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Abstract: Shallow landslides pose serious threats to human existence and economic development, 

especially in the Himalayan areas. Landslide susceptibility mapping (LSM) is a proven way for 

minimizing the hazard and risk of landslides. Modeling as an essential step, various algorithms 

have been applied to LSM. In this study, information value (IV) and logistic regression (LR) were 

selected as representatives of the conventional algorithms, categorical boosting (CatBoost) and 

conventional neural networks (CNN) as the advanced algorithms, for LSM in Yadong county, and 

their performance was compared. To begin with, 496 historical landslide events were compiled into 

a landslide inventory map, followed by a list of 11 conditioning factors, forming a data set. Secondly, 

the data set was randomly divided into two parts, 80% of which was used for modeling and 20% 

for validation. Finally, the area under the curve (AUC) and statistical metrics were applied to 

validate and compare the performance of the models. The results showed that the CNN model 

performed the best (AUC 0.974 and accuracy=93.3%), while the LR model performed the worst 

(AUC 0.974 and accuracy=93.3%) and CatBoost model performed better (AUC 0.974 and 

accuracy=93.3%). Besides, the LSM constructed by the CNN model did a more reasonable prediction 

of the distribution of susceptible areas. As for feature selection, did a more detailed analysis of 

conditioning factors but the results were uncertain. The result analyzed by GI may be more reliable 

but fluctuates with the amount of data. The conclusion reveals that the accuracy of LSM can be 

further improved with the advancement of algorithms, by determining more representative 

features, which serve as a more effective guide for land use planning in the study area or other 

highlands where landslides are frequent. 

Keywords: landslide susceptibility; information value; logistic regression; machine learning; deep 

learning; GIS 

 

1. Introduction 

Across the globe, landslides are a sudden geological phenomenon that causes significant 

damage to property and injury or death to residents [1–3]. Landslides in China occur much more 

frequently and on a larger scale than in any other country in the world [4,5]. The prevention measures 

need to be focused on identifying and mapping the existing landslides to ensure their prevention [6]. 

It is generally considered that damages can be reduced by predicting where disasters are likely to 

occur [7]. Thus, landslide susceptibility mapping (LSM) is considered to be a proven way for 

minimizing the hazard and risk of landslides. 
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The accuracy of LSM is mainly up to reliable data and modeling algorithms. Over the years, 

various algorithms have been applied to LSM and improved the accuracy. Quantitative (data-driven) 

and qualitative (knowledge-based or physically-based) algorithms are available for the modeling of 

landslide susceptibility [8,9]. Data-driven algorithms are usually classified as bivariate methods (like 

certainty factor (CF) and information value (IV)), multivariate methods (like logistic regression (LR) 

and cluster analysis), conventional machine learning [10–13], and deep learning [14]. Most qualitative 

methods are subjective and suitable for small-scale areas only. In recent years, with the development 

of advanced remote sensing, the acquisition of landslide samples and critical factors become 

accessible and accurate, thus, data-driven approaches are popular. There have been a number of 

Conventional machine learning methods (like random forest and categorical boosting (CatBoost) 

observed due to their ability to solve non-linear geo-environmental problems without making 

unnecessary assumptions [15]. A comprehensive analysis and comparison between conventional 

statistical and machine learning models have been discussed in some studies. However, no consensus 

exists on which model is most suitable or best.  

Deep learning is a further development of machine learning, which performs better in terms of 

determining representative features and possibly further improves the classification accuracy [14,15]. 

Convolutional neural networks (CNN) as one of the representatives of deep learning has been well 

verified in places like image classification and face recognition [20–22], but rarely applied to LSM 

[23,24]. A multi-level structure of CNN is constructed to explore the complex non-linear relationships 

between variables, which is accorded with the characteristics of LSM. This study is to explore the 

effect of the advanced algorithm on the accuracy of prediction results by comparing the performance 

of conventional and advanced algorithms, and four representative models as IV, LR, CatBoost, and 

CNN were selected. 

Yadong County in Southeastern Tibet was selected as the study area because of its topographic 

and geological conditions, resulting in frequent shallow landslides. Four models as IV, LR, CatBoost, 

and CNN were explored and compared for the effect on landslide susceptibility prediction.  

2. Materials 

2.1. Study area 

Yadong County is under the jurisdiction of Shigatse City, Tibet Autonomous Region, at the 

southern foot of the middle section of the Himalayas (Figure 1). Over 120,000 people live in the study 

area, which extends over some 4240 km2. It belongs to the high mountain landform of the Himalayas 

with an average elevation of 3500m (ranging from 1747~7057 m). The study area is divided into two 

parts, north and south, based on the line from Pali Town to Kangbu Town due to the great difference 

in altitude and two completely different climates are formed [5]. The northern region is 4300m above 

sea level, with a cold and dry climate and an average annual rainfall of about 410mm. The altitude in 

the south has dropped significantly, with an average altitude of 2800 meters, a humid climate, and 

an annual precipitation of 873 mm. This study area has mainly shale, limestone, and dolomite. In the 

southern area of the study area, faults and folds dominate the geology. There is a degree of VIII on 

the modified Mercalli index indicating a high seismic intensity. The density of geological disasters in 

the southern area is relatively high, mainly collapses and landslides, while the northern area is 

dominated by debris flows. 
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Figure 1. Location of the study area showing elevation and landslide samples. 

On September 18, 2011, a magnitude 6.8 earthquake occurred in Sikkim, India. The study area 

was affected by the earthquake which induced a series of secondary geological disasters, causing 

great harm to local residents and roads (Figures 2 and 3). Therefore, it is of great significance to 

compile an accurate landslide susceptibility map for the study area. 

 

Figure 2. The Sikkim earthquake triggered landslides in Yadong County: (a) S204 road was 

interrupted; (b) Houses collapsed. 
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Figure 3. Remote sensing image interpretation: (a) debris flow in Kangbu township; (b) debris flow 

in Duina township. 

2.2. Data preparation 

2.2.1. Landslide inventory 

Typically, data-driven methods for LSM assume that landslides have a greater chance of 

recurring under the same conditions as they did before [25]. Therefore, a comprehensive and exact 

landslide inventory that shows the locations and numbers of landslides is essential [7]. It is therefore 

essential to develop a complete and accurate landslide inventory (Figure 4) that shows the locations 

and quantities of landslides. This data can be obtained by taking aerial photographs, reading 

literature, and conducting extensive fieldwork. Landslides are bounded by polygons containing the 

entire perimeter, and 496 polygons representing the landslide perimeter were identified. Using a 1:1 

sampling strategy [26], the model was trained and validated with 992 samples, including 496 

landslides with a sign of “1” and 496 non-landslides with a sign of “0”. Non-landslide samples were 

randomly selected from non-landslide dense areas. 
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Figure 4. Study area thematic maps: (a) Elevation; (b) Slope; (c) MED; (d) Plan curvature; (e) Profile 

curvature;(f) TWI;(g) DTF;(h) DTR;(i) DTS;(j) Rainfall;(k) NDVI. 

2.2.2. Conditioning factors  

A total of 11 conditions factors were selected based on the study region's characteristics, the 

data's availability, reliability, and practicality, including elevation, slope, maximum elevation 

difference, plan curvature, profile curvature, topographic wetness index, distance to faults, distance 

to roads, distance to streams, annual rainfall and NDVI [27]. 
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Elevation which was divided into five sub-classes by 1000 m intervals, has an influence on both 

rainfall and vegetation [28,29] (Figure 4a). Slope, which controls shear strength at potential slide 

surfaces as well as subsurface flow [30], was reclassified into six classes by 10° intervals (Figure 4b). 

It was calculated in ArcGIS 10.2 that the maximum elevation difference reflects potential kinetic 

energy of slope units. By 100 m intervals, the thematic map was reclassified into six classes (Figure 

4c). Erosion and deposition can be determined from slope curvature since it is essential to the 

geometry of slopes [31]. Six classes were established for profile and plan curvatures (Figure 4d and 

4e). The TWI represents basic terrain, which was divided into six categories (Figure 4f). With the 

spatial resolution of 30 meters, six topographic factors were extracted from the digital elevation 

model (DEM).  

Bulk-rock strength could be reduced as a result of faults acting as potential weak planes in slopes 

and distance to fault was constructed with six classes by 2000m intervals (Figure 4g). In a similar 

manner, distances to the road and river were divided into six categories with an interval of 2000 

meters (Figure 4h,i). 

An existing 1:50,000 geological map was used to extract fault information, and Landsat 8 LOI 

images were used to determine road and river network information. Using the Euclidean Distance 

ArcGIS Tool, the distances from each raster unit of the area to the nearest fault, road, stream, and 

highway were calculated.  

The unique trigger factor considered in the study was rainfall, and it has been applied numerous 

times. Based on the data from 14 precipitation stations near the study area, an ordinary kriging 

interpolation was used to generate the thematic map in ArcGIS. The thematic map was reclassified 

into 4 classes (Figure 4j). 

The consolidation of vegetation roots can stabilize soil, which alleviates the effect of rainfall on 

the stability of the slope [34]. The Vegetation normalization index(NDVI) was applied to evaluate the 

vegetation and it is calculated by: 

REDNIR

REDNIR
NDVI

+
−

=  (1) 

Where RED is the reflection value of the red wavelength and NIR is the near-infrared 

wavelength. 

NDVI ranges from -1~1 with a positive value indicating coverage and the greater the value, the 

greater the coverage. The thematic map was reclassified into 6 classes (Figure 4k) 

2.2.3. Mapping units 

LSM commonly uses grid cells, slope units, and unique-condition units as mapping units. The 

choice of mapping unit is controversial, however, grid cells are the most common [35,36]. Landslides 

can be represented better by a slope unit, which represents their source, transport, and accumulation 

areas. Thus, the study area is divided into 25483 slope units with the hydrologic analysis tool in 

ArcGIS and necessary artificial corrections are accompanied according to remote sensing images.  

3. Methods 

The main aims of the study are to explore and compare the effect of conventional and advanced 

modeling algorithms on Landslide susceptibility prediction. The methodology followed in this study 

mainly contains five steps (Figure 5). Firstly, data sets including landslide samples, conditioning 

factors, and mapping units are prepared for modeling. The second is to divide the data set into 

training and validation parts. After that, four representative algorithms as IV, LR, CatBoost, and CNN 

are applied to LSM. Finally, the performance of LR, CatBoost, and CNN models are analyzed and 

compared based on some key measures. 
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Figure 5. Flow chart of this study. 

3.1. IV 

By using the frequency or density of landslides, the IV method reflects the magnitude of the 

hazards associated with different influencing factors and their sub-intervals. IV was first proposed 

by Yin and Yan (1988) and later modified by Van Westen (1993) [38]. Equation 1 shows the method 

for the calculation of the information values: 

Nn

S
AI

ji

ji

ji
/

/s
ln)(

−

−
− =  (2) 

Where i=1，2，3，…，n; j = 1，2，3，…，m; si-j represents the area of the landslide of the i-th 

conditioning factor in j-th interval; ni-j represents the area of the i-th conditioning factor in j-th interval; 

S represents the total area of the landslide; N represents the total area. 

Depending on the IV method, the value might be positive or negative. When IV values are 

positive, they indicate that the factor is conducive to the occurrence of landslides in a particular 

interval: a higher IV indicates a higher likelihood of landslides, and vice versa. 

The total information value I can be determined by: 

∑ =
=

n

i
i

i
i

Nn

S
1 /

/s
logI  (3) 

Finally, the information value calculated by each unit is processed by linear normalization. 

3.2. LR 

The LR model is used for statistical analysis of binary dependent variables (the dependent 

variable y has two values: 0 and 1) [39]. The LR model is advantageous since the data distribution 

can either be nominal or continuous [40]. It is computed using the following equation: 
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y
P −+
=

e1

1
 (4) 

where p represents the occurrence probability of an event (such as a landslide) on the s-curve in 

the range of 0 to 1; y represents a linear combination function and is calculated by using Eq.5. 

nnxbxbxbxbb ++++= 3322110y  (5) 

Where b0 is the constant value or intercept of the equation, and b1, b2, ..., bn are the regression 

coefficients of the explanatory variables x1, x2, ..., xn. 

In the current study, the LR model was performed in SPSS software, the and forward stepwise 

method was adopted to screen valuation indexes. The conditioning factors were calculated as 

independent variables, whereas dependent variables represent the occurrence of landslides. During 

the last step of the analysis, all variables were significant at less than 0.05, so no additional variables 

were included. 

3.3. CatBoost 

CatBoost is an improved implementation based on Gradient Boosted Decision Tree (GBDT) 

framework, with fewer parameters. It is an open-source machine-learning library of Yandex and a 

member of Boosting family. The gradient deviation and prediction offset can be effectively solved by 

CatBoost algorithm, so as to reduce the occurrence of over-fitting and improve the accuracy and 

generalization ability of the algorithm [41]. Detailed information about CatBoost can be referred to 

another literature [42]. 

3.4. CNN 

CNN provides an end-to-end learning model that can select model parameters through 

traditional gradient descent methods. The trained CNN can learn image features and complete the 

extraction and classification of image features [43]. A CNN consists of the network structures as 

convolutional layer, down-sampling layer, and fully connected layer, each of which contains a 

number of independent neurons [44]. Its notable feature is that the weight sharing and local 

connection of the convolution kernel in the hidden layer can greatly reduce the number of weights, 

thereby reducing the complexity of the convolutional network model. 

The unique convolutional layer and pooling layer structure of CNN can be combined arbitrarily 

to obtain an infinite variety of network models. This study applied the AlexNet model to LSM [45]. 

Before modeling, conditioning factors are requested to be superimposed to obtain a multi-band two-

dimensional image as the input raw data in LSM. Since LSM belongs to a two-classification problem 

of landslide disasters, two neurons are placed in the output layer classifier to represent landslide and 

non-landslide. All parameters have been optimized through trial and error approach. The number of 

training cycles is 10, the initial learning rate is 0.01, the loss function uses standard cross-entropy, the 

optimizer is Adam, and the activation function is Relu. 

The machine learning and deep learning-based algorithms are implemented in Python3.7 based 

on the Package of Numpy, Scikit-Learn, and Tensorflow. The statistics-based algorithms are 

implemented in SPSS. 

3.5. Models evaluation 

A predictive model will not be convincing without scientific validation, so existing data will 

need to be split into training and validation sets. There were 80% of the data sets randomly chosen 

for training and 20% for validation in LSM. 

Four evaluation measures as accuracy, sensitivity, specificity, and AUC were combined to 

analyze the performance of the models. Accuracy, sensitivity ,and specificity are calculated from the 

Confusion Matrix, which is an N × N matrix (Table 2). The TP represents the number of landslides 

that have been correctly predicted as unstable and TN represents the number of non-landslides that 
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have been correctly predicted as stable. While FP represents the number of non-landslides that have 

been predicted incorrectly as unstable and FN represents the number of landslide units that have 

been predicted incorrectly as stable.  

Table 1. Landslide conditioning factors in this study. 

Conditioning Factors Zone Ni/N Si/S IV 

Elevation (m) 

<2700 1.21% 1.09% 0.100  

2700~3700 21.98% 8.26% 0.978  

3700~4700 43.80% 49.88% -0.131  

4700~5700 28.63% 39.29% -0.317  

>5700 4.44% 1.48% 1.098  

Slope (°) 

<10 11.90% 35.95% -1.106  

10~20 25.60% 29.88% -0.154  

20~30 38.31% 25.67% 0.400  

30~40 22.18% 8.13% 1.003  

>40 2.02% 0.36% 1.709  

MED (m) 

<100 7.46% 36.41% -1.585  

100~200 13.91% 21.80% -0.449  

200~300 11.90% 15.82% -0.285  

300~400 20.56% 10.76% 0.648  

>400 46.17% 15.21% 1.110  

Plan curvature 

<-0.4 0.20% 0.12% 0.538  

-0.4~-0.1 4.44% 4.89% -0.097  

-0.1~0.2 92.74% 93.11% -0.004  

>0.2 2.62% 1.89% 0.328  

Profile curvature 

<-0.3 0.20% 0.59% -1.078  

-0.3~0 31.20% 36.57% -0.157  

0~0.3 67.54% 62.50% 0.077  

>0.3 1.01% 0.33% 1.106  

TWI 

<6 7.26% 5.85% 0.215  

6~7 46.57% 32.13% 0.371  

7~8 33.27% 27.54% 0.189  

8~9 8.87% 14.48% -0.490  

9~10 2.42% 9.11% -1.326  

>10 1.61% 10.89% -1.910  

Distance to faults 

(km) 

<4 31.05% 20.27% 0.426  

4~8 16.33% 14.71% 0.105  

8~12 7.46% 14.57% -0.670  

12~16 22.18% 16.00% 0.327  

16~20 14.31% 14.99% -0.046  

20~24 8.67% 12.22% -0.343  

24~28 0.60% 6.10% -2.311  

>28 0.20% 1.14% -1.734  

Distance to streams 

(km) 

<1 47.58% 14.51% 1.187  

1~3 19.35% 25.62% -0.280  

3~5 7.06% 19.97% -1.040  

5~7 6.65% 14.66% -0.790  

7~9 9.07% 11.07% -0.199  

9~11 5.44% 7.00% -0.252  
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11~13 3.63% 4.38% -0.189  

>13 1.61% 2.78% -0.544  

Distance to roads 

(km) 

<3 57.66% 32.20% 0.583  

3~6 11.69% 25.23% -0.769  

6~9 14.11% 18.23% -0.256  

9~12 6.20% 9.08% -0.374  

12~15 5.44% 6.37% -0.158  

15~18 1.41% 4.46% -1.151  

18~21 2.62% 2.07% 0.237  

>21 0.81% 2.35% -1.070  

Average annual 

 precipitation (mm) 

<480 32.26% 50.99% -0.458  

480~580 29.44% 24.55% 0.182  

580~680 24.60% 11.55% 0.756  

680~780 3.02% 9.38% -1.132  

>780 10.69% 3.53% 1.107  

NDVI 

<0.15 16.53% 12.68% 0.265  

0.15~0.3 25.20% 36.62% -0.374  

0.3~0.45 15.12% 19.74% -0.266  

0.45~0.6 15.93% 17.94% -0.119  

0.6~0.75 22.18% 9.93% 0.804  

>0.75 5.04% 3.09% 0.490  

Table 2. Confusion matrix analysis with evaluation measures. 

  Actual Values Accuracy Sensitivity Specificity 

  Positive (1) Negative (0) 

(TP+TN)/(TP+TN+FP+FN) TN/(TN+FP) TN/(TN+FP) Predicted 

Values 

Positive (1) 
True Positive 

(TP) 

False Negative 

(FN) 

Negative (0) 
False Positive 

(FP) 

True Negative 

(TN) 

An additional indicator of model validity is the area under the receiver operating characteristic 

curve (AUROC). The value of AUROC ranges from 0.5~1, the larger the value, the better the 

generalization ability of the model and prediction performance. 

4. Results 

4.1. Performance and comparison of conventional and advanced algorithms 

Before modeling, the data were normalized with Z-scores to eliminate the effects of different 

dimensions. Additionally, a correlation analysis was conducted to test the collinearity among the 

independent variables using the variance inflation factor (VIF) [44]. There is severe col-linearity 

between the selected variables if the VIF value exceeds 10. Table 2 showed the VIF values of the 

chosen independent variables and the factor Elevation has the highest VIF value (5.711). The result 

indicates that no severe collinearity problems exist among the chosen variables and thus, 11 

conditioning factors were applied to the modeling. 

The performance of the three models using the confusion matrix is shown in Table 5. The CNN 

model achieved the highest value of sensitivity (84.21%), followed by the CatBoost model 

(sensitivity=82.96%) and the LR model (sensitivity =81.45%). As for specificity, the CNN model 

performed best with 93.52%, followed by the CatBoost model with 86.63 % and the LR model with 

84.79%. The CNN model also ranked the first for specificity with a value of 93.52%, followed by 

CatBoost (86.63%) and LR (84.79%). CNN model had the best accuracy and ROC values of 88.88% 
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and 0.944, while the LR model had the worst values of 83.13% and 0.897. As well, CatBoost performed 

well, scoring 86.63% and 0.930 respectively. 

The verification data set is more useful and important for evaluating the ability of these models 

to generalize. In Figure 6, we found that the CNN model had the highest sensitivity, specificity, 

accuracy, and AUC values, namely 79.38%, 91.00%, 85.28%, and 0.908. Additionally, CatBoost 

performed well with 76.28%, 85.00%, 80.71%, and 0.893, respectively. The LR model remained the 

worst with values of 79.38%, 76.00%, 77.66%, and 0.838 (Table 5). 

 

Figure 6. Analysis of ROC curve for the landslide susceptibility map: (a) Success rate curve of 

landslide using the training data set; (b) Prediction rate curve of landslide using the validation dataset. 

Model performance declined in verification, particularly for the LR and CatBoost models (the 

accuracy value decreased by about 6%), which indicated that the models were overfitting and 

generalizability was suspicious. While the performance of the CNN model was stable as the value of 

AUC reached 0.908 and the accuracy value was close to the training data set. 

4.2. Landslide susceptibility mapping results 

In case of LR model, LSI ranges from 0.11 to 0.96, and the corresponding area percentages were 

40.17% (very low), 12.24% (low), 5.54% (moderate), 17.75% (high) and 24.30% (Very high), 

respectively. Similarly, five reclassified classes of the CatBoost model accounted for 30.16%, 23.81 %, 

15.21 %, 26.82 %, and 14.94 % respectively of the entire area. LSM constructed by the CNN model 

was also divided into five classes: very low (<0.18), low (<0.42), moderate (<0.653), high (<0.82), and 

very high (>0.82), accounting for 28.99%,19.65%,14.21%,9.19% and 27.96% of the whole area. It is 

noticed that LR, CatBoost, and CNN models predicted the largest proportion of very low 

susceptibility while IV predicted the largest proportion of very high susceptibility.  

A logical landslide susceptibility map should meet two rules: (1) the density of landslide samples 

should increase with the increase of susceptibility class and be mainly located in the highest 

susceptibility area; (2) the landslide susceptibility map should be spatially continuous and smooth 

and the very high-susceptibility class area should occupy a small proportion. Concomitant with these 

maps (Figure 7), the landslide samples (dark spots) were mainly located in the red areas, and the non-

landslide samples (blue spots) were in the green areas. The high or very high susceptibility areas 

were concentrated in the south of the areas, which was consistent with the distribution of landslides 

(Figure 8). Thus, the maps predicted by these models were logical on the whole.  
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Figure 7. Landslide susceptibility maps: (a) IV; (b) LR model; (c) CatBoost model; (d) CNN model. 
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Figure 8. Percentages of areas in different susceptibility classes for landslide. 

There are distinct differences among the landslide susceptibility maps derived from the models. 

Table 2 showed that the IV increased as the susceptibility class increased for the model and the IVs 

were all negative for the very low, low, and moderate susceptibility class while positive for the very 

high susceptibility class. For high susceptibility, the IVs were positive for LR, CatBoost, and CNN 

models while negative for the IV model. On the other hand, the maps predicted by IV and LR models 

were spatially discontinuous while CatBoost and CNN models produced smoother patterns. Besides, 

the percentage of very high susceptibility class was similar for LR, CatBoost, and CNN models, while 

the IV model predicted the highest percentage reaching 37.27%. 

In comparison to the other 3 models, the CNN model shows superior fitting and generalization 

capabilities in predicting landslide susceptibility. It has been found that very high landslide 

susceptibility areas are mainly associated with the Yarlung Zangbo River and its tributaries. A large 

part of the eroded slopes is scoured by the river network. The areas near streams are densely 

populated, and the occurrence of landslides can threaten lives. 

4.3. Evaluation of conditioning factors 

4.3.1. Application of conventional algorithms 

Bivariate methods were used to establish relationships between the conditioning factors and the 

occurrence of the landslides, as shown in Table 1. As for elevation, the percentages of landslide area 

for 3700~4700m and 4700~5700m were 43.80% and 28.63% respectively, which means that over 70% 

of landslide areas were distributed among the two classes but the IV value of these two classes were 

both negative. While the highest IV of elevation is 1.098 for the class of >5700. For Slope, the IV values 

increased as the slope increased, as well as the factor MED, which indicated that landslides are more 

likely to occur in steep areas. The IV of slope ranged from -1.106~1.709, in which the classes of >20 

were all positive. In terms of TWI, the class of 6~7 had the highest IV of 0.371 and the IV were all 

negative at the class of >8. 

For curvature, the highest IV of plan curvature was 0.538, located at the class of <-0.4, and 1.106 

of Profile curvature at the class of >0.3. It was found that landslides were concentrated in convex 

terrain. On the other hand, landslides are highly concentrated near the faults, streams, and roads as 

the IV reached the maximum value at first class. It indicated that the development of faults, streams, 

and human engineering activities was conducive to the occurrence of landslides.  

As for rainfall, the highest probability of landslides occurring appeared in the class of >780mm 

(IV reached 1.107). While the IV did not increase with increasing rainfall and it indicated that 
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landslide occurring is complex. In case of NDVI, the class of 0.6~0.75 has the highest IV of 0.804. The 

IV changed erratically for NDVI although high vegetation cover helped enhance the stability of the 

landslide. 

As for the LR model, the final regression equation is as followed: 

28.0684.0

)641.1()rainfall799.1().395.0()756.1

+
+−+++=

）（

（

DTS

DTRcurvatureprofileMEDy
 (6) 

It can be found that MED, rainfall and DTR were essential to landslide occurring as the 

coefficients were relatively large. While profile curvature and DTS were considered as secondary 

factors. The coefficient of DTR was negative, which indicated a negative effect on landslide occurring. 

Conventional algorithms such as IV and LR methods were used to establish the relationships 

between the conditioning factors and the occurrence of the landslides in this study. In summary, the 

conditioning factors have an effect on landslides occurring and the impact of different factors on 

landslides varies in different intervals. 

4.1.2. Application of advanced algorithms 

Actually, conditioning factors have different influences on the occurrence of landslides while 

the bivariate methods fail to recognize the difference. Gini importance (GI) is defined as the total 

reduction in average nodal impurities across all trees. GI was also applied to analyze the relative 

importance of different factors, exploring the factor’s contribution to landslide occurring. 

The bigger the GI express greater the importance of factors of landslides occurring [44]. Table 3 

showed the rank of the conditioning factors of this study. The result showed that DTF was the most 

important factor responsible for landslides as the GI reached 5.36. Besides, the factor MED, DTS, 

elevation, plan curvature, and slope were also pivotal since the GI were all greater than zero. While 

the other factors as TWI, rainfall, profile curvature, NDVI ,and DTR showed little contribution to 

landslides in the study area (Figure 9). 

Table 3. Multicollinearity diagnosis indexes for variables. 

Variables VIF 

Elevation 5.117 

Slope 3.426 

MED 5.726 

Plan curvature 1.499 

Profile curvature 1.291 

TWI 6.071 

Distance to fault 2.641 

Distance to stream 4.492 

Distance to road 4.302 

Average annual precipitation 1.763 

NDVI 2.697 

Table 4. Models’ performance using related indices. 

 Training Validation 

Parameter LR CatBoots CNN LR CatBoots CNN 

Sensitivity(%) 81.45 82.96 84.21 79.38 76.28 79.38 

Specificity(%) 84.79 90.27 93.52 76.00 85.00 91.00 

Accuracy(%) 83.13 86.63 88.88 77.66 80.71 85.28 

AUC 0.897 0.930 0.944 0.838 0.893 0.908 
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Table 5. The IV of different landslide susceptibility levels. 

Model Class 
Percentage of 

area (%) 

Percentage of 

 landslide area (%) 
IV 

IV 

Very low 32.05% 8.06% -1.74  

Low 8.64% 7.66% -1.19  

Moderate 7.96% 5.04% -0.50  

High 14.08% 20.36% -0.14  

Very high 37.27% 58.87% 0.70  

LR 

Very low 40.17% 5.24% -1.60  

Low 12.24% 4.44% -0.47  

Moderate 5.54% 6.05% -0.10  

High 17.75% 21.17% 0.14  

Very high 24.30% 63.10% 0.88  

CatBoost 

Very low 30.16% 5.24% -1.74  

Low 14.42% 4.44% -1.18  

Moderate 7.82% 6.05% -0.25  

High 20.28% 21.17% 0.04  

Very high 27.31% 63.10% 0.84  

CNN 

Very low 28.99% 4.44% -1.88  

Low 19.65% 8.67% -0.82  

Moderate 14.21% 12.30% -0.14  

High 9.19% 11.09% 0.19  

Very high 27.96% 63.51% 0.69  

Table 5. Conditioning factors assigned by the Gini index. 

Method DTF MED DTS Elevation Plan curvature Slope 

Gini index 5.36 5.00 4.80 4.10 3.69 2.80 

 

Figure 9. Parametric importance graphics designed by Gini index. 
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4. Discussion 

With the progress of related technologies and the maturity of theory, various approaches have 

been developed and applied to LSM to improve prediction accuracy and reliability [47–49]. Recently, 

deep learning is becoming popular and beginning to be used for LSM. In this study, CNN was 

applied to LSM, and its performance was compared to the conventional statistical methods and 

machine learning approaches. 

Different algorithms have different emphases and generally, their performance varies with 

different study areas [50,51]. However, advanced algorithms usually perform better in terms of 

accuracy compared to conventional statistical methods [52,53]. The result of our study also found that 

CNN and CatBoost performed better in terms of accuracy and CNN did the best in generalization. 

There was a certain gap between the three models. The improvement benefits from the characteristics 

of the algorithms themselves for decreasing the bias, discrepancy, and over-fitting problems. It is easy 

to implement and acceptable in conventional statistical methods to establish a mathematical equation 

for investigating the relationship between factors related to landslides and landslides occurring. In 

machine learning methods, optimization is stressed, so the multiple parameters involved need to be 

tuned before application, which is challenging for non-experts [54,55]. Deep learning algorithms use 

a more complex modeling architecture consisting of convolutional, activation, pooling, and fully 

connected layers, taking images as input parameters. Feature selection and information filtration are 

done in the pooling layer, which is a robust step in CNN. Importantly, the dimensionality reduction 

is done without changing the depth of the maps. Thus, deep learning algorithms have the ability to 

process data efficiently, feature extraction of high-dimensional data and keep high prediction 

accuracy. 

The accuracy of LSM should not be the only priority. Identifying the major conditions that lead 

to landslides is also critical, which assists in furthering the process. Identifying subjective weights 

and objective weights allows for separating their contributions. Analytic hierarchy processes (AHP) 

and factor analyses (FA) are commonly used methods [58,59]. Landslide and their underlying 

conditioning factors can be directly correlated using LR models [60,61]. The relative importance of 

factors can be determined by the magnitude, plus or minus of the coefficients. In addition, bivariate 

methods are capable of distinguishing factors with different susceptibilities to landslides across 

interval ranges. Accordingly, LR and IV are recommended to be combined to analyze the factor’s 

contribution to landslide occurring. GI describes the contribution of the conditioning factors by 

calculating the total decrease and the final coefficients reflect the relative importance of different 

factors. Some studies have applied GI for feature selection, which helps to decrease redundant 

information [62,63].  

As for bivariate methods like IV, FR, and CF, the performance is mainly up to whether the 

division of the conditioning factors interval is reasonable. However, there is no consensus on the size 

or number of intervals although some methods such as natural breaks and equal intervals have been 

applied. Besides, the total IV is a linear addition of the IV of all conditioning factors, which further 

amplifies the uncertainty of the final result. Thus, the susceptibility analysis of conditioning factors 

on different intervals by bivariate methods may unreliable and the landslide susceptibility maps are 

also difficult to be verified quantitatively. In terms of LR, the establishment of the equation derives 

from the distribution characteristics of data and is sensitive to linear correlation. Thus, the 

performance is up to data partition and will fluctuate during validation. The results of relative 

importance for conditioning factors may be confused or even contrary to our experience on 

landslides. Machine learning or deep learning emphasis on iterative operations and repeated 

verification and requires a large amount of data. Landslide samples are limited in a restricted area 

and difficult to collect. The performance will also decline as the data decrease. 

6. Conclusions 

In the current study, IV, LR were selected as representatives of the conventional algorithms, 

CatBoost and CNN as the advanced algorithms, for LSM in Yadong county, and their performance 

was compared. The following conclusions can be drawn: 
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1. There was a certain gap between the models. Compared to conventional algorithms, advanced 

algorithms performed better in terms of prediction accuracy and CNN performed the best in 

generalization, thus regarded as the best model in this study. 

2. The landslide susceptibility map predicted by CNN was more reasonable and the very high 

susceptibility areas were mainly distributed along the Yarlung Zangbo River.  

3. As for feature selection, IV and LR did a more detailed analysis of conditioning factors but the 

results were uncertain. The result analyzed by GI may be more reliable but fluctuates with the 

amount of data. 

4. The conventional algorithms are inferior to the advanced algorithms in accuracy and feature 

selection but conventional algorithms have better resolvability and operability. 

However, there are also some limitations of the present study: 

There are possibilities for the combination of conventional and advanced algorithms and further 

exploration is needed to improve prediction accuracy obviously. 

Models need to be validated more reliably. 
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