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Abstract: Appropriate nutrition during pregnancy and the post-partum period is vital to both the parent and
their offspring. Both under- and over-nourished status may have important microbial implications on the
parental and infant gut microbiomes. Alterations to the microbiome can have implications for a person’s risk
of obesity and metabolic diseases. In this review, we examine alterations in the parental gut, vaginal, placental,
and milk microbiomes in the context of pre-pregnancy BMI, gestational weight gain, body composition,
gestational diabetes, and parental diet. We also investigate how the infant gut microbiome may be altered by
these different parameters. Many of the microbial changes seen in under- and over-nourished states in birthing
parents may result in long-term implications to the health of offspring. Differences in diet appear to be a major
driver of the parental, and subsequently milk and offspring microbiomes. Further prospective longitudinal
cohort studies are needed examining nutrition and the microbiome to better understand its implications.
Additionally, trials involving dietary interventions in child-bearing age adults should be explored to improve
the parent and child’s risks for metabolic diseases.
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INTRODUCTION

The pregnancy and post-partum periods are times of significant metabolic and microbial change
for the birthing parent and their offspring. There are increased energy requirements to support the
growth of the uterus, breast tissue, placenta, and fetal tissues.[1] The gut microbiome facilitates
nutrient absorption, gut defense barrier, and immune development. There is an increase during
pregnancy in gut Akkermansia, Bifidobacterium, and Firmicutes bacteria, likely to facilitate energy
storage.[2] There is also an increased abundance of gut bacteria Proteobacteria and Actinobacteria
which are believed to protect against inflammation.[2] The nutritional status of the pregnant person
is important in regulating these microbial shifts necessary in pregnancy and the post-partum period.

Both excessive and inadequate nutrition can have remarkable consequences to the parent during
pregnancy (Table 1). Obesity, excessive gestational weight gain, gestational diabetes, and
hypertension have been associated with increased future risk for obesity, cardiovascular disease, and
type 2 diabetes.[1] In contrast, inadequate nutrition in pregnancy has been associated with increased
risk of life-threatening hemorrhage, obstructed labor, sepsis, and all-cause mortality. [3-5]

Table 1. Maternal intestinal microbiome changes due to various anthropometric and nutritional
states. References are listed in brackets.

Maternal Factor Diversity Increased Abundance Decreased Abundance
Firmicutes [14], Bacteroides
Elevated pre-  Potentially decreased [16], Clostridium[16], S. Proteobacteria [14],
pregnancy BMI diversity [13] aureus [16] Biolphila [17], Phascolarctobacterium [17]

Roseburia [17], Dialster [17],
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2
) Potentially decreased . Firmicutes [44],
Underweight [35,3173, 46] Acidaminococcus [47] Bacteroidetes [44]
Excessive Prevotella [17], Dialister [17],
Gestational Weight Firmicutes [49], Bifidobacterium [16]
Gain Bacteroidetes [49]
Ruminococcaceae family
[66], Faecalibacterium [67],
Gestational Eubacterium [67],
Diabetes Streptococcus [67],
Enterobacteriaceae family
[67], Bacteroides [68],
Increased Simpson Ruminococcus [16,17], Bacteroidetes, Firmicutes
Fat Intake . .
diversity [17] Paraprevotella [17] [74]
Vegetable Intake Roseburia [79], Collinsella [79], Holdemania,

Lachnospiraceae [79] Eubacterium [79]
Animal Protein  Increased Shannon
Intake diversity [17]
Carbohydrate
Intake

Collinsella [17]

Bacteroidetes [74]

Excessive and inadequate nutrition can also have consequences to the offspring (Table 2). The
effects of parental nutritional status on infant outcomes may be mediated through several pathways
including dietary intake, milk composition, and parental microbiome (Figure 1). Infants of parents
with gestational diabetes and/or pre-pregnancy obesity have increased risk of increased fetal growth,
large for gestational age status at birth, and later metabolic syndrome.[6] Inadequate nutrition during
pregnancy alters placental histomorphology and function [7] and can lead to epigenetic changes
regarding nutrient utilization, as well as a higher risk of fetal growth restriction, small for gestational
age status, and later metabolic syndrome.[7] Additionally, human milk oligosaccharides (HMOs) can
be altered by nutritional status[8,9] and are pre-biotics for milk and gut bacteria. Thus, HMOs may
alter the milk microbiome and shape the infant gut microbiome.[10-12]

Table 2. Infant gut microbiome changes due to various anthropometric and nutritional states.
References are listed in brackets.

Infant Gut Infant Gut ;[I:f:n;f;: Infant Gut
Maternal Factor Microbiome Microbiome Increased crobiome Microbiome
; . Decreased .
Diversity Abundance Functional Roles
Abundance

Proteobacteria [14]
Vaginal delivery
infants [35]: Bacteroides
Increased [34] fragilis, Escherichia coli, ~ Firmicutes [14]
Veillonella dispar,
Staphylococcus,
Enterococcus

Elevated Pre-
pregnancy BMI

Decreased butyrate
production [36]

Enrichment of
glucose and
glycogen
Ge.s tatlonafl Increased [34] Akkermansia [34] degradation
Weight Gain pathways,
increased
phenylalanine,

cysteine/serine,
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folate, thiamin,
biotin, and
pyridoxine
synthesis pathways
[56]
Proteobacteria [72],

Clostridium [73], Lactobacillus [66,75],

Fi j 7
Gestational Veillonella [73], avolmfract'or[ o)
. Decreased [72] .. Erysipelotrichaceae
Diabetes Firmicutes [72], 75]
Streptooccus [66] Gammoproteobacteria
[75], Bacteroides [66]
Maternal Fat .. Proteobacteria [76],
F 7
Intake irmicutes [76] Bacteroides [78]
Lactobacillus [79],
Pr0p10n[1;6a]cter1ales Coprococcus [76],
! Blautia [76], R ]
Maternal Fruit and Priopionibacteriaceae [;zg]tzizzirfll;wzs;lzz;’;a
Vegetable Intake [86], Cutibacterium [86], / ,
[76], Lachnospiracea
Tannerellaceae [86], [76]
Parabacteroides [86],
Lactococcus [86]
Veillonella [76],
Maternal Animal Escherichia/Shigella [76],
Protein Klebsiella [76], and

Clostridium [76]

Human milk oligosaccharides
Milk microbiome

Enteromammary |

athwa \ Human milk feeding
pathway \

.
e -8

Alterations in
fruits,
vegetables, and
protein
consumption

Amniotic fluid
Vaginal delivery
transmission

O
AN

Infant gut microbiome
changes

Figure 1. Schematic of the pathways maternal nutrition influences the infant gut microbiome. Figure
created with Biorender.com.
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Alterations in the microbiome have been associated with inappropriate nutrition in pregnancy.
Both obesity and undernutrition in pregnancy have been associated with decreased gut microbial
diversity and shifts in microbial abundance.[13] However, changes in diet can modify the
microbiome of the mother and offspring. In this review, we will explore the impact of different
markers of metabolic health and diet on the parental and infant microbiome in pregnancy and
postpartum period.

PRE-PREGNANCY BMI AND ITS ROLE IN MICROBIAL CHANGES

OVERWEIGHT/OBESITY

Increases in pre-pregnancy body mass index (BMI) have been associated with alterations to the
parental gut microbiome. In the first trimester, pregnant parents who were obese prior to pregnancy
were found to have a higher relative abundance of Firmicutes and a lower relative abundance of
Proteobacteria compared to their normal body weight counterparts.[14] A high abundance of
Firmicutes has been found in multiple studies of adults with obesity, with evidence suggesting that
Firmicutes increase the efficiency of energy extraction and promote the absorption of calories.[15] In
the third trimester, overweight pregnant parents compared to normal BMI parents were found to
have increased Bacteroides,[16] Clostridium,[16] Biolphila,[17] Roseburia,[17] Dialster,[17] and S. aureus
[16] and decreased Phascolarctobacterium compared to normal BMI parents.[17] S. aureus have been
found in the presence of intestinal inflammation secondary to adipocyte hyperplasia [15]. However,
these changes are inconsistent across studies- one study found no changes in genus-level composition
between those with an elevated BMI compared to those with a normal BMI.[18] Similarly, some
studies have found decreased diversity with obesity [13] while others have not.[17]

Obesity also has been associated with alterations to the parental vaginal and placental
microbiomes. Alterations in the vaginal and placental microbiome have been associated with preterm
birth.[19] Women with normal weight have with increased diversity in the vaginal microbiome in the
introitus and post-fornix compared to those with obesity.[20] Another study in Caucasian parents
found pre-pregnancy BMI was associated with an elevated Nugent score, a score concerning for
vaginal dysbiosis[21]. The role of obesity versus gestational weight gain on the placental microbiome
has been controversial. Parental obesity is believed to contribute to placental dysfunction. In a pig
model of obesity in pregnancy, the obese group had increased oxidative damage with increased
reactive oxygen species protein[22]. These reactive oxidative species and interleukins were correlated
with relative abundance of Christensenellacaea_R-7 and decreased norank_f _Bacteroidales_S24-7_group,
members of Firmicutes phyla. These findings suggest that placental inflammation may be secondary
to microbial changes and could contribute to risk for preterm birth. However, when examining
placentas of parents who delivered preterm, there was no clustering of microbial communities by
obesity.[23] In contrast, a study in term parents found the placental microbiome of obese pre-
pregnant parents to have less diversity, less microbial richness, and less abundance of taxa[24].

HMOs are considered a pre-biotic for infant gut bacteria, and thus altered composition could
impact the gut microbiome. The milk microbiome and HMOs may be altered in the setting of obesity.
In general, parents with elevated BMI have been found to have a less diverse milk bacterial
community.[25] An elevated BMI has been associated with a higher relative abundance of
Staphylococcus,[26-28]  Akkermansia,[25,26] =~ Corneybacterium,[28] Granulicatella,[28,29] and low
abundance of Lactobacillus,[26,27] Bacteroidetes,[29] Bifidobacterium,[25,26] and Streptococcus[27] in the
milk microbiome. However, there are some studies which have found no relationship between BMI
and milk microbial composition.[30,31] One study found obese parents were more likely to be non-
secretors (those who cannot produce fucosylated HMOs), and among non-secretors, there was
increased sialyl-lacto-N-tetraose b (LSTb) and fucosyl-disialyl-lacto-N-hexaose (FDSLNH) in
overweight parents compared to normal weight parents.[32] Lacto-N-pentose II/Ill, and lacto-N-
fucopentose I were associated with parent pre-pregnancy BMIL[31] Fucosylated HMOs are an
important energy source for infant gut Bifidobacterium and may impact the development of the infant
gut.[33]
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Parental overweight/obesity status has also been associated with alterations to the infant gut
microbiome. One study found meconium samples of infants born to parents who were obese pre-
pregnancy, had less Firmicutes and increased Proteobacteria compared to infants born to parents
with normal pre-pregnancy BMI.[14] When examining infants of overweight parents up to 12
months, diversity indices of the gut microbiome were increased in the overweight group compared
to the normal weight group.[34] However, the evidence of changes in infant gut bacterial abundance
are mixed. In a study examining infant gut bacterial abundance at the genus level, infants from
overweight parents had greater abundance of Salmonella, Serratia and Coprobacillus; however,
significance was only achieved with unadjusted p-values.[34] Another study found mode of delivery
altered the findings. There were no associations of pre-pregnancy BMI and the infant gut microbiome
in the Cesarean-delivered infants, but in the vaginal birth delivered group, there was increased
Bacteroides fragilis, Escherichia coli, Veillonella dispar, Staphylococcus, and Enterococcus.[35] Infants of
overweight parents had less butyric acid-producing bacteria compared to normal-weight parents.[34]
These findings suggest infants of overweight/obese parents begin with pathogenic bacteria with less
butyrate production. Butyrate has been considered the optimal energy source for colonocytes, and
limited source of this could impact intestinal health.[36]

UNDERWEIGHT

The effects of parental underweight on the parental and infant microbiome are less well-defined
than that of obesity and overweight. There is animal data to suggest that parental undernutrition
alters the microbiome. A study of pregnant cattle demonstrated decreased placental microbial
diversity in the setting of feed restriction in late gestation.[37] Furthermore, feed restriction of
pregnant ewes results in an altered relative abundance of gut microbial communities.[38] Feed
restriction of ewes additionally results in decreased colonic microbiome diversity and increased
relative abundance of Peptococcaceae and decreased relative abundance of Ruminococcus.[39]
Peptococcacea has been associated with higher high-density lipoprotein cholesterol,[40] whereas
Ruminoccocus plays a key role in complex carboydrate degradation[41] and may be important to
maintaining colonic health as decreased abundance of Ruminococcaceae has been implicated in
inflammatory bowel diseases[42,43] and antibiotic associated diarrhea.[44]

Evidence from individuals with anorexia has demonstrated decreased alpha diversity[45] and
lower amounts of total bacteria and obligate anaerobes in fecal samples when compared to well-
nourished individuals.[38] Reduction of energy-balance and nutrient load in the diet results in an
increase in Firmicutes and a decrease in Bacteroidetes; similar to obese adults.[46] This could be
plausible as these bacteria facilitate energy usage, and in a starved state this is critical.

Additionally, evidence from young children with severe undernutrition demonstrates less
mature gut microbiomes that may promote excessive weight loss.[47] Children with malnutrition
have lower richness and increased abundance of Proteobacteria, including pathogenic Kiebsiella and
Escherichia and lower abundance of Bacteroidetes when compared to healthy children.[48] Reduced
diversity and increased relative abundance of Acidaminococcus is also reported among children with
undernutrition.[49] Taken together, it is plausible and likely that undernutrition in pregnancy results
in distinct changes to the parental microbiome which will affect offspring, though additional studies
focusing on the microbiome of undernourished individuals are needed.

GESTATIONAL WEIGHT GAIN

The role of gestational weight gain in pregnancy on the parental gut microbiome has been
controversial. United States Preventative Task Force has differing recommendations of weight gain
depending on pre-pregnancy BMI with less weight gain (11 to 20 Ib) for obese pregnant parents and
more weight gain (28 to 40 lb) for underweight pregnant parents.[50] The recommended amount of
weight gain in pregnancy was associated with increased Bifidobacterium compared to those with
excessive weight gain.[16] However, when controlling for pre-pregnancy BMI, there were no
differences in diversity with excess gestational weight gain,[17,51]. There have been changes in
bacterial abundance with excess gestational weight gain. Increased gestational weight gain was
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associated with decreased Prevotella and Dialister in the third trimester.[17] Dialister has been
associated with insulin sensitivity.[16] For those with normal pre-pregnancy BMI, when they had
excessive gestational weight gain, there was an increased in Firmicutes and Bacteroidetes phyla,[51]
but in those who were obese prior to pregnancy who had excessive weight gain, there was an increase
only in Bacteroidetes.[51] This could be due to preexistence of high quantities of Firmicutes in the
context of obesity.

The milk and placental microbiome also appear to be altered by gestational weight gain in
pregnancy. Multiple studies have found that with increased gestational weight gain there was an
increase in milk microbiome alpha-diversity.[52,53] Independent of parental obesity, increased
gestational weight gain has been associated with increased abundance of Staphylococcus,[25-27]
decreased Streptococcus,[53] and decreased Bifidobacterium.[26,53] Staphylococcus has been associated
with the pro-inflammatory state of obesity,[54] and may contribute to the infant’s risk for future
metabolic diseases. Additionally, the placental microbiome in parents who deliver preterm clusters
by excess gestational weight gain.[23] For those with excessive gestational weight gain, there are
decreased species richness, decreased Proteobacteria, increased Actinobacteria, increased Firmicutes,
and increased Cyanobacteria.[23] These findings are thought-provoking, as excessive gestational
weight gain and decreased placental species richness have both been associated with increased risk
of preterm birth,[55] and thus provide a potential mechanism that could be amenable to intervention.

Increased gestational weight gain in pregnancy has been associated with changes in the
offspring microbiome from the neonatal period to adulthood. Gestational weight gain has been
associated with decreased Akkermansia abundance at 1 month[34], increased diversity at 6
months[34], increased enrichment of microbial glucose and glycogen degradation pathways, and
increased microbial phenylalanine, cysteine/serine, folate, thiamin, biotin, and pyridoxine synthesis
pathways at 8 months.[56] These studies suggest gestational weight gain impacts the infant’s gut
bacterial role in energy storage, which could have implications on their risk for obesity and metabolic
syndrome. Another study examining women 19 to 44 years old whose parents demonstrated excess
gestational weight gain, found those who exposed to excess gestational weight gain had increased
visceral adiposity and increased fecal Acidaminooccus, a bacteria associated with adiposity, in
adulthood.[57] These findings suggest that adiposity even in adulthood may have fetal and microbial
origins.

BODY COMPOSITION

Given pre-pregnancy BMI is a flawed proxy for adiposity,[58] nutritional scientists are moving
toward the use of body composition. Body composition examines fat-mass (brown, subcutaneous,
visceral fat) versus fat-free mass (muscle, organs, or bone), or skeletal muscle mass. Body composition
can be studied using various technologies that vary in cost and resolution. Increased white visceral
adipose tissue in pregnancy releases pro-inflammatory cytokines and free fatty acids which can alter
the epigenome of fetus” muscle, liver, and adipose tissue.[49] These adaptations can increase the
child’s risk of metabolic syndrome and nonalcoholic fatty liver disease. As mentioned previously,
parents with increased BMI have also been found to have significant differences in the human milk
oligosaccharide profile,[8,34] but no studies have directly examined the relationship between
parental body composition and human milk oligosaccharide concentrations.

Given the release of free fatty acids and the changes in mother’s own milk human milk
oligosaccharide composition, there are likely alterations in the parental and infant microbiome.
However, this has not been well-studied. In a study examining adults with type 2 diabetes, adults
with a greater lean tissue index (lean tissue mass divided by height squared) had a higher ratio of
Firmicutes to Bacteroidetes phylum.[59] In a rat model giving a high protein diet versus a fat and
sucrose diet, a high protein diet was associated with decreased fat mass, increased alpha-diversity,
increased abundance of Lactobacillacea and Bifidobacterium in the parent.[60] In the offspring of the
high protein mice, they found decreased fat mass in both male and female mice, but sex-dependent
differences in the microbiome.[60] Both male and female offspring had differences in beta-diversity,
but in males there was also increased alpha-diversity, increased Bifidobacterium, increased
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Muribaculaceae, and decreased Lachnospiraceae.[60] In an observational study examining 140 pregnant
parents, increased fat mass in pregnancy was positively associated with increased Akkermansia,
Blautia, and Bilophila.[17] Bilophila is a bile-resistant bacillus that expands in the presence of dietary
fats and has been associated with increased intestinal inflammation in a mouse model.[61] There have
been no other studies to date examining parental body composition in pregnancy and the
microbiome, and further research is needed to define the role of body composition on the microbiome
and better understand the microbial mechanisms for parental and neonatal metabolic changes.

GESTATIONAL DIABETES

Gestational diabetes is a hyperglycemic state that occurs during pregnancy. Gestational diabetes
is one of the most common complications in pregnancy that has been increasing in prevalence
alongside both the obesity epidemic and increasing parental age at time of conception.[62] To meet
the demands of the developing fetus, a state of transient hyperinsulinism is necessary to store energy;
however, some parents are unable to compensate for hyperinsulinism and develop hyperglycemia
due to pancreatic beta-cell dysfunction.[63] There is evidence that an altered microbiome with
decreased short-chain fatty acid producing bacteria, decreased amino acid degrading bacteria,
increased Firmicutes to Bacteroidetes ratio, and increased gram-negative bacteria lead to gut
inflammation, gut permeability, increased dyslipidemia, and insulin resistance.[64] Additionally, a
Western diet (low fruits and vegetables, high sodium and fat) was associated with increased risk of
gestational diabetes where as a Mediterranean diet (higher bread, cereal, legume, fish, and olive oil
diet) was associated with a decreased risk of gestational diabetes.[65]

The parental microbiome is altered in the setting of gestational diabetes. One study found that
the vaginal, oral, and intestinal microbiomes were distinctly different from the non-diabetic
microbiome on Bray-Curtis distance analyses comparing compositional similarity.[66] They found
the oral cavity had more Proteobaceria and less Firmicutes in gestational diabetes, but no significant
abundance differences in the intestinal or vaginal microbiome.[66] In contrast, one study examining
502 pregnant parents’s vaginal microbiomes found gestational diabetes was associated with vaginal
dysbiosis.[67] In regards to the gut microbiome, some experts argue that the origins of gestational
diabetes are microbial.[59,61-63] When comparing the gut microbiota of pregnant parents in the
first trimester, those who developed gestational diabetes had increased Ruminococcaceae family,[68]
butyrate-producing bacteria Faecalibacterium[69] and Eubacterium.[69] In the third trimester of
pregnancy, gestational diabetes is associated with increased gut Bacteroides,[70] Streptococcus and
Enterobacteriaceae family.[69] All of these bacteria are associated with gut inflammation.[71] Further
studies are necessary to determine whether altered gut bacteria in the third trimester predict
gestational diabetes earlier than the glucose tolerance test in the second trimester.

Gestational diabetes also alters the microbial signatures of infants of affected parents. In one
study, Chinese infants of parents with gestational diabetes and normal BMI were found to have
decreased alpha diversity of meconium, as well as altered Firmicutes [72] and Proteobacteria at the
phylum level[72]. Another study examining meconium from a similar population of parents with
gestational diabetes found at the genus level altered Prevotella,[66] Streptococcus,[66] Bacteroides,[66]
and Lactobacillus abundances.[66] Lactobacilus is important in amino acid synthesis de novo. [59] The
decreased abundance of Lactobacillus may have implications for protein metabolism in the newborn.

It is difficult to disentangle the role of pre-pregnancy BMI and gestational diabetes on the
microbiome as many studies are under-powered to adjust for BMI or do not include more nuanced
assessments of body composition. However, one study comparing the parental gut microbiome in
parents with gestational diabetes compared to those who were normo-glycemic controlled for pre-
pregnancy BMI found decreased Clostridium and Veillonella after controlling for pre-pregnancy
BML.[73] Another study examining parental milk microbiome changes with gestational diabetes and
pre-pregnancy BMI demonstrated microbial differences when adjusting for gestational diabetes.[28]
Nonetheless, when examining gestational diabetes’ role on the milk microbiome for those parents
without obesity, they did not find significant differences.[28] Another study examining the infant
meconium microbiome of infants born to parents with gestational diabetes and healthy parents found
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gestational diabetes state to be a driver of Bacteroidetes, Firmicutes, and Proteobacteria after
adjusting for first trimester parental BMI.[74] Alterations in Bacteroides have been associated with
type 2 diabtetes [63]. Furthermore, another study found neonates of parents with gestational diabetes
had decreased Lactobacillus, Flavonifractor, erysipelotrichaceae, and Gammoproteobacteria after adjusting
for pre-pregnancy BML[75] These findings provide evidence that gestational diabetes independently
alters the microbiomes of parents and infants.

PARENTAL DIET AND THE MICROBIOME

There is evidence to suggest that parental diet may play a critical role in shaping the microbiome
in pregnancy and the neonate independent of parental body habitus. Parental dietary intake during
pregnancy is associated with parental gut, vaginal, and milk microbiome composition.[21,76,77]
Subsequently, the neonatal microbiome is influenced by parental diet. Potential mechanisms of
transfer to the infant include via vaginal delivery, the placenta, or the amniotic fluid. The effects of
the parental diet on the infant stool microbiome persist after delivery for at least 6 weeks[78] and
have been found to be greater among infants delivered vaginally than via Cesarean section.[76]
However, when examining the drivers of the infant microbiome up until 6 months, chestfeeding
status was the primary driver rather than parental dietary intake.[79]

Fat intake is associated with microbial shifts in pregnancy. Saturated fatty acid intake has been
positively associated with gut microbial Simpson diversity index in obese/overweight
participants.[17] In normal weight subjects, increased monounsaturated and polyunsaturated fatty
acids are associated with Ruminococcus and Paraprevotells abundance.[17] Ruminococcus has been
previously positively associated with polyunsaturated fatty acid supplementation and plant-based
diets. [16,80] In a study examining mother-infant pairs in the Mediterranean, parental lipid intake
has been associated with decreased Bacteroidetes and increased Firmicutes relative abundance prior
to delivery, consistent with findings in obesity.[76] In regards to the milk microbiome, increased
intake of saturated fatty acids and monounsaturated fatty acids were inversely related to the relative
abundance of Corneybacterium in American parents.[29] However, the study was unable to look at
the lipid profiles of the milk itself to see if this impacted the milk fat composition.[17] Fat intake has
also been directly associated with changes in the infant microbiome.[78] A parental diet high in total
lipids, saturated fatty acids, and mono-unsaturated fatty acids has been associated with enrichment
of Firmicutes phylum and depletion of Proteobacteria phylum in infant meconium.[76] Infants of
parents with high fat intake during pregnancy were found to have lower Bacteroides that persisted
from birth to 6 weeks of age.[78] This effect was not modified by pre-pregnancy BMI and gestational
diabetes, suggesting that parental diet may be a primary parental driver of the infant microbiome.

Fruit and vegetable consumption also influences the parental microbiome. Particularly, a
Mediterranean diet of higher plant and limited animal protein appears to be influential. [81-83]
Parents who consume vegetarian diets have lower relative abundances of Collinsella, Holdemania, and
Eubacterium but increased abundance of Roseburia, and Lachnospiraceae compared to their omnivore
counterparts in the gut microbiome during the second trimester of pregnancy.[81] Lachnospiraceae
break down polysaccharides to short chain fatty acids and have been associated with people who
practice a vegetarian diet.[72,84] A study examining adherence to a Mediterranean diet throughout
pregnancy in Hawaiian parents found increased parental gut microbiome diversity and increased
abundance of bacteria that produce short chain fatty acids.[82] A predominantly plant/fish protein
diet also alters the milk microbiome. In a primate study providing a “Mediterranean diet” compared
to a “Western diet” (high animal protein, high sodium, high sugar), they found the mammary tissues
had 10-fold higher abundance of Lactobacillus with the Mediterranean diet.[83] A potential
mechanism for these alterations in the milk microbiome may be through the entero-mammary
pathway where gut bacteria are transmitted to the mammary gland by dendritic cells.

Parental fruit and vegetable intake has been frequently associated with infant gut microbial
changes. When examining infant meconium, parental dietary fiber and vegetable protein intake is
negatively associated with the relative abundance of Coprococcus, Blautia, Roseburia, Ruminococcaceae,
and Lachnospiraceae families.[76] This suggests a more positive microbial profile as Blautia has
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been associated with increased visceral adiposity in adults.[85] In a study of 39 2-month-old infants
in Taiwan, parents with high fruit and vegetable consumption had a higher abundance of
Propionibacteriales, Propionibacteriacea, Cutibacterium, Tannerellaceae, Parabacteroides, and
Lactococcus.[86] In contrast, infants of parents who ate less fruits and vegetables had higher
abundance of Prevotella, Isobaculum, Clostridia, Clostridiales, Lachospiraceae, Hungatella,
Lachnoclostridium, Ruminococcacaea, flavonifractor, —erysipelatoclostridium, Acidaminococcaceae,
Phascolarctobacterium, Megamonas, Betaproteobacteriales, Burkholderiacea, and Suterella.[86]
Cutibacterium has been found to degrade hexoses to produce propionate.[75] Propoionate
consumption has been shown to be associated with less antigen presentation on dendritic cells
associated with allergic disease in mouse models.[87] Another study found similar results at 6 weeks
of age but found the effect of fruit intake to be modified by mode of delivery[88]; infants born by
Cesarean section whose parents had a high fruit intake had increased odds of high Streptococcus and
Clostridium. As the infant ages, there are more environmental drivers to the gut microbiome, but
parental dietary intake appears to continue to play a role. One study found at 6 months when
controlling for type of milk (mother’s own milk versus formula), solid food introduction, mode of
delivery, age, parental education, and race/ethnicity, infants of parents who ate more fruits and
vegetables had increased Lactobacillus.[79] Lactobacillus has been associated with cellular immunity in
infants and has been utilized as a probiotic supplement in atopic diseases with some success.[89,90]

Additionally, fish and animal protein sources have been associated with changes in the parental
and infant gut microbiome. Animal protein intake in pregnancy was positively associated with
parental gut Shannon diversity index.[17] Low processed meat intake is positively associated with
Lactobacillus abundance in the gut[79] and the vagina;[21] and total animal protein intake has been
positively associated with Collinsella abundance.[17] In regards to the infant microbiome, one study
found that higher parental animal protein intake is associated with higher abundance of Veillonella,
Escherichia/Shigella, Klebsiellla, and Clostridium in infant meconium.[76] These bacteria have been
associated with infant gut dysbiosis and inflammation in preterm infants.[91-94] Increased parental
fish and seafood intake was positively associated with increased Streptococcus in six-week-old infants
regardless of mode of delivery or parental BMIL.[76]

Carbohydrates have also been associated with alterations in the parental and infant microbiome.
Increased carbohydrates in pregnancy have been associated with increased Bacteroidetes in the
parental gut microbiome prior to delivery.[76] Increased total carbohydrates and sugars in pregnancy
was associated with improved vaginal health with a lower Nugent score.[21] In regard to the milk
microbiome, increased total carbohydrates, disaccharides, and lactose were negatively associated
with abundance of Firmicutes in lactating parents in the United States.[29] There is minimal
information regarding parental diet and the milk microbiome, and further research is needed to
characterize the microbial differences.

FUTURE DIRECTIONS - DIETARY AND PROBIOTIC INTERVENTIONS

Given the impacts of parental nutritional status and diet on the parental and infant gut
microbiome, there have been efforts to improve parental and neonatal health outcomes through
prebiotic, probiotic and dietary interventions. Unfortunately, these interventions have had varying
levels of success.

Multiple randomized control trials utilizing probiotics have been conducted in overweight
pregnant parents. There have been seven studies to date that have examined the use of probiotics in
the prevention of gestational diabetes, and a recent meta-analysis conducted found that probiotics
had no effect on the risk of gestational diabetes, cesarean section, gestational weight gain in
pregnancy, or large for gestational age infants.[95] Another study providing fish oil and/or probiotic
supplementation to overweight pregnant parents in early pregnancy to assess gestational weight gain
and body composition found no significant differences in gestational weight gain or body
composition[96], but supplementation did decrease Ureaplasma and Prevotella.[97] A recent meta-
analysis found increased Ureaplasma abundance is associated with preterm rupture of membranes,
preterm birth, chorioamionitis, and bronchopulmonary dysplasia, but evidence is low-quality.[98]
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Thus, probiotics decreasing the abundance of Ureaplasma may have benefits to pregnancy, but further
large, randomized control trials are necessary.[99]To date, there is little evidence to support the use
of probiotics in pregnancy.

Dietary and exercise interventions in pregnancy have been performed with variable success. In
an animal model, methyl-donor nutrients (folate, vitamin B12, choline, methionine, betadine)
provided in pregnancy and lactation to mice receiving a high fat diet lead to decreased cytokine
expression, decreased colonic vitamin D receptor (VDR) signaling in pups.[100] VDR signaling
impacts vitamin D metabolism.[81] The UPBEAT trial enrolled obese pregnant parents to
participate in a low glycemic index diet plus physical activity and resulted in decreased skinfold
thickness, gestational weight gain, improved metabolome in parents, and decreased infant
subscapular skinfold thickness z-score at 6 months.[101] Another study examined if the use of a
“HealthyMoms” smartphone app in pregnancy would improve gestational weight gain, glycemia,
and insulin resistance,[102] and did not find any significant differences in clinical outcomes.
However, the parents did have improved healthy eating scores post-partum.[82] Further research is
needed to examine the microbial changes to the mother and neonate following nutritional
interventions.

GAPS IN THE LITERATURE

Better understanding of how parental factors including BMI, body composition and diet affect
the infant microbiome is needed. Longitudinal studies following from pre-pregnancy and early
pregnancy through the period of exclusive chestfeeding would allow for thorough characterization
of interactions between parental health, the parental microbiome, and infant health and microbiome.
Multi-omic studies evaluating metabolomic and microbiome signatures would allow for a more
thorough understanding of interactions between host metabolism, the microbiome and microbial
metabolism. Another large gap in the literature is the effect of parental undernutrition including
macronutrient and micronutrient deficiencies, low BMI, and inadequate gestational weight gain on
both the parental and infant microbiome. Additionally, current methods for assessing parental diet
are inadequate as 24 hour recalls, food frequency questionnaires, and other survey methods may not
accurately capture dietary intake and quality. As the double burden of malnutrition continues to
increase among pregnant people globally, a clear understanding of the effects of malnutrition on the
microbiome and infant outcomes is necessary to identify novel targets for intervention to optimize
outcomes and development among offspring.

CONCLUSIONS

Parental metabolic factors regarding adiposity, lean mass accretion, insulin resistance,
gestational weight gain, and diet all have microbial implications to the mother, the milk produced,
and the offspring. Dietary differences during pregnancy appear to be one of the largest drivers of the
parental microbiome but are the most difficult to study reliably due to methodology utilized. There
also is a paucity of literature on undernutrition's implications on the parental microbiome. Microbial
shifts in the mother and their offspring can influence their risk for future metabolic diseases.
Although interventions with probiotics in pregnancy have not been successful, dietary changes
appear to have the most promise. Further research efforts should concentrate on multi-omic
approaches and utilize dietary assessments throughout pregnancy and the lactation period, mother’s
own milk composition, and the parental and neonatal microbiome in vulnerable populations to
provide precise nutritional and microbiome directed interventions.
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