New phenolic dimers from plant *Paeonia suffruticosa* and their bioactivity

Qian-Qian Meng ^{1,2}, Shun-Yao Tong ¹, Yu-Qing Zhao ¹, Xing-Rong Peng ³, Zheng-Hui Li ¹, Tao Feng ^{1,*}, Ji-Kai Liu ^{1,*}

- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei 430074, People's Republic of China
- ² Medical school, Fuyang Normal University, Fuyang, 236037, People's Republic of China
- ³ State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- * Correspondence: E-mails: tfeng@mail.scuec.edu.cn (T. Feng); liujikai@mail.scuec.edu.cn (J.K. Liu).

Corresponding author: tfeng@mail.scuec.edu.cn (T. Feng); liujikai@mail.scuec.edu.cn (J.K. Liu).

Contents of Supporting Information

- Section S1. NMR and MS for compounds 1–5.
 - Figure S1-S4 NMR spectra of paeobenzofuranone A (1)
 - Figure S5 HRESIMS spectrum of paeobenzofuranone A (1)
 - Figure S6-S11 NMR spectra of paeobenzofuranone B (2)
 - Figure S12HRESIMS spectrum of paeobenzofuranone B (2)
 - Figure S13-S17 NMR spectra of paeobenzofuranone C (3)
 - Figure S18 HRESIMS spectra of paeobenzofuranone C (3)
 - Figure S16-S23 NMR spectra of paeobenzofuranone D (4)
 - Figure S24 HRESIMS spectra of paeobenzofuranone D (4)
 - Figure S25-S29 NMR spectra of paeobenzofuranone E (5)
 - Figure S30 HRESIMS spectra of paeobenzofuranone E (5)
- Section S2. Computational details for compounds 1–5.
 - Section S2-1. Computational details for paeobenzofuranone A (1) (ECD)
 - Section S2-2. Computational details for paeobenzofuranone B (2) (ECD)
 - Section S2-3. Computational details for paeobenzofuranone C (3) (ECD)
 - Section S2-4. Computational details for paeobenzofuranone D (4) (ECD)
 - Section S2-5. Computational details for paeobenzofuranone E (5) (ECD)

Section S1. NMR and MS for compounds 1-5.

Figure S1. ¹H NMR (600 MHz, Methanol-d₄) spectrum of paeobenzofuranone A (1).

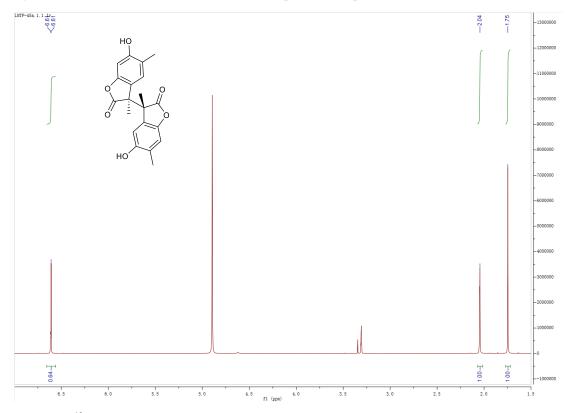


Figure S2. ¹³C NMR (150 MHz, Methanol-d₄) spectrum of paeobenzofuranone A (1).

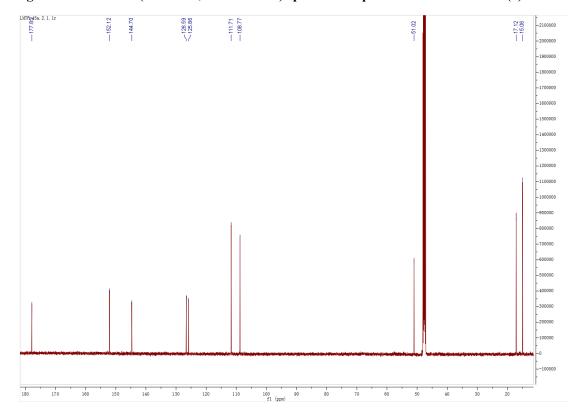


Figure S3. HSQC (600/150 MHz, Methanol-d4) spectrum of paeobenzofuranone A (1).

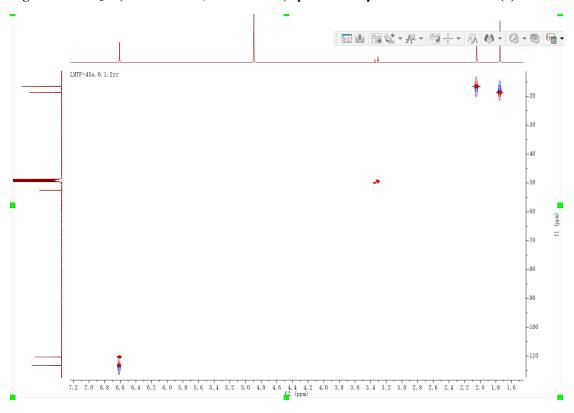


Figure S4. HMBC (600/150 MHz, Methanol-d4) spectrum of paeobenzofuranone A (1).

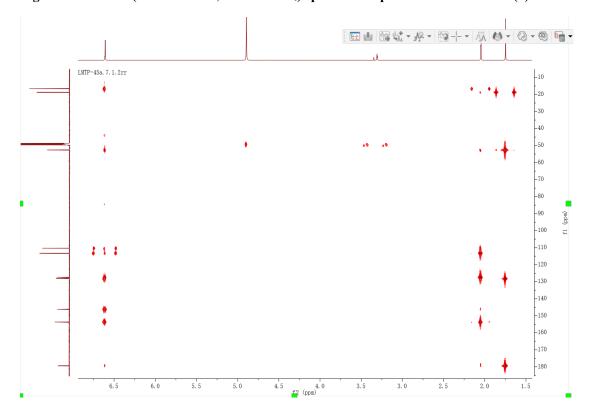


Figure S5. HRESIMS spectrum of paeobenzofuranone A (1)

D:\1-Liu-jikai\...\2022\20220415\Imtp45a

04/15/22 14:29:07

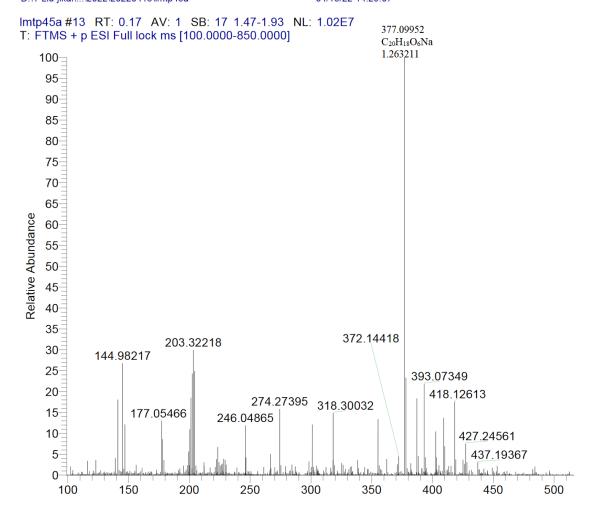


Figure S6. ¹H NMR (600 MHz, Methanol-d₄) spectrum of paeobenzofuranone B (2).

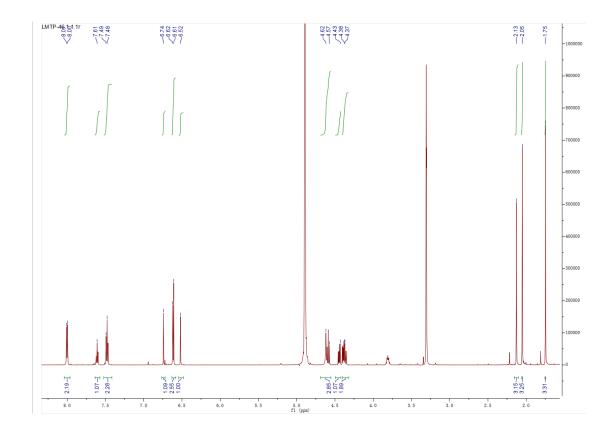


Figure S7. 13 C NMR (150 MHz, Methanol- d_4) spectrum of paeobenzofuranone B (2).

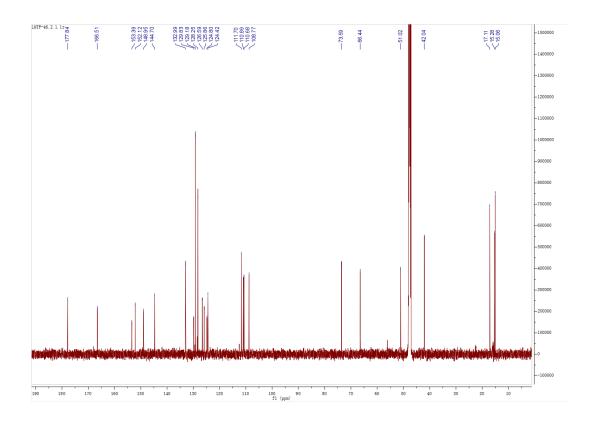


Figure S8. HSQC (600/150 MHz, Methanol-d4) spectrum of paeobenzofuranone B (2).

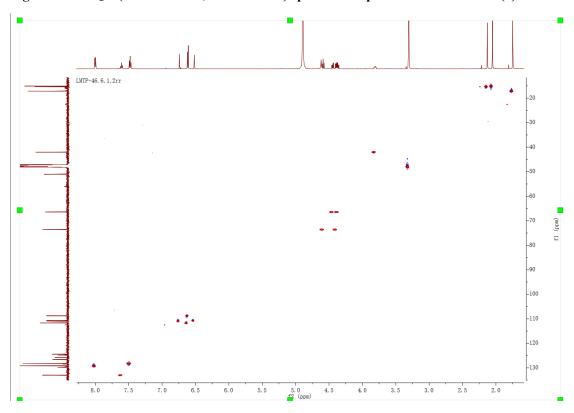


Figure S9. HMBC (600/150 MHz, Methanol-d4) spectrum of paeobenzofuranone B (2).

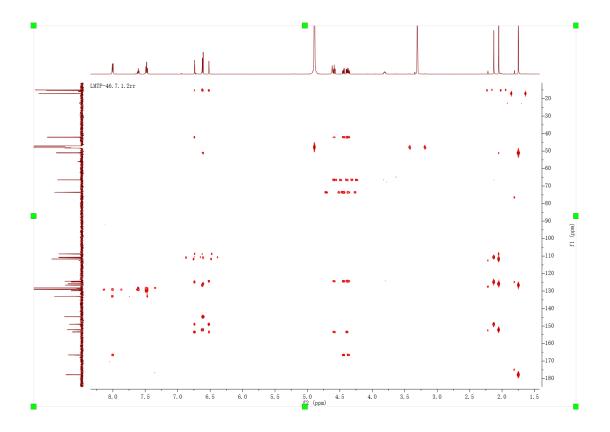


Figure S10. ¹H-¹H COSY (600/150 MHz, methanol-d₄) spectrum of paeobenzofuranone B (2).

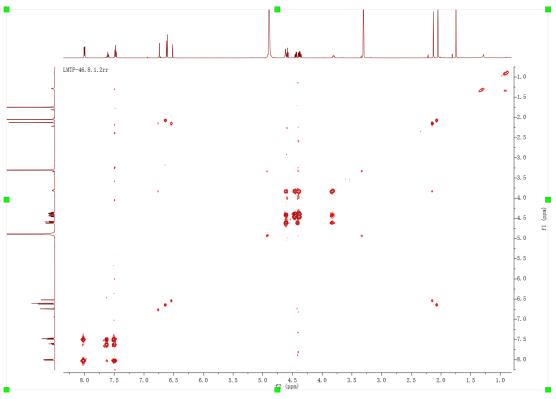


Figure S11. ROESY (600/150 MHz, methanol-d₄) spectrum of paeobenzofuranone B (2).

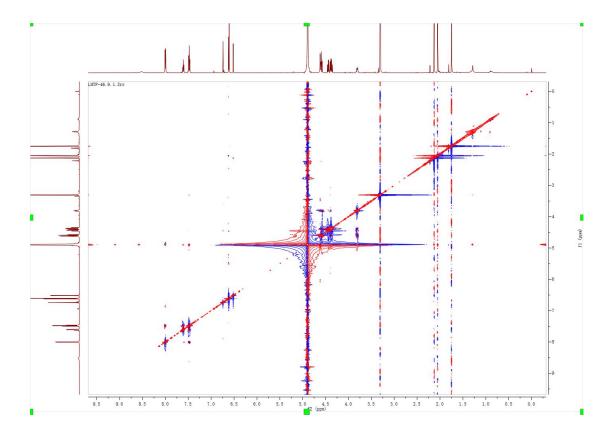


Figure S12. HRESIMS spectrum of paeobenzofuranone B (2)

TP46 #13 RT: 0.17 AV: 1 NL: 2.45E7

T: FTMS + p ESI Full lock ms [150.0000-1100.0000]

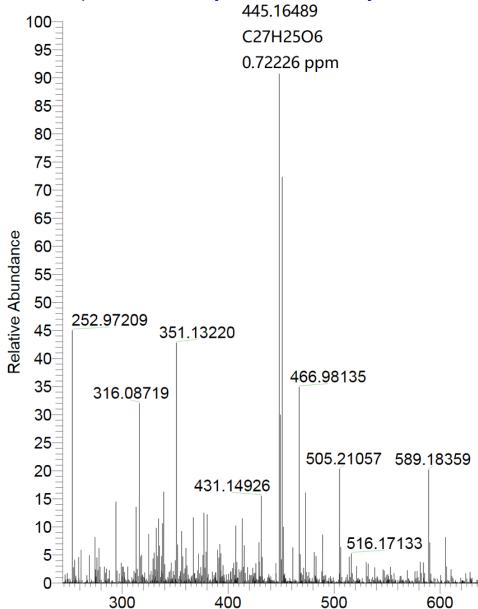


Figure S13. 1 H NMR (600 MHz, Methanol- d_4) spectrum of paeobenzofuranone C (3).

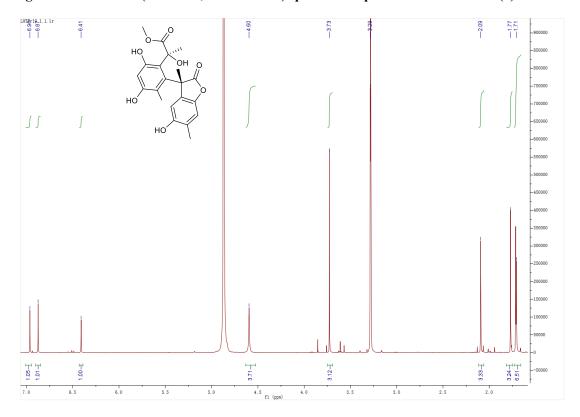


Figure S14. ¹³C NMR (150 MHz, Methanol-d₄) spectrum of paeobenzofuranone C (3).

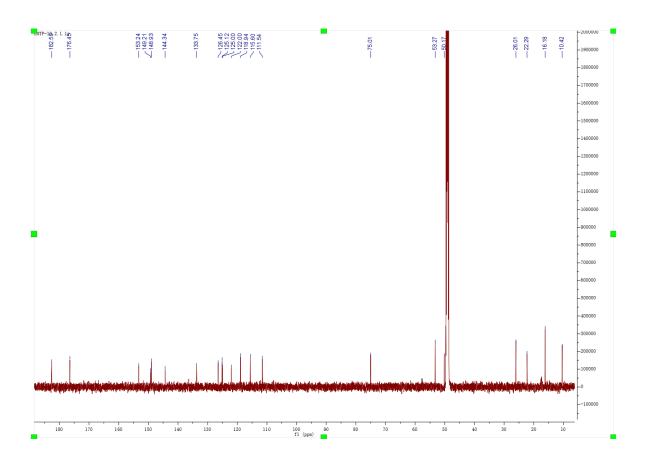


Figure S15. HSQC (600/150 MHz, Methanol-d₄) spectrum of paeobenzofuranone C (3).

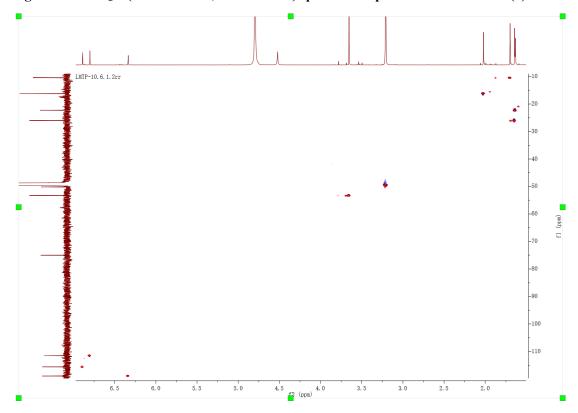


Figure S16. HMBC (600/150 MHz, Methanol-d₄) spectrum of paeobenzofuranone C (3).

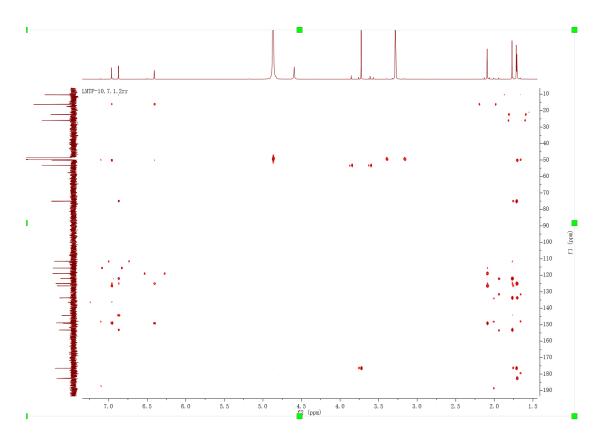


Figure S17. ¹H-¹H COSY (600 MHz, methanol-d₄) spectrum of paeobenzofuranone C (3).

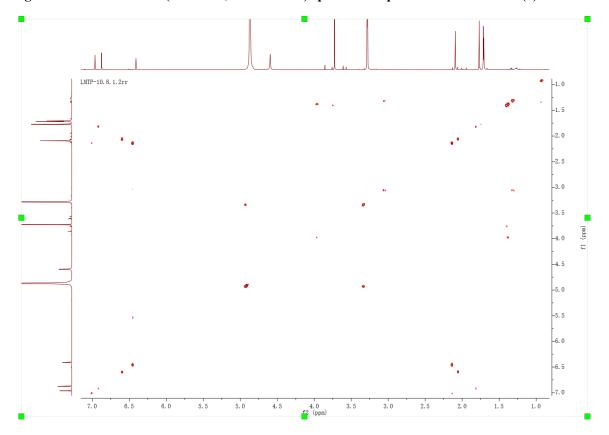


Figure S18. HRESIMS spectrum of paeobenzofuranone C (3)

D:\1-Liu-jikai\...\2021\20211201\LMTP10

12/01/21 09:23:28

LMTP10 #13 RT: 0.17 AV: 1 NL: 1.53E8 T: FTMS + p ESI Full lock ms [150.0000-1100.0000]

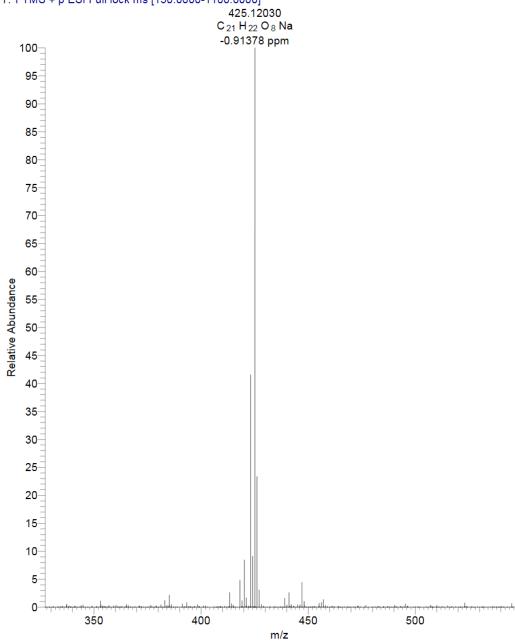


Figure S19. ¹H NMR (600 MHz, Methanol-d₄) spectrum of paeobenzofuranone D (4).

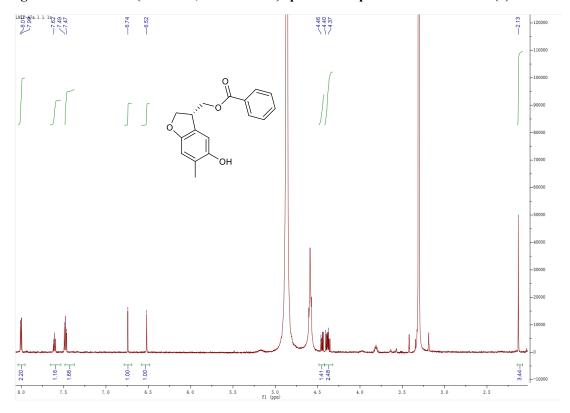


Figure S20. ¹³C NMR (150 MHz, Methanol-d₄) spectrum of paeobenzofuranone D (4).

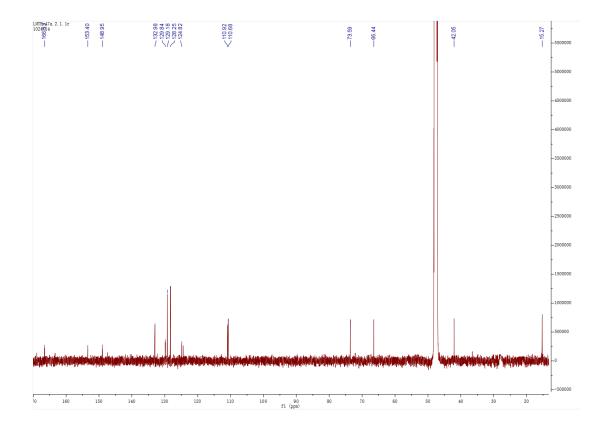


Figure S21. HSQC (600/150 MHz, Methanol-d₄) spectrum of paeobenzofuranone D (4).



Figure S22. HMBC (600/150 MHz, Methanol- d_4) spectrum of paeobenzofuranone D (4).

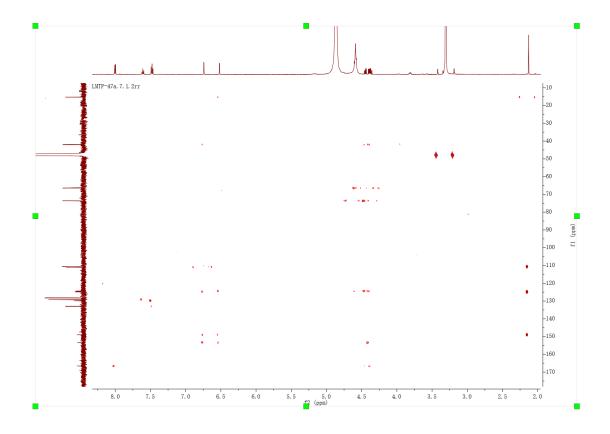


Figure S23. ¹H-¹H COSY (600, Methanol-d₄) spectrum of paeobenzofuranone D (4).

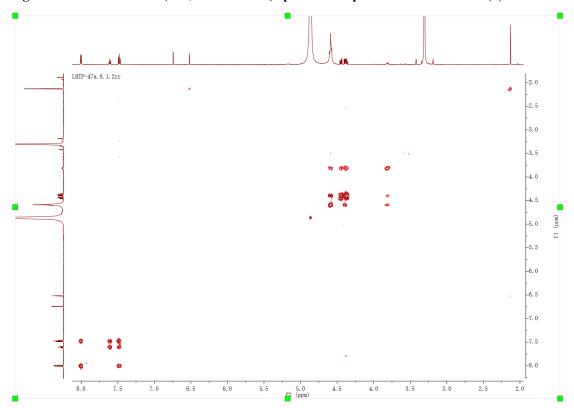


Figure S24. HRESIMS spectrum of paeobenzofuranone D (4)

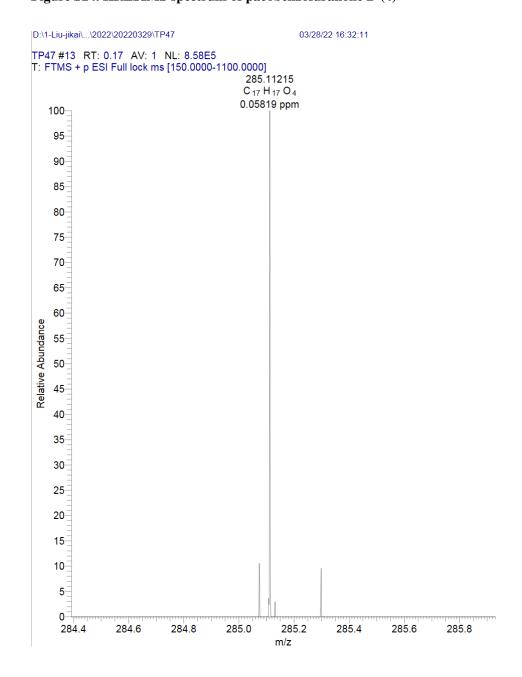


Figure S25. ¹H NMR (600 MHz, Methanol-d₄) spectrum of paeobenzofuranone E (5).

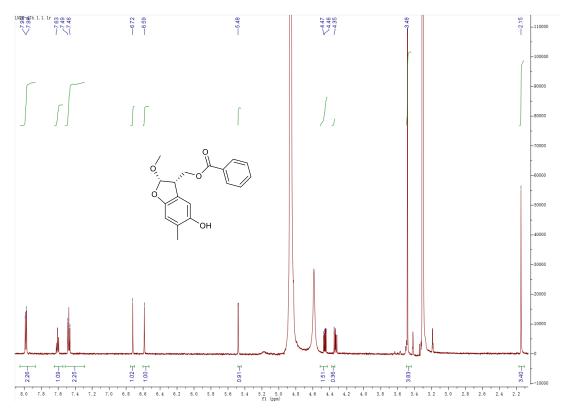


Figure S26. ¹³C NMR (150 MHz, Methanol-d₄) spectrum of paeobenzofuranone E (5).

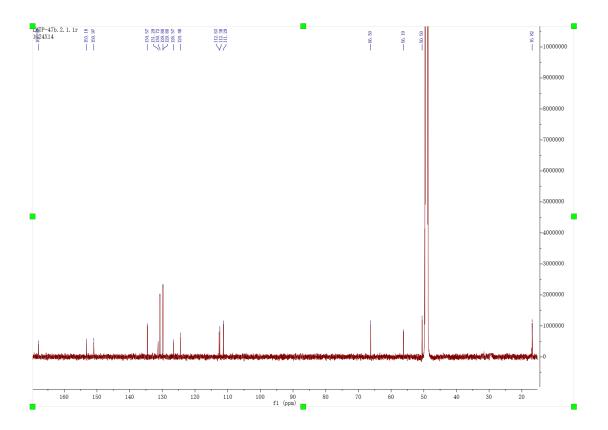


Figure S27. HSQC (600/150 MHz, Methanol-d₄) spectrum of paeobenzofuranone E (5).

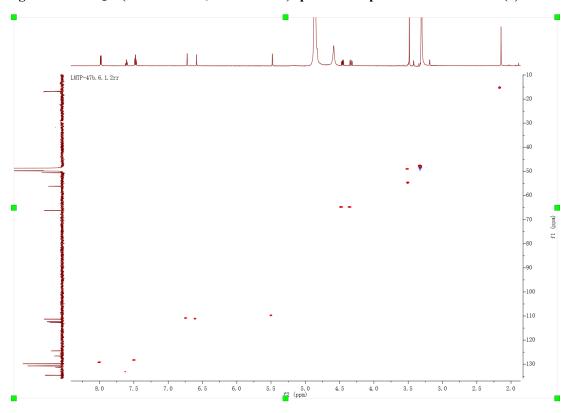


Figure S28. HMBC (600/150 MHz, Methanol-d4) spectrum of paeobenzofuranone E (5).

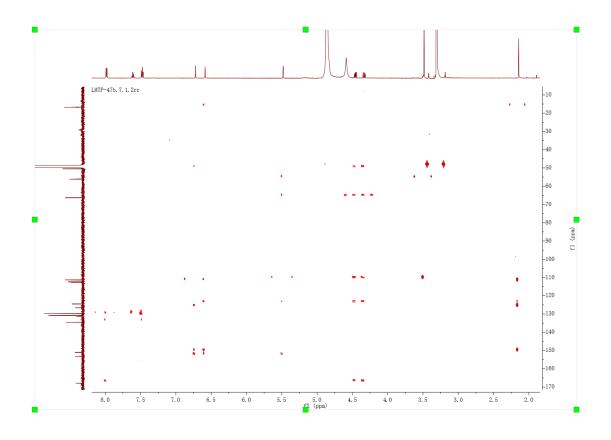


Figure S29. ¹H-¹H COSY (600, Methanol-d₄) spectrum of paeobenzofuranone E (5).

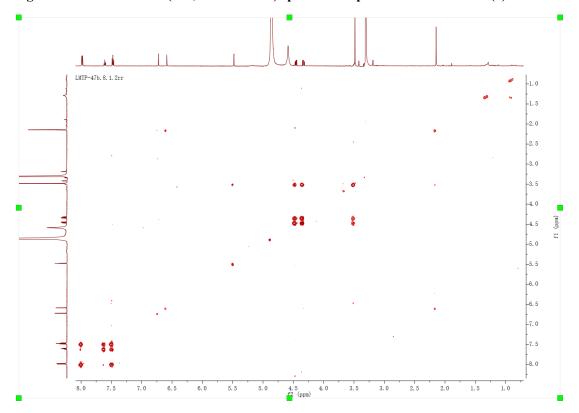


Figure S30. HRESIMS spectrum of paeobenzofuranone E (5)

20-

10-

5-

0-

m/z 03/28/22 16:32:11 90-70-Relative Abundance

Section S2. Computational details for compounds 1-5.

Section S2-1. Computational details for paeobenzofuranone A (1) (ECD)

Conformation search based on molecular mechanics with MMFF force fields were performed for 1a,1b,1c and 1d gave 16 low-energy conformers with populations higher than 1%, respectively. All these conformers were further optimized by the density functional theory method at the B3LYP/6-311G(d) level by Gaussian 16 program package. The ECD were calculated using density functional theory (TDDFT) at B3LYP/6-31+G(d,p) level in methanol with IEFPCM model. The calculated ECD curves were all generated using SpecDis 1.71 with $\sigma = 0.30$ eV, and UV shift -15.7nm, respectively.

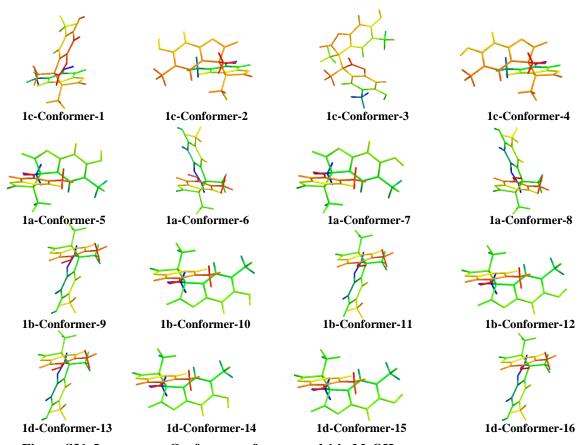


Figure S31. Low-energy Conformers of compound 1 in MeOH

Table S1. Energy analysis for conformers of 1 at B3LYP/6-31+G(d,p) level in the gas phase

Species	E'=E+ZPE	E	Н	G	ΔG	$\Delta E(kcal/mol)$	PE%
1c-1	-1224.096269	-1224.073042	-1224.072097	-1224.147276	0.000092	0.057731	19.77%
1c-2	-1224.096269	-1224.073042	-1224.072097	-1224.147276	0.000092	0.057731	19.77%
1c-3	-1224.095633	-1224.072406	-1224.071462	-1224.146579	0.000789	0.495105	9.45%
1c-4	-1224.095633	-1224.072406	-1224.071462	-1224.146579	0.000789	0.495105	9.45%
1a-5	-1224.096269	-1224.073042	-1224.072097	-1224.147276	0.000093	0.057741	19.97%
1a-6	-1224.096269	-1224.073042	-1224.072097	-1224.147276	0.000092	0.057731	19.77%
1a-7	-1224.095633	-1224.072406	-1224.071462	-1224.146579	0.000789	0.495105	0.00%
1a-8	-1224.095633	-1224.072406	-1224.071462	-1224.146579	0.000789	0.495105	0.00%
1a-8	-1224.096269	-1224.073042	-1224.072097	-1224.14727	0.000098	0.061496	0.00%
1b-9	-1224.096269	-1224.073042	-1224.072097	-1224.147276	0.000092	0.057731	0.00%
1b-10	-1224.095633	-1224.072406	-1224.071462	-1224.146579	0.000789	0.495105	0.00%
1b-11	-1224.095633	-1224.072406	-1224.071462	-1224.146579	0.000789	0.495105	0.00%
1b-12	-1224.095633	-1224.072406	-1224.071462	-1224.146579	0.000789	0.495105	0.00%
1d-13	-1224.096269	-1224.073042	-1224.072097	-1224.147276	0.000092	0.057731	0.00%
1d-14	-1224.096269	-1224.073042	-1224.072097	-1224.147276	0.000092	0.057731	0.00%
1d-15	-1224.095633	-1224.072406	-1224.071462	-1224.146579	0.000789	0.495105	0.00%
1d-16	-1224.095633	-1224.072406	-1224.071462	-1224.146579	0.000789	0.495105	0.00%

Section S2-2. Computational details for paeobenzofuranone B (2) (ECD)

Conformation search based on molecular mechanics with MMFF force fields were performed for 2a,2b,1c and 2d gave 16 low-energy conformers with populations higher than 1%, respectively. All these conformers were further optimized by the density functional theory method at the B3LYP/6-311G(d) level by Gaussian 16 program package. The ECD were calculated using density functional theory (TDDFT) at B3LYP/6-31+G(d,p) level in methanol with IEFPCM model. The calculated ECD curves were all generated using SpecDis 1.71 with $\sigma = 0.30$ eV, and UV shift -32.8nm, respectively.

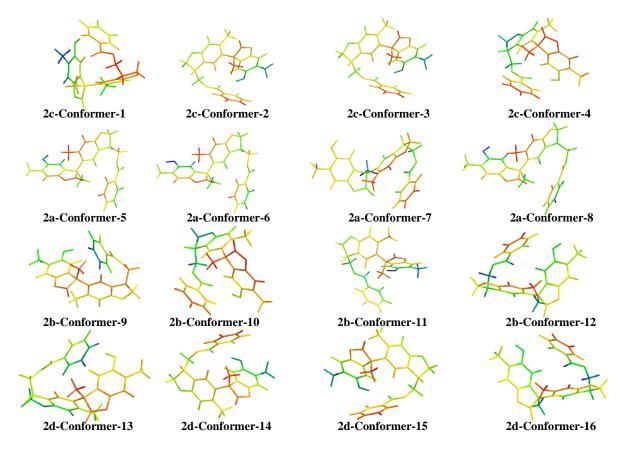


Figure S32. Low-energy Conformers of compound 2 in MeOH

Table S2. Energy analysis for conformers of 2 at B3LYP/6-31+G(d,p) level in the gas phase

Specie	E/ E 7DE			<i>a</i>	ΔG	ΔE(kcal/mo	DE0/
S	E'=E+ZPE	E	Н	G		<i>l</i>)	PE%
2c-1	-1494.382728	-1494.354411	-1494.353466	-1494.442059	0.000001	0.000628	90.69%
2c-2	-1494.381002	-1494.352961	-1494.352017	-1494.4389	0.003160	1.982930	3.19%
2c-3	-1494.381002	-1494.352961	-1494.352017	-1494.438899	0.003161	1.983558	3.18%
2c-4	-1494.381043	-1494.352921	-1494.351977	-1494.438785	0.003275	2.055094	2.82%
2a-5	-1494.376179	-1494.347885	-1494.346941	-1494.435446	0.006614	4.150348	0.08%
2a-6	-1494.375493	-1494.347182	-1494.346238	-1494.434685	0.007375	4.627883	0.04%
2a-7	-1494.378155	-1494.349974	-1494.349029	-1494.436381	0.005679	3.563626	0.03%
2a-8	-1494.375563	-1494.347255	-1494.34631	-1494.434251	0.007809	4.900222	0.06%
2b-9	-1494.382728	-1494.354411	-1494.353466	-1494.442059	0.000001	0.000628	0.10%
2b-10	-1494.381002	-1494.352961	-1494.352017	-1494.4389	0.003160	1.982930	0.05%
2b-11	-1494.381002	-1494.352961	-1494.352017	-1494.438899	0.003161	1.983558	0.06%
2b-12	-1494.381043	-1494.352921	-1494.351977	-1494.438785	0.003275	2.055094	0.12%
2d-13	-1494.382729	-1494.354411	-1494.353467	-1494.44206	0.000000	0.000000	0.13%
2d-14	-1494.381002	-1494.352961	-1494.352017	-1494.438901	0.003159	1.982303	0.07%
2d-15	-1494.381002	-1494.352961	-1494.352017	-1494.4389	0.003160	1.982930	0.08%
2d-16	-1494.381043	-1494.352921	-1494.351977	-1494.438784	0.003276	2.055721	0.09%

Section S2-3. Computational details for paeobenzofuranone C (3) (ECD)

Conformation search based on molecular mechanics with MMFF force fields were performed for 3a,3b,3c and 3d gave 16 low-energy conformers with populations higher than 1%, respectively. All these conformers were further optimized by the density functional theory method at the B3LYP/6-311G(d) level by Gaussian 16 program package. The ECD were calculated using density functional theory (TDDFT) at B3LYP/6-31+G(d,p) level in methanol with IEFPCM model. The calculated ECD curves were all generated using SpecDis 1.71 with $\sigma = 0.30$ eV, and UV shift -27.5nm, respectively.

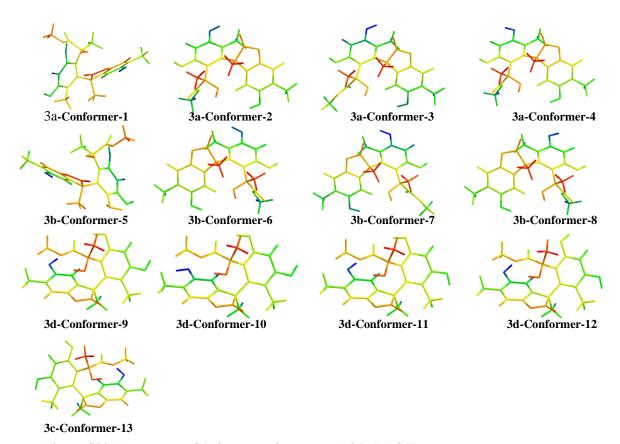


Figure S33. Low-energy Conformers of compound 3 in MeOH

Table S3. Energy analysis for conformers of 3 at B3LYP/6-31+G(d,p) level in the gas phase

Species	E'=E+ZPE	E	Н	G	ΔG	$\Delta E(kcal/mol)$	PE%
3a-1	-1413.275394	-1413.248319	-1413.247374	-1413.3301	0.012476	7.828809	34.50%
3a-2	-1413.27436	-1413.246906	-1413.245961	-1413.329161	0.013415	8.418040	12.75%
3a-3	-1413.271933	-1413.244367	-1413.243423	-1413.327278	0.015298	9.599640	1.73%
3a-4	-1413.273028	-1413.245435	-1413.244491	-1413.32802	0.014556	9.134028	3.81%
3b-5	-1413.275395	-1413.24832	-1413.247376	-1413.330099	0.012477	7.829436	34.46%
3b-6	-1413.27436	-1413.246906	-1413.245961	-1413.329161	0.013415	8.418040	12.75%
3b-7	-1413.27436	-1413.246906	-1413.245961	-1413.329161	0.013415	8.418040	0.06%
3d-8	-1413.273028	-1413.245435	-1413.244491	-1413.32802	0.014556	9.134028	0.08%
3d-9	-1413.29006	-1413.26338	-1413.262436	-1413.342576	0.000000	0.000000	0.10%
3d-10	-1413.287228	-1413.260494	-1413.25955	-1413.339761	0.002815	1.766439	0.03%
3d-11	-1413.289106	-1413.262454	-1413.26151	-1413.341566	0.001010	0.633785	0.02%
3d-12	-1413.279469	-1413.252272	-1413.251328	-1413.333047	0.009529	5.979538	0.04%
3c-13	-1413.29006	-1413.26338	-1413.262436	-1413.342576	0.000000	0.000000	0.09%

Section S2-4. Computational details for paeobenzofuranone D (4) (ECD)

Conformation search based on molecular mechanics with MMFF force fields were performed for **4a,4b,4c** and **4d** gave 7 low-energy conformers with populations higher than 1%, respectively. All these conformers were further optimized by the density functional theory method at the B3LYP/6-311G(d) level by Gaussian 16 program package. The ECD were calculated using density functional theory (TDDFT) at B3LYP/6-31+G(d,p) level in methanol with IEFPCM model. The calculated ECD curves were all generated using SpecDis 1.71 with $\sigma = 0.30$ eV, and UV shift -25.8nm, respectively.

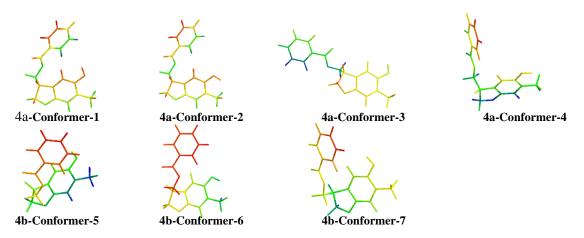


Figure S34. Low-energy Conformers of compound 4 in MeOH

Table S4. Energy analysis for conformers of 4 at B3LYP/6-31+G(d,p) level in the gas phase

Species	E'=E+ZPE	Е	Н	G	ΔG	$\Delta E(kcal/mol)$	PE%
4a-1	-956.960332	-956.942475	-956.941531	-957.00803	0.000001	0.000628	27.95%
4a-2	-956.959011	-956.940959	-956.940015	-957.007156	0.000875	0.549071	11.07%
4a-3	-956.959753	-956.941839	-956.940895	-957.007608	0.000423	0. 265437	17.87%
4a-4	-956.957372	-956.939175	-956.93823	-957.006208	0.001823	1.143950	4.05%
4b-5	-956.960332	-956.942475	-956.94153	-957.008031	0.000000	0.000000	27. 98%
4b-6	-956.959011	-956.940959	-956.940015	-957.007156	0.000875	0.549071	11.07%
4b-7	-956.960332	-956.942475	-956.94153	-957.00803	0.000001	0.000628	0.00%

Section S2-5. Computational details for paeobenzofuranone E (5) (ECD)

Conformation search based on molecular mechanics with MMFF force fields were performed for **5a,5b,5c** and **5d** gave 15 low-energy conformers with populations higher than 1%, respectively. All these conformers were further optimized by the density functional theory method at the B3LYP/6-311G(d) level by Gaussian 16 program package. The ECD were calculated using density functional theory (TDDFT) at B3LYP/6-31+G(d,p) level in methanol with IEFPCM model. The calculated ECD curves were all generated using SpecDis 1.71 with $\sigma = 0.30$ eV, and UV shift -28.6nm, respectively.

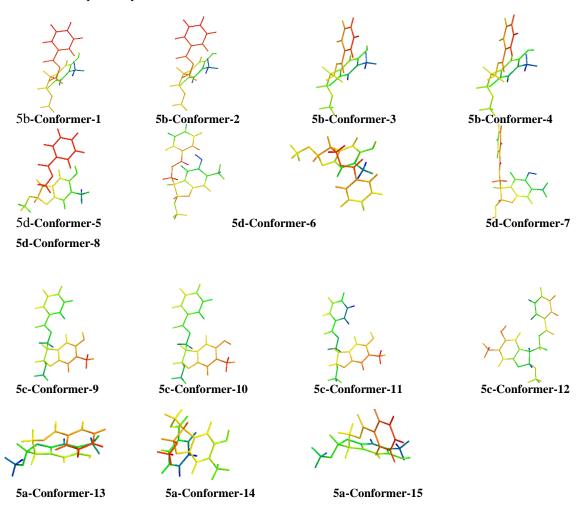


Figure S35. Low-energy Conformers of compound 5 in MeOH

Table S5. Energy analysis for conformers of 5 at B3LYP/6-31+G(d,p) level in the gas phase

Species	E'=E+ZPE	E	Н	G	ΔG	$\Delta E(kcal/mol)$	PE%
5b-1	-1071.328153	-1071.30774	-1071.306796	-1071.379079	0.001836	1.152107	29.80%
5b-2	-1071.327025	-1071.306577	-1071.305633	-1071.377936	0.002979	1.869351	8.87%
5b-3	-1071.327364	-1071.306777	-1071.305833	-1071.378811	0.002104	1.320280	22.43%
5b-4	-1071.326143	-1071.305465	-1071.304521	-1071.377568	0.003347	2.100274	6.01%
5d-5	-1071.327342	-1071.306839	-1071.305895	-1071.378945	0.001970	1.236194	25.85%
5d-6	-1071.327765	-1071.307473	-1071.306529	-1071.377717	0.003198	2.006775	7.04%
5d-7	-1071.33102	-1071.310739	-1071.309795	-1071.380915	0.000000	0.000000	0.03%
5d-8	-1071.324986	-1071.304157	-1071.303213	-1071.377435	0.003480	2.183733	0.01%
5c-9	-1071.328153	-1071.30774	-1071.306796	-1071.379079	0.001836	1.152107	0.08%
5c-10	-1071.327025	-1071.306577	-1071.305633	-1071.377936	0.002979	1.869351	0.05%
5c-11	-1071.328153	-1071.30774	-1071.306796	-1071.379079	0.001836	1.152107	0.03%
5c-12	-1071.327364	-1071.306777	-1071.305833	-1071.378811	0.002104	1.320280	0.02%
5a-13	-1071.327765	-1071.307473	-1071.306529	-1071.378811	0.002104	1.320280	0.10%
5a-14	-1071.33102	-1071.310739	-1071.309795	-1071.380915	0.000000	0.000000	0.02%
5a-15	-1071.324986	-1071.304157	-1071.303213	-1071.377435	0.003480	2.183733	0.04%