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Abstract: In order to conduct an accurate classification of the heterogeneous landscape in Jiului 

Valley, Romania mining basing, four machine learning algorithms (SVMs) and two common algo-

rithms (MLC and MD) have been compared, using a temporal series of Landsat satellite images 

from the period 1988-2017. By using independent validation, an accuracy assessment was estab-

lished together with the analysis of the differences between the classification algorithms used. 

Although all six algorithms used have shown a high overall accuracy (ranging from 80.29% to 

93.14%) and Kappa values (from 0.77 to 0.92), SVM-RBF appears to have a higher overall applica-

bility in describing the spatial distribution and the cover density of each land cover category. Re-

sults have indicated a large difference in classification accuracy between the SVM-RBF algorithm 

and commonly used algorithms, the SVM-RBF algorithms have slightly outperformed the MLC 

with an overall accuracy of 7.14–8.86% and by 0.0833–0.1033 kappa coefficient. On the other hand, 

the same algorithm have outperformed the MD by and overall accuracy of 9.71–10.86% and by 

0.1133–0.1267 kappa coefficient. By using SVM-RBF, certain classified maps have been developed 

and used for assessing changes by post classification comparison. The results have shown an av-

erage growth of 6.5% in mined areas over the studied period. 

Keywords: Support Vector Machine; Maximum Likelihood; Minimum Distance; machine learning; 

classification algorithm; Landsat 

 

1. Introduction 

In general, land cover mapping is a delicated process in which different factors intervene and 

which influence the quality of the final product [1]. For supervised object-based classification pro-

cesses it is ought to be selected multiple options including the type of images, image pre-processing, 

segmentation method, training sample sets, accuracy assessment, classification algorithm, target 

classes and complexity of landscape [2,3]. 

In order to deal with such circumstances, supervised object-based classification methods were 

designed and adapted to certain study areas, the results being further compared to the ones already 

obtained through existing methods, thus validating their applicability [3]. However, due to the dif-

ferences between the studied areas, it is difficult to generalize the results obtained. This means that a 

certain method which provides a good classification accuracy in a certain study area cannot be gen-

eralized for other areas of study. The issue becomes more difficult when large areas, with complex 

landscape, are mapped, due to strong changes in environmental gradients (e.g., temperature, 

moisture, and elevation) or due to past disturbaces [4]. In the case of such heterogeneous landscapes 

are found land cover categories which are difficult to spectral discriminate due to similarities be-

tween classes [5]. 
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Among all the factors that influence the result of a supervised object-based classification, the 

classification algorithm plays a very important role. There are numerous algorithms for classifying 

satellite images and in the last three decades many studies that analyzed their accuracy have been 

carried out [6–14]. Among them, Maximum Likelihood Classifier (MLC), Minimum Distance to the 

Mean (MD), Mahalanobis Distance (MLD) and Spectral Angle Mapper (SAM) are considered to be 

common classifiers [15–19]. Relatively novel classification  algorithms, considered as the advanced 

classification algorithms, include Random Forest (RF), Support Vector Machines (SVMs), Decision 

Trees (DT), Relevance Vector Machines (RVM), Artificial Neural Network (ANN) or Neural Net 

(NN), Object Based Image Analysis (OBIA), and Histogram Estimation Classifier (HEC) [20–30].  

Common and advanced classification algorithms have both strengths and limitations. Common 

algoritms (parametric algorithms) like MLC, assume the existence of a normal multivariate distri-

bution for each class [7,10] and a satisfactory number of training samples [2]. If a normal distribution 

of the data is not ensured, which happens quite often in the case of land cover classes, the parametric 

classifiers may fail due to the inability to elucidate the interclass confusion [31]. This represents the 

main limitation of parametric classifiers [10,27]. Instead, advanced classification algorithms (ma-

chine learning algorithms) can overcome the limitations of parametric classifiers if the imagery data 

is not normally distributed [2,21,27,32,33]. In recent years, machine learning algorithms are 

frecvently used because they are more accurate and robust to noise compared with common algo-

rithms [5,34]. SVMs have the ability to produce higher classification accuracy even with a small 

number of training samples [35]. Choosing a suitable algorithm for large areas depends on its ability 

to handle noise observations, operating in a complex environment and using a small number of 

training samples comparativley to the size of the studied area [36,37].  

In the specialized literature, there are many studies which aimed to compare and evaluate dif-

ferent classification algorithms of diverse landscapes. Thus, Otukei & Blaschke (2010) evaluated the 

performance of DT, SVM and MLC algorithms, Szuster et al. (2011) have compared the perfor-

mances of MLC, NN and SVM, while Shao & Lunetta (2012) have compared algorithms like NN, 

SVM, and Classification and Regression Tree (CRT). Other studies have focused on evaluating the 

performance of different algorithms in classifying complex landscapes that also include surface 

mining. So, Demirel et al. (2011) found that SVM works very well in monitoring environmental im-

pacts of mining from remote locations in mountainous region and cloud cover on satellite images. 

Karan & Samadder (2016) compared SVM and MLC algorithms regarding the detection of change in 

open cast mines using Landsat images and found that SVM performs better than MLC. Also, Karan 

& Samadder (2018b) found that by applying SVM to the classification of land use from Jharia coal-

field (India) using WorldView-2 images, an overall accuracy of 95% is obtained. In the same study 

[9], it is shown that, among the common classifier algorithms, MLC obtained the highest overall 

accuracy of 84%, while MD only of 80.47%. In other studies, based on Landsat 8 Operational Land 

Imager (OLI), SVM classification algorithms led to a superior classification of land use for mining 

areas [39]. 

In this study, we compare the performance of the SVMs, MLC and MD algorithms and Landsat 

Thematic Mapper (TM) and Landsat 8 OLI for mapping mined areas and complex landscape around 

these as well as assessing the land cover changes in the Jiului Valley mining basin in Romania. In this 

sense, three main objectives were pursued: (1) the mapping of land cover classes from a complex 

landscape using SVMs (four kernels: linear, polynomial, RBF and sigmoidal), MLC and MD; (2) 

comparing the performance of the SVMs, MLC and MD in detecting and mapping land cover 

changes; and (3) assessing the land cover changes, mainly in mined areas, within the studied area 

over the period 1988-2017. 

2. Materials and Methods 

2.1. Study area 

The study was carried out on an area of 107715.3 hectares which includes the largest surface 

mining basin in Romania called Jiului Valley and the surrounding landscape (Figure 1). The area is 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 May 2023                   doi:10.20944/preprints202305.1345.v1

https://doi.org/10.20944/preprints202305.1345.v1


 

located beetween 44o35'31'' and 45o01'43'' North latitude and between 22o53'46'' and 23o29'15'' East 

longitude. The mining basin consists of the Rovinari and Motru Jilț mining basins from which coal is 

extracted, each basin having open surface mining operations [40,41]. The altitude of the studied area 

is between 330 m and 400 m. The average annual air temperature is 10.3o C and the average annual 

amount of precipitation is 700 mm.  

Landscape structure and land-cover dynamics are very complex.In the studied area there are 

forests of different age classes, agricultural lands, pastures and hayfields, surface mining operations, 

built up areas, dumps and water bodies. The forests consist of deciduous species (sessile oak, Turkey 

oak and beech), mixed stands (beech, spruce and fir), coppices of alder and riparian stands along the 

waters [42]. On meadows and hayfileds there are both native species, but also species that have ex-

ceeded their range from the steppe to silvo steppe [43]. 

Relatively close to the surface mining, urban areas without a high density of buildings are 

found, as well as rural areas in the form of fragmented settlements. Polluted land cover classes can 

also be found in the Jiului Valley due to the coal factories that existed nearby, especially before 1989. 

 
Figure 1. Location of the study area. 

 

2.2. Materials 

The satellite images used are Landsat 5 TM and Landsat 8 OLI acquired in the period 

1988–2017, downloaded for free from the United States Geological Survey (USGS) archive 

(https://earthexplorer.usgs.gov/). The level of image processing is 1T (georeferenced and orthorecti-

fied) and the projection system is Universal Transverse Mercator (UTM), datum WGS 84, zone 34N. 

The images are cloud free, acquired in the vegetation season and in the same moon, in clear atmos-

pheric conditions and with low noise. By using near anniversary images, efectele produse de sun 

angle, phenology and atmospheric condition are reduced. Information on the Landsat imagery used 

in this study are shown in Table 1. 

 
                        Table 1. Characteristics of the satellite images used in the study. 

Characteristics Landsat 5 TM Landsat 8 OLI 

Acquisition date 
22 August 1988, 2 August 1998, 13 August 

2008 
16 August 2017 

Metadata Yes Yes 

Spatial resolution (in m) MSS30  MSS30  

Spectral resolution (in Blue: (0.45–0.51) Blue: (0.45–0.51) 
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μm) Green: (0.52–0.60) 

Red: (0.63–0.69) 

NIR: (0.76–0.90) 

Green: (0.53–0.59) 

Red: (0.64–0.67) 

NIR: (0.85–0.88) 

Path/row 184/029 184/029 

Available number of 

bands 
7 (6 used in study: band 1–5, and 7) 

11 (6 used in study: bands 

2–7) 

 
The cartographic material used for accuracy assessment of the classified images came from 

different sources. For the 1988 and 1998 images two sources have been used, such as, aerial images 

acquired in 1986 and 1997, and cadastral maps (scale 1:5000) drawn up in 1986 [44]. Accuracy as-

sessment of classified images from 2008 and 2017 was based on colored ortophotos (scale 1:5000) 

drawn up in 2008 and 2017 by the National Agency for Cadastre and Land Registration 

(http://geoportal.ancpi.ro/) [44], Google maps images and field data collection for the image in 2017. 

 

2.3. Image pre-processing 

If two different features from a satellite image have the same color, their discrimination may be 

difficult, but if these features are different in terms of tone or brightness, their discrimination can be 

done easier [8]. In this study, some of the surface features had a similar spectral behavior on the 

mean signature (e.g., mined and built up). In order to much better discriminate these features, the 

images were atmospherically corrected by the dark object subtraction (DOS) method [45]. This 

technique has facility the reduction of additive effects caused by atmospheric haze, the result leading 

to an improvement in the distinction between surface features.  

 

2.4. Images classification 

2.4.1. Support Vector Machine 

SVMs represents a set of learning algorithms used for classification and regression. The theo-

retical framework was proposed by Vapnik & Chervonenkis (1971) and then by Vapnik (1999). 

SVMs are non-parametric classifiers. The results obtained by applying SVM application depends on 

the quality of the data training process. If the training data, consisting of a number of k samples, are 

represented as{Xi, yi}, i = 1, . . ., k where 𝑋 ∈ 𝑅𝑁 is an N-dimensional space and 𝑦 ∈ {−1, +1} is a 

class label [48], then these classes are considered linearly separable [48] if there is a vector W per-

pendicular to the linear hyperplane and a scalar b showing the offset of the discriminating hyper-

plane from the origin [48,49]. For example, for two classes (class 1 represented by -1 and class 2 

represented by +1), two hyperplanes can be used to discriminate the data point into representative 

classes [10]. These can be expressed by [10]: 

 

WXi + b ≥ +1 for all y = +1, for example a member of class 1 

     WXi + b ≤ –1 for all y = –1, for example a member of class 2           (1) 

  

The two hyperplanes are chosen so as to maximize the distance between two classes and not 

include vectors between them [10]. Mainly, the aim is to find the class into which the new data 

points can fall or partain [10].  

SVM has been initially developed to identify the linear boundaries between classes. This limi-

tation was addressed by projecting the feature space at a large dimension, under the assumption that 

a linear boundary can exists within a feature space with a large dimensional space [33]. This projec-

tion to a higher dimensionality represent the kernel trick. Kernel functions commonly used in SVMs 

can be broadly grouped into four groups, namely, linear, polynomial, radial basis function and 

sigmoid kernels [33] (Table 2).  
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Each kernel must have a different set of parameters which are user-controlled. These parame-

ters are: C (cost), γ (width parameter), r and d, thus their optimization increases significantly the 

accuracy of the SVM solution. The C parameter define the amount of misclassification allowed for 

the data that is not separable from the training sample. Large values of the C parameter can lead to 

an over-fitting model, while increasing the values will affect the shape of the class-dividing hyper-

plane, which can affect the classification accuracy results [50]. The kernel width parameter (γ) in-

fluences the smoothing of the shape of the class-dividing hyperplane [50]. The r parameter repre-

sents the bias term while the d parameter is the polynomial degree in the case of using the polyno-

mial kernel (Petropoulos et al., 2012). The most common degree is 2 (quadratic) because larger de-

grees tend to overfit the model. 

 
Table 2. SVM parameters used in the study. 

No. 
Kernel 

function 
Formula 

Kernel parame-

ters 

Optimal parameters  

used in this study 

1 Linear 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 C C=200 

2 Polynomial  𝐾(𝑥𝑖 , 𝑥𝑗) = (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)

𝑑
 C, γ, r and d C=250; γ=0.167; r=1; d=2 

3 RBF 
𝐾(𝑥𝑖 , 𝑦𝑖) = 𝑒𝑥𝑝 (−𝛾‖𝑥𝑖 − 𝑥𝑗‖

2

+ 𝐶) 
C and γ C = 100; γ=0.167 

4 Sigmoid  𝐾(𝑥𝑖 , 𝑦𝑖) = 𝑡𝑎𝑛ℎ(𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟) C, γ and r C=100; γ=0.167; r=1; 

K(xi, xj) – the kernel function 

γ – the gamma function for all kernels used 

d – the degree defined in the polynomial kernel 

r – the bias term defined in the kernel function of both polynomial and sigmoid kernels 

C –the cost parameter (trade-off between training error and margin) 

T – a transformation 

 

In the case of a data set, in order to perform the best classification, it is necessary to find the 

optimal parameters [33]. One of the methods for optimizing these parameters is the grid search 

method [51]. The idea underlying the method is testing different pairs of parameters and the pair 

with the highest cross validation accuracy is the one searched for and selected [33]. The application 

of the method is carried out in two steps. In the first step, a coarser grid with an exponentially 

growing sequence is used (C, γ) (e.g., C = 2-5, 2-3 …, 215 and γ = 2-15, 2-13. . ., 23) and the cross-validation 

rate is calculated. In the second step, after identifying the optimal region on the grid (C, γ), a finer 

grid is searched for near the region, a better cross-validation rate is obtained and then the whole 

training set is trained again to generate the final classifier [33,51]. For the application of SVM in 

solving multiclass problems, one-against-all, one-against-one and all-together strategies were de-

veloped [52].  

In this study SVM was applied using linear (SVM-LIN), polynomial (SVM-POL), radial base 

function (SVM-RBF) and sigmoid (SVM-SIG) kernels. The strategy for performing the classification 

was one-against-one. The kernels’ function parameters were determined by the grid search method 

using the cross-validation approach [51]. The optimal values of these parameters found following 

the application of the grid search method are presented in Table 2. 

2.4.2. Maximum likelihood 

The MLC classification algorithm is based on the folowing equation [15]: 

 

 𝐷 = ln(𝑎𝑐) − [0.5ln(|𝐶𝑜𝑣𝑐|)] − [0.5(X − Mc)T(𝐶𝑜𝑣𝑐
−1)(𝑋 − 𝑀𝑐)]            (2) 

 

where D is the weighted distance (likelihood), c represents a particular class of interest, X is the 

vector of spectral signature for the candidate pixel from the testing data, Mc is the mean vector ofthe 

sample of class c from the training data, ac is the percent probability that any candidate pixel is a 
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member of class c, Covc is the covariance matrix of the pixels in the sample of class c from the training 

data, ǀCovcǀ is the determinant of Covc (matrix algebra), Covc-1 is the inverse Covc (matrix algebra) [33], 

ln is the natural logarithm function, and T is the transposition function [15,17,53]. A pixel is assigned 

to class c, for which the likelihood is the highest or the least weighted distance [33]. 

The advantage of the MLC algorithm consists in that it takes into account the vari-

ance-covariance within the class distributions [15]. If each class is assumed to have a normal distri-

bution, then the probability of errors in the classified image is small [33,54].  

 

2.4.3. Minimum distance 

MD decision rule determine the spectral distance between the measurement vector for the 

candidate pixel and the mean vector for each signature [15]. It is simple and fast to compute, re-

quiring only the average of the vectors for each band resulted from the sample training data. Can-

didate pixels are assigned to the class that is spectrally closest to the sample mean. The computation 

relationship is [15]: 

 

                  𝑆𝐷𝑥𝑦𝑐 = √∑ (𝜇𝑐𝑖 − 𝑋𝑥𝑦𝑖)
2𝑛

𝑖=1                                 (3) 

 

where n is the number of bands, i represent a particular band, c is a particular class, Xxyi repre-

sent data file value of pixel x, y in band i, µci is the mean of data file values in band i for the sample for 

class c, SDxyc is spectral distance from pixel x, y to the mean of class c [15]. 

After calculating the spectral distance for all possible classes of c, the class to which the candi-

date pixel is assigned is the class for which SD is the lowest [15]. 

 

2.4.4. Classification scheme and training data 

The land cover classification scheme consists of seven cover classes taking into account the land 

cover in the studied area (Table 3). In order to minimize the bias caused by using different combi-

nations of bands, six bands were used for all applied algorithms (Table 1). 

 
Table 3. Land cover classes used in satellite images classification [44]. 

Code Land cover clas-

ses 

Description 

1 Forest  Evergreen forests, deciduous forests, mixed forests, shrubs (hazel-

nuts, willow trees, etc.) 

2 Pasture Areas consisting of arid land with short vegetation, areas with pas-

ture and sparse grass 

3 Agricultural Areas with tall vegetation which is mown, different agricultural 

crops 

4 Built up Residential, commercial, industrial, parking, transportation and fa-

cilities 

5 Mined (active or 

reclaimed) 

Areas with surface mines, areas with no vegetation cover inside 

surface mining, areas with sparse vegetation inside surface mining 

(grass, shrubs, sparse forest) 

6 Dump Sterile dumps 

7 Water Rivers and lakes (natural or occurred after surface mining activity) 

 

Trainig samples for spectral signature were collected by digitizing homogeneous areas from 

satellite images. The samples were collected using a RGB 752 combination found to discriminate the 

land cover classes in this case. In this combination, some areas which were found to be polluted on 

the 1988 image, were more easily highlighted as part of the class they represent. The samples were 
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randomly selected in the known areas using the ‘region of interest’ (ROI) tools provided by ENVI 

software. Part of training samples for 2017 were collected by field trip using a Trimble R8S receptor 

[44]. The distribution of samples was aproximatively uniform and covered well the entire studied 

area. The pixel numbers included in training samples depended on the size of the land cover class 

therefore, in the case of less represented classes, training samples included fewer pixels (e.g., dump, 

water) (Table 4). For the built-up class, training samples were established more difficult because the 

area is fringed, the built-up surfaces alternating with pasture and agricultural land. The same 

training samples were used for all six algorithms. 

 

Table 4. Pixel counts of the training samples collected from the seven land cover classes. 

Year 
Land cover class 

Forest Pasture Agricultural Built up Mined Dump Water 

Pixels 1988 27006 9030 14029 1018 5397 1387 4093 

Pixels 1998 25299 4202 15564 2201 15536 1005 4627 

Pixels 2008 32606 6034 9959 1717 20851 1100 5415 

Pixels 2017 17046 5509 7658 680 7170 648 2596 

   

2.4.5. Images classification and validation 

Images classification was performed with ENVI software. The SVM classification was per-

formed using the following kernels: linear, polynomial, RBF, and sigmoid. For each SVM algorithm 

the input data were satellite images, the file with previously collected spectral signatures (ROI files) 

and the specific optimized parameters (Table 2). For the MLC and MD, satellite images and ROI files 

were used. The same number of bands (6 bands) was used for all algorithms. Classified maps have 

been smoothed using a 3 x 3 majority filter to minimize the appearance of ‘salt and pepper’ from the 

images.  

For the accuracy assessment, the confusion matrix was used. The parameters calculated for each 

classified map were: overall accuracy, producer accuracy, user accuracy and kappa coefficient (k). 

Overall accuracy and kappa coefficient were calculated with the help of the following relationships 

[55]: 

                   Overall Accuracy =
∑ 𝑛𝑖𝑖

k
𝑖=1

𝑛
                                     (4) 

              Kappa Coefficient =
𝑛 ∑ 𝑛𝑖𝑖−∑ 𝑛𝑖+𝑛+𝑖

𝑘
𝑖=1

𝑘
𝑖=1

𝑛2−∑ 𝑛𝑖+
𝑘
𝑖=1 𝑛+𝑖

                           (5) 

 

where, nii represents the number of samples classified into classes i (i = 1, 2,…, k), ni+ signifies 

overall classifications in category i, and n+i denotes the overall reference data [55].  

The accuracy assessment of classified images was carried out using 50 samples from each class, 

randomly distributed, other than those used to collect spectral signatures. They were generated in 

Erdas Image. In the case of images from 1988 and 1998, the overall accuracy was limited by the 

availability of data. 

 

2.4.6. Change detection 

In order to compare the individually classified images and obtain “from-to” informations, the 

post-classification comparison (PCC) technique was applied. Land cover maps from different years, 

created independently, were compared with PCC using a mathematical pixel-by-pixel arrangement 

[56]. The areas of land cover changes for the entire period were established by crosstabulation, by 

substracting the 1988 classification map from the 2017 map. The result of applying this technique 

was displayed as a matrix showing the changes. In this study, the PCC technique has been used for 
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four time periods: 1988–1998, 1998–2008, 2008–2017 and 1988–2017. The overall accuracy of cross-

tabulation maps was obtained by multiplying overall accuracy of independently classified images. 

 

3. Results 

3.1. Classification results 

For each year of the time series of satellite images, 6 images corresponding to the 6 classification 

algorithms were obtained, in total 24 classified maps were performed (Figure 2). In each classified 

image, all land cover classes defined by the classification were identified. There were no unclassified 

pixels. In Table 5 the exhaustive situation is presented, with the total surface covered by each land 

cover class, estimated by applying the six algorithms. 
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Figure 2. Images obtained after applying the six classification algorithms:. 

a. MD; b. MLC; c. SVM-BRF; d. SVM-LIN; e. SVM-POL; f. SVM-SIG. 
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Table 5. Land cover change analysis obtained from the six algorithms (1988–2017). 

MD 

Land cover 

class 

1988 1998 2008 2017 1988-1998 

(% class) 

1998-2008 

 (% class) 

2008-2017  

(% class) 

1988-2017 

 (% class) ha % ha % ha % ha % 

Forest 39850.2 37.0 41301.1 38.3 47285.3 43.9 53017.1 49.2 3.6 14.5 12.1 33.0 

Pasture 14198.1 13.2 14097.2 13.1 8723.3 8.1 6741.3 6.3 -0.7 -38.1 -22.7 -52.5 

Agricultural 42628.7 39.6 45187.0 42.0 42837.3 39.8 40832.2 37.9 6.0 -5.2 -4.7 -4.2 

Built up 3644.9 3.4 2430.8 2.3 3132.2 2.9 3170.4 2.9 -33.3 28.9 1.2 -13.0 

Mined 5296.9 4.9 3136.9 2.9 3799.1 3.5 2006.7 1.9 -40.8 21.1 -47.2 -62.1 

Dump 916.2 0.8 346.9 0.3 604.0 0.6 519.1 0.5 -62.1 74.1 -14.1 -43.3 

Water 1180.3 1.1 1215.4 1.1 1334.1 1.2 1428.5 1.3 3.0 9.8 7.1 21.0 

Total 107715.3 100 107715.3 100 107715.3 100 107715.3 100     

MLC 

Land cover 

class 

1988 1998 2008 2017 1988-1998 

(% class) 

1998-2008 

(% class) 

2008-2017 

(% class) 

1988-2017 

(% class) ha % ha % ha % ha % 

Forest 36484.6 33.9 39152.3 36.3 41502.0 38.5 42126.5 39.1 7.3 6.0 1.5 15.5 

Pasture 14365.1 13.3 9759.3 9.1 7086.2 6.6 7077.2 6.6 -32.1 -27.4 -0.1 -50.7 

Agricultural 45896.0 42.6 47475.7 44.1 46839.6 43.5 47694.5 44.2 3.4 -1.3 1.8 3.9 

Built up 3009.6 2.8 3347.7 3.1 3827.9 3.6 4808.3 4.5 11.2 14.3 25.6 59.8 

Mined 5563.8 5.2 5383.3 5.0 5362.8 5.0 3464.8 3.2 -3.2 -0.4 -35.4 -37.7 

Dump 944.9 0.9 506.2 0.5 557.4 0.5 420.8 0.4 -46.4 10.1 -24.5 -55.5 

Water 1451.3 1.3 2090.8 1.9 2539.4 2.3 2123.2 2.0 44.1 21.5 -16.4 46.3 

Total 107715.3 100 107715.3 100 107715.3 100 107715.3 100     

SVM-RBF 

Land cover 

class 

1988 1998 2008 2017 1988-1998 

(% class) 

1998-2008 

(% class) 

2008-2017 

(% class) 

1988-2017 

(% class) ha % ha % ha % ha % 

Forest 37539.6 34.9 41381.5 38.4 48369.6 44.9 48850.5 45.4 10.2 16.9 1.0 30.1 

Pasture 13837.4 12.8 6885.7 6.4 6779.3 6.3 7233.7 6.7 -50.2 -1.5 6.7 -47.7 

Agricultural 50437.4 46.8 49477.5 45.9 41783.2 38.8 44535.8 41.3 -1.9 -15.6 6.6 -11.7 

Built up 584.8 0.5 1031.4 1.0 1206.4 1.1 1232.1 1.1 76.4 17.0 2.1 110.7 

Mined 3534.4 3.3 7253.0 6.7 7543.7 7.0 3765.5 3.5 105.2 4.0 -50.1 6.5 

Dump 703.2 0.7 218.8 0.2 280.4 0.3 330.5 0.3 -68.9 28.2 17.9 -53.0 

Water 1078.5 1.0 1467.4 1.4 1752.7 1.6 1767.2 1.7 36.1 19.4 0.8 63.9 

Total 107715.3 100 107715.3 100 107715.3 100 107715.3 100     

SVM-LIN 

Land cover 

class 

1988 1998 2008 2017 1988-1998 

(% class) 

1998-2008 

(% class) 

2008-2017 

(% class) 

1988-2017 

(% class) ha % ha % ha % ha % 

Forest 38433.3 35.7 42040.4 39.1 48956.1 45.4 49663.5 46.1 9.4 16.5 1.4 29.2 

Pasture 12878.1 11.9 5750.0 5.3 5589.0 5.2 6501.7 6.0 -55.4 -2.8 16.3 -49.5 

Agricultural 50171.9 46.6 49860.9 46.3 42364.8 39.4 44368.5 41.2 -0.6 -15.0 4.7 -11.6 

Built up 393.6 0.4 560.4 0.5 514.4 0.5 867.8 0.8 42.4 -8.2 68.7 120.5 

Mined 3830.4 3.6 7559.9 7.0 7803.0 7.2 3948.6 3.7 97.4 3.2 -49.4 3.1 

Dump 807.2 0.7 239.8 0.2 297.6 0.3 355.9 0.3 -70.3 24.1 19.6 -55.9 

Water 1200.8 1.1 1703.9 1.6 2190.4 2.0 2009.3 1.9 41.9 28.6 -8.3 67.3 

Total 107715.3 100 107715.3 100 107715.3 100 107715.3 100     

SVM-POL 

Land cover 

class 

1988 1998 2008 2017 1988-1998 

(% class) 

1998-2008 

(% class) 

2008-2017 

(% class) 

1988-2017 

(% class) ha % ha % ha % ha % 

Forest 37914.7 35.2 42037.9 39.0 49026.1 45.5 49529.3 46.0 10.9 16.6 1.0 30.6 

Pasture 12871.3 11.9 5748.2 5.3 5570.6 5.2 6378.8 5.9 -55.3 -3.1 14.5 -50.4 

Agricultural 50888.1 47.2 49972.9 46.4 42400.2 39.4 44674.8 41.5 -1.8 -15.2 5.4 -12.2 
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Built up 397.7 0.4 686.9 0.6 695.2 0.6 849.1 0.8 72.7 1.2 22.1 113.5 

Mined 3619.7 3.4 7344.4 6.8 7577.6 7.0 3936.2 3.7 102.9 3.2 -48.1 8.7 

Dump 814.4 0.8 244.0 0.3 296.1 0.3 346.4 0.3 -70.0 21.4 17.0 -57.5 

Water 1209.4 1.1 1681.0 1.6 2149.5 2.0 2000.7 1.8 39.0 27.9 -6.9 65.4 

Total 107715.3 100 107715.3 100 107715.3 100 107715.3 100     

 SVM-SIG 

Land cover 

class 

1988 1998 2008 2017 1988-1998 

(% class) 

1998-2008 

(% class) 

2008-2017 

(% class) 

1988-2017 

(% class) ha % ha % ha % ha % 

Forest 38896.7 36.1 41527.2 38.6 49027.8 45.5 48609.1 45.1 6.8 18.1 -0.9 25.0 

Pasture 12448.1 11.5 5882.9 5.5 5571.2 5.2 5609.9 5.2 -52.7 -5.3 0.7 -54.9 

Agricultural 48854.6 45.4 50359.9 46.7 42167.2 39.2 46509.7 43.2 3.1 -16.3 10.3 -4.8 

Built up 372.8 0.3 443.3 0.4 348.4 0.3 644.9 0.6 18.9 -21.4 85.1 73.0 

Mined 5142.8 4.8 7605.5 7.1 8218.1 7.6 3820.1 3.6 47.9 8.1 -53.5 -25.7 

Dump 809.4 0.8 242.7 0.2 316.2 0.3 364.3 0.3 -70.0 30.3 15.2 -55.0 

Water 1190.9 1.1 1653.8 1.5 2066.4 1.9 2157.3 2.0 38.9 24.9 4.4 81.1 

Total 107715.3 100 107715.3 100 107715.3 100 107715.3 100     

 

The studied landscape is complex and the estimated surfaces are different, depending on the 

classification algorithm. All algorithms estimated the largest surfaces in agricultural and forest 

classes. Agricultural class occupies an estimated area between 37.9% (MD, 2017) and 47.2% 

(SVM-POL, 1988) while forest class between 33.9% (MLC, 1988) and 49.2% (MD, 2017). Pasture class 

was estimated to occupy an area of 5.2% (SVM-LIN, 2008; SVM-POL, 2008; SMV-SIG, 2008, 2017) up 

to 13.3% (MLC, 1988). The mined and built-up classes, although they occupy smaller areas compared 

to agricultural, forest and pasture, were estimated in a large range. Thus, the mined class was esti-

mated to occupy an area in range from 1.9% (MD, 2017) to 7.6% (SVM-SIG, 2008) while built up 

between 0.3% (SVM-SIG 1988, 2008) and 4.5% (MLC, 2017). The areas estimated by all algorithms as 

ocuppied by water and dump are rather small, below 2%, respectively below 0.9%. It was found that 

the areas estimated by SVM algorithms are close, with small differences between them, and between 

the areas estimated by SVM algorithms and common algorithms (MLC, MD) there are larger dif-

ferences. 

The results regarding accuracy assessment using the confusion matrix are preseted in Figure 3 

and Figure 4. It can be observed that SVM-RBF has ensured the highest overall accuracy and kappa 

coefficient for all years studied, with range between 90.00% (1988) and 93.14% (2017), respectively 

between 0.8833 (1988) and 0.9200 (2017). The range in which the overall accuracies of SVMs are 

found is between 87.14% (SVM-SIG, 1988) and 93.14% (SVM-RBF, 2017). Common algorithms pro-

vided the lowest accuracy, with MD and MLC performing slightly over 80% (minimum 80.29% for 

MD in 1988). The results obtained are close to those highlighted by other studies. For example, 

Bouaziz et al. (2017) obtained, for SVM-RBF, an overall accuracy of 91.20%, followed by SVM-POL 

with 90.01%; as for MLC, the overall accuracy performed was about 86.00% while for the MD was 

78.75% (kappa coefficient 0.68). 
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Figure 3. Overall accuracies and kappa coefficients of classified images. 

 

Part of land cover classes such as mined areas and built up raised the biggest issues in classifi-

cation for all algorithms, especially MD and MLC. Therefore, one of the challenges was the dis-

crimination of mined areas from built-up areas. In many areas, mined class was classified as built-up 

and vice-versa. Confusion was encountered especially in marginal, transitional, areas between land 

cover classes. Built up class had a low user's accuracy for MD and MLC algorithms (Figure 4) within 

this study site and sometimes was confused with other classes due to similarity of spectral features 

and small height variances [44]. The built-up class included urban areas that have spectral reflec-

tance similar to that of bare soil and rocks [44]. In the case of rural areas, built-up was confused with 

agricultural class due to the fringed aspect of the area characterized by the alternation of built-up 

areas with the areas occupied by courtyards and gardens. To this matter, the moderate spatial res-

olution of the Landsat images (30 m) contributed too, making it impossible for the classes to be dis-

criminated. 
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Figure 4. Producer’s and user’s accuracies of classified images. 

   
So, the biggest confusions were between built-up and mined classes in the case of MD and MLC 

algorithms. From the visual interpretation, it becomes obvious that the two algorithms produced 

classification errors in the form of overestimation of the built-up surface in all years, especially in 

1988, at the expense of mined areas (Figure 5). These errors can be attributed to the spectral reflec-

tance similar to built-up and mined areas and the limitation of MD and MLC classifiers. Also, on the 

1988 image, there were quite extensive surfaces that were polluted at that time due to factories in the 

area and were classified as built-up (Figures 5a and 5b). These are the areas where the weakest re-

sults of the MD and MLC algorithms were obtained, greatly confusing the surfaces covered with 

vegetation, but quite polluted, with built-up and mined areas. 
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Figure 5. Portion of images classified by the six algorithms:  

a. MD;b. MLC; c. SVM-BRF; d. SVM-LIN; e. SVM-POL; f. SVM-SIG. 

 
Confusions between forest, pasture and agricultural classes were made by all algorithms. In 

certain locations, mined areas were classified into pasture or agricultural classes. This is the case of 

marginal areas, of transition from one land class to another, especially in the case of a reclaimed 

mine. It was also found that the algorithms SVM-POL, SVM-LIN and SVM-SIG showed a slight 

underestimation of the built up areas and, at the same time, a slight overestimation of the mined 

areas. Although both MD and MLC algorithms overestimated built-up areas, MLC highlighted lin-

ear details better (especially on the 2008 image), such as paved roads, compared to MD. The SVMs 

algorithms identified these linear details but not continuously, and where they did it, they were 

identified as mined areas. 
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3.2. Land cover changes 

The results show that in all analyzed periods there were land cover changes that affected all 

land cover classes (Table 5). All land cover changes were obtained based on classified images that 

showed the situation from the moment the images were taken. The changes have been in both di-

rections, positive and negative.  

The SVMs algorithms, with the exception of SVM-SIG, led to obtaining close values regarding 

the occurred changes. For example, for the period 1988-2017, the difference in terms of land cover 

changes related to the agricultural class was 0.6%, for forest 1.4% and for pasture 2.7%. Regarding 

mined and built-up areas, which raised the biggest problems, the differences between SVMs algo-

rithms was 5.6%, and 9.8% respectively. In the case of SVM-SIG, land cover changes estimated were 

different for some classes. For example, over the entire period, this algorithm estimated a decrease of 

mined areas by 25.7%, other SVMs estimated an increase between 3.1% and 8.7%. The large differ-

ence, both in value and direction, comes from the estimation on the 1988 image of a large area of 

5142.8 ha, in the mined class, compared to 3534.4 ha estimated by SVM-RBF. In the other years, the 

mined areas estimates were close to the other SVMs. The increase of the mined area was made by 

including the marginal areas of the mined areas with the other land cover classes and by classifying 

some small areas, dispersed throughout the studied area. Also, the algorithm estimated a decrease of 

the agricultural class by 4.8% compared to the decrease of 11.6-12.2% estimated by the other algo-

rithms. 

Common algorithms performed differently for some land cover classes, both among themselves 

and compared to SVMs. The MD showed that in the period 1988-2017, the mined surface decreased 

by 62.1% and MLC estimated a reduction by 37.7%. The built-up area estimated by MD shows a 

reduction of 13.0%, while MLC shows an increase of 59.8%. Bigger differences were also reported in 

the forest class, with MD estimating an increase of 33.0% and MLC of 15.5%, but also in the agri-

cultural class where MD estimated a decrease of 4.2% and MLC an increase of 3.9%. So, not only are 

there great differences, but also the directions differ. 

Compared to SVMs, both common algorithms classified very large areas in the built-up class. 

Taking SVM-RBF as reference, the estimated built-up area increases, e.g by MLC, were 514.6% 

(1988), 324.6% (1998), 317.3% (2008) and 390.3% (2017). The areas where large increases in the 

built-up area were reported on the 1988 image are those near the mined area and those polluted by 

the factories existing at that time. These locations were classified by both common algorithms as 

being part of the built-up class. The SVMs algorithms did not bring high confusions when classifying 

the land cover in these areas. In contrast, in the mined class, the MD and MLC algorithms classified 

smaller areas, except for the 1988 image when a larger area was classified. For example, MD classi-

fied in 1988 a surface being of 5296.9 ha, while MLC 5563.8 ha, even larger than those estimated by 

SVM-SIG. This determined that, for the period 1988-2017, MD and MLC show a decrease in mined 

areas. 

Thus, the complexity of the landscape, given by the existence of mined areas located near 

built-up areas and especially polluted surfaces, sometimes when passing from one class to another, 

led to confusion between classes. Confusions were also made between other classes, forest with 

pasture and agricultural. 

 

3.3. Mined post-classification comparison  

SVM-RBF classified images reported higher accuracy for all years, hence for PCC change de-

tection, the results from this algorithm were used. Following the application of the PCC technique, 

maps were obtained which shows “from-to” information related to the conversions of land cover 

classes from analyzed periods. In Table 6 is presented the “from-to” matrix of mined class obtained 

based on SVM-RBF maps independently classified. The estimated changes based on the “from-to” 

matrix of mined class were in both directions, namely, from mined to land cover classes (forest, 

pasture, etc.) and from land cover classes (forest, pasture, etc.) to mined (Table 6) [44].  
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 Results reveal that in the period 1988–1998 the largest increase in mined class area occured, of 

3718.6 ha, meaning 205.2%. The increase over the 1988 mined class area is mainly due to the con-

version of 2468.0 ha (66.4%) from agricultural, 499.6 ha (13.4%) from pasture and 412.3 ha (11.1%) 

from forest. It was the period with the biggest conversions that led to the increase of the mined class 

area. 

In the period 1998-2008, the mined class area increased by only 290.7 ha (4.0%). This increase is 

given by the converting of a large area from forest to mined, but also of a reverse conversion, from 

mined to pasture. The other land cover classes (agricultural, built up, dump) did not contribute 

substantially to the conversion, areas at the end of the period remaining roughly the same as at the 

beginning of the period. It is the period in which there was the largest area in mined class (4088.3 

ha). At the same time, surface mining was spread in the same locations.  

The period 2008-2017 is characterized by a decrease in mined area with 3778.2 ha (50.1%). 

During this period, it took place only the conversion of 92.9 ha from forest to mined, the rest of the 

conversions being from mined in other land cover classes (forest, pasture, etc). The period is char-

acterized by the fact that mined areas were no longer exploited and began to be reclaimed. The 

largest reclaimed surface came from the conversion of 2764.2 ha mined area in agricultural and 501.6 

ha in pasture. Although these conversions happened, during the whole period there were still 2429.8 

ha mined areas. 

 
Table 6. “From-to” matrix (in ha) obtained through cross-tabulation of the SVM-RBF classified maps for mined 

class in periods 1988–1998, 1998–2008, 2008–2017, and 1988–2017. 

Period 1988–1998  

 Forest Pasture Agricultural Built up Mined Dump Water Total 

From mined to land cover classes: 86.4 25.1 1366.8 80.2 1838.4 47.3 90.2 3534.4 

From land cover classes to mined: 498.7 524.7 3834.8 164.4 1838.4 244.1 147.9 7253.0 

Overall Accuracy: 81.77% 

Period 1998–2008 

 Forest Pasture Agricultural Built up Mined Dump Water Total 

From mined to land cover classes: 99.2 207.7 2245.1 308.1 4088.3 79.6 79.6 7253.0 

From land cover classes to mined: 645.0 49.4 2214.4 315.7 4088.3 83.6 147.3 7543.7 

Overall Accuracy: 83.85% 

Period 2008–2017 

 Forest Pasture Agricultural Built up Mined Dump Water Total 

From mined to land cover classes: 221.3 543.3 3521.6 471.2 2429.8 103.8 252.7 7543.7 

From land cover classes to mined: 314.2 41.7 757.4 93.9 2429.8 34.8 93.7 3765.5 

Overall Accuracy:  85.95% 

Period 1988–2017 

 Forest Pasture Agricultural Built up Mined Dump Water Total 

From mined to land cover classes: 389.0 383.9 1867.5 135.4 502.0 63.5 193.1 3534.4 

From land cover classes to mined: 818.0 296.3 1917.9 64.0 502.0 106.6 60.7 3765.5 

Overall Accuracy: 83.83% 

 
Between 1988 and 2017, mined areas increased by 6.5%, the increase being an average one ra-

ther than a linear. During this period, only 13.3% of mined class did not change. Conversions to and 

from mined areas took place, the location of these areas being shown in Figure 6. For example, from 

agricultural to mining there were converted 1917.9 ha, while from mined to agricultural 1867.5 ha. 

Reverse conversions occurred during the 29 years because certain locations with mined areas were 

reclaimed and others, with agricultural, were converted into surface mining operations.  
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Figure 6. Location of active mines in the studied periods. 

 

4. Discussion 

4.1. Accuracy assessment 

Confusion matrix was used to perform accuracy assessment on Landsat images from years 

1988, 1998, 2008 and 2017. The comparison of the results revealed that the SVM-RBF algorithm pro-

vided the highest values for overall accuracy and for kappa coefficient and the MD algorithm the 

lowest. Comparing the SVMs algorithms between then, it was found that SVM-RBF improved the 

overall accuracy classification by almost 5.1% for Landsat 5 TM and by 2.8% for Landsat 8 OLI. The 

results obtained are similar to those of other studies [8] that found improvements of 6% and 3% for 

Landsat 5 and Landsat 8 images in detecting changes in open-cast coal mining areas. By comparing 

the SVMs algorithms with MD and MLC, it was found that the former had provided a better overall 

accuracy by 12% and 10%, respectively. 

It was found that SVMs exceeded MD and MLC in the classification of features that have similar 

spectral behavior encountered in a complex landscape. Within the SMVs, an improvement up to 

19.1% was observed in the mined area classification and 12% in the built-up area classification. Be-

cause SVMs algorithms are known for the high accuracy ensured in the case of a smaller number of 

training samples [8], this determined that SVMs algorithms exceed MLC and MD, ensuring higher 

classification accuracy for each class. Moreover, due to the fact that Landsat 8 OLI had a higher 

spectral and radiometric resolution compared to Landsat 5 TM, led to an improvement in the ap-

parent reflectance of surface features. This specific characteristic has led to higher accuracies for all 

algorithms in the case of the Landsat 8 OLI image.  

The accuracies achieved in the classification led to different estimates of the land cover classes 

surfacea and, implicitly, to obtaining different results when assessing the land cover changes. At the 

same time, it is also possible that not all land cover changes have been captured on satellite images. 

The 10-year interval between images of the time series, considered quite long, probably has con-

tributed to the appearance of some conversions that could be considered anomalous. In this situation 

are found the surfaces where conversions between all land cover classes occurred, in the same time 
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period. Moreover, the studies carried out in this direction recommend that the interval between the 

time series images be shortened [51] and some studies even specify the number of years (5 years) 

[59]. Considering the location of the studied area, in the analyzed case, no qualitative images (e.g., 

without cloud covering) taken at a shorter interval could be found in the USGS archive. 

 

4.2. Comparing performance of algorithms  

Maintaining the same training samples performed for each land cover class allowed to evaluate 

the relative performance for four advanced algorithms SVMs and two common algorithms, MLC 

and MD, when classifying a complex landscape with surface mining from Jiu Valley, Romania.  

The classification accuracy produced by SVMs showed slight variations that may be due to the 

choice of the kernel function and its parameters. Considering the overall accuracies, SVM-RBF algo-

rithm worked best followed by SVM-POL, SVMLIN and SVM-SIG (Figure 3). It is possible that 

SVM-RBF and SVM-POL, being non-linear kernels, to have ensured better results compared to 

SVM-LIN because the class boundaries are non-linear or overlapping. The studies that used machine 

learning algorithms investigated different SVMs parameters and showed that even contradictory 

results can be achieved [7,50,60,61]. For example, Melgani & Bruzzone (2004) and Maxwell et al. 

(2014) considered that SVMs are robust to parameter settings. On the one hand, Maxwell et al. 

(2014) noted that parameter optimization resulted in an improvement of classification accuracy 

with only 0.1% for mining and mine reclamation mapping. On the other hand, Foody & Mathur 

(2004) have shown that the γ parameter had a large impact on classification accuracy, with accura-

cies ranging from less than 70% to over 90%. Similarly, Huang et al. (2002) have suggested that the 

choice of RBF or polynomial kernel affects the shape of the decision boundary. In case of using RBF 

kernel, they showed that the classification errors vary with the parameter γ, especially when three 

predictor variables were used instead of seven. For the polynomial kernel, the authors have shown 

that the classification accuracy increases with the order of the polynomial. Thus, the slightly differ-

ent accuracies provided by SVMs in this study, may come as a result of the parameter setting even 

though they were optimized. In the case of the 2017 image, the best accuracy was established. It is 

possible that this accuracy is also related to the superior characteristics of the Landsat OLI sensor 

compared to Landsat 5 TM, something also noted in other studies [57].  

The major differences between SVM algorithms and between them and the MLC and MD al-

gorithms appeared in the discrimination between mined classes and other classes, in particular, 

built-up (Figure 5). The SVMs algorithms, mainly SVM-RBF, have been able to better discriminate 

between mined areas and built-up areas, without major difficulties in learning the support vectors. 

However, the compex characteristics of built-up areas in contrast to areas such as highly homoge-

neous agricultural areas, forest or pasture areas, presented some intrinsic classification difficulties 

for SVMs as well. It was the case of some locations represented by fringe areas, characterized by the 

alternation of built-up with agricultural or pasture. In such situations, the classification accuracy for 

built-up areas remained inferior to that of agricultural areas, an aspect also found in other studies 

[3,62,63]. 

The accuracy sensitivity of the SVM classifications to training set size indicates the need to in-

clude outlying cases for the training set, which yield adequate support vectors. Althouth in the case 

of SVMs it is not necessary a large training sample to estimate the statistical distribution, it is still 

essential that the training sample includes useful support vectors that adequately define the 

boundaries of the class [60]. In this case, the probability of finding useful support vectors is higher in 

a large training sample than in a small sample [60]. Regarding mined and built-up classes, the 

training samples size was smaller considering the smaller area they occupy and their distribution in 

the studied area. If the training samples size had been larger, it would have increased the probability 

of including mixed pixels. The results have shown that in general, a balances sample is preferable. 

The quality of training data has an impact on the accuracy of SVMs. For example, Foody et al. 

(2016) noted that SVM accuracy dropped by 8% when 20% of the training data were mislabelled, 

emphasizing that, even for rubst algorithms, training data quality is important. The accuracy of the 
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MLC and MD algorithms also depended on the quality of the training data. It is possible that the 

training data given was not entirely qualitative. In this case, mined areas and built-up areas were 

founded where the probability of including them in the training sample and mixed pixels was 

higher. Mixed pixels are common in Landsat data due to the heterogeneity of landscape and the 

limitation of 30 m spatial resolution data. By using only, the spectral signature of the features, the 

existence of a large number of mixed pixels in a training sample could lead to its degradation. In 

these conditions, mixed spectral pixels had a negative impact on the classification results when MLC 

and MD were applied. 

Also, in the present study, it is possible that the numbers of training samples were sufficient for 

SVMs but insufficient for the common algorithms that assured poor accuracy. Moreover, the spe-

cialized literature shows that fewer training samples can be used for SVMs and more for common 

algorithms [60]. In the present study, the training samples were larger for forest, pasture and agri-

culture and smaller for the other land cover classes. In this case, it is possible that on the image from 

1988, where the biggest errors have been reported in the cases of MD and MLC, the training samples 

that represented 15.7% of the built-up area, respectively 13.7% of the mined area classified by 

SVM-RBF (considered as reference), may not have been sufficient. Instead, for the images from 1998 

and 2008, where the SVMs algorithms estimated close mined and built-up surfaces, the weight of 

training samples was higher. For example, training samples for mined in 1998 represented 19.3% 

and for built-up 19.2 %, and for the image from 2008, training samples of mined areas represented 

24.9% and built-up 12.8%. Thus, the percentage of training samples compared to the occupied sur-

face has generally been shown to have a great impact on the classification accuracy. Some studies 

have noted that the training data can have a greater impact than the used algorithm [7]. 

Some studies suggest that SVMs algorithms are insensitive to data sizes, increasing or de-

creasing of band numbers taken into the classification, and thus, the number of bands would not 

affect accuracy [65]. In other studies, it is shown that the classification accuracy using SVMs can 

increase with the decrease of the number of bands included in the classification [66]. In the present 

study, the effect of the number of bands on classification accuracy was not investigated but, since it 

was small (6 bands), it can be considered that the number of bands was not a decisive factor influ-

encing classification accuracy. 

Parametric classifiers assume that the data is representative and normally distributed. In the 

real world, most data collected from the ground do not obey a typical model (e.g., Gaussian mixture, 

linearly separable, etc.), which is also the case with land cover classes. As such, parametric classi-

fiers, MD and MLC, proved to provide poor accuracy because there was not a normal distribu-

tion of land cover data, the landscape being heterogeneous and complex. Also, since there is a lot 

of uncertainty in the land cover surfaces distribution, they could not be described based on data 

distribution. In these situations, non parametric SVM algorthms gave better results. 

The accuracy provided by the MD algorithm was the weakest. It did not take into account the 

variability of the classes which made that wide differences between the variance of the classes to 

lead to misclassifications. When the landscape is complex, the parametric classifiers often produce 

‘noisy’ results [2]. Moreover, the algorithm was very fast compared to SVMs algorithms, being one 

of the most used algorithms due to its mathematical simplicity, requiring only mean vectors for each 

band in the training data.  

 

4.3. Assessing land cover changes  

 In addition to the results regarding maps change, an increase in surface mining by 231.1 ha 

was highlighted in the entire period (1988-2017) in the studied area. The fluctuation in mined areas 

during the approximately three decades was high, registering two peaks in the first two periods 

(1988-1998, 1998-2008) followed by a decrease in the third (2008-2017). This was due to the transition 

from underground mining to surface mining after 1989. The changes led to a degradation of the 

landscape in the area [44]. The relief was modified by the appearance of new forms, both positive 

(sterile dumps) and, negative (remaining pits of the quarries) [44,67]. Because of the surface mining 
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activity, the hydrological processes were affected by the removal of top soil vegetative cover. There 

have been also landslides, various geomechanical phenomena such as subsidence, changes in the 

quality and quantity of surface and underground waters [67]. 

 Therefore, the assessment and monitoring of land cover changes in such complex landscapes, 

with surface mining, is a priority. Carrying out such studies can contribute to the planning of activ-

ities both in surface mining operations and in reclamining abandoned surfaces. 

 

5. Conclusions 

The main aim of the study was to compare the performance of four advanced algorithms and 

two common algorithms for mapping and assessing land cover changes in a complex landscape with 

surface mining. By using the same training data set, the study results show the achievement of dif-

ferent accuracies in the classification of Landsat satellite images. The ability of SVM algorithms to 

generate an optimal separating hyperplane led to a better performance of them compared to MD and 

MLC algorithms. Within the SVM algorithms, the accuracies were slightly different, the best per-

forming being SVM-RBF, the final results depending on the chosen kernel, the optimization of the 

selected kernel parameters and the method used to generate the SVM. Accuracy assessment based 

on the confusion matrix has revealed that classes with overlapping spectral reflectance values on the 

signature plot were classified much more accurately by SVM algorithms. Among the common algo-

rithms, the MLC algorithm performed better than MD. It was found that these algorithms do not 

give reliable results in complex landscapes compared to SVMs. The disadvantage of both algo-

rithms’types, common and advanced, is the fact that they both operate at a pixel level and not at a 

sub-pixel level. This can cause a reduction in accuracy due to mixed pixels when using medium 

spatial resolution satellite images. 

Another objective of the study was to assess changes, mainly, the changes in mined areas over a 

period of 29 years, based on the classification algorithm that proved, after the assessment, to ensure 

the best accuracy, respectively SVM-RBF. PCC technique was used in the study in order to obtain 

maps change and “from – to” information. Results have shown that the detection of changes from 

satellite images in a complex landscape is a complicated process which requires a unique approach 

applicable to all cases. It was observed that during the studied period, mined areas increased on 

average by 6.5%, with very large increases and decreases in the intermediate periods. The main 

drivers for these changes were the shift from underground mining to surface mining [44]. The ex-

pansion of surface mining affected the landscape both by changing the relief in the area and by de-

grading the ecological balance. 

The assessment of changes in areas with surface mining using satellite images from different 

time periods can be a suitable indicator for quantifying and understanding human actions on the 

environment. Modern classification techniques through machine learning algorithms such as SVM, 

can ensure high accuracies in the classification of Landsat satellite images, used afterwards in as-

sessing changes in complex landscapes with surface mining. 
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