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Abstract: The multivariate Gaussian random fields with matrix-based scaling laws are widely used
for inference in statistics and many applied areas. In such contexts interests are often in symmetry
and in the rates of change of spatial surfaces in any given direction. This article analyzes the almost
sure sample function behavior for operator fractional Brownian motion, including multivariate
fractional Brownian motion. We obtain the estimations of small ball probability and the strongly
locally nondeterministic for operator fractional Brownian motion in any given direction. Applying
these estimates we obtain Chung’s laws of the iterated logarithm for spatial surfaces of operator
fractional Brownian motion. Our results show that the precise rates of change of spatial surfaces are
completely determined by the self-similarity exponent.

Keywords: operator fractional Brownian motion; small ball probability; operator self-similarity;
Chung’s law of the iterated logarithm

1. Introduction

Let X = {X(t) = (Xi(t),....Xp(t)),t € R} be an operator fractional Brownian motion with
exponent D, that is, X is a mean zero Gaussian process in R”, has stationary increments and is
operator self-similar with exponent D, X(0) = 0 a.s. We will use the following definition for operator
self-similarity, which corresponds to that of operator self-similar random fields of Sato [31]. An
RP-valued random field X = {X(t),t € R} is said to be operator self-similar if there exists an
D € L(R?), where L(RP) is the set of linear operators on R?, such that for all ¢ > 0,

X(c) S cPX(), 1)

where X £ Y means the processes X and Y have the same finite dimensional distributions and
P =y, &(nc)kDF,

An operator fractional Brownian motion has been introduced in the seminal papers of Laha and
Rohatgi [14], Hudson and Mason [11], Maejima and Mason [19] and Didier and Pipiras [8] as extensions
to the class of fractional Brownian motion. If d = 1, X is the standard fractional Brownian motion. If
the operator self-similar exponent D = diag(Hj, ..., Hp) is a diagonal operator, where H; € (0,1) for
all1 <i < p, then X is referred to multivariate fractional Brownian motion. See Stoev and Taqqu [33],
Lavancier et al. [15,16] and Coeurjolly et al. [3] for more information about multivariate fractional
Brownian motion.

The cross-covariance structure of multivariate fractional Brownian motion induced by the operator
self-similarity and the stationarity of the increments has been first studied in [16], Theorem 2.1, without
having recourse to the Gaussian assumption. Amblard et al. [1] have parameterized this covariance
structure in a more simple way as follows.

Firstly, the i-th component of the multivariate fractional Brownian motion is a fractional Brownian
motion with exponent H; € (0,1), 1 < i < p. The cross covariances are given in the following
proposition.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


https://orcid.org/0000-0000-000-000X
https://doi.org/10.20944/preprints202305.1175.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202305.1175.v1

20f14

Proposition 1. ([16]). The cross covariances of the multivariate fractional Brownian motion satisfy the following
representation, for all (i,j) € {1,..,p}% i # ],

(1) If H; + H; # 1, there exist 0; > 0, 0; > 0, (0;j,1;,;) € [=1,1] x Rwith p;; = p;; = corr(X;(1),
X;(1)) and n; ; = —n;; such that

UU . . . . . .
E[Xi(s)X;(t)] = %{(Pi,j + 17 sign(s))|s| T + (o ; — 1 sign(t)) [+ ®
— (pij — nisign(t —s))|t — s|THHi Y
2) IfP{l + H; = 1, there exist 0; > 0, 0; > 0, (;j, 7i;) € [~1,1] x Rwith p;; = p;; = corr(X;(1),
X;(1)) and j; j = —1j; ; such that
Gioj }

E[Xi ()X (0] = 5 4ij(1s| + 1] — ls ) + iy (tIn |t ~slnfs| = (t —s) ]t —s)}. @)
Remark 1. Note that coefficients p; j, 0; ;, 71; j, 7j;,; depend on the parameters (H;, H;). Assuming the
continuity of the cross covariances function with respect to the parameters (H;, H;), the expression (3)
can be deduced from (2) by taking the limit as H; 4 H; tends to 1, noting that ((s + 1) —sH —1)/(1 -
H) = sln|s| — (s+1)In|s + 1| as H — 1. We obtain the following relations between the coefficients:
as Hi + H] — 1

pij~ pi; and (1—H; —Hj)ni; ~ .

This convergence result can suggest a reparameterization of coefficients #; ; in (1 — H; — H;)7; ;.

The multivariate models evoke several applications where matrix-based scaling laws are expected
to appear, such as in long range dependent time series (see, e.g., [2,5,6,9,12,22]) and queueing systems
(see, e.g., [7,13,20,21]). Like fractional Brownian motion in the univariate setting, operator fractional
Brownian motion is a natural starting point in the construction of estimators for operator self-similar
processes due to its tight connection to stationary fractional processes and its being Gaussian (on
the general theory of operator self-similar processes, see [4,11,14,19]). The fractal nature for operator
fractional Brownian motion such as the Hausdorff dimension of the image and graph, and spatial
surface properties such as hitting probabilities, transience, and the characterization of polar sets were
studied by Mason and Xiao [24].

The purpose of this paper is to investigate the rates of change of spatial surfaces for operator
fractional Brownian motion in any given direction. We obtain the estimations of small ball probability
and the prediction error for operator fractional Brownian motion in any given direction. Applying
these estimates we investigate its small values and prove its Chung’s law of the iterated logarithm. A
Chung’s law of the iterated logarithm for multivariate fractional Brownian motion is derived from it
as a consequence. Our results show that the rates of change of spatial surfaces for operator fractional
Brownian motion in any given direction are completely determined by the self-similarity exponent.

Our method of proof relies heavily on the multivariate regular variation theory developed by
Meerschaert [25,26], Meerschaert and Scheffler [28,29], Seneta [32] and Wang [36], which is the key
ingredient of the proof of our main results (see Sections 2 and 3).

We use the notations f; ~ g if lim f; /g = 1, fi < g; if there exits a constant K > 0 such that
K=! < liminf f;/g; < limsup f;/g: < K. All constants K appearing in this paper (with or without
subscript) are positive and may not necessarily be the same in each occurrence. More specific constants
in Section i will be denoted by K, , K,,, ... For x € R, letlog x = In(x V e), loglog x = InIn(x V ¢?).
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2. Methodology

2.1. Spectral index function and exponential operators

From the Jordan decomposition’s theorem (see [10] p. 129 for instance), as done in [29] for the
study of operator-self-similar Gaussian random fields, there exists a real invertible p x p matrix P such
that E = P~1DP is of the real canonical form, which means that E is composed of diagonal blocks
which are either Jordan cell matrix of the form

v 0 0
1 o

0
0 1 v

A0 ... .00
L A .o
o -. .. .. | withA= <Z _ab> and I, = <(1) 2), (4)
Lo
0 ... 0 L A

where the complex numbers a + ib (b # 0) are complex conjugated eigenvalues of D.

Let us recall that the eigenvalues of D are denoted by vj, j=1,..,dand that0 < aj = §R(vj) <1
forj =1,...,d. There exist [y, ..., J;, where each | jis either a Jordan cell matrix or a block of the form (4),
and P areal p x p invertible matrix such that

L 0 ... 0
p=p|® 2 0 ]pa
Do 0
0 ... 0 Jy

We can assume that each J; is associated with the eigenvalue v; of D and that
0<a0§a2§--~§ad<l.

Ifv; € R, J; is a Jordan cell matrix of size T] =1; € N\ {0}. If A; € C\R, J; is a block of the form (4) of
size l~] = 2l; € 2N\ {0}. Then for any ¢t > 0,

o0 0

0 —p| 0 t 0 p!
: .0
0 ... 0 th

We denote by (e, ..., ep) the canonical basis of R? and set f] = Pe]- for every j = 1,..,p. Hence,
(fi,--s fp) is abasis of RP. Forall j = 1,...,d, let

=1 jo
Vj:span<fk,' li+1§k§21i).
i=1 i=1
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Then, each V; is a D-invariant set and R? = V1 @ - -- @V} is a direct sum decomposition of R? into
D-invariant subspaces. We may write D = D1 & - - - & D), where D; : V; — V; and every eigenvalue of
D; has real part equal to a;. The matrix for D in an appropriate basis is then block-diagonal with p
blocks, the ith block corresponding to the matrix for D;.
Let A; = a; 'sothat Ay > -+ > A4 Let A(6) : RP\ {0} — {A1,--+, A4} be the spectral index
function, that is,
)\(9) =A;=1/a; forallf € L; \ Li 4, (5)

where L; = V1 ®--- ® V; and V3, ..., V; is the spectral decomposition RP = V; @ - - - & V; with respect
to D. Choose an inner product (-, ) on R? such that V; L V; fori # j, and let ||x|| = \/(x, x) be the
associated Euclidean norm. The operator norm of the linear operator A on L(R?) is defined by

[All = sup{[[Ax]| : [|x][ = 1}.

We first state several useful facts about the operator norm and exponential operators whose proofs are
easy (see, e.g., [29] or [36] for their proofs) and will be used to our proofs.

i) x|I/[|A7Y) < |Ax|| < ||A]l - ||x|| forall A € L(R?) and all x € R?;
ii)  ||AB| < ||A]|-||B| forall A,B € L(R?);

iii) If A€ L(RP)ands,t > 0, then s34 = (st) ;

ivy IfA€L(RP)andt >0, thent 4= (1/t)"=(t4)"!

v) If AB=BAandt > 0, then t1t8 = tAFB,

vi) Ift >1,then K, t" 7€ < [[tP|| < K,,t% € forany 0 < € < ay;

vii) Ifo<t<1, thenK JHate < ||¢P] < K, ,t" =€ forany 0 < e < ay;

Let U = (u;;) be a real invertible d x d matrix U such that Cov(X(1)) = UU*. In fact, it is
symmetric and holds whenever Cov(X(1)) is invertible. For any vector 6 € T' := R? \ {0}, define
¢ :(0,00) = (0,00) by ¢(x) = ¢(x,0) = ||(xPU)*8]|, where A* denotes the transpose of the matrix or
vector A.

Lemma 1. Let 6 € R? be an unit vector. Then, for any € > 0and s > 0,

1 1
(—76 . gy TE -
G"(hs) > Kz,sh/\ 0) lfh >1 and q)(hS) < K2,7hA<9) lfh >1 (6)
¢(s) Ky hte  ifh <1 ¢(s) Ky hi=¢  ifh <1

Proof. The proof of both cases is similar, so we only proof the case 1 > 1. For any 6 € I, there exists
aunique 1 <i < dsuchthat® € L;\L;_1, where L; = V1 & --- & V; and V4, ..., V; is the spectral
decomposition R? = V; @ - - - @ V; with respect to D. Moreover, for any 6 € L; \ L;_1, there exist
0; € V;,0; #0,1 < j <i,suchthatt = 6; +---+6; and (tPU)*e = (tPrUy)*6; + - - - + (Pily)*e;,
where Dy, .., D; is the spectral decomposition of D and Uy, .., Uy is the spectral decomposition of U.
Then, forany h > 1,

g2(h,0)  ||(hPU)*0|2 Z L |(Piu;) 6512

¢?(1,0) — (P67~ 1 [1(hPi;) 91||2

Noting that every eigenvalue of D; has real part equal to a;, by Facts i), ii) and vi), we have that for any
e>0and1 <j <,

I(RP1a;) 651 < (W65 - U < Ky IR < Kb )

2,10

and
1P 65 > (| (P 61 /11U | = Koy 1611711 (1/B) P | = K, b (8)
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Since € > 0is arbitrary and a; < a; forall 1 < j <i—1, we have ¢(h,0) < ¢(h,6;). Thus, by Facts ii)
and vi), for any € > 0,

plis) _ plhs0) _ IO PUYBI _ o e
= - WPOY*|| < K, h%Te,
¢(s) @(s,0;) | (sPild;)*6;]| < () < 213

Similarly to the above inequality, we have

(P(S) < H((l/h)D’)*H < K h—u,~+e.

2,14

The proof is completed. [

Now we summarize some basic facts about Gaussian processes. Let {Z(t);t € S} be a Gaussian
process. We provide S with the following metric

d(s,t) = [[Z(s) = Z(t) |2

where || Z]|2 = (E(Z?))"/2. We denote by Ny(S,€) the smallest number of open d-balls of radius e
needed to cover S and write R = sup{d(s, t);s,t € S}.

The following lemma is well known. It is a consequence of the Gaussian isoperimetric inequality
and Dudley’s entropy bound(see [35]).

Lemma 2. There exists an absolute constant C > 0 such that for any u > 0, we have

IP( sup |Z(s) — Z(t)| > C(u + /OR \/log Nd(S,e)de)) < exp(—Ku?). )

s,tes

Lemma 3. Consider a function  such that Ny(S,e) < ¢(€) for all € > 0. Assume that for some constant
C > 0and all € > 0 we have

$(e)/C < 9(3) < Cp(e).

Then

P(f,?e% 1Z(s) = Z(1)] < ) > exp(—Kep(u). (10)

This is proved in [34]; see also [30] and [18]. It gives an estimate for the lower bound of the small
ball probability of Gaussian processes.

2.2. Strong local nondeterminism

Now we start to construct a moving average representation of operator fractional Brownian
motion.

Lemma 4. Let D € L(RP?) be a linear operator with 0 < ay,a; < 1. For t > 0, define

X() :/0 (t—x)D*%f—(—x)D*%IB(dx)+/Ot(t—x)D*%IB(dx), (11)

—o0

where I € L(RP) is the identity operator and {B(s), —co < s < oo} is p-dimensional standard Brownian
motion and i.i.d. components. Then the random field X = {X(t),t € R} is an operator fractional Brownian
motion with exponent D. Furthermore, X is isotropic in the sense that for every t € R,

x(t) £ [#Px(1), (12)

and X has a version with continuous sample paths almost surely.
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Proof. The proof is similar to that for the stochastic integral representation of operator fractional
Brownian motion given in Theorem 3.1 in [24], we omit the details. The proof is completed. O

The following result establishes the strongly locally nondeterministic for operator fractional
Brownian motion in any given direction 6 € I'.

Lemma 5. Let X = {X(t),t € R} be an operator fractional Brownian motion in RP with exponent D. If
0 < ay,ap < 1and detCov(X(1)) > 0, then for any vector € T, all0 < h < hgand all0 <t < hg—h
with some hg > 0,

Var((X(t+h),0) | (X(s),0) : 0 <5 < t) > K, ¢*(h). (13)

Proof. From the representation (11) it easily follow that if { X(t)} is an operator fractional Brownian
motion with exponent D, then

Var((X(t +h),0) | (X(s),8) : 0 < s < t)

> Var(/tt+h<(t +h— x)D—%IB(dx),9)>

=var( [ 40P 4 B(av)) (14)

— [(t+h — x)D"~210)2dx
t

It follows from Facts v), vi) and vii) that @(h) < |U]||||(hKP)*6]| and ||(h — x)D**%I()H > ||(h—
x)P*0||/|(h — x)2!||. Thus, by Lemma 1,

/oh(p2<h>||<h—x>0*%’e||2dx

> /h (7 = x)P" 6]

—Jo U] (h - x) 212 (hP)*6] 2
>/h (1_x/h)2u1+2€
=Jo JUP(h—x)
:/Oh (h_x)ZalflJrZedx

|| u||2h2a1+2£

dx (15)

Z K3,2
Combining (14) and (15), we get (13). The proof is completed. [

2.3. Small ball probability

We establish the following estimation of small ball probability of spatial surfaces for operator
fractional Brownian motion in any given direction § € I".

Proposition 2. Let X = {X(t),t € R} be an operator fractional Brownian motion in R? with exponent D. If
0 < ay,a4 < 1and detCov(X(1)) > 0, then for every compact set T C R, any ty € T and any vector § € T
and all x € (0,1),

K. .k K, ,h
exp (— ‘PE;Z)) <P(M(tg, h) < x) < exp (— ‘5[’(3;2))’ (16)

where M(to, h) = M(to, h,0) = supscp <, |(X(to +5) — X(to), )| denotes the local modulus of continuity
of X(t) on to in direction 6, ¥ (x) = inf{y : ¢(y) > x} is the right-continuous inverse function of ¢.
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Proof. Since Cov(X(1)) is invertible, there exists a real invertible p x p matrix U such that
Cov(X(1)) = UU*. By the operator self-similarity, for every h € R\ {0},

Cov(X(h)) = Cov(|h|PX(1)) = [r[PU(|h[°U)". (17)

We denote the matrix [i|PU by U, Then, for h € R\ {0}, U, 1X (1) is normal random variables in R?
with mean 0 and covariance matrix I;. Thus, for all x € R,

U, 'x(h),0) < x) (18)

where 8, = (Uj)*68 and 8), = ||(U})*8]| ' (U})*8 is an unit vector in R?. Noting that (Uh_lX(h),gw isa
standard normal random variable, (18) implies that ¢~ (h) (X (t + ) — X(t),6) is a standard normal
random variable. Thus,

E[[(X(t+h) = X(t),0) 2] = ¢*(h). (19)

Equip S = [0, h] with the canonical metric
d(s,t) = |[(X(s) — X(t),0)]2, s, teS, (20)

and denote by N, (S, €) the smallest number of d-balls of radius € > 0 needed to cover S. Then it is
easy to see that forall e € (0,1),

K,.h
Ni(S,€) < o5 21
d( /e)—\Y(ez) (21)
Moreover, it follows from Lemma 1 that ¥ has the doubling property, i.e., K, ¥(e) < ¥(e/2) <
K,,¥(e). Hence the lower bound in (16) follows from Lemma 3.
The proof of the upper bound in (16) is based on an argument in [30]. For any integer n > 2, we
choose n points t,, ; € [0,1], where t,,; = ih/n,i € {1,...,n}. Then,

P(M(to, h) < x) < IP’( max [(X(t,;),0)] < x). (22)

1<i<n

By Anderson’s inequality for Gaussian measures and Lemma 5, we derive the following upper
bound for the conditional probabilities

K, x
)< ),1<i<i—1)< 38
P(X(t) < x|X(t,), 1< j<i—1) < Q)(qo(n*lh))' (23)
where ®(x) is the distribution function of a standard normal random variable. It follows from (22) and
(23) that
K,qx n
<x) < 2.
P(M(to, h) < x) < [@(q)(n_lh) )] (24)

By taking 7 to be the smallest integer h[¥ (x?)] !, we obtain the upper bound in (16). [
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3. Results

3.1. Zero-one laws for operator fractional Brownian motion

We establish the following zero-one laws for operator fractional Brownian motion to have Chung’s
law of the iterated logarithm, which may be of independent interest.

Lemma 6. Let X = {X(t),t € R} be an operator fractional Brownian motion in RP with exponent D. If
0 < ay,a5 < 1and detCov(X(1)) > 0, then for every compact set T C R, any to € T and any vector 6 € T,
there exist a constant 0 < C < oo such that

liminf f,M(to,h) = C as. 2
iminf fM(to, 1) as., (25)

where
1

I = i Toglog(1 /) (26)

Proof. Let m be a scattered Gaussian random measure on R with Lebesgue measure [ as its control
measure; that is, {m(A), A € £} is a centered Gaussian process on &€ = {E C R : I(E) < oo} with
covariance function

E[m(E)m(F)] = I(ENF).

Let my, ..., my be d independent copies of m, and define
m(A) = (my(A),...,my(A)).

Then, we consider a version of operator fractional Brownian motion

1 )D+I/2

1 )D+1/2
|x]

dm(x) + /]R sin(tx) (—

B dm/(x), (27)

X(5) = [ (1= cos(t2))
where m’ is an independent copy of m. This stochastic integral representation of operator fractional
Brownian motion is given in [24].

Let 0 :=0(0,1) C Rand forn > 2, ), := O(0,n) \ O(0,n — 1) C R such that Qq, )y, ..., are
mutually disjoint, where the following notation is used: O(x,7) = {y € R: |[x —y| < r}. Forn > 1
and t € R, let

!/

Zu(t) = [ (1= cos(tn))( ! )DH/Z dm’ (%), 28)

1 )D+I/2
. |x]

[x]

dm(x) + /On sm(tx)(
Then Z, = {Z,(t),t € R}, n =1,2,..., are independent Gaussian fields. By (28), we express
X(t) =Y Zu(t), teR.
n=1

Equip S = [0, 1] with the canonical metric
dz, (s,t) =dz,(s,t,0) = |[{Zn(s) — Zu(1),0)]2, s,teT,

and denote by N(dz,, S, €) the smallest number of dz, -balls of radius € > 0 needed to cover S.
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It follows from (28) that

)D*+I/2

(Za(5) — Zn(1),0) = /Q n(cos(tx)—cos(sx))<<| | 9,dm(x)>
—I—/ sin(sx) — sin(x)) <( )D*+I/2 m’(x)>.

Thus,

dy (s,t) = (2/Qn(1—cos((t—s)x))H<|136|)D*+I/29H2dx)1/2

It—sl(/ x| H(|x|)D*+1/zeH2dx)1/2 (29)

=: |t —s|Ky, s, t € R.

IA

To obtain the last inequality, in the integral we bound 1 — cos(tx) by |t|?>|x|?/2. Then, by (29) and
Theorem 4.1 in [27], we have

<K

— 4,1

limsup  sup
h—0+  tt+seT:|s|<h

where 7(0,h) = |h|\/log(1/h). Put

(Zn(t +5) — )Zn(t>/6>| as., (30)

7(0,h

M
=Y Zut), teT
n=1

It follows from Facts i)-vii) and 0 < a1 < 1 that

hy/log(1/h)fy < K, i ~"+¢ =0
as h tends to zero. This, together with (30), yields that

lim sup f[(Xm(to+s) — Xum(t),0)| =0 as.
h=0+ e |s|<h

Therefore, the random variable
lim il‘lfth(to, h)
h—0-+

is measurable with respect to the tail field of {Z,,}° ; and hence is constant almost surely. This implies
that (25) holds. The proof is completed. O

3.2. Chung’s law of the iterated logarithm for spatial surfaces
We shall establish the following Chung’s law of the iterated logarithm for operator fractional

Brownian motion.

Theorem 1. Let X = {X(t),t € R} be an operator fractional Brownian motion in RP with exponent D. If
0 <ay,ay < 1and detCov(X(1)) > O, then for every compact set T C R, any ty € T and any vector 6 € T,

lim inf =K .S. 1
}11361’_: frnM(to, h) 43 As (31)

Denote the standard basis of R? by (ey, ..., ep). By choosing § = e; and using Theorem 1 we obtain
the following result about Chung’s law of the iterated logarithm for the components X;(i = 1, ..., p) of
X.
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Corollary 1. Let X = {X(t),t € R} be an operator fractional Brownian motion in RP with exponent D. If
0 < ay,ay < 1and detCov(X(1)) > O, then for every compact set T C R, ty € T and everyi=1,...,p,

lim il"lffi hMi(tO/ h) = K44 a.s., (32)
h—=0+ 77 ’
where M;(tg,h) = M;(to,h,0) = SUPers|<h |Xi(to +s) — Xi(to)| denotes the uniform modulus of
continuity of the i-th component of X(t) on ty, and

1
St = (@ Toglog(1/m)PU)el

Remark 2. By making use of (4.6) and (4.8) in [24], (32) implies that there exists a constant p; > 1 such that
for every compact set T C R, tg € Tand everyi =1,...,p,

a
lim inf —(log log(1/h))

h—0+ hai(log]/h)l’i—l Mi(tOr h) < K4,5 a.s., (33)

where a; is defined in Section 2.

By choosing D = diag{Hj, ..., Hp} in Corollary 1, where H; € (0,1) forall1 < i < p, as an
immediate consequence of Corollary 1, we have the following Chung’s law of the iterated logarithm
for the multivariate fractional Brownian motion, which may be of independent interest.

Proposition 3. Let X = {X(t),t € R} be a multivariate fractional Brownian motion in RP with exponent
D = diag{Hjy, ..., Hp}, and U = (u;;) be a real invertible p x p matrix U such that Cov(X(1)) = UU*.
Then, for every compact set T C R, any ty € T and any vector 8 € T,

H
lim inf (loglog(1/h)) ™
h—0+ T Hk

M(to, h) = K4,39k u%l + -4 Mip a.s., (34)

where k = arg min{Hy, ..., Hy } and K, , is given as in (31), and for for every compact set T C R, ty € T and
everyi=1,...,d,

. . (loglog(1/h))Hi
lﬂéﬂf( & %EL ) M;(to, h) = K,, u%1+~~~+u2 a.s., (35)

where K, , is given as in (32).

Remark 3. (34) implies that the minimum growth rate of multivariate fractional Brownian motion in
any given direction  is determined by the minimum of {Hj, ..., Hp}. In addition, arg min(Hy, ...Hp)
determines the constant on the right hand side of (34). Although as stated in Section 1, the i-th
component of the multivariate fractional Brownian motion is a fractional Brownian motion with
exponent H; € (O, 1), 1 <i < p, (35) implies that the minimum growth rate of the i-th coordinate
direction of multivariate fractional Brownian motion depends on corresponding covariance matrix
and hence the interrelationship between all directions.

Proof of Theorem 1. Throughout, it is sufficient to consider h-values which make the iterated
logarithm positive and ¢y = 0. Put M(h) = M(0, h). We first show that

lim inf h) > K S.
21362 fuM(h) > 46 QS (36)

Lete > 0and v > 1,and for k = 1,2,... put iy = v ¥ and B = ¢(K,, (1 + €)'/ loglog(1/hy)).
Then, by (16),
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ZIP’ () < Br) <K210g’)/ )~(146) < oo

where the sums are over all k large enough to make klogy > 1 and B < 1. Hence, by the Borel-Cantelli
lemma, M(hy) > By for all k greater than some ko = ko(w). Further, for k > ko and hy < h < hy_1,

M(h) > M(hy) > B = £, (fuPr)-

Hence, by Lemma 1, (36) holds.
Next, we prove that

liminf f,M(h) < K

imin 4y as. (37)

Lete € (0,1) and g > 1 be arbitrary real number. This time we choose
he=e, Jy=ké", 7= @(Ky;(1—e) "I/ loglog(1/hy)).

Define the process Yy () := Y(t, J_1, Jx) by

1 \D+I/2
Yt i1 Ji) = /\xle(]k, (1 cos(i) (W) dm(x)
., e D12 | (38)
/|X\€(]k71 Ji) sin{#x (| |) i

and denote Yi(t) := X(t) — Y;(t). Clearly, by (27), X(t) = Yi(t) + Yi(t), and for every k = 1,2, ...,
Y (-) has stationary increments and Y (-), k = 1,2, ... are independent due to the virtue of independent
increments of m.

For simplify notation, put M (1) = M(Y;0,h,6) and M(h) = M(Y;0,h,8), where M is defined in
Lemma 6. For any € € (0,1), put

Gy = {M(hy) <7}, Gr = {M(hy) < (1—e€)y}and Gy = {M(It) > e}

It follows from (38) that

T, 0) = [ (1— cos(tx))<<|l)D+I/2dm(x),9>

x| (Jk—1.Jk)

- /|x‘¢(fk—1/]k) Siﬂ(tX)<(|1x|) dm/(x),9>
D*+1/2
N /\x|¢(1k_1,fk>(1 - COs(tx))<<|1) 6, dm(x)>

x|
*+1/
- /|x‘$(fk—1:]k) Sin(tx)<(|1x|)D N 26’ dm'(x)>.

By Lemmas 1 and Facts i)-vii) we have

SE

= U (s (1 - )/ toglog(/m)”y ol () () o]

]
<klul()" ||<hk/logloga/hk))D)*mrl-H(m) T (39)
1
X

Klul () /z(l"gl,‘jg&/h")) i x] > i

1 loglog(1/hi)\ xier € .
o oV R <
KHUH('x') ( 7 |x| > if |X| < Jk-1-
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Thus,
B[l (Ye(h), 0) ]
D*+1/2 2
= (1 — cos(hgx) ( H( ) 9H> dx
vl x|
- 2 dx
< KI|U |2, " (loglog(1/h)) % / (1= cos(len) —— .
lx|<Jk1 x| 1€ (40)
_ _ dx
KU (loglog 1/ [ (1 cos(x)) [pairze
[x|=Jx

Ky ((tJe—1)® 70 2 (1og k) T2 4 (1 fy) ~20+2¢ (log k)2 22,

To get the second inequality from bottom, in the first integral we bound 1 — cos(x) by |¢|?|x|?, and the
second one by 2 to get the required bound. Thus, since A(6) > a;l >1,

hiJi—1 < (k- 1)6_’7(](_1)%1, hiJi =k,

we have
Eflyi " (Ye(ne), 0)[7] < Kok 7201+ (41)
for all large k.
By (44) and Corollary 3.2 in [17], p.59, we get we get
Y P(Gy) < KY exp(—K, ,e*k*1 7€) < co. (42)
This implies that
limsup v 'M(hy) < e as. (43)
k—o0
It follows from (16) that
ZIP hk<7k>KZk 9(1-€) — o (44)
by choosing g > 1 small enough such that q(1 — €) < 1, where the sums are over all k large enough to
make v, < 1.
It follows easily that

P(Gx) > P(Gy) — P(Gy),
which, together with (42) and (44), yields

ZP(Gk) = 00,

k

Since Yi(-),k = 1,2, ... are independent, by the Borel-Cantelli lemma,

limsupy, "My <1—¢€ as. (45)

k—o0

From Lemma 1, we have f;;c 17]: < K, ;- It follows from (43) and (45) that
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lim inffhkM(hk)
k—o00

< K, liminf ve 'M(Iy)

<K,, (li}{gi‘r}f'y;lﬁ(hk) + lirknsup 7];11\7I(hk)>
—00

<K a.s.

4,11

This yields that (37) holds.
We have thus established that

7 a.s.

K, <liminff,M(h) <K
4,6—}}1)1(:1)5}]:}! (h) <K,

Lemma 6 guarantees that the liminf is constant. The proof is completed. O

4. Conclusions

Applying techniques developed in [30], in this article we obtain the estimations of small ball
probability for spatial surfaces of operator fractional Brownian motion, including multivariate
fractional Brownian motion. We obtain the strongly locally nondeterministic for spatial surfaces
of operator fractional Brownian motion in any given direction 6. Applying these estimates we obtain
Chung’s laws of the iterated logarithm for spatial surfaces of operator fractional Brownian motion in
any given direction 6. By combining our results and the Jordan decomposition theorem applied to
the exponent D, it is possible to analyze the rates of change of spatial surfaces by the real parts of the
eigenvalues of the exponent D.
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