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Abstract: The paper deals with applying Artificial Intelligence techniques to examine CHIRP-

recorded data in sand and sandstone sea-bottom sites. The provided analysis of the state of the art 

portrays that actual time series or spectrum backscattered data from a point on the sea bottom were 

rarely used as the features for machine learning models. The results of the examination indicate that 

types of sea bottom can be quantitatively characterized by applying logistic regression models to 

either the backscatter time series of a frequency-modulated signal or the spectrum of that 

backscatter. The examination accuracy reached 90% for the time series and 94% for the spectra. The 

application of spectral data as features for more advanced machine learning algorithms, and the 

advantages of its combination with other types of data have great potential for future research and 

the enhancement of remote marine soil classification. 
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1. Introduction 

 Acoustic data is an indispensable tool in marine science that is widely used to map and analyze 

sea bottom characteristics. This NDT technique is especially useful for soil investigations, which 

include the use of bathymetric mapping to study the topography of the ocean floor, conducting both 

shallow and deep acoustic surveys to gain insights into the subsoil, identifying existing infrastructure 

both on and beneath the seafloor, and determining underwater positioning [1-12]. The marine 

industry relies heavily on calibrated backscatter intensity to classify the composition of the sea-

bottom upper layer using remote sensing tools that have become standard in the field. 

When looking at the scientific literature, it becomes apparent that research into the spectral 

analysis of the acoustic response of the seabed is relatively limited, with a focus on large-scale data 

and non-localized side scan data. Single beam type sonars, such as sub-bottom profilers or multibeam 

sonars, are rarely studied in comparison. While some studies have explored the use of signal and 

image processing techniques, occasionally in combination with AI algorithms, no reliable 

quantitative classification method has yet been established [13-28]. Other studies focused on 

calibrated backscatter intensity methods [29,30], and sometimes assisted with sub-bottom profiler for 

geological background [31]. Examining the available literature indicates that the primary means of 

assessing sub-bottom soil composition in acoustic seabed studies is through backscatter intensity, as 

exemplified by [32], which often requires extensive calibration such as that provided by the geocoder 

algorithm [33]. A comprehensive review conducted by Anderson et al. [34] emphasized the need for 

careful calibration when attempting to relate acoustic-backscattering measurements to the sub-

surface properties and content of the seabed. The few studies [27] that have attempted to identify sea-

bottom soil types based on spectral characteristics have mostly been limited to side-scan sonar data, 

which is inherently limited by the scale of the features it captures, as noted by [27]. Moreover, it 

should be noted that a single swath of acoustic data may comprise multiple soil types, limiting such 

methods’ applicability. While they may yield valuable insights when applied to large, relatively 

homogeneous sea bottom regions, they may be less effective when dealing with more complex, 

heterogeneous areas containing a variety of soil types, such as rock, sand, and clay. 
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The application of artificial intelligence (AI) techniques has significantly contributed to the 

advancement of acoustic data classification in marine science, providing a more objective and 

efficient approach to seabed mapping. A study conducted by [35] utilized hybrid artificial neural 

networks that incorporated a self-organizing feature map and learning vector quantization to classify 

four different manganese nodule-bearing sites using angular backscatter intensity as the learning and 

classification features. The resulting model achieved classification accuracies ranging from 87 to 95%. 

Additionally, [36-39] utilized a feed-forward neural network and convolutional neural networks to 

predict source charge and bottom composition (mud and sand combinations) for sus charges. The 

features used varied from simulated pressure time series or extracted features such as peak level, an 

integrated level, signal length, and decay time, to simulated peak pressure and backscatter intensity. 

The accuracies of the models varied from 84% to 97% for the convolutional neural network used in 

[37]. These studies illustrate the potential of AI algorithms in the classification of acoustic data for 

marine soil characterization. 

The classification of soil based on multibeam echo sounder (MBES) data has been the focus of 

recent studies [40-42]. In one such study, [40] applied support vector machine classification to MBES 

bathymetric and backscatter data to classify mud, sand, and gravel, achieving an accuracy of 90%. 

Similarly, [41] utilized deep neural networks to classify the same materials from bathymetric and 

backscatter data that were reduced using fuzzy ranking. This resulted in an accuracy of 86% for soil 

classification. Another study [42] achieved a classification accuracy of 93% for mud, sand, and gravel 

combinations using deep learning with backscatter bathymetry and the angular response and mosaic 

texture of MBES data. These studies demonstrate the efficacy of AI techniques, specifically support 

vector machines and deep neural networks, in the classification of soil based on MBES data. By 

incorporating features such as bathymetric and backscatter data, as well as angular response and 

mosaic texture, the accuracy of soil classification has been greatly improved. These findings have 

important implications for the mapping and characterization of seabed environments, highlighting 

the potential of AI techniques for future research in marine science. 

Upon analysis of the current state-of-the-art literature, it is evident that the features utilized in 

machine learning approaches for the topic of this article rely heavily on integral characteristics such 

as backscatter intensity as a function of the angle of incidence, mosaic texture, and bathymetry [35, 

36, 39-42]. While these features have proven effective in seabed mapping and classification, it is 

important to note that actual time series or spectrum backscattered from a point on the seafloor have 

been rarely utilized, if at all. However, a study conducted by [43] demonstrated the potential of 

utilizing the frequency domain representation of the time series of a reflected chirp sub-bottom 

profiler signal for distinguishing between sand and sandstone. This approach showed promising 

results, as the number of crossings of the spectrum at 1/16 of the maximal normalized power classifier 

demonstrated the ability to assess the probability for sand or sandstone with over 80% certainty in 

over 75% of the cases. Incorporating this type of approach into machine learning models for seabed 

mapping and classification may provide a more comprehensive understanding of the seafloor 

structures and their associated ecological communities, ultimately leading to better management and 

preservation of marine resources. Future research should explore the potential of utilizing time series 

or spectrum data in machine learning approaches for the characterization of marine environments, 

as it may lead to significant advancements in the field. 

 The main hypothesis of the research [43] was that spectral features of acoustic signals reflected 

from the sand and sandstone sea bottoms are due to essential dissimilarity in the physical properties 

of these two media. These properties include fine-scale topography at the top of both types of 

sediments as well as the heterogeneity of several meters (depending on the signal length) below the 

top of the reflector. As these singularities are significantly different for sand and sandstone, they are 

expected to affect the acoustic signals reflected from the top of the sea bottom, which in turn affects 

their spectral parameters such as amplitude, main frequency, frequency-dependent reflection 

coefficient, number of spikes, etc. However, the main disadvantage of the presented method was the 

qualitative choice of the spectral parameters used for classification, resulting in less-than-optimal 

accuracy.  
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In the present study, the discrete values of the reflected time series and spectra obtained by [43] 

were used as training sets for two logistic regression models [44]. This machine-learning technique 

was found to be effective for the classification of sand and sandstone and was shown to compete with 

the results of much more complicated machine-learning techniques such as convolutional neural 

networks used in previous studies [35-42]. The logistic regression models showed promising results 

in terms of accuracy and were able to classify the sand and sandstone with high confidence, making 

it a viable and practical option for the classification of these seabed sediment types. 

2. Method 

A preliminary data collection was performed using a chirp sub-bottom profiler to study two 

sand bottom sites at 26m depth, and two sandstone bottom sites at 33m depth, both offshore of 

Ashqelon. The first reflection time series and spectra of all the traces from the four sites were used to 

generate two training and two verification sets. Two logistic regression models [44] were trained 

using the training sets and were then evaluated for accuracy over the verification sets. 

2.1. Experimental Setup 

For the data collection campaign, the Bathy-2010PC chirp sub-bottom profiler (SBP) was selected as 

the acoustic device. This device features a linear chirp with a frequency sweep ranging from 2.75 kHz 

to 6.75 kHz, a signal duration of 5.4 ms, and a beam angle of 30°. It is anticipated that in this context, 

the reflected signal will be influenced by the fine-scale topography of the reflector, such as boulders 

and sand ripples. 

The data collection was conducted at two offshore locations near Ashkelon, referred to as "site 1" and 

"site 2," which were approximately 1.2 km apart. The bottom at site 1 and site 2 were previously 

determined to be sandy and located at a depth of 26 meters. Similarly, data was collected at two other 

locations, referred to as "site 3" and "site 4," which were about 0.8 km apart. At these sites, the bottom 

was determined to be sandstone at a depth of 33 meters. The soil composition at each of these sites 

was verified in a previous site survey through sand sampling and the use of a drop camera. Each site 

had an area with similar soil composition that extended several hundreds of meters in radius. At each 

site, the vessel was moored, and its position slightly adjusted due to variations in wind and wave 

direction during data collection. This resulted in each trace being captured at a slightly different 

location, but over the same type of soil. The transducer was installed on the vessel's side and placed 

at a depth of 1 meter below the waterline. The sound speed in water was measured to be 1530 meters 

per second. The data was recorded in an unprocessed format, without any chirp compression 

applied. Each trace was captured for a total of 100 milliseconds, encompassing the transmitted signal, 

water column, the bottom, and approximately 120 meters of soil penetration. The transmission 

parameters used are summarized in Table 1. 

Table 1. Transmission Parameters. 

Site: Site 1 Site 2 Site 3 Site 4 

Soil Type Sand Sand Sandstone Sandstone 

Depth 26m 26m 33m 33m 

Transducer depth 1m 1m 1m 1m 

Transmission power -18dB -18dB -18dB -18dB 

Water Sound Velocity 

[m/s] 

1530 1530 1530 1530 

Recorded Signal 

duration [ms] 

100 100 100 100 
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2.2. Data extraction and preparation 

The SegY files collected during the offshore campaign were utilized to extract data for further 

analysis using MATLAB's SegyMat subroutines. To ascertain that soil characteristics, and not 

changes in the transmitted signal, are responsible for differences in the reflected signal, repeatability 

checks were conducted for all traces and across all four sites. Results showed near-perfect 

repeatability of the transmitted signal. The time series was then divided into transmitted, 

reverberations, first reflection, and remaining signal parts, with a focus on the first reflection to 

characterize the first soil layer. The first reflection was extracted from each trace, by identifying the 

first reflection's start point as the beginning of a sharp increase in the rate of growth of local extremum 

values and setting the first reflection's duration to that of the transmitted signal. The first reflection 

(time series and spectrum) was then taken as data sets and used to construct the design matrices. 

3. Data Sets 

3.1. Time Series data 

The time series data includes 450 traces (training examples) in the training set and 150 traces in 

the verification sets. Each training example includes 108 features that correspond to the raw sampled 

measurements of the 5.4ms reflected signal (with a sampling frequency of 20KHz). Typical time series 

appear in Figure 1.  

 

 

Figure 1. Enlarged signatures of 1st arrival of the reflected signal. a sand, b Sandstone. 

a 

b 
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3.2. Spectral data 

The process of obtaining spectral features from acoustic signals reflected from the sea bottom 

involved several stages. The time series were auto-correlated and transformed into the frequency 

domain using the Discrete Fourier Transform. This results in a two-sided power spectrum that 

contains information on the frequency components of the signal. To obtain the one-sided power 

spectrum, the positive frequency range was selected, and the power values were multiplied by two 

(except for the first term), and then normalized by the spectrum area. The normalization step is 

necessary to correct for differences in attenuation between sand and sandstone sites due to the depth 

differences. 

To ensure that the spectra data is clean and accurate, a noise reduction step was performed by 

applying a frequency bandwidth filter to match the transmitted signal's frequency range of 2.75 kHz 

to 6.75 kHz. The resulting discrete spectra points were used as features in machine learning models 

for the classification of sand and sandstone sea bottoms. 

The dataset used in the study contains a total of 600 traces, of which 450 were used for training 

and 150 for verification. Each trace has 109 features corresponding to the discrete values of the 

spectrum. The training and verification sets were used to train two logistic regression models, which 

were assessed for accuracy in classifying sand and sandstone sea bottoms. 

The presented method of using spectral features for ML-based classification offers an effective 

approach, as will be demonstrated next, as the spectral data correlates to the physical properties of 

the sand and sandstone bottoms.  

. 

 

 

Figure 2. Stacked normalized power spectra [1/kHz]: a sandstone (site 3 - red line), site 4 (blue line). 

b. sand (site1-red line), site 2 (blue line) 

 

4. The results of the logistic regression model 

Two logistic regression models were trained using training sets, and their accuracy was 

evaluated over training and verification sets. The cost function was minimized by using 400 iterations 

of gradient descent. One of the models was trained using time series data, and it achieved an accuracy 

of 95.6% over the training set and 90% over the verification set. The other model was trained using 

spectra data, and it achieved an accuracy of 95.33% over the training set and 94% over the verification 

set. Corresponding confusion matrices are presented in Tables 2 a-d. These results show that both 

models were effective in classifying sand and sandstone with high accuracy, with the spectral model 

performing slightly better than the time series model.  

a b 
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The next step was to assess the performance of the models to actual field surveys and to assess 

the required size of data sets and number of iterations required to achieve reasonable results. For this 

purpose, the accuracies over the training set and over the verification set were calculated for different 

relative training set sizes (no of used training examples divided by no of features). These results 

appear in Table 3. These results show that comparable accuracy to the work done by [43] could be 

achieved with a relative training set size of 2.45 compared to the 4.09 relative set size used by [43]. 

When utilizing the same relative set size, the logistic regression model achieved 94% accuracy over 

the verification set (vs the 80% accuracy of [43]). This may have a significant impact on the results 

obtained in actual field surveys as will be discussed in the next section.   

Table 2. Confusion matrices for the trained model: (a) spectra training set; (b) spectra verification set; 

(c) time-series training set; (d) time series verification set. 

a  

 Actual Predicted rock Predicted sand 

Rock & Sand 450 137 313 

Rock 150 133 17 

Sand 300 4 296 

b 

 Actual Predicted rock Predicted sand 

Rock & Sand 150 55 95 

Rock 50 48 2 

Sand 100 7 93 

c 

 Actual Predicted rock Predicted sand 

Rock & Sand 450 138 312 

Rock 150 134 16 

Sand 300 4 296 

d 

 Actual Predicted rock Predicted sand 

Rock & Sand 150 39 111 

Rock 50 37 13 

Sand 100 2 98 
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Table 3. Accuracies vs the relative size of the spectral training set (no training examples divided by 

no of features). 

Relative training set 

size 

1.64 2.05 2.45 2.86 3.27 3.68 4.09 

Maximal 

accuracy over 

the verification 

set 

67.33 74.67 84.67 84.67 84.67 89.33 94.00 

Maximal 

accuracy over 

training set 

87.67 96.00 95.56 96.83 96.11 95.06 95.33 

Number of 

iterations to 

achieve maximal 

accuracy over 

both sets 

20 90 120 160 160 220 210 

Regularization 

parameter for 

maximal 

accuracy 

10 0 0 0 0 0 0 

 

5. Discussion and conclusions 

Application of the logistic regression approach to a wide range of applied tasks is in the 

mainstream of geophysics in general and marine geophysics particularly [45-52], for example, for the 

study of the changes in soil properties [45], the ocean processes [46], etc. However, such an approach 

is rarely used for the sea bottom soil classification. From the results presented above it follows that 

the two sea bottom types can be successfully and quantitatively characterized by applying logistic 

regression models to either the backscatter time series of a frequency-modulated signal or the 

spectrum of that backscatter. 

The achieved classification accuracy (over the verification sets) is 90% for the time series and 

94% for the spectra. The improved results when using spectral data may be due to the option to clean 

noise with frequencies out of the bandwidth of the reflected signal. It is important to note that the 

models were trained using a relatively small dataset, which suggests that even higher accuracy may 

be achievable with larger datasets.  

It is evident from the results of this study that applying machine learning algorithms has the 

potential to enhance sonar-based soil classification accuracies in comparison to manual extraction 

and classification criteria [43].  

The model achieved comparable accuracy to [43] with a training set which is approximately 60% 

the size of training set required by [43]. This might be important when collecting data in actual survey 

activities where the survey vessel is less stationary and hence less data is collected over each area and 

corresponding type of soil, making the method presented here more advantageous for soil 

classification based on data collected during standard hydrographic surveys. 

As for feature selection for machine learning algorithms, it is assumed that the reflected 

spectrum (and corresponding time series) of a frequency-modulated signal is affected by the reflector 

characteristics such as grain size, relief, voids, stratification, etc. Hence, using this data as features is 

superior to using integral features such as peak pressure, total intensity, angular intensity, etc. As 

used by previous works performed on sonar data [35, 40-42]. Applying a relatively simple logistic 

regression model on spectral data achieved superior accuracy to neural network methods applied to 

integral data (intensity, angular intensity, elevation, etc.) in the case of sonar data. Based on these 

findings it is assumed that the combination of spectral analysis with machine learning, and the use 

of the spectral series as features can enhance the performance of machine learning algorithms for 

sonar base soil classification. The application of spectral data as features for more advanced machine 

learning algorithms, and the advantages of its combination with other types of data such as the angle 
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of incidence is of great potential for future research and the enhancement of remote marine soil 

classification. 

 

Based on the results, the study presented here established soil classification method principles 

achieving high classification accuracy and easily applicable to data collected in standard 

hydrographic surveys.  
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