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Abstract: Magnetic helicity plays a tremendously important role when it is different from zero1

on average. Most notably, it leads to the phenomenon of an inverse cascade. Here, we consider2

decaying magnetohydrodynamic turbulence as well as some less common examples of magnetic3

evolution under the Hall effect and ambipolar diffusion, as well as cases in which the magnetic4

field evolution is constrained by the presence of an asymmetry in the number density of chiral5

fermions, whose spin is systematically either aligned or anti-aligned with its momentum. In all6

those cases, there is a new conserved quantity: the Hosking integral. We present quantitative7

scaling results for the magnetic integral scale as well as the magnetic energy density and its8

spectrum. We also compare with cases were also a magnetic version of the Saffman integral is9

initially finite.10

Keywords: decaying turbulence; MHD turbulence; chiral magnetic effect; Hall effect; shell mod-11

els12

1. Introduction13

This paper is part of a special issue commemorating the work of Jack Herring. His14

scientific career started off with papers on the effect of the solar wind on the lunar atmo-15

sphere [1]. Later, he extended this work to exoplanet atmospheres [2]. He also worked16

on stellar opacities [3,4]. In all these cases, he was very much ahead of its time. At the17

time of Parker’s prize-winning paper on the discovery of non-static solutions [5], the18

physical reality and properties of the solar wind were still rather unclear and under-19

appreciated. Likewise, Herring’s work on stellar opacities was well before proper nu-20

merical stellar structure and evolution models became available; the Henyey method21

[6] (solving a matrix equation instead of using an iterative shooting method from both22

ends) became know only in 1964. Subsequently, Herring turned to hydrodynamic con-23

vection and turbulence – topics that then determined much of his future work. During24

his career, he never really worked on magnetic fields or helicity, but he did interact with25

people on a daily basis, who were very much involved in these subjects, both early on26

[7] and also later during his career [8]. It is therefore not surprising that this special27

issue also extends to topics involving magnetic fields and helicity.28

Having helicity in a system usually requires external factors such as stratification29

and rotation [9–11]. In this sense, the absence of helicity may be regarded as the more30

generic situation. It may therefore also seem natural that helicity does not play an31

important role when it is absent on average. This is believed to be the case in hydro-32

dynamic turbulence, but it changes when magnetic fields are involved. Although both33

kinetic and magnetic helicities are ideal invariants, only the magnetic helicity has a34

non-ideal dissipation that is slower than that of the magnetic energy. By contrast, the35

dissipation of kinetic helicity is faster than that of kinetic energy [12,13]. Therefore, in36

the magnetic case, helicity plays a very important role in a way that is unknown in the37
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hydrodynamic context. But is this still true when the net magnetic helicity is actually38

zero?39

The physical situations of interest include the decay of primordial magnetic fields40

in the early Universe during the radiation-dominated era, when the electric conductiv-41

ity is high and initially generated magnetic field can only decay. When the plasma is hot42

enough, the chirality of fermions also plays an important role, leading to an interplay43

with magnetic helicity. Another situation of interest is when only the Hall effect plays44

a role, so there are then no fluid motions, but just the flow of electrons. This is relevant45

in neutron star crusts, which are solid, so the ions are immobile. The induction equa-46

tion with just the Hall effect included leads to interesting decay dynamics – remarkably47

similar to ordinary magnetohydrodynamics (MHD).48

2. Nonhelical turbulence and the Hosking integral49

In this section, we discuss the Hosking integral and why it is crucial to understand-50

ing nonhelical MHD turbulence with strong magnetic fields. Unlike the case of weak51

magnetic fields, when the dynamics is still controlled by the presence of hydrodynamic52

effects, we are dealing here with effects that are specific to the presence of magnetic53

fields, albeit with zero average. We focus on decaying turbulence.54

2.1. Nonhelical inverse cascading and scaling relations55

Already in 2001, it was noted that, even in the nonhelical case of a turbulently de-56

caying magnetic field, there is a small amount of inverse cascading in the sense that for57

wavenumbers below the peak, the magnetic energy spectrum rises with time uniformly58

for all lower k [14]. The actual amount of this rise was small and one could have ar-59

gued that it was just because of numerical inaccuracies. Subsequent simulations [15]60

also found such inverse cascading and they discussed the potential interplay between61

the shallower kinetic energy spectrum proportional to k2 and the steeper magnetic en-62

ergy spectrum proportional to k4. The qualitative idea was that the shallower velocity63

spectrum pushes the magnetic spectrum upward, which then would drive more kinetic64

energy at small k.65

The choice of the initial magnetic energy being proportional to k4 is important66

here. When such a spectrum was used in the first numerical simulations [14], the au-67

thors made reference to the early work in Ref. [16], where causality arguments were68

put forward. Nowadays, however Ref. [17] has become the standard reference for the69

choice of an initial k4 spectrum. Later, it turned out that with a shallower initial k2 spec-70

trum, no inverse cascading can be found [18,19]. The reason for this particular aspect71

that will be discussed in more detail in this paper.72

In 2014, the idea of an inverse cascade in the nonhelical case with a k4 spectrum73

became really very clear [20]. This paper was on the arXiv since April 2014, but the74

paper was published only in February 2015. The results were reproduced in Ref. [21] in75

the relativistic context. Their work was on the arXiv since July and makes reference to76

the 2015 paper. The significance of this finding is that it presents early support for the77

subsequent discovery of the Hosking integral as a new invariance in MHD turbulence78

at large magnetic Reynolds numbers.79

When the Hosking integral was discovered in Ref. [22], it was originally called80

the “Saffman helicity invariant”. As already pointed out in Ref. [23], Keith Moffatt in-81

formed the community of the fact that this term may be misleading, because the term82

helicity invariant is reserved for integrals that are chiral in character. He also recalled83

that Saffman never considered helicity in his papers. The term “magnetic helicity den-84

sity correlation integral” may be more appropriate, but it is rather clumsy. Following85

[24], who called it the Hosking integral in his review, this term has been used ever since86

[25,26]. It should also be noted that ‘integral’ instead of ‘invariant’ is appropriate since87

applications to turbulence apply always to finite Reynolds and Lundquist numbers. In88

this connection, it should be emphasized that the Hosking integral tends to decay with89
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Figure 1. (a) magnetic energy spectra, normalized by I−1/2
H k−3/2

0 ; the dashed dotted line shows

the envelope 0.028 (k/k0)
3/2 under which the spectrum evolves. The times are ck1t = 3, 7, 17, and

58. (b) qp diagram showing as red dots the convergence of p(t) versus q(t) toward the Hosking

attractor (q, p) = (4/9, 10/9). The blue symbols denote the Loitsyansky and Saffman attractors,

respectively, and the orange symbol denotes the magnetic helicity attractor.

time in a power-law fashion and that the exponent decreases with increasing Lundquist90

number Lu approximately as Lu−1/4 [23].91

The energy decay in turbulence is usually characterized by the energy spectrum
E(k, t). In the following, we sometimes add the subscripts K and M for kinetic and
magnetic energy spectra and other quantities. We focus here on magnetic energy spec-
tra, EM(k, t), which are defined such that

∫

EM(k, t)dk = 〈B2〉/2µ0 ≡ EM(t) is the
magnetic energy, and µ0 is the vacuum permeability. The decay can then be parameter-
ized by EM(t) and the magnetic integral scale, which is defined in terms of the magnetic
energy spectrum as

ξM(t) =
∫ ∞

0
k−1EM(k, t) dk

/

∫ ∞

0
EM(k, t) dk. (1)

One can always attempt to describe the relations for ξM(t) and EM(t) through power
laws. In addition, the spectrum can evolve underneath an envelope,

EM(k, t) ≤ const × kβ, (2)

that is different from the initial subinertial range spectrum, EM(k, t0) = const × kα,92

where α is the subinertial range slope. The three relations for ξM(t), EM(t), and EM(k, t)93

can then be constrained through dimensional arguments once we have a good idea94

about the relevant dimensional quantity that governs the decay.95

The decay of a nonhelical turbulent magnetic field is found to be described by an96

exponent β that was determined to be between β = 1 [27] and β = 2 [19], but it was97

unclear why any of those two possibilities, or any other one, would have to be expected.98

This is what the Hosking integral now explains, namely that β = 3/2.99

Figure 1(a) shows magnetic energy spectra at four different times for a nonhelical100

magnetically dominated run corresponding to Run K60D1bc of Ref. [23]. Here, k is nor-101

malized by the initial peak wavenumber k0. We clearly see that the spectrum exhibits102

inverse cascading in that the spectral magnetic energy increases with time at small k, as103

indicated by the upward arrow on the left. The overall energy does of course decay, as104

indicated by the decline of the spectral peak and the decrease of spectral energy at large105

k, as indicated by the downward arrow on the right.106

To quantify the temporal change of ξM(t) and EM(t), it is convenient to compute
the instantaneous scaling exponents [27]

q(t) = d ln ξM/d ln t, p(t) = −d ln EM/d ln t; (3)
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see Figure 1(b). We see that with time (larger red symbols), the solution evolves to-107

ward the point (q, p) = (4/9, 10/9), as is also theoretically expected [23]. Although we108

mainly focus on the case of nonhelical magnetic fields, we also compare in Figure 1(b)109

with the solution for the fully helical case (orange), and include solutions for hydrody-110

namic turbulence that are governed either by the Loitsyansky or the Saffman integrals.111

Before we continue, it is useful to clarify the concept of what we often refer to as a112

“governing quantity”. Take, for example, standard hydrodynamic Kolmogorov turbu-113

lence. Here, the rate of energy transfer per unit mass ǫ (which is the rate of energy input114

and also the rate of energy dissipation) is such a quantity and the relevant physical scal-115

ing laws can be expressed in terms of powers of ǫ and other relevant variables such116

as the wavenumber k itself. This then yields for the energy spectrum per unit mass117

the expression E(k) = CKǫ2/3k−5/3, where CK is a dimensionless coefficient of order118

unity (typically CK ≈ 1.6). Other such governing quantities include the mean magnetic119

helicity density 〈h〉 and some other quantities that are crucial to the physics. They are120

usually constant or well conserved.121

2.2. The Loitsyansky and Saffman integrals in hydrodynamics122

In the hydrodynamic case, the decay of turbulence can follow different behaviors
depending on the relevant conservation law.1 One such conserved quantity is the Loit-
syansky integral [28,29],

IL = −
∫

〈u(x) · u(x + r)〉 r2 d3r, (4)

which is believed to play an important role. This integral reflects the local conservation123

of angular momentum and has dimensions [IL] = m7 s−2. If this quantity governs the124

decay of turbulence, the time dependence of the growth of the integral scale can be125

motivated by dimensional arguments as ξ(t) ∝ Ia
Ltb, where the exponents a and b must126

be, on dimensional grounds, a = 1/7 and b ≡ q = 2/7. The kinetic energy then obeys127

EK ∝ I2/7
L t−10/7, i.e., p = 10/7. The envelope under which the peak of the spectrum128

evolves obeys EK(k, t) ≤ CL ILk4.129

Another conserved quantity is the Saffman integral,

IS =
∫

〈u(x) · u(x + r)〉d3r, (5)

which has dimensions [IS] = m5 s−2. Similarly, if this quantity governs the decay of130

turbulence, the time dependence of ξ must be ξ(t) ∝ Ia
Stb, where a = 1/5 and b ≡131

q = 2/5 on dimensional grounds. The kinetic energy then obeys EK ∝ I2/5
L t−6/5, i.e.,132

p = 6/5. The envelope under which the peak of the spectrum evolves obeys in this case133

EK(k, t) ≤ CS ISk2.134

Whether IL or IS determine the decay depends on the existence of long-range cor-
relations, as can be seen from the Taylor expansion of the kinetic energy spectrum as
[22,28]

2EK(k → 0) ≡ Sp(u)(k → 0) =
IS

2π2
k2 +

IL

12π2
k4 + ..., (6)

where an initially non-vanishing Saffman integral automatically implies a k2 scaling in135

the subinertial range. Thus, the decay does depend on the infrared part of the initial136

kinetic energy spectrum. In that case, the slope is the same as that required for the137

initial spectrum so that the Saffman integral is indeed nonvanishing. Furthermore, as138

pointed out in Ref. [22], owing to the invariance of IS and IL, both an initial k2 and a k4
139

1 In practice, conserved quantities are usually not perfectly conserved under non-ideal conditions, and some are better conserved than others. Which
one is the most relevant quantity depends on the relative conservation properties under different circumstances.
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spectrum will remain unchanged. This implies that there can be no inverse cascading140

in hydrodynamics.141

2.3. The magnetic Saffman integral: comparison with the Hosking integral142

As already pointed out in Ref. [22], the formulation of Sect. 2.2 can also be applied
to the magnetic field, except that there is no reason for the magnetic version of the
Loitsyansky integral to be conserved. The magnetic Saffman integral (hereafter ISM),
on the other hand, might indeed be conserved. Physically, it would reflect the local
conservation of magnetic flux. Again, when ISM is non-vanishing initially, we expect
a quadratic magnetic energy spectrum, which would also persist at later times. For a
steeper k4 subinertial range magnetic energy spectrum, however, the magnetic Saffman
integral must vanish and the Hosking integral is then expected to play a dominant role.
It is defined as

IH =
∫

〈h(x)h(x + r)〉d3r, (7)

where h = A · B is the magnetic helicity density with dimensions [h] = [B]2[x]. In143

ordinary MHD, we can express the magnetic field as an Alfvén velocity, i.e., we write144

the magnetic field in Alfvén units, so [B] = m s−1. Therefore, [h] = [x]3[t]−2, and thus145

[IH] = [B]4[x]5 = [x]9[t]−4. If IH plays a governing role in the decay, we expect therefore146

ξM(t) ∝ I1/9
H t4/9, EM ∝ I2/9

H t−10/9, and EM(k, t) ≤ CH IHk3/2.147

The Hosking integral is in general expected to be different from zero [22]. This au-
tomatically implies a quadratic scaling of the helicity variance spectrum, Sp(h). Here,
Sp(B) =

∮

4π |B̃|2 k2dΩk/(2πL)3 denotes the shell-integrated spectrum, a tilde is a quan-
tity in Fourier space and Ωk is the solid angle in Fourier space, so that

∫

Sp(h)dk = 〈h2〉.
The quadratic scaling for a finite Hosking integral follows from the expansion

Sp(h)(k → 0) =
IH

2π2
k2 + ... (8)

A quadratic spectrum corresponds to white noise. We also know that the spectrum148

of a quadratic quantity cannot be more blue than that of white noise [30], so it seems149

impossible to have a helicity variance spectrum whose subinertial range is steeper than150

k2.151

In Figure 2, we show magnetic energy and magnetic helicity variance spectra for
initial spectra of the form

EM(k, t0) = const × kα

1 + (k/k0)α+5/3
∝

{

kα for k ≪ k0,

k−5/3 for k ≫ k0,
(9)

for α = 2 and α = 4. As expected, we see inverse cascading only for α = 4, but not152

for α = 2. Nevertheless, we see that Sp(h) retains a k2 spectrum at low wavenumbers153

in both cases. This suggests that the Hosking integral is indeed always conserved; see154

Figure 2(b) and (d).155

To determine the relevant integrals, IH and ISM, it is convenient to plot compen-
sated spectra. Specifically, to determine ISM and IH, we scale both Sp(B)/2 and Sp(h)/2
by 2π2/k2. The result is shown in Figure 3. Thus, in summary, we have

ξM(t) ≈ 0.16 I1/5
SM t2/5, EM(t) ≈ 4.2 I2/5

SM t−6/5, EM(k) ≈ 0.037 ISM(k/k0)
2. (10)

If the initial spectrum is not ∝ k2, but ∝ k4, we have

ξM(t) ≈ 0.15 I1/9
H t4/9, EM(t) ≈ 3.8 I2/9

H t−10/9, EM(k) ≈ 0.025 I1/2
H (k/k0)

3/2. (11)

It is remarkable that the prefactors for the Saffman and Hosking scalings are very close
to each other; see Table 1 for a summary of the nondimensional prefactors in the rela-
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Figure 2. Comparison of Sp(B) (left) and Sp(h) (right) for α = 2 (top) and α = 4 (bottom).

Figure 3. For α = 2 (left) and α = 4 (right). From the top panels we see that ISM ≈ 0.23 and 0.09,

respectively, and from the middle panels we see that IH ≈ 2 × 10−3 and 5 × 10−4, respectively.

tions

ξM(t) = C
(ξ)
i Iσ

i tq, EM(t) = C
(E)
i I2σ

i t−p, EM(k) = C
(E)
i I

(3+β)/σ
i (k/k0)

β, (12)
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where i stands for ‘SM’ or ‘H’ for magnetic Saffman and Hosking scalings, respectively,156

and σ is the exponent with which length enters in Ii: σ = 5 for magnetic Saffman scaling157

(i = SM) and σ = 9 for Hosking scaling (i = H). The value of C
(E)
SM only makes sense158

when α = β = 2, while that of C
(E)
H only makes sense when α = 4 and β = 3/2. For the159

other cases, the subinertial range spectrum is not parallel to kβ, so α and β are said to be160

incompatible with each other and the given values of C
(E)
SM and C

(E)
H only yield crossings161

in the middle of the subinertial range.162

We see from Figure 3(a) that for α = 2, the compensated value (2π/k2) Sp(B) →163

ISM ≈ 0.2. For α = 4, on the other hand, we only see a flat envelope, i.e., (2π/k2) Sp(B) ≤164

0.1, i.e., 2EM(k, t) ≤ 0.1/(2π2/k2) (k/k0)
2. From Figure 3(c) and (d), we see that (2π/k2) Sp(h) →165

IH ≈ 0.001 in both cases, i.e., for α = 2 and α = 4, respectively.166

Given that we now know the values of ISM and IH, we can compensate the time167

evolutions of ξM(t) ∝ tq with q = 2/5 = 0.4 and q = 4/9 ≈ 0.44, and those of EM(t) ∝168

t−p with p = 6/5 = 1.2 and p = 10/9 ≈ 1.1. The results for the corresponding169

coefficients in Eq. (12) are summarized in Table 1.170

3. Extensions of the Hosking idea171

Equation (7) is the Hosking integral in its original form. In the meantime, two172

further variants of IH have been considered. One is where h has been replaced by173

htot = A · B + 2µ5/λ, where µ5 is the chiral chemical potential (here in units of an174

inverse length) and λ is a coefficient that quantifies the coupling between fermions175

and electromagnetic fields. The case 〈htot〉 = 0 has been studied recently in Ref. [31].176

Another variant of the Hosking integral is that in the case where the magnetic field is177

controlled by the electromagnetic induction from the Hall effect, which we discuss next.178

3.1. Hall effect179

In neutron star crusts, the ions are immobile and the current is only carried by
electrons with the velocity ue = −J/ene, where J = ∇× B/µ0 is the current density,
e is the electric charge, ne is the electron density, and µ0 is the permeability (not to
be confused with the chiral chemical potential µ5). The induction equation with the
induction from ue × B therefore takes the form [32]

∂B

∂t
= ∇×

(

− 1

ene
J × B − ηµ0 J

)

, (13)

where η is the magnetic field diffusivity.180

In this context, it is important to note that the natural dimensions of the magnetic
field is here no longer m s−1, but m2 s−1. This was already emphasized in Ref. [33],
who used e = 1.6 × 10−19 A s, µ0 = 4π × 10−7 T m A−1, and ne ≈ 2.5 × 1040 m−3 for
neutron star crusts, so we have eneµ0 ≈ 5 × 1015 T s m−2, and therefore

B

eneµ0
=

B

5 × 1015 T

m2

s
, (14)

which is why we say B has dimensions of m2 s−1. This modifies all the dimensional181

arguments related to B correspondingly. In particular, the units of the magnetic helicity182

Table 1. Summary of nondimensional prefactors in the relations for ξM(t), EM(t), and EM(k, t).

The numbers in parentheses indicate that the slope β is incompatible with the value of α.

α β C
(ξ)
SM C

(ξ)
H C

(E)
SM C

(E)
H C

(E)
SM C

(E)
H

2 2 0.16 0.15 4.2 3.8 0.025 (0.05)
4 3/2 0.15 0.13 4.0 3.5 (0.02) 0.037
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Figure 4. Sp(B) (top) and Sp(h) (bottom) for Hall dynamics with α = 2 (left) and α = 4 (middle),

and for ambipolar diffusion with α = 4 (right). Note the presence of inverse cascading for α = 4

in panels (b) and (c), although Sp(h) changes at k/k0 ≪ 1 in all cases.

are [h] = m5 s−2. Therefore, one has q = p = 2/5. The scaling was confirmed in183

Ref. [33].184

In the nonhelical case, the modified Hosking integral has dimensions m13 s−4, and185

therefore q = 4/13 (instead of 4/9 in MHD). Furthermore, p = 10/13 (instead of 10/9186

in MHD), but still β = 3/2 (just like in MHD). While such as scaling was already seen187

in the original simulations of Ref. [33], the work [34] showed that the modified Hosking188

integral is indeed conserved. In Figure 4(a)-(b) and (d)-(e) we show that, also for Hall189

dynamics, the Saffman scaling is obeyed for α = 2, while Hosking scaling is obeyed for190

α = 4.191

3.2. Ambipolar diffusion192

The Hall effect is a two fluid effect where the two components are the positive and
negative charge carriers. Another two-fluid effect is a ambipolar diffusion where the
charged fluid with positive and negative charge carriers is taken as one component and
neutrals are taken as one component. The governing equation is

∂B

∂t
= ∇×

(

− J × B

ρiνin
× B − ηµ0 J

)

, (15)

where ρi is the ion density and νin is the ion–neutral collision frequency.193

Unlike the Hall effect in neutron star crusts, where the magnetic field is said to
have dimensions of m2 s−1, we can here write

B√
ρiµ0

=
B

1.5 × 10−16 T

m

s
, (16)

where we used ρi = 1.7 × 10−26 kg m−3 for the interstellar medium with an ionization194

fraction of 10−5 and a neutral density of one proton per cubic centimeter. This is why195

we say that with ambipolar diffusion, just like in MHD, B has dimensions of m s−1. For196

this reason, we also see in Figure 4(c) and (f), qualitatively the same decay behavior as197

in ordinary MHD.198

3.3. Chiral MHD199

For chiral MHD, the induction equation attains an extra term under the curl that
leads to a contribution to the electric field proportional to the product of the magnetic
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field and a pseudoscalar given by the chiral chemical potential, expressed here as a
wavenumber2 [35]

µ5 = 24 αem (nL − nR) (h̄c/kBT)2, (17)

where αem ≈ 1/137 is the fine structure constant, and nL and nR are the number densi-
ties of left- and right-handed fermions, respectively. The uncurled induction equation
takes and the form

∂A

∂t
= η(µ5B − µ0 J) + u × B, J = ∇× B/µ0. (18)

The term ηµ5B leads to a growth of the magnetic field for wavenumbers k < µ5, just in
the same way as in mean-field dynamo theory, but here no mean-field theory is invoked.
The degenerated magnetic field is fully helical, but the relevant quantity is now the total
chirality density

htot = A · B + 2µ5/λ, (19)

and it is its volume average that is conserved, i.e., 〈htot〉 = const, provided the bound-200

ary conditions are periodic and/or closed, i.e. perfectly conducting. As the magnetic201

field grows, µ5 decreases. The rate of this change is proportional to the parameter λ,202

which we take here as an adjustable parameter, but in reality is it given by an expres-203

sion involving the temperature.204

It is important to point out that the physical chiral chemical potential in Ref. [31] is205

defined differently. First, the authors of Ref. [31] used Lorentz-Heaviside units, which206

implies another factor of 4π in the numerator of the conversion factor (or rather the207

lack of a 4π factor in the denominator), and, second, there is also a factor of 2 in the208

denominator, so h̄c/8αem instead of h̄c/4αem for the conversion factor of [31], because209

they defined their physical chiral chemical potential as half the difference between the210

physical right- and left-handed chiral chemical potential. In addition, there is a sign211

difference between Refs. [35] and [31], but this affects only the physical chiral chemical212

potential and not our equations, where µ5 has the units of a wavenumber.213

It turns out, perhaps not surprisingly, that in this case, when 〈htot〉 = 0, the turbu-214

lence decays again in such a way that q = 4/9 and p = 10/9 and, again, β = 3/2. This215

is just like in ordinary (but nonhelical) MHD. In this case, however, 〈h〉 6= const, but216

its modulus decays ∝ t−r in a way that is compatible with the real-space realizability217

condition, |〈h〉| ≤ 2EMξM, i.e., r = p − q = (10 − 4)/9 = 2/3. This was also confirmed218

in Ref. [31]. This study was then applied to the problem of baryogenesis [36], where219

one tries to explain the small excess of matter over antimatter in the Universe, which is220

referred to as baryon asymmetry.221

The Hosking scaling was then confirmed for 〈µ5〉ξM ≫ 1, but in the opposite222

limit of 〈µ5〉ξM ≪ 1 the Hosking scaling was no longer obeyed and then both 〈µ5〉223

and ξM are approximately conserved independently. Trying to understand this more224

thoroughly must be a goal of future studies, where one may hope to reach much larger225

scale separation between the different relevant wavenumbers in the system, such as the226

wavenumber k0 of the peak of the magnetic energy spectrum and the value of µ5.227

In Figure 5, we plot magnetic energy and magnetic helicity spectra, as well as228

magnetic helicity variance spectra for a chiral MHD run with balanced chirality and229

an initial k4 spectrum for the magnetic field. We see standard inverse cascading with230

β = 3/2. Next we compare with the case of an initial k2 spectrum; see Figure 6. In231

this case, there is still weak inverse cascading, which is probably a consequence of the232

strong contribution from mean magnetic helicity conservation over extended spatial233

patches.234

2 The physical chiral chemical potential has the units of an energy and is obtained by multiplying our µ5 by h̄c/4αem [35] (in cgs units), or by
−h̄c/8αem [31], where the authors used Lorentz-Heaviside units and another sign convention for the physical chiral chemical potential.
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Figure 5. (a) Magnetic energy (solid lines) and magnetic helicity spectra (dotted lines), and (b)

magnetic helicity variance spectra for a chiral MHD run with balanced chirality and an initial k4

spectrum for the magnetic field. In (a), positive (negative) magnetic helicities are indicated by

small red (blue) dots. The four large dots denote the positions of ξ−1
M . Their colors are the same

as those of the solid lines in (b).

Figure 6. Similar to Figure 5, but with an initial k2 spectrum. Note the presence of slight inverse

cascading in (a), although Sp(htot) = const at k/k0 ≪ 1.

Departures from the conservation of the Hosking integral based on htot have been235

seen when µ5 < k0 [36], but here we have µ5 > k0. To understand more thoroughly the236

regime where µ5 ≫ k0, we would need to have much larger numerical resolution. A237

possible alternative is to use shell models [37], as will be discussed next. However, it238

is unclear whether such models can capture the relevant effects related to the Hosking239

integral or the chiral magnetic effect.240

4. Hosking integral in shell models of chiral MHD241

Shell models describe turbulence through real or complex scalar variables on con-242

centric shells in wavenumber space such that certain conservation laws are obeyed. In243

MHD, the relevant conservation laws are those of total chirality, total (magnetic plus244

kinetic) energy, and cross helicity. The Hosking integral describes helicity fluctuations245

over different scales, and does not have a direct counterpart at the level of shell models.246

However, the scaling properties resulting from its conservation, could still be manifest247

in shell models describing the decay of MHD turbulence.248

The Hosking integral is particularly important in cases where the mean chirality249

vanishes. It is also conserved otherwise when the mean total chirality is non-vanishing,250

but then the conservation of the mean chirality is usually more important. It is also251

important that the magnetic field is strong, because otherwise the decay properties are252

dominated by the hydrodynamic turbulent decay. Our goal here is to investigate the253

decay of magnetic fields with vanishing net chirality in chiral MHD using shell models.254

In a shell model, we describe the state of the system in shells of logarithmically
spaced wavenumbers kn = 2n, where n = 0, 1, 2, ..., N denotes the shell and N is
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Figure 7. Evolution of EM(k, t) from shell models of (a) type I and (b) type II. The times are 10

(red), 1 (orange), 0.1 (green), 0.01 (blue), and earlier times are denoted by black lines of different

line types. Note the presence of inverse cascading in both cases.

the truncation level. For N = 30, for example, we can span ten orders of magnitude
in wavenumber. In MHD, one usually considers complex variables Bn and un for the
magnetic and velocity fields. The mean magnetic and kinetic energy densities are given
by

EM = 1
2

N

∑
n=0

|Bn|2 and EK = 1
2

N

∑
n=0

|un|2. (20)

In shell models, the fluid density is constant and therefore not indicated in the definition255

of the kinetic energy. Also the permeability factor in the magnetic energy has been256

omitted.257

Magnetic helicity is a signed quantity, i.e., it can be positive or negative. How to
describe this in a standard shell model is a matter of convention. One approach is to
associate even and odd shells with the decomposition into positively and negatively
polarized modes of the field. This idea was first developed for the kinetic helicity [38].
This then leads to the definition of the magnetic helicity as [39–41]

HM =
N

∑
n=0

(−1)n|Bn|2/kn, (21)

which satisfies the realizability condition

kn|HM(kn)| ≤ 2EM(kn). (22)

To preserve the preferential growth of positively (negatively), polarized modes on even
(odd) shells, we write

[

ηk(kn − (−1)nµ5) +
d

dt

]

Bn = 1
6 ikn [M(u, B)− M(B, u)], (23)

where the µ5 term leads to a growth of |bn|2 for even (odd) values of n when µ5 is
positive (negative), and M(x, y) is a nonlinear functional, where x and y stand for the
full n-dependent arrays. The essence of shell models is to couple only nearest and next-
nearest neighbors. We refer to this model as type I. This prescription then leads to

M(x, y) = xn+1yn+2 + xn−1yn+1 + xn−2yn−1 (type I). (24)

The velocity plays a crucial role in producing an inverse cascade. It is governed by the258

Navier-Stokes equation with the Lorentz force included. There are then two further259

quadratic nonlinearities for u and B; see Refs. [39–41] for details.260
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Another approach to treat helicity is to write down the equations separately for
the positively and negatively polarized modes and thus have evolution equations for
u±

n and B±
n . We refer to this model as type II. The helicity density can then be written as

[42]

HM =
N

∑
n=0

(

|B+
n |2 − |B−

n |2
)/

kn, (25)

and the magnetic energy is EM = ∑
N
n=0(|B+

n |2 + |B−
n |2). The evolution equations for B±

n

take then the form
[

ηk(kn ∓ µ5) +
d

dt

]

B±
n = 1

6 ikn [M±(u, B)− M±(B, u)] (type II), (26)

where [42]
M±(x, y) = x∓n+1y±n+2 + x∓n−1y∓n+1 + x±n−2y∓n−1. (27)

Note that for the intermediate terms, the signs in the superscripts are the same, i.e.,261

u−
n−1B−

n+1 appear in the evolution of B+
n and u+

n−1B+
n+1 in the evolution of B−

n ; see also262

Ref. [43], where such models were proposed independently.263

In Figure 7, we present models of types I and II with N = 30 shells using λ = 1010,264

k0 = 214 = 16384 ≈ 1.6 × 104, ν = η = 5 × 10−11, and µ5 is computed as µ5 = −µM,265

where µM ≡ HMλ/2 ≈ 1.8 × 105 is the chiral chemical potential equivalent of the266

magnetic helicity.267

In all cases, we start with a k2 spectrum, so we expect to see no inverse cascading.268

Looking at the results of Figure 7, however, this does not seem to be the case. Our results269

are still preliminary, but our conclusion so far is that shell models may not capture the270

same inverse cascade behavior that we have found in the direct numerical simulations.271

On the other hand, more parameter studies are warranted before one can draw more272

firm conclusions. One must also remember that departures from the conservation of273

the Hosking integral have been seen in certain direct numerical simulations [36].274

5. Conclusions275

In this paper, we have presented a discussion of the Hosking integral in various276

contexts in which it has been considered so far: ordinary MHD, MHD with chiral277

fermions, as well as just the induction equation – either with Hall nonlinearity or with278

ambipolar diffusion nonlinearity. When the total chirality vanishes (non-chiral case279

with zero magnetic helicity or chiral case with finite magnetic helicity balancing the280

fermion chirality) it is the correspondingly adapted Hosking integral that governs the281

decay of EM(t) ∝ t−p and the increase of ξM(t) ∝ tq with p = 10/9 and q = 4/9 for both282

ordinary MHD and also just the induction equation with ambipolar diffusion. When283

the nonlinearity is given by the Hall effect, on the other hand, we have p = 10/13 and284

q = 4/13. The case with chiral fermions is somewhat special, because now the magnetic285

field is actually fully helical, but this helicity is balanced by fermion chirality. Again, in286

that case the Hosking integral determines the decay behavior. However, there is also287

another decaying quantity: the mean magnetic helicity density, which is now actually288

finite and balanced by fermion chirality. It is found to decay like t−2/3.289

In previous work on decaying turbulence the decay properties of hydrodynamic290

and MHD turbulence were motivated by the use of self-similarity and invariance of291

the governing equations under rescaling. This is different in the present work where292

we have just made use of dimensional arguments. Still, the use of invariance under293

rescaling is necessary to motivate the equilibrium line p = 2(1 − q) in the qp diagram294

in Figure 1(b). It will therefore be interesting to find out whether the existence of this295

line could also be motivated by other means.296

An open question is whether the Hosking integral can also play a role in driven
MHD turbulence, for example. One possibility could be the production of inverse cas-
cade behavior where magnetic energy grows on wavenumbers below the energy injec-
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tion wavenumber. This could then leads to a turbulent subinertial range scaling of the
form

EM(k) ∝ Ia
Hkb. (28)

Using dimensional arguments, we would find 3 = 9a − b and 2 = 4a for balancing the297

dimensions of length and time, respectively. Therefore, a = 1/2 and b = 3/2. Thus, b298

is positive and equal to the Kazantsev slope known in kinematic nonhelical small-scale299

dynamos [44]. Whether or not there is actually a connection with Kazantsev’s small-300

scale dynamo theory remains another open question.301

In our work we have also examined whether some aspects of the Hosking integral302

might also be reproducible with shell models. At the moment, this does not seem to303

be the case, but this could well be a consequence of not having performed sufficiently304

extensive parameter studies. Thus, more work might be warranted.305
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