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Abstract: Multiple myeloma (MM) is an incurable hematological cancer. It is preceded by 

monoclonal gammopathy of uncertain significance (MGUS), an asymptomatic phase. It has been 

demonstrated that early detection increases the 5-year survival rate. However, blood-based 

biomarkers that enable early disease detection are lacking. Metabolomic and lipoprotein subfraction 

variable profiling is gaining traction to expand our understanding of disease states and, more 

specifically, for identifying diagnostic markers in patients with hematological cancers. This study 

aims to enhance our understanding of multiple myeloma (MM) and identify candidate metabolites, 

allowing for more effective preventative treatment. Serum was collected from 25 healthy controls, 

20 patients with MGUS, and 30 patients with MM. 1H-NMR (nuclear magnetic resonance) 

spectroscopy was utilized to evaluate serum samples. The metabolite concentrations were examined 

using multivariate, univariate, and pathway analysis. Metabolic profiles of the MGUS patients 

revealed lower levels of alanine (F.C. = 0.8, p = 0.002), lysine (FC = 0.8, p < 0.001), leucine (FC=0.7, p 

< 0.001) but higher levels of formic acid (FC=1.6, p ≤ 0.001) when compared to controls. However, 
metabolic profiling of MM patients compared to controls exhibited decreased levels of total 

Apolipoprotein-A1 (FC =0.6, p<0.001), HDL-4 Apolipoprotein-A1 (FC = 0.5, p  ≤ 0.001), HDL-4 

Apolipoprotein-A2 (FC = 0.6, p < 0.001), HDL Free Cholesterol (FC = 0.7, p < 0.001),  HDL-3 

Cholesterol (FC = 0.5, p ≤ 0.001) and HDL-4 Cholesterol (FC = 0.5, p ≤ 0.001). Lastly, metabolic 
comparison between MGUS to MM patients primarily indicated alterations in lipoproteins levels: 

Total Cholesterol (FC = 0.6, p ≤ 0.001), HDL Cholesterol (FC = 0.7, p ≤ 0.001), HDL Free Cholesterol 
(FC = 0.4, p ≤ 0.001), Total Apolipoprotein-A1 (FC = 0.7, p ≤ 0.001), HDL Apolipoprotein-A1 (FC = 

0.7, p ≤ 0.001), HDL-4 Apolipoprotein-A1 (FC = 0.6, p ≤ 0.001) and HDL-4 Phospholipids (FC = 0.6, p 

≤ 0.001). This study provides novel insights into the serum metabolic and lipoprotein subfraction 

changes in patients as they progress from a healthy state to MGUS to MM, which may allow for 

earlier clinical detection and treatment. 

Keywords: Multiple myeloma, monoclonal gammopathy of undetermined significance, serum 

diagnostic metabolites, Nuclear Magnetic Resonance. 

 

  

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 May 2023                   doi:10.20944/preprints202305.1339.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202305.1339.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

1. Introduction 

Multiple Myeloma (MM) is the second most prevalent hematological cancer, an incurable 

disease with diagnostic delays and multiple relapses [1–5]. It accounts for 1% of neoplastic diseases 

in high-income countries [6], with global mortality of 106.000 cases yearly [7]. In MM, malignant 

plasma cell clones produce excessive amounts of specific immunoglobulin (M-protein) and light 

chains [8]. Multiple myeloma begins asymptomatically as monoclonal gammopathy of undetermined 

significance (MGUS) and progresses to bone pain, anemia, kidney dysfunction, and infections [9,10]. 

Surprisingly, the 5-year survival rate for people diagnosed at an early stage is over 77 percent [1]. 

This is partly due to heterogeneous chromosomal aberrations and a variety of mutations in a number 

of genes, making it extremely challenging to target the disease therapeutically [11]. Consequently, 

searching for early diagnostic biomarkers and innovative therapeutic targets is crucial for preventing 

multiple myeloma.  

Furthermore, the molecular mechanisms sustaining the progression of the disease from MGUS 

to MM are poorly understood. MGUS and MM share an astonishingly similar genomic architecture 

[12]. Therefore, elucidating the metabolomic shift from asymptomatic to symptomatic MM may serve 

as a platform for mapping the dysregulated phenotype associated with this malignancy [13]. 

Recently, metabolomics, a quantitative measurement of all low-molecular-weight metabolites, is 

gaining momentum for diagnosing, classifying, making treatment decisions, and assessing treatment 

efficacy in cancer pathology and other disorders [9]. In addition, mounting evidence demonstrates 

that metabolomics profiling is well-suited for identifying prognostic and diagnostic markers in 

patients with hematological malignancies [14–16].  

Nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) have emerged 

as the two most common techniques in metabolomics research, each with advantages and limitations 

[17]. Over the last 15 years, the number of NMR-based metabolomics studies for mapping cancer 

development, progression, and treatment has risen [17]. This attribute is because NMR is a non-

destructive, unbiased, quantitative method that requires little or no sample preparation and limited 

data processing [18]. In addition, NMR-based metabolomics platforms have several distinct 

advantages over MS-based platforms. Firstly, NMR is highly sensitive to the chemical environment 

and can provide information on molecules in a physiological setting [19]. Secondly, NMR is ideally 

suited for untargeted metabolic profiling and multiple metabolite quantification in a single sample 

[17]. Lastly, although NMR is less sensitive than MS, it is more applicable in a clinical setting because 

it is better suited for large-scale metabolomic studies [17,18,20]. 

Currently, our understanding of the altered metabolome in MGUS and MM is limited, with only 

a few publications describing the metabolic changes in MM. The first metabolic study on MM cells 

revealed that progression to MM depends on glutamine and glucose metabolism [21]. Additionally, 

it has been reported that an altered bone marrow metabolism is an early trait of MGUS development 

and is unrelated to the disease's progression to MM [22]. Researchers have also suggested that 

peripheral serum and plasma can be applied to explore the metabolic phenotype between MGUS and 

MM [13,23–25]. Moreover, Steiner and colleagues demonstrated through targeted MS-based 

metabolomics that eight plasma metabolites differ significantly between MM and MGUS [9]. 

Researchers have shown significantly altered serum and plasma metabolites in MM or MGUS 

compared to healthy controls [13,23–28]. However, these studies focused primarily on the metabolic 

changes due to treatment response or at a single point in the progression of the disease. However, 

Ludwig and colleagues were the first to compare the plasma metabolic changes between controls, 

MGUS, and MM using 1H-NMR spectroscopy profiling. Still, they were unable to distinguish the 

premalignant from the malignant disease states in MM [22]. Interestingly, lipoproteins are becoming 

increasingly relevant as a prognostic factor in cancers, particularly in myeloma [29–33].  

In this study, we investigate the global metabolomics and lipoprotein subfraction aberrations, 

including lipoproteins between healthy controls, MGUS and MM, by 1H-NMR spectroscopy. This 

research aims to refine our molecular understanding of this incurable disease and identify candidate 

metabolites prior to clinical manifestations, facilitating more effective preventative treatment. 
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2. Materials and Methods 

2.1. Study Participants 

In this cross-sectional study, 20 MGUS and 30 MM newly diagnosed patients, based on the 

International Myeloma Working Group criteria, were recruited at Aalborg University Hospital from 

the Department of Hematology between March 2015 and September 2017 (1). In addition, MM 

patients were staged in accordance with the International Staging System criteria (ISS) [34]. Nielsen 

et al. [35] have previously described the inclusion and exclusion criteria. Briefly, patients were 

enrolled in the study if they had no history of venous thromboembolism (VTE), prior malignancies, 

or were receiving anticoagulation therapy (except for acetylsalicylic acid). At the time of diagnosis, 

clinical and biochemical data (S1 Table) were collected for both MM and MGUS patients and were 

previously described by Nielsen et al. [35]. 

For comparison with patient groups, 25 age- and sex-related donors with a mean age of 63 years 

(range 56-67; 52% males) were recruited from the blood bank at Aalborg University Hospital- blood 

donors in Denmark are healthy persons without biochemical abnormalities. The study was 

conducted in agreement with the Declaration of Helsinki and approved by the ethical committee of 

Northern Jutland (N-20130075). All patients and control subjects provided written informed consent.  

 2.2. Sample Collection and Processing 

Blood sampling at the time of diagnosis for MM patients was performed at the outpatient clinic 

at Aalborg University Hospital by the Department of Clinical Biochemistry. Blood samples were 

collected in 10 mL clot activator tubes (BD Vacutainer®, UK) and centrifuged at room temperature at 

2,500 × g for 15 min. The subsequent serum was snap-frozen in liquid nitrogen and stored at − 80 ◦C 
until analysis.  

2.3. Biochemical Analysis 

Measurement of biochemical parameters; protein concentration, creatinine, C-reactive protein 

(CRP), albumin, fibrinogen, haemoglobin were performed as previously described [35]. 

2.4. Nuclear magnetic resonance spectroscopy 

1H- NMR analysis was conducted as previously described by Pedersen et al. [36]. Serum samples 

(350 µL) were gently mixed with 350 µL of sodium phosphate buffer (0.075 M, pH 7.4, 20 percent 

D2O in H2O, 6 mM NaN3, 4.6 mM 3-(trimethylsilyl)-2,2,3,3-tetradeuteropropanoic acid) (TSP-d4). 

The prepared samples were then gently mixed and transferred to NMR tubes (5 mm diameter, 40 

mm fill height). NMR spectra were collected with a Bruker Avance III 600 MHz spectrometer 

outfitted with a BBI probe (Bruker Biospin Gmbh, Rheinstetten, Germany). The data acquisition and 

sample handling were automated using IconNMR on Topspin 3.6.2 and the SampleJet autosampler 

(Bruker Biospin). At 37 oC, one-dimensional nuclear Overhauser effect (NOESY) spectra (pulse 

program "noesygppr1d") and Carr-Purcell-Meiboom-Gill (CPMG) spectra ("cpmgpr1d") were 

recorded using Dona et al. (2014) acquisition parameters [37]. The NOESY spectra were recorded 

with 96k data points and 30 ppm spectral width, whereas CPMG spectra were recorded with 72k 

data points and 20 ppm spectral width. Both experiments were recorded with 32 scans and with water 

suppression (25 Hz) during relaxation delay (4 s) and mixing time (NOESY, 10 ms). After zero fillings 

to 128k data points and 0.3 Hz line broadening, the free induction decays were Fourier transformed. 

In accordance with BI Methods (Bruker Biospin Corporation, Billerica, MA, USA), reference samples 

for temperature calibration, water suppression determination, and external quantitative referencing 

were routinely recorded and processed in automation (Bruker Biospin). The Bruker Biospin products 

BI.Quant-PSTM 2.0 and BI.LISATM [38] automatically calculated quantitative measures of 41 

metabolites and 114 lipoprotein subfraction variables (S2 Table). Due to a lack of available 

measurements, 11 of the metabolites were excluded. A comprehensive list of included 

metabolites/lipoproteins subfraction variables and abbreviations can be found in the supplementary 
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Tables (S3, S4, and S5 Tables). To supplement the findings with references and metabolic pathways 

from existing research, metabolic changes were compared to the Edinburgh Human Metabolic 

Network [39] and Kyoto Encyclopedia of Genes and Genomes (KEGG) [40,41] databases.  

2.5. Statistical Analysis 

To identify metabolic differences between healthy Controls, MGUS, and MM patients, a partial 

least squares discriminant analysis (PLS-DA) was performed. The data were normalized, and Pareto 

scaled prior to performing a multivariate analysis. The PLS-DA model was validated using a Cross 

Validation (CV) model with 10 folds and 1000 permutations. The classification error rates were 

averaged to determine a single estimate for comparing the balanced error rate of maximum distance 

and the Mahalanobis distance error rate, which helped signify the optimal number of components to 

be utilized. The significant metabolites in sample grouping were selected using the Variable 

Importance in Projection (VIP)-score, where a score of 1.0 indicates significance. The multivariate 

analyses were conducted with the R-package "mixOmics" and the free software R studio.  

Prior to univariate analysis, normality testing was performed on the data using a Shapiro-Wilk 

test. Most data were not normally distributed; therefore, a non-parametric Kruskal Wallis and Mann 

Whitney U test was performed to identify metabolites with a post-hoc false discovery rate (FDR) 

correction test. The median ratio between groups was subsequently subjected to a fold change (FC) 

analysis. Control versus MGUS, Control versus MM, and MGUS versus MM were compared, 

respectively.  

To test the viability of the identified diagnostic metabolites, receiver operating characteristics 

(ROC) analysis was conducted in GraphPad Prism version 9.3.0 (GraphPad Software, La Jolla, CA, 

USA). Lastly, visualization of altered metabolite pathways was performed in Cytoscape version 3.9.0 

using the Metscape package. All amino acids with a VIP score greater than 1.0 were included in the 

pathway analysis. Additional information relating the progression of MGUS to a dysregulated amino 

acid metabolism is shown in Table S3 of the supplementary material. Moreover, we highlight in Table 

S4 the significant lipoprotein subfractions variables between MM and control, and in Table S5, the 

significant lipoproteins alterations related to disease progression from MGUS to MM. 

3. Results 

3.1. Clinical Characteristics of Study Populations 

A total of 20 MGUS and 30 MM patients fulfilled the inclusion criteria for this study. Staging in 

accordance with the criteria for International Staging System for MM and various other 

characteristics are shown in Table 1. The clinical data and biochemical parameters were previously 

presented in a study by Nielsen et al. [35]. Briefly, MM patients showed biochemical anomalies such 

as increased protein levels, creatinine, C-reactive protein (CRP), and decreased albumin, fibrinogen, 

and hemoglobin (Table 1, S1 Table). In addition, several MM patients exhibited severe bone changes 

and elevated levels of plasma cells in the bone marrow. 

Table 1. Demographics and clinical information of study populations. 

 MGUS (n = 20)  MM(n = 30) 
Between groups,  

P-value 

Reference range, 

male/female 

Demographics 

Age in years (mean ± SD)*    70.35 ± 11 70.7 ± 10 0.996  

Male gender 10 (50%) 14 (47%) 
 

 

Clinical and Biochemical characteristics 

ISS stage (%) 
   

 

I 
 

4 (13%) 
 

 

II 
 

16 (53 %) 
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III 
 

10 (33%) 
 

 

Bone changes (%) 

None  
 

8 (27%) 
 

 

Halisteresis 
 

0 (0%) 
 

 

Localized 
 

3 (10%) 
 

 

Spread 
 

19 (63%)  
 

 

M-protein, isotype (%) 

IgG 15 (50%) 22 (73%) 
 

 

Kappa  8 (53%) 17 (77%) 
 

 

Lambda  7 (47%) 5 (23%) 
 

 

IgA  4 (20%) 8 (27%) 
 

 

Kappa  2 (50%) 6 (75%) 
 

 

Lambda  2 (50%) 2 (25%) 
 

 

Plasma cells in bone marrow (%) 6.0 ± 2.3 41 ± 19.4 <0.001  

M-protein (g/l) 7.4 ± 6.6 42.9 ± 22.4 <0.001  

κ-Chain, free (mg/l)  128.5 ± 355.3 1179.1 ± 3434.8  0.080 3.3-19.4 

λ-Chain, free (mg/l)  26.3 ± 35.0 225.6 ± 652.5 0.014 5.7-26.3 

Creatinine (µmol/l) 74.4± 26.6 120.2 ± 94.1 / 87.4 ± 35.6 0.199 60-105/45-90 

CRP (mg/l) 7.4 ± 10.9 12.3 ± 25.0 0.812 <8.0  

Protein (g/l) 77.2 ± 7.2 107.8 ± 20.0 <0.001 62-78 

Albumin  (g/l) 36.8 ± 3.1 29.5 ± 4.9 <0.001 34-45 

Fibrinogen (μM) 11.4 ± 3.4 10.6 ± 3.9 0.156 5-12 

Hemoglobin (M/F) (mmol/l) 8.6 ± 1.3\7.7 ± 0.8  6.4 ± 1.4\5.8 ± 0.7 <0.001 8.3-10.5/7.3-9.5 

* Data is presented as mean ± standard deviation or number (%). Due to gender differences, several parameters 

are presented as male/female. MGUS = monoclonal gammopathy of undetermined significance; MM = Multiple 

Myeloma; SD = standard deviation; ISS = international staging system; IgG = immunoglobulin G; IgA = 

immunoglobulin; κ-Chain, free = kappa-Chain, free ; λ-Chain, free = Lamda-Chain, free ; CRP = C-reactive 

protein aminotransferase; ISS = international staging system 

3.2. Healthy Control vs. MGUS: Progression of MGUS associated with imbalanced amino acid metabolism 

To identify potential biomarkers linked to premalignant and malignant MM, 41 metabolites and 

114 lipoprotein subfraction variables (Table S2) Were analyzed using partial least squares 

discriminant analysis (PLS-DA). Figure 1A shows a significant differentiation between healthy 

subjects and MGUS patients, with a mean cross-validation error rate of 0.16. The PLS-DA analysis 

revealed 16 variables, mainly amino acids, with VIP scores >1.0 that significantly differed between 

MGUS patients and controls (Figure 1B, S3 Table). ROC curves and boxplots for comparisons of the 

four metabolites with the highest AUC scores are displayed in Figure 1C. Lysine, formic acid, and 

leucine exhibited a remarkable AUC performance of 0.86 (95% CI = 0.75-0.97), AUC of 0.84 (95% CI = 

0.71-0.97), and AUC of 0.82 (95% CI = 0.69-0.94), respectively. Only formic acid showed a positive 

fold change (FC) of 1.8, indicating elevated levels in the MGUS group. Alanine and isoleucine had 

AUC scores below 0.80 (0.77 and 0.78, respectively) and reduced levels in the MGUS group. Multiple 

pathways were altered in MGUS, as shown in Figure 1D. These pathways included 

phosphatidylinositol phosphate, glycerophospholipid and galactose metabolism, folate metabolism, 

prostaglandin formation, methionine, and cysteine metabolism, valine, leucine and isoleucine 

degradation, glycine, serine, alanine and threonine metabolism, urea cycle, and metabolism of 

arginine, proline, glutamate, aspartate and arginine, lysine, lipoate, and biotin. 
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Figure 1. Healthy Control vs. MGUS: Progression of MGUS associated with imbalanced amino acid 

metabolism. PLS-DA plots, VIP plots, A. Partial least squares discriminant analysis (PLS-DA) scores 

plot comparing healthy control samples (yellow) and MGUS patients (blue) on latent variable 1 (LV1). 

B. Most significant variables with VIP scores >1.0. C. OC curves and boxplots for the top four 

metabolites based on AUC scores when comparing Control vs. MGUS: Lysine (AUC = 0.86, CI 95% = 

0.75-0.97), Formic acid (AUC = 0.84, CI 95% = 0.71-0.97), Leucine (AUC = 0.82, CI 95% = 0.69-0.94), 

Alanine (AUC = 0.78, CI 95% = 0.64-0.91). D. Pathway analysis of significantly altered amino acids 

(VIP >1.0) between healthy controls and MGUS patients. Pink nodes represent metabolites involved 

in the affected pathway but were not investigated in this study. Red nodes denote significantly 

decreased metabolites, while blue nodes indicate significantly increased metabolites. Note that KEGG 

IDs were unavailable for all lipoproteins, so only amino acids are included in the pathway analysis. 

3.3. Healthy Control vs. MM: Low levels of apolipoprotein and cholesterol are prevalent in MM patients   

The PLS-DA plot depicted in Figure 2A distinctly differentiates between healthy individuals and 

MM patients when comparing them to control subjects. The cross-validation error rate is 0.09. In 

contrast to the control and premalignant MGUS comparison, amino acids are crucial in distinguishing 

the groups. According to Figure 2B, the shift from a healthy to a malignant MM is linked to 

lipoprotein subfraction variables, specifically HDL-4 (High-density lipoprotein subfraction 4) 
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cholesterol particles, with a VIP score greater than 1.0. On the other hand, during the progression to 

MM, only methionine, lysine, and leucine amino acids exhibit alterations. Figure 2C presents the ROC 

curves and boxplots for the top four lipoprotein subfractions variables based on AUC scores for MM 

and control participants. These include HDL-4 Cholesterol (AUC = 0.99, CI 95% = 0.98-1.0), HDL-4 

Phospholipids (AUC = 0.99, CI 95% = 0.98-1.0), HDL-4 Apolipoprotein A-1 (AUC = 0.99, CI 95% = 

0.96-1.0), and HDL-4 Apolipoprotein A-2 (AUC = 0.96, CI 95% = 0.92-1.0). Figure 2C also reveals that 

these lipoprotein subfraction variables are significantly reduced in MM patients compared to healthy 

controls (S4 Table). Amino acids with a VIP score >1.0 are incorporated in the pathway analysis in 

Figure 2D. Impacted pathways include valine, leucine, and isoleucine degradation, purine and 

pyrimidine metabolism, urea cycle and metabolism of arginine, proline, glutamate, aspartate, and 

arginine, lipoate metabolism, lysine metabolism, biotin metabolism, , folate metabolism, methionine, 

and cysteine metabolism, as well as nicotinate and nicotinamide metabolism. 

 

Figure 2. Healthy controls vs. MM: Low levels of apolipoprotein and cholesterol are prevalent in MM 

patients. A. Partial least squares discriminant analysis (PLS-DA) scores plot of healthy control 

samples (yellow) vs. MM patients (red) on latent variable 1 (LV1). B. Table displays values from the 

Control vs. MM statistical analysis for variables with a VIP score >1.3. C. ROC curves and boxplots 

for the top four variables based on AUC scores when comparing Control vs. MM: HDL-4 Cholesterol 

(AUC = 0.99, CI 95% = 0.98-1.0), HDL-4 Phospholipids (AUC = 0.99, CI 95% = 0.98-1.0), HDL-4 

Apolipoprotein A-1 (AUC = 0.99, CI 95% = 0.96-1.0), HDL-4 Apolipoprotein A-2 (AUC = 0.96, CI 95% 

= 0.92-1.0). D. Pathway analysis of significantly altered amino acids (VIP >1.0) between healthy 
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controls and MM patients. Pink nodes represent metabolites involved in the affected pathway but 

were not investigated in this study. Red nodes denote significantly decreased metabolites, while blue 

nodes indicate significantly increased metabolites. Note that KEGG IDs were unavailable for all 

lipoproteins, so only amino acids are included in the pathway analysis. 

3.4. MGUS vs. MM: Lipoprotein subfractions alterations in MGUS contribute to symptomatic MM 

The PLS-DA plot in Figure 3A shows a clear separation between MGUS and MM groups, with 

an average cross-validation error rate of ≤0.20. Figure 3B indicates that the significantly altered 

variables stem from lipoprotein subfractions variables. Figure 3C presents ROC curves and boxplots 

for the top four lipoprotein subfractions, including HDL Free Cholesterol (AUC = 0.93, CI 95% = 0.86-

1.0), Total Apolipoprotein A-1 (AUC = 0.92, CI 95% = 0.84-0.99), HDL Apolipoprotein A-1 (AUC = 

0.90, CI 95% = 0.81-0.99), and HDL-3 Cholesterol (AUC = 0.89, CI 95% = 0.80-0.97). S5 Table reveals 

that all metabolites and lipoproteins with significantly altered p-values < 0.001 have AUC scores > 

0.86, demonstrating strong discriminatory ability. Interestingly, HDL-free cholesterol shows the most 

significant change in the MM disease state, which aligns with the comparison of controls to MM. 

Glutamine is the only amino acid found to be significantly altered (VIP score >1.0) in the pathway 

analysis when comparing MGUS vs. MM (Figure 3D). Glutamine appears to be connected to several 

pathways, including purine, pyrimidine, amino sugars, nicotinate, and nicotinamide metabolism, as 

well as the urea cycle and the metabolism of arginine, proline, glutamate, aspartate, and asparagine. 

 

Figure 3. MGUS vs. MM: Lipoprotein subfractions alterations in MGUS contribute to symptomatic 

MM. A. Partial least squares discriminant analysis (PLS-DA) scores plot of MGUS (blue) vs. patients 
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with MM (red) on latent variables 1 (LV) and 2. B. Most significant variables based on VIP scores >1.0. 

C. ROC curves and boxplots of the four highest scoring variables based on AUC scores when 

comparing Control vs. MM. HDL Free Cholesterol (AUC = 0.93, CI 95% = 0.86-1.0), Total 

Apolipoprotein A-1 (AUC = 0.92, CI 95% = 0.84-0.99), HDL Apolipoprotein A-1 (AUC = 0.90, CI 95% 

= 0.81-0.99), HDL-3 Cholesterol (AUC = 0.89, CI 95% = 0.80-0.97). D. Pathway analysis of significantly 

altered amino acid (VIP >1.0) between MGUS and MM patients. Pink nodes represent metabolites 

involved in the affected pathway, which were not investigated in the study. Red nodes represent the 

significantly decreased metabolites, and blue nodes represent the significantly increased metabolites. 

4. Discussion 

In this study, we utilized 1H- NMR analysis to conduct a comprehensive metabolomics analysis 

on serum samples obtained from healthy individuals, MGUS patients, and MM patients. The goal 

was to identify metabolites and lipoprotein subfraction variables that might contribute to the 

development and advancement of MM. Our findings indicate that amino acids are involved in 

transitioning from healthy controls to asymptomatic MGUS. Conversely, lipoprotein subfractions 

were the most influential variables for distinguishing between MM and MGUS patient groups. 

Our analysis revealed significant changes in amino acid concentrations, such as alanine, lysine, 

leucine, and formic acid, when comparing healthy controls to MGUS patients. Previous studies have 

also reported perturbations in amino acid concentrations in MGUS patients [22,42]. However, to our 

knowledge, this is the first study that has utilized NMR analysis of serum samples to investigate 

metabolic changes between healthy controls and MGUS patients. In a separate study, Steiner et al. 

[42] used electrospray ionization liquid chromatography (ESI-LC-MS/MS) and flow-injection analysis 

mass spectrometry (FIA/MS) to measure peripheral blood plasma samples. They found significant 

alterations in 36 amino acids and biogenic amines. Unfortunately, the authors did not offer 

information regarding the particular amino acids that showed significant changes, making it difficult 

to compare their findings with our own. 

Another study by Ludwig et al. [22] analyzed filtered plasma from bone marrow aspirates using 

1H-NMR spectroscopy. They found that isoleucine and threonine were significantly decreased in the 

bone marrow of MGUS and MM patients. This is not consistent with the findings of our study, which 

revealed significant changes in the same amino acids. Nonetheless, the threonine levels in the MGUS 

patients from our study were elevated, as indicated by a fold change (FC) of 1.1. However, it is 

important to note that there could be variations between bone marrow and serum concentrations. 

According to Ludwig et al. [22], increased essential amino acid usage by clonal plasma cells 

within the bone marrow of MGUS patients implies an increase in cellular anabolism. This, in turn, 

results in greater utilization of branched-chain amino acids (BCAAs) such as leucine, isoleucine, and 

valine [26]. The observed reduction in BCAA concentrations in the face of enhanced plasma cell 

proliferation supports this theory. Previous studies have linked BCAAs and their levels to cancer 

progression, as they are indispensable for cancer cell metabolism, including oxidation and protein 

synthesis [42,43]. Additionally, amino acid derivatives have been linked to epigenetic regulation of 

tumorigenesis and metastasis, highlighting the potential significance of BCAAs in the progression to 

MGUS [44]. Furthermore, the catabolism of BCAAs can promote lipogenesis by producing acetyl-

CoA, which is critical, considering the variations we observed when comparing healthy controls to 

MM patients [44].  

As previously stated, the comparison between healthy controls and MM patients revealed a clear 

distinction between the two groups. The data indicate that lipoproteins are the primary 

distinguishing factor between healthy individuals and MM patients. It has been recognized that 

abnormal lipid metabolism is a crucial mechanism in carcinogenesis. Dysregulated lipid metabolism 

is associated with a poorer prognosis and an increased cancer risk [29,31,45]. Apolipoproteins and 

cholesterol are the most prominent subfraction variables of lipoproteins that are altered (Figure 2B).  

Small clinical studies indicate that the lipid content of lipoproteins is the most prevalent 

biomarker of MM (31). In addition, lipoproteins may affect cellular microenvironment processes, 

such as oxidative stress and inflammation [46]. The significance of lipoproteins in the bloodstream 
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extends beyond their concentration, as their function is equally critical. In particular, HDL is pivotal 

in several biological processes and pathways, including the redistribution of cholesterol and other 

lipids in the periphery [31].    

According to the literature, apolipoprotein A1 may have an essential role in the progression and 

development of MM [31,32]. In this study, a metabolomics analysis showed lower levels of total 

apolipoprotein-A1, HDL-4 Apolipoprotein-A1, and HDL-4 Apolipoprotein-A2 in MM patients 

compared to healthy controls. Research suggests that high levels of Apolipoprotein-A1 are linked to 

better overall and progression-free survival [31–33,47]. A proteomic analysis by Zhang et al. 

specifically showed decreased levels of Apolipoprotein-A1 in MM patients compared to controls (47). 

Apolipoprotein-A1 is known to have anti-tumor activity and may hinder tumor growth by inhibiting 

angiogenesis, reducing tumor metastasis and invasion, and regression of tumor size [32,48]. This 

could be due to its role in cellular cholesterol homeostasis and reverse cholesterol transport (48). 

Myeloma cells require cholesterol for growth and proliferation, and previous studies have shown 

lower cholesterol levels in MM patients. Hungria [49] and Scolozzi et al. [50] reported decreased 

cholesterol levels in patients with multiple myeloma. In a study by Yavasoglu et al. [43], patients with 

MM had significantly lower LDL and HDL cholesterol levels than controls.  

Hypocholesterolemia in cancer patients may be caused by enhanced cholesterol uptake by 

cancer cells (46). Specifically, low HDL cholesterol levels can result from an impaired HDL metabolic 

pathway and are also associated with increased deposition [31]. In the bone marrow of patients with 

multiple myeloma, mature adipocytes are typically disproportionately large, and pre-adipocyte 

levels are elevated. It is believed that adipocytes support tumor growth and protect malignant cells 

from chemotherapeutic-induced apoptosis. In this way, lower cholesterol and HDL levels may be 

linked to the development and progression of multiple myeloma (MM) [31,46,49,50].   

The pathway analysis comparing healthy controls and MM patients (Figure 2D) revealed that 

the metabolism of the urea cycle was modified. This finding is supported by Ludwig et al. [7], who 

found an increase in anabolism in the microenvironment of MGUS and MM tumors. A distinct 

pattern emerges when comparing MGUS and MM. The concentrations of lipoproteins, particularly 

cholesterol, and apolipoprotein, exhibit significant alterations. The patterns are comparable in a 

comparison between healthy controls and MM patients. HDL levels, however, appear to be more 

prevalent. As previously mentioned, HDL may be linked or associated with the progression of MM. 

Interestingly, reduced HDL levels have been linked to the development of an inflammatory 

microenvironment that affects the function and differentiation of osteoblasts [30]. This may add to 

the explanation of the elevated bone resorption seen in MM patients [51].  

Since changes in HDL levels appear to be less pronounced in the analysis comparing healthy 

controls to MGUS patients than in the analysis comparing MGUS to MM, it appears that the most 

significant shift in HDL metabolism occurs during the progression from MGUS to MM. More 

specifically, the apolipoproteins are more involved during the malignant progression from MGUS to 

MM than during the development of MGUS. According to Gonsalves et al. [26], lower levels of 

complex lipids in the bone marrow plasma of patients with multiple myeloma than in patients with 

myeloma-associated lymphoid neoplasms indicate an increased utilization of lipids for membrane 

biosynthesis due to the rapid proliferation of clonal plasma cells. Interestingly, a study found that 

patients with MGUS and a high BMI were more likely to develop multiple myeloma. This appears to 

be related to the fluctuating levels of lipoproteins in MM patients [31]. The disruption of the 

lipoprotein transport system may have a crucial role in disease development, as indicated by the 

emerging importance of dyslipidemia as a prognostic factor for disease progression and outcome. 

The results presented in Figures 1 and 2 show that metabolites are significantly dysregulated between 

healthy individuals and those with multiple myeloma (MM) than between healthy individuals and 

those with monoclonal gammopathy of undetermined significance (MGUS), consistent with previous 

findings by Ludwig et al. [22]. These authors suggest that alterations to the metabolic phenotype are 

necessary for disease progression to MM, a notion supported by López-Corral et al. [52], who 

reported only a few genetic alterations are associated with progression from MGUS to MM. 
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It should be noted that this study faced a few shortcomings. First, the sample size was relatively 

small, which increased the possibility of random chance bias. Increasing the sample size could 

significantly improve the statistical analysis's reliability and validity. Second, the research was 

restricted to NMR metabolomics. As previously stated, using a combination of technologies is highly 

advantageous for metabolic studies. Implementing mass spectrometry (MS) would permit the 

detection of metabolites below the detection limit of NMR. Furthermore, incorporating gender 

stratification in future investigations could be valuable, as previous research has identified notable 

disparities in the probability of developing MM and overall survival rates between males and females 

[53]. Serum was obtained from non-fasting individuals, and their lipoprotein profiles differ from 

those in a fasting state. Nevertheless, the primary distinctions were observed in the HDL fractions, 

which exhibit minimal alterations between fasting and non-fasting conditions. Additionally, there is 

an absence of validation using a separate, independent cohort.  

In this study, NMR spectroscopy was used for the first time to compare the serum metabolomes 

of healthy individuals to those of MGUS and multiple myeloma patients. According to Emwas et al. 

[17], combining different metabolomic analysis techniques produces superior outcomes; hence 

utilizing various technologies in future research may be beneficial. Future studies can determine the 

exact significance of apolipoproteins in the development and progression of MGUS and MM by 

employing a combination of technologies. In addition, analyzing the changes in the metabolome of 

multiple myeloma (MM) patients in response to different treatments may reveal intriguing 

mechanisms involved in MM progression and treatment response. 

5. Conclusions 

Our study has utilized 1H-NMR spectroscopy to reveal a significant rearrangement of amino 

acids during the development of MGUS. At the same time, lipoproteins, particularly apolipoprotein 

subfractions, are substantially involved in the progression of MGUS to MM patients. By identifying 

altered biological pathways not previously detected in plasma or bone marrow aspirates, our 

findings provide novel insights into the progression of premalignant MGUS to malignant MM. 

Furthermore, serum metabolic profiling provides valuable information and allows for the 

identification of new biomarkers, which can enhance the detection of MGUS and MM, leading to 

earlier and more effective treatment. Ultimately, our study emphasizes the necessity for further 

scientific exploration into the discovered serum metabolite biomarkers. 
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