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Abstract: Shallow landslides pose serious threats to human existence and economic development,
especially in the Himalayan areas. Landslide susceptibility mapping (LSM) is a proven way for
minimizing the hazard and risk of landslides. Modeling as an essential step, various algorithms
have been applied to LSM. In this study, information value (IV) and logistic regression (LR) were
selected as representatives of the conventional algorithms, categorical boosting (CatBoost) and
conventional neural networks (CNN) as the advanced algorithms, for LSM in Yadong county, and
their performance was compared. To begin with, 496 historical landslide events were compiled into
alandslide inventory map, followed by a list of 11 conditioning factors, forming a data set. Secondly,
the data set was randomly divided into two parts, 80% of which was used for modeling and 20%
for validation. Finally, the area under the curve (AUC) and statistical metrics were applied to
validate and compare the performance of the models. The results showed that the CNN model
performed the best (AUC 0.974 and accuracy=93.3%), while the LR model performed the worst
(AUC 0974 and accuracy=93.3%) and CatBoost model performed better (AUC 0.974 and
accuracy=93.3%). Besides, the LSM constructed by the CNN model did a more reasonable prediction
of the distribution of susceptible areas. As for feature selection, did a more detailed analysis of
conditioning factors but the results were uncertain. The result analyzed by GI may be more reliable
but fluctuates with the amount of data. The conclusion reveals that the accuracy of LSM can be
further improved with the advancement of algorithms, by determining more representative
features, which serve as a more effective guide for land use planning in the study area or other
highlands where landslides are frequent.

Keywords: landslide susceptibility; information value; logistic regression; machine learning; deep
learning; GIS

1. Introduction

Across the globe, landslides are a sudden geological phenomenon that causes significant
damage to property and injury or death to residents [1-3]. Landslides in China occur much more
frequently and on a larger scale than in any other country in the world [4,5]. The prevention measures
need to be focused on identifying and mapping the existing landslides to ensure their prevention [6].
It is generally considered that damages can be reduced by predicting where disasters are likely to
occur [7]. Thus, landslide susceptibility mapping (LSM) is considered to be a proven way for
minimizing the hazard and risk of landslides.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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The accuracy of LSM is mainly up to reliable data and modeling algorithms. Over the years,
various algorithms have been applied to LSM and improved the accuracy. Quantitative (data-driven)
and qualitative (knowledge-based or physically-based) algorithms are available for the modeling of
landslide susceptibility [8,9]. Data-driven algorithms are usually classified as bivariate methods (like
certainty factor (CF) and information value (IV)), multivariate methods (like logistic regression (LR)
and cluster analysis), conventional machine learning [10-13], and deep learning [14]. Most qualitative
methods are subjective and suitable for small-scale areas only. In recent years, with the development
of advanced remote sensing, the acquisition of landslide samples and critical factors become
accessible and accurate, thus, data-driven approaches are popular. There have been a number of
Conventional machine learning methods (like random forest and categorical boosting (CatBoost)
observed due to their ability to solve non-linear geo-environmental problems without making
unnecessary assumptions [15]. A comprehensive analysis and comparison between conventional
statistical and machine learning models have been discussed in some studies. However, no consensus
exists on which model is most suitable or best.

Deep learning is a further development of machine learning, which performs better in terms of
determining representative features and possibly further improves the classification accuracy [14,15].
Convolutional neural networks (CNN) as one of the representatives of deep learning has been well
verified in places like image classification and face recognition [20-22], but rarely applied to LSM
[23,24]. A multi-level structure of CNN is constructed to explore the complex non-linear relationships
between variables, which is accorded with the characteristics of LSM. This study is to explore the
effect of the advanced algorithm on the accuracy of prediction results by comparing the performance
of conventional and advanced algorithms, and four representative models as IV, LR, CatBoost, and
CNN were selected.

Yadong County in Southeastern Tibet was selected as the study area because of its topographic
and geological conditions, resulting in frequent shallow landslides. Four models as IV, LR, CatBoost,
and CNN were explored and compared for the effect on landslide susceptibility prediction.

2. Materials

2.1. Study area

Yadong County is under the jurisdiction of Shigatse City, Tibet Autonomous Region, at the
southern foot of the middle section of the Himalayas (Figure 1). Over 120,000 people live in the study
area, which extends over some 4240 km?. It belongs to the high mountain landform of the Himalayas
with an average elevation of 3500m (ranging from 1747~7057 m). The study area is divided into two
parts, north and south, based on the line from Pali Town to Kangbu Town due to the great difference
in altitude and two completely different climates are formed [5]. The northern region is 4300m above
sea level, with a cold and dry climate and an average annual rainfall of about 410mm. The altitude in
the south has dropped significantly, with an average altitude of 2800 meters, a humid climate, and
an annual precipitation of 873 mm. This study area has mainly shale, limestone, and dolomite. In the
southern area of the study area, faults and folds dominate the geology. There is a degree of VIII on
the modified Mercalli index indicating a high seismic intensity. The density of geological disasters in
the southern area is relatively high, mainly collapses and landslides, while the northern area is
dominated by debris flows.


https://doi.org/10.20944/preprints202305.1358.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2023 doi:10.20944/preprints202305.1358.v1

MLIW‘S li‘f‘.\l.'l"l,

W0
T
WAON

Legend

[

T
TGN

H
3
3
'
§
1
i
i
TN

Legend
* non-landslide locations
+  Landslide locations
= Roads
DEM (m)
T087

1747

0 AT TS 15

wrnE W
Figure 1. Location of the study area showing elevation and landslide samples.

On September 18, 2011, a magnitude 6.8 earthquake occurred in Sikkim, India. The study area
was affected by the earthquake which induced a series of secondary geological disasters, causing
great harm to local residents and roads (Figures 2 and 3). Therefore, it is of great significance to
compile an accurate landslide susceptibility map for the study area.

Figure 2. The Sikkim earthquake triggered landslides in Yadong County: (a) 5204 road was

interrupted; (b) Houses collapsed.
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Figure 3. Remote sensing image interpretation: (a) debris flow in Kangbu township; (b) debris flow
in Duina township.

2.2. Data preparation

2.2.1. Landslide inventory

Typically, data-driven methods for LSM assume that landslides have a greater chance of
recurring under the same conditions as they did before [25]. Therefore, a comprehensive and exact
landslide inventory that shows the locations and numbers of landslides is essential [7]. It is therefore
essential to develop a complete and accurate landslide inventory (Figure 4) that shows the locations
and quantities of landslides. This data can be obtained by taking aerial photographs, reading
literature, and conducting extensive fieldwork. Landslides are bounded by polygons containing the
entire perimeter, and 496 polygons representing the landslide perimeter were identified. Using a 1:1
sampling strategy [26], the model was trained and validated with 992 samples, including 496
landslides with a sign of “1” and 496 non-landslides with a sign of “0”. Non-landslide samples were
randomly selected from non-landslide dense areas.
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Figure 4. Study area thematic maps: (a) Elevation; (b) Slope; (c) MED; (d) Plan curvature; (e) Profile
curvature;(f) TWI;(g) DTF;(h) DTR;(i) DTS;(j) Rainfall;(k) NDVL

2.2.2. Conditioning factors

A total of 11 conditions factors were selected based on the study region's characteristics, the
data's availability, reliability, and practicality, including elevation, slope, maximum elevation
difference, plan curvature, profile curvature, topographic wetness index, distance to faults, distance
to roads, distance to streams, annual rainfall and NDVI [27].
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Elevation which was divided into five sub-classes by 1000 m intervals, has an influence on both
rainfall and vegetation [28,29] (Figure 4a). Slope, which controls shear strength at potential slide
surfaces as well as subsurface flow [30], was reclassified into six classes by 10° intervals (Figure 4b).
It was calculated in ArcGIS 10.2 that the maximum elevation difference reflects potential kinetic
energy of slope units. By 100 m intervals, the thematic map was reclassified into six classes (Figure
4c). Erosion and deposition can be determined from slope curvature since it is essential to the
geometry of slopes [31]. Six classes were established for profile and plan curvatures (Figure 4d and
4e). The TWI represents basic terrain, which was divided into six categories (Figure 4f). With the
spatial resolution of 30 meters, six topographic factors were extracted from the digital elevation
model (DEM).

Bulk-rock strength could be reduced as a result of faults acting as potential weak planes in slopes
and distance to fault was constructed with six classes by 2000m intervals (Figure 4g). In a similar
manner, distances to the road and river were divided into six categories with an interval of 2000
meters (Figure 4h,i).

An existing 1:50,000 geological map was used to extract fault information, and Landsat 8 LOI
images were used to determine road and river network information. Using the Euclidean Distance
ArcGIS Tool, the distances from each raster unit of the area to the nearest fault, road, stream, and
highway were calculated.

The unique trigger factor considered in the study was rainfall, and it has been applied numerous
times. Based on the data from 14 precipitation stations near the study area, an ordinary kriging
interpolation was used to generate the thematic map in ArcGIS. The thematic map was reclassified
into 4 classes (Figure 4j).

The consolidation of vegetation roots can stabilize soil, which alleviates the effect of rainfall on
the stability of the slope [34]. The Vegetation normalization index(NDVI) was applied to evaluate the
vegetation and it is calculated by:

NDVI = NIR - RED )
NIR+ RED

Where RED is the reflection value of the red wavelength and NIR is the near-infrared
wavelength.

NDVI ranges from -1~1 with a positive value indicating coverage and the greater the value, the
greater the coverage. The thematic map was reclassified into 6 classes (Figure 4k)

2.2.3. Mapping units

LSM commonly uses grid cells, slope units, and unique-condition units as mapping units. The
choice of mapping unit is controversial, however, grid cells are the most common [35,36]. Landslides
can be represented better by a slope unit, which represents their source, transport, and accumulation
areas. Thus, the study area is divided into 25483 slope units with the hydrologic analysis tool in
ArcGIS and necessary artificial corrections are accompanied according to remote sensing images.

3. Methods

The main aims of the study are to explore and compare the effect of conventional and advanced
modeling algorithms on Landslide susceptibility prediction. The methodology followed in this study
mainly contains five steps (Figure 5). Firstly, data sets including landslide samples, conditioning
factors, and mapping units are prepared for modeling. The second is to divide the data set into
training and validation parts. After that, four representative algorithms as IV, LR, CatBoost, and CNN
are applied to LSM. Finally, the performance of LR, CatBoost, and CNN models are analyzed and
compared based on some key measures.
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Figure 5. Flow chart of this study.

3.1.1IV

By using the frequency or density of landslides, the IV method reflects the magnitude of the
hazards associated with different influencing factors and their sub-intervals. IV was first proposed
by Yin and Yan (1988) and later modified by Van Westen (1993) [38]. Equation 1 shows the method
for the calculation of the information values:

14 )=1n 323
S IN

i-J

Where i=1, 2, 3, ..., n;j=1, 2, 3, ..., m;sijrepresents the area of the landslide of the i-th
conditioning factor in j-th interval; nij represents the area of the i-th conditioning factor in j-th interval;
S represents the total area of the landslide; N represents the total area.

Depending on the IV method, the value might be positive or negative. When IV values are
positive, they indicate that the factor is conducive to the occurrence of landslides in a particular
interval: a higher IV indicates a higher likelihood of landslides, and vice versa.

The total information value I can be determined by:

n S[/S
Ii - Zi:llog n/N

Finally, the information value calculated by each unit is processed by linear normalization.

3.2. LR

The LR model is used for statistical analysis of binary dependent variables (the dependent
variable y has two values: 0 and 1) [39]. The LR model is advantageous since the data distribution
can either be nominal or continuous [40]. It is computed using the following equation:

doi:10.20944/preprints202305.1358.v1

2)
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P=— (4)
l+e™
where p represents the occurrence probability of an event (such as a landslide) on the s-curve in
the range of 0 to 1; y represents a linear combination function and is calculated by using Eq.5.
y=b, +bx, +b,x, +b;x; +b,x, (5)

Where bo is the constant value or intercept of the equation, and b, by, ..., bx are the regression
coefficients of the explanatory variables x1, x2, ..., xn.

In the current study, the LR model was performed in SPSS software, the and forward stepwise
method was adopted to screen valuation indexes. The conditioning factors were calculated as
independent variables, whereas dependent variables represent the occurrence of landslides. During
the last step of the analysis, all variables were significant at less than 0.05, so no additional variables
were included.

3.3. CatBoost

CatBoost is an improved implementation based on Gradient Boosted Decision Tree (GBDT)
framework, with fewer parameters. It is an open-source machine-learning library of Yandex and a
member of Boosting family. The gradient deviation and prediction offset can be effectively solved by
CatBoost algorithm, so as to reduce the occurrence of over-fitting and improve the accuracy and
generalization ability of the algorithm [41]. Detailed information about CatBoost can be referred to
another literature [42].

3.4. CNN

CNN provides an end-to-end learning model that can select model parameters through
traditional gradient descent methods. The trained CNN can learn image features and complete the
extraction and classification of image features [43]. A CNN consists of the network structures as
convolutional layer, down-sampling layer, and fully connected layer, each of which contains a
number of independent neurons [44]. Its notable feature is that the weight sharing and local
connection of the convolution kernel in the hidden layer can greatly reduce the number of weights,
thereby reducing the complexity of the convolutional network model.

The unique convolutional layer and pooling layer structure of CNN can be combined arbitrarily
to obtain an infinite variety of network models. This study applied the AlexNet model to LSM [45].
Before modeling, conditioning factors are requested to be superimposed to obtain a multi-band two-
dimensional image as the input raw data in LSM. Since LSM belongs to a two-classification problem
of landslide disasters, two neurons are placed in the output layer classifier to represent landslide and
non-landslide. All parameters have been optimized through trial and error approach. The number of
training cycles is 10, the initial learning rate is 0.01, the loss function uses standard cross-entropy, the
optimizer is Adam, and the activation function is Relu.

The machine learning and deep learning-based algorithms are implemented in Python3.7 based
on the Package of Numpy, Scikit-Learn, and Tensorflow. The statistics-based algorithms are
implemented in SPSS.

3.5. Models evaluation

A predictive model will not be convincing without scientific validation, so existing data will
need to be split into training and validation sets. There were 80% of the data sets randomly chosen
for training and 20% for validation in LSM.

Four evaluation measures as accuracy, sensitivity, specificity, and AUC were combined to
analyze the performance of the models. Accuracy, sensitivity ,and specificity are calculated from the
Confusion Matrix, which is an N x N matrix (Table 2). The TP represents the number of landslides
that have been correctly predicted as unstable and TN represents the number of non-landslides that
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have been correctly predicted as stable. While FP represents the number of non-landslides that have
been predicted incorrectly as unstable and FN represents the number of landslide units that have
been predicted incorrectly as stable.

Table 1. Landslide conditioning factors in this study.

doi:10.20944/preprints202305.1358.v1

Conditioning Factors Zone Ni/N Si/S v
<2700 1.21% 1.09% 0.100
2700~3700 21.98% 8.26% 0.978
Elevation (m) 3700~4700 43.80% 49.88% -0.131
4700~5700 28.63% 39.29% -0.317
>5700 4.44% 1.48% 1.098
<10 11.90% 35.95% -1.106
10~20 25.60% 29.88% -0.154
Slope (°) 20~30 38.31% 25.67% 0.400
30~40 22.18% 8.13% 1.003
>40 2.02% 0.36% 1.709
<100 7.46% 36.41% -1.585
100~200 13.91% 21.80% -0.449
MED (m) 200~300 11.90% 15.82% -0.285
300~400 20.56% 10.76% 0.648
>400 46.17% 15.21% 1.110
<-0.4 0.20% 0.12% 0.538
Plan curvature -0.4~-0.1 4.44% 4.89% -0.097
-0.1~0.2 92.74% 93.11% -0.004
>0.2 2.62% 1.89% 0.328
<-0.3 0.20% 0.59% -1.078
Profile curvature -0.3~0 31.20% 36.57% -0.157
0~0.3 67.54% 62.50% 0.077
>0.3 1.01% 0.33% 1.106
<6 7.26% 5.85% 0.215
6~7 46.57% 32.13% 0.371
7~8 33.27% 27.54% 0.189
TWI
8~9 8.87% 14.48% -0.490
9~10 2.42% 9.11% -1.326
>10 1.61% 10.89% -1.910
<4 31.05% 20.27% 0.426
4~8 16.33% 14.71% 0.105
8~12 7.46% 14.57% -0.670
Distance to faults 12~16 22.18% 16.00% 0.327
(km) 16~20 14.31% 14.99% -0.046
20~24 8.67% 12.22% -0.343
24~28 0.60% 6.10% -2.311
>28 0.20% 1.14% -1.734
<1 47.58% 14.51% 1.187
1~3 19.35% 25.62% -0.280
Distance to streams 3~5 7.06% 19.97% -1.040
(km) 5~7 6.65% 14.66% -0.790
7~9 9.07% 11.07% -0.199
9~11 5.44% 7.00% -0.252
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11~13 3.63% 4.38% -0.189
>13 1.61% 2.78% -0.544
<3 57.66% 32.20% 0.583
3~6 11.69% 25.23% -0.769
6~9 14.11% 18.23% -0.256
Distance to roads 9~12 6.20% 9.08% -0.374
(km) 12~15 5.44% 6.37% -0.158
15~18 1.41% 4.46% -1.151
18~21 2.62% 2.07% 0.237
>21 0.81% 2.35% -1.070
<480 32.26% 50.99% -0.458
Average annual 480~580 29.44% 24.55% 0.182
. 580~680 24.60% 11.55% 0.756
precipitation (mm)
680~780 3.02% 9.38% -1.132
>780 10.69% 3.53% 1.107
<0.15 16.53% 12.68% 0.265
0.15~0.3 25.20% 36.62% -0.374
NDVI 0.3~0.45 15.12% 19.74% -0.266
0.45~0.6 15.93% 17.94% -0.119
0.6~0.75 22.18% 9.93% 0.804
>0.75 5.04% 3.09% 0.490
Table 2. Confusion matrix analysis with evaluation measures.
Actual Values Accuracy Sensitivity  Specificity
Positive (1) Negative (0)
Positive (1) True Positive False Negative
Predicted (TP) (FN) (TP+TN)/(TP+TN+FP+EN) TN/(TN+EP) TN/(TN+FP)
Values Negative (0) False(é’;)sﬁwe True(l}l;g)atlve

An additional indicator of model validity is the area under the receiver operating characteristic
curve (AUROC). The value of AUROC ranges from 0.5~1, the larger the value, the better the
generalization ability of the model and prediction performance.

4. Results

4.1. Performance and comparison of conventional and advanced algorithms

Before modeling, the data were normalized with Z-scores to eliminate the effects of different
dimensions. Additionally, a correlation analysis was conducted to test the collinearity among the
independent variables using the variance inflation factor (VIF) [44]. There is severe col-linearity
between the selected variables if the VIF value exceeds 10. Table 2 showed the VIF values of the
chosen independent variables and the factor Elevation has the highest VIF value (5.711). The result
indicates that no severe collinearity problems exist among the chosen variables and thus, 11
conditioning factors were applied to the modeling.

The performance of the three models using the confusion matrix is shown in Table 5. The CNN
model achieved the highest value of sensitivity (84.21%), followed by the CatBoost model
(sensitivity=82.96%) and the LR model (sensitivity =81.45%). As for specificity, the CNN model
performed best with 93.52%, followed by the CatBoost model with 86.63 % and the LR model with
84.79%. The CNN model also ranked the first for specificity with a value of 93.52%, followed by
CatBoost (86.63%) and LR (84.79%). CNN model had the best accuracy and ROC values of 88.88%
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and 0.944, while the LR model had the worst values of 83.13% and 0.897. As well, CatBoost performed
well, scoring 86.63% and 0.930 respectively.

The verification data set is more useful and important for evaluating the ability of these models
to generalize. In Figure 6, we found that the CNN model had the highest sensitivity, specificity,
accuracy, and AUC values, namely 79.38%, 91.00%, 85.28%, and 0.908. Additionally, CatBoost
performed well with 76.28%, 85.00%, 80.71%, and 0.893, respectively. The LR model remained the
worst with values of 79.38%, 76.00%, 77.66%, and 0.838 (Table 5).
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Figure 6. Analysis of ROC curve for the landslide susceptibility map: (a) Success rate curve of
landslide using the training data set; (b) Prediction rate curve of landslide using the validation dataset.

Model performance declined in verification, particularly for the LR and CatBoost models (the
accuracy value decreased by about 6%), which indicated that the models were overfitting and
generalizability was suspicious. While the performance of the CNN model was stable as the value of
AUC reached 0.908 and the accuracy value was close to the training data set.

4.2. Landslide susceptibility mapping results

In case of LR model, LSI ranges from 0.11 to 0.96, and the corresponding area percentages were
40.17% (very low), 12.24% (low), 5.54% (moderate), 17.75% (high) and 24.30% (Very high),
respectively. Similarly, five reclassified classes of the CatBoost model accounted for 30.16%, 23.81 %,
15.21 %, 26.82 %, and 14.94 % respectively of the entire area. LSM constructed by the CNN model
was also divided into five classes: very low (<0.18), low (<0.42), moderate (<0.653), high (<0.82), and
very high (>0.82), accounting for 28.99%,19.65%,14.21%,9.19% and 27.96% of the whole area. It is
noticed that LR, CatBoost, and CNN models predicted the largest proportion of very low
susceptibility while IV predicted the largest proportion of very high susceptibility.

A logical landslide susceptibility map should meet two rules: (1) the density of landslide samples
should increase with the increase of susceptibility class and be mainly located in the highest
susceptibility area; (2) the landslide susceptibility map should be spatially continuous and smooth
and the very high-susceptibility class area should occupy a small proportion. Concomitant with these
maps (Figure 7), the landslide samples (dark spots) were mainly located in the red areas, and the non-
landslide samples (blue spots) were in the green areas. The high or very high susceptibility areas
were concentrated in the south of the areas, which was consistent with the distribution of landslides
(Figure 8). Thus, the maps predicted by these models were logical on the whole.
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Figure 7. Landslide susceptibility maps: (a) IV; (b) LR model; (c) CatBoost model; (d) CNN model.
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Figure 8. Percentages of areas in different susceptibility classes for landslide.

There are distinct differences among the landslide susceptibility maps derived from the models.
Table 2 showed that the IV increased as the susceptibility class increased for the model and the IVs
were all negative for the very low, low, and moderate susceptibility class while positive for the very
high susceptibility class. For high susceptibility, the IVs were positive for LR, CatBoost, and CNN
models while negative for the IV model. On the other hand, the maps predicted by IV and LR models
were spatially discontinuous while CatBoost and CNN models produced smoother patterns. Besides,
the percentage of very high susceptibility class was similar for LR, CatBoost, and CNN models, while
the IV model predicted the highest percentage reaching 37.27%.

In comparison to the other 3 models, the CNN model shows superior fitting and generalization
capabilities in predicting landslide susceptibility. It has been found that very high landslide
susceptibility areas are mainly associated with the Yarlung Zangbo River and its tributaries. A large
part of the eroded slopes is scoured by the river network. The areas near streams are densely
populated, and the occurrence of landslides can threaten lives.

4.3. Evaluation of conditioning factors

4.3.1. Application of conventional algorithms

Bivariate methods were used to establish relationships between the conditioning factors and the
occurrence of the landslides, as shown in Table 1. As for elevation, the percentages of landslide area
for 3700~4700m and 4700~5700m were 43.80% and 28.63% respectively, which means that over 70%
of landslide areas were distributed among the two classes but the IV value of these two classes were
both negative. While the highest IV of elevation is 1.098 for the class of >5700. For Slope, the IV values
increased as the slope increased, as well as the factor MED, which indicated that landslides are more
likely to occur in steep areas. The IV of slope ranged from -1.106~1.709, in which the classes of >20
were all positive. In terms of TWI, the class of 6~7 had the highest IV of 0.371 and the IV were all
negative at the class of >8.

For curvature, the highest IV of plan curvature was 0.538, located at the class of <-0.4, and 1.106
of Profile curvature at the class of >0.3. It was found that landslides were concentrated in convex
terrain. On the other hand, landslides are highly concentrated near the faults, streams, and roads as
the IV reached the maximum value at first class. It indicated that the development of faults, streams,
and human engineering activities was conducive to the occurrence of landslides.

As for rainfall, the highest probability of landslides occurring appeared in the class of >780mm
(IV reached 1.107). While the IV did not increase with increasing rainfall and it indicated that
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landslide occurring is complex. In case of NDVI, the class of 0.6~0.75 has the highest IV of 0.804. The
IV changed erratically for NDVI although high vegetation cover helped enhance the stability of the
landslide.

As for the LR model, the final regression equation is as followed:

y =756 MED) + (0.395 profile.curvature) + (1.799rainfall) + (—1.641DTR) +

(0.684DTS)+0.28 ©

It can be found that MED, rainfall and DTR were essential to landslide occurring as the
coefficients were relatively large. While profile curvature and DTS were considered as secondary
factors. The coefficient of DTR was negative, which indicated a negative effect on landslide occurring.

Conventional algorithms such as IV and LR methods were used to establish the relationships
between the conditioning factors and the occurrence of the landslides in this study. In summary, the
conditioning factors have an effect on landslides occurring and the impact of different factors on
landslides varies in different intervals.

4.1.2. Application of advanced algorithms

Actually, conditioning factors have different influences on the occurrence of landslides while
the bivariate methods fail to recognize the difference. Gini importance (GI) is defined as the total
reduction in average nodal impurities across all trees. GI was also applied to analyze the relative
importance of different factors, exploring the factor’s contribution to landslide occurring.

The bigger the GI express greater the importance of factors of landslides occurring [44]. Table 3
showed the rank of the conditioning factors of this study. The result showed that DTF was the most
important factor responsible for landslides as the GI reached 5.36. Besides, the factor MED, DTS,
elevation, plan curvature, and slope were also pivotal since the GI were all greater than zero. While
the other factors as TWI, rainfall, profile curvature, NDVI ,and DTR showed little contribution to
landslides in the study area (Figure 9).

Table 3. Multicollinearity diagnosis indexes for variables.

Variables VIF

Elevation 5.117

Slope 3.426

MED 5.726

Plan curvature 1.499

Profile curvature 1.291

TWI 6.071

Distance to fault 2.641

Distance to stream 4.492

Distance to road 4.302

Average annual precipitation 1.763

NDVI 2.697

Table 4. Models’ performance using related indices.
Training Validation

Parameter LR CatBoots CNN LR CatBoots CNN
Sensitivity(%) 81.45 82.96 84.21 79.38 76.28 79.38
Specificity(%) 84.79 90.27 93.52 76.00 85.00 91.00
Accuracy(%) 83.13 86.63 88.88 77.66 80.71 85.28

AUC 0.897 0.930 0.944 0.838 0.893 0.908
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Table 5. The IV of different landslide susceptibility levels.
Percentage of Percentage of
1 1 v
Mode Class area (%) landslide area (%)
Very low 32.05% 8.06% -1.74
Low 8.64% 7.66% -1.19
v Moderate 7.96% 5.04% -0.50
High 14.08% 20.36% -0.14
Very high 37.27% 58.87% 0.70
Very low 40.17% 5.24% -1.60
Low 12.24% 4.44% -047
LR Moderate 5.54% 6.05% -0.10
High 17.75% 21.17% 0.14
Very high 24.30% 63.10% 0.88
Very low 30.16% 5.24% -1.74
Low 14.42% 4.44% -1.18
CatBoost Moderate 7.82% 6.05% -0.25
High 20.28% 21.17% 0.04
Very high 27.31% 63.10% 0.84
Very low 28.99% 4.44% -1.88
Low 19.65% 8.67% -0.82
CNN Moderate 14.21% 12.30% -0.14
High 9.19% 11.09% 0.19
Very high 27.96% 63.51% 0.69
Table 5. Conditioning factors assigned by the Gini index.
Method DTF MED DTS Elevation Plan curvature Slope
Gini index 5.36 5.00 4.80 4.10 3.69 2.80
DTE
MED
DTS
Elevation
Plan curvature
Slope

Figure 9. Parametric importance graphics designed by Gini index.


https://doi.org/10.20944/preprints202305.1358.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2023 doi:10.20944/preprints202305.1358.v1

16

4. Discussion

With the progress of related technologies and the maturity of theory, various approaches have
been developed and applied to LSM to improve prediction accuracy and reliability [47-49]. Recently,
deep learning is becoming popular and beginning to be used for LSM. In this study, CNN was
applied to LSM, and its performance was compared to the conventional statistical methods and
machine learning approaches.

Different algorithms have different emphases and generally, their performance varies with
different study areas [50,51]. However, advanced algorithms usually perform better in terms of
accuracy compared to conventional statistical methods [52,53]. The result of our study also found that
CNN and CatBoost performed better in terms of accuracy and CNN did the best in generalization.
There was a certain gap between the three models. The improvement benefits from the characteristics
of the algorithms themselves for decreasing the bias, discrepancy, and over-fitting problems. It is easy
to implement and acceptable in conventional statistical methods to establish a mathematical equation
for investigating the relationship between factors related to landslides and landslides occurring. In
machine learning methods, optimization is stressed, so the multiple parameters involved need to be
tuned before application, which is challenging for non-experts [54,55]. Deep learning algorithms use
a more complex modeling architecture consisting of convolutional, activation, pooling, and fully
connected layers, taking images as input parameters. Feature selection and information filtration are
done in the pooling layer, which is a robust step in CNN. Importantly, the dimensionality reduction
is done without changing the depth of the maps. Thus, deep learning algorithms have the ability to
process data efficiently, feature extraction of high-dimensional data and keep high prediction
accuracy.

The accuracy of LSM should not be the only priority. Identifying the major conditions that lead
to landslides is also critical, which assists in furthering the process. Identifying subjective weights
and objective weights allows for separating their contributions. Analytic hierarchy processes (AHP)
and factor analyses (FA) are commonly used methods [58,59]. Landslide and their underlying
conditioning factors can be directly correlated using LR models [60,61]. The relative importance of
factors can be determined by the magnitude, plus or minus of the coefficients. In addition, bivariate
methods are capable of distinguishing factors with different susceptibilities to landslides across
interval ranges. Accordingly, LR and IV are recommended to be combined to analyze the factor’s
contribution to landslide occurring. GI describes the contribution of the conditioning factors by
calculating the total decrease and the final coefficients reflect the relative importance of different
factors. Some studies have applied GI for feature selection, which helps to decrease redundant
information [62,63].

As for bivariate methods like IV, FR, and CF, the performance is mainly up to whether the
division of the conditioning factors interval is reasonable. However, there is no consensus on the size
or number of intervals although some methods such as natural breaks and equal intervals have been
applied. Besides, the total IV is a linear addition of the IV of all conditioning factors, which further
amplifies the uncertainty of the final result. Thus, the susceptibility analysis of conditioning factors
on different intervals by bivariate methods may unreliable and the landslide susceptibility maps are
also difficult to be verified quantitatively. In terms of LR, the establishment of the equation derives
from the distribution characteristics of data and is sensitive to linear correlation. Thus, the
performance is up to data partition and will fluctuate during validation. The results of relative
importance for conditioning factors may be confused or even contrary to our experience on
landslides. Machine learning or deep learning emphasis on iterative operations and repeated
verification and requires a large amount of data. Landslide samples are limited in a restricted area
and difficult to collect. The performance will also decline as the data decrease.

6. Conclusions

In the current study, IV, LR were selected as representatives of the conventional algorithms,
CatBoost and CNN as the advanced algorithms, for LSM in Yadong county, and their performance
was compared. The following conclusions can be drawn:
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1. There was a certain gap between the models. Compared to conventional algorithms, advanced
algorithms performed better in terms of prediction accuracy and CNN performed the best in
generalization, thus regarded as the best model in this study.

2. The landslide susceptibility map predicted by CNN was more reasonable and the very high
susceptibility areas were mainly distributed along the Yarlung Zangbo River.

3. As for feature selection, IV and LR did a more detailed analysis of conditioning factors but the
results were uncertain. The result analyzed by GI may be more reliable but fluctuates with the
amount of data.

4. The conventional algorithms are inferior to the advanced algorithms in accuracy and feature
selection but conventional algorithms have better resolvability and operability.

However, there are also some limitations of the present study:

There are possibilities for the combination of conventional and advanced algorithms and further
exploration is needed to improve prediction accuracy obviously.

Models need to be validated more reliably.
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