

1 

0.36

1 

0.14

1 

0.08

1 

p8th -0.019 
0.00

1 

0.00

1 

0.01

1 

0.00

1 

-

0.02

9 

-

0.15

9 

-

0.36

9 

-

0.40

9 

-

0.32

9 

-

0.10

9 

rhum 0.111 
0.02

1 

0.03

1 

0.06

1 

0.12

1 

0.20

1 

0.33

1 

0.40

1 

0.36

1 

0.33

1 

0.17

1 

shum 0.141 
0.01

1 

0.03

1 

0.05

1 

0.10

1 

0.17

1 

0.32

1 

0.42

1 

0.41

1 

0.37

1 

0.16

1 

temp 0.071 

-

0.00

9 

-

0.01

9 

-

0.04

9 

-

0.09

9 

-

0.15

9 

-

0.19

9 

-

0.12

9 

0.05

1 

0.01

1 

0.02

1 

mslp -0.079 

-

0.03

9 

-

0.07

9 

-

0.13

9 

-

0.16

9 

-

0.14

9 

-

0.23

9 

-

0.34

9 

-

0.38

9 

-

0.34

9 

-

0.09

9 

uas 0.021 
0.02

1 

0.04

1 

0.08

1 

0.15

1 

0.19

1 

0.29

1 

0.43

1 

0.40

1 

0.37

1 

0.09

1 

vas -0.029 
0.02

1 

0.04

1 

0.06

1 

0.07

1 

0.08

1 

0.03

1 

-

0.26

9 

-

0.39

9 

-

0.31

9 

-

0.13

9 

zas 0.171 
0.01

1 

0.22

1 

0.02

1 

0.02

1 

0.02

1 

0.00

1 

0.02

1 

0.07

1 

0.04

1 

0.03

1 

p5 uas -0.159 
0.01

1 

0.02

1 

0.03

1 

0.06

1 

0.08

1 

0.06

1 

-

0.02

9 

-

0.37

9 

-

0.17

9 

-

0.08

9 

p5 vas 0.021 
0.02

1 

0.03

1 

0.02

1 

0.00

1 

-

0.01

9 

-

0.01

9 

-

0.10

9 

-

0.26

9 

-

0.08

9 

-

0.00

9 

p500 0.091 

-

0.02

9 

-

0.06

9 

-

0.11

9 

-

0.14

9 

-

0.15

9 

-

0.20

9 

-

0.28

9 

-

0.36

9 

-

0.11

9 

-

0.00

9 

p850 -0.059 

-

0.03

9 

-

0.08

9 

-

0.15

9 

-

0.19

9 

-

0.20

9 

-

0.35

9 

-

0.46

9 

-

0.43

9 

-

0.37

9 

-

0.08

9 

r500 0.101 
0.01

1 

0.04

1 

0.07

1 

0.11

1 

0.18

1 

0.31

1 

0.43

1 

0.42

1 

0.37

1 

0.12

1 

r850 0.051 
0.02

1 

0.04

1 

0.07

1 

0.14

1 

0.21

1 

0.32

1 

0.41

1 

0.35

1 

0.30

1 

0.14

1 

# Values in bold show a significant correlation at 95% confidence levels. 

The correlation between precipitation and geopotential height (p850) is –0.06 without applying 

wavelet decomposition; conversely, the correlation is on the order of -0.47 to -0.16 between 

decompositions of p850 (D4 to D9), and precipitation varies from –0.17 to –0.39. A similar kind of 
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correlation can also be observed for several other variables (e.g., uas, p500, mlp). Overall, it is 

observed that there is a significant improvement in the correlation, or in other words, wavelets can 

unravel the hidden relationships and improve the performance of the forecasting models.  

It is pertinent to understand that the NCEP reanalysis data has been used; however, the 

methodology can be extended to the weather forecasting model results and used to extend the 

forecast lead time. 

6. Conclusions 

In this study, singular machine learning and Wavelet hybrid models were developed and 

applied to predict monthly precipitation for the Krishna River basin using local and global climate 

data as predictor variables. Based on the results obtained from evaluation measures, the model with 

the best prediction capability was found, and their ability to capture extreme events was identified. 

The performance measures showed that WT ELM models captured the events with higher precision 

than WT FBP-NN models with lower RMSE and higher NSE values. The outcome of this study 

indicates the capability of WT ELM models in forecasting works, and its applicability can be 

understood from the results from the case study for the Krishna River basin. Further evaluation of 

this model can be understood by adopting a similar methodology to analyze works for various 

regions with different climatic and metrological factors. 
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Appendix A 

A-1 Multiple learning regression (MLR) 

Multiple linear regression is a form of linear regression analysis which develops the relationship 

between multiple predictor variable (𝒙𝟏, 𝒙𝟐,𝒙𝟑, … . 𝒙𝒏)  with respect to predictand variable (y) and 

this relationship can be understood using Eq (A-1) 𝑦 = 𝑎1 + 𝑎2𝑥1 + 𝑎2 … . 𝑎𝑛𝑥𝑛 

where a1, a2, a3 … . an are calculated using the simple least squares method. A detailed explanation 

of the MLR model can be understood by referring to [43]. 

A-2 ARTIFICIAL NEURAL NETWORKS (ANN)  

Artificial Neural Networks are defined signal processing using neurons which save required 

experimental data to use for further processes. ANN has been developed to resemble the biological 

nervous system and they learn, store and process data sets based on examples. Understanding 

complex relationships between inputs and targets, which is not possible using linear algorithms can 

be performed easily and with high accuracy using ANNs [44]. ANNs have been used for a few 

decades in various fields for the analysis of different kinds of problems in hydrology and climatology. 

The application of this method can be further understood by seeing works like [30,45–49]. The ability 

of ANNs to learn and simulate the results based on the provided inputs show its capability to solve 

complex problems which linear models cannot perform [50]. Further the structure and capabilities of 

ANNs can be understood in detail by referring to [42,51,52]. While training a network, the number 
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of neurons is varied numerous times by using the trial-and-error method until the satisfaction of 

minimum criteria error [53]. Numerous training functions were available for training Neural 

networks to understand and capture input-output relationships. Some of the functions are Feed-

Forward Back Propagation Neural Network (FFBP-NN), Non-linear Auto Regressive with exogenous 

inputs Neural Network (NARX-NN), and Generalized Regression Neural Network (GRNN). In this 

work, for the application of models, FFBP-NN models were used for forecasting precipitation due to 

their higher applicability than other models. For a detailed understanding of this model, readers can 

refer to the works of [54,55], among others. 

The FFBP-NN is a multiple-layer network which consists of neurons that are stacked in layers 

and connected with each other. Inputs and outputs of the networks are the first and last layers of the 

networks with hidden layers being the remaining layers that carry information in the form of weights. 

In this study, FFBP-NN is trained, which is most widely used, especially in hydrologic applications. 

In this model, input data in the layers include input data is given by 𝑥1, 𝑥2, 𝑥3 … . 𝑥𝑛  and the results 

from the output layer are given as 𝑦1 , 𝑦2, 𝑦3 … . 𝑦𝑛. the input neurons are connected with hidden layers 

by the weights, which connect the tth neuron and the kth neuron, represented by 𝑤𝑡𝑘. Whereas  𝑤𝑗𝑡  

represents the connection between hidden layers and wtthe outputs layer. Being non-linear functions, 

ANNs capture the relationship between the input and output layer and the correlation for output can 

be understood [56] by Equation (A-2) 𝑦𝑗 = 𝑓𝑜 (∑ 𝑤𝑗𝑡𝑠
𝑡=1 . 𝑓ℎ (∑ 𝑤𝑡𝑘𝑥𝑘 + 𝑏𝑡𝑠′

𝑡=1 ) + 𝑏𝑗) 

where 𝒇𝒐 and 𝒇𝒉 denote the activation function in the output layer and the activation function of 

nodes in the hidden layer. 𝒃𝒕and 𝒃𝒋 are bias of tth neuron and jth neuron. 𝒔 𝒂𝒏𝒅 𝒔′ represent the 

nodes in the input and hidden layer respectively.  

The training algorithm used in the development of FFBP-NN model is Levenberg-Marquardt 

(LM) which is assumed to be one of the fastest and accurate due to the recurrence to incorporate 

experience in training processes [36].  
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