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Abstract: The multivariate Gaussian random fields with matrix-based scaling laws are widely used

for inference in statistics and many applied areas. In such contexts interests are often in symmetry

and in the rates of change of spatial surfaces in any given direction. This article analyzes the almost

sure sample function behavior for operator fractional Brownian motion, including multivariate

fractional Brownian motion. We obtain the estimations of small ball probability and the strongly

locally nondeterministic for operator fractional Brownian motion in any given direction. Applying

these estimates we obtain Chung’s laws of the iterated logarithm for spatial surfaces of operator

fractional Brownian motion. Our results show that the precise rates of change of spatial surfaces are

completely determined by the self-similarity exponent.

Keywords: operator fractional Brownian motion; small ball probability; operator self-similarity;

Chung’s law of the iterated logarithm

1. Introduction

Let X = {X(t) = (X1(t), ..., Xp(t)), t ∈ R} be an operator fractional Brownian motion with

exponent D, that is, X is a mean zero Gaussian process in Rp, has stationary increments and is

operator self-similar with exponent D, X(0) = 0 a.s. We will use the following definition for operator

self-similarity, which corresponds to that of operator self-similar random fields of Sato [31]. An

Rp-valued random field X = {X(t), t ∈ R} is said to be operator self-similar if there exists an

D ∈ L(Rp), where L(Rp) is the set of linear operators on Rp, such that for all c > 0,

X(c ·)
d
= cDX(·), (1)

where X
d
= Y means the processes X and Y have the same finite dimensional distributions and

cD = ∑
∞
k=0

1
k! (ln c)kDk.

An operator fractional Brownian motion has been introduced in the seminal papers of Laha and

Rohatgi [14], Hudson and Mason [11], Maejima and Mason [19] and Didier and Pipiras [8] as extensions

to the class of fractional Brownian motion. If d = 1, X is the standard fractional Brownian motion. If

the operator self-similar exponent D = diag(H1, ..., Hp) is a diagonal operator, where Hi ∈ (0, 1) for

all 1 ≤ i ≤ p, then X is referred to multivariate fractional Brownian motion. See Stoev and Taqqu [33],

Lavancier et al. [15,16] and Coeurjolly et al. [3] for more information about multivariate fractional

Brownian motion.

The cross-covariance structure of multivariate fractional Brownian motion induced by the operator

self-similarity and the stationarity of the increments has been first studied in [16], Theorem 2.1, without

having recourse to the Gaussian assumption. Amblard et al. [1] have parameterized this covariance

structure in a more simple way as follows.

Firstly, the i-th component of the multivariate fractional Brownian motion is a fractional Brownian

motion with exponent Hi ∈ (0, 1), 1 ≤ i ≤ p. The cross covariances are given in the following

proposition.
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Proposition 1. ([16]). The cross covariances of the multivariate fractional Brownian motion satisfy the following

representation, for all (i, j) ∈ {1, ..., p}2, i ̸= j,

(1) If Hi + Hj ̸= 1, there exist σi > 0, σj > 0, (ρi,j, ηi,j) ∈ [−1, 1]×R with ρi,j = ρj,i = corr(Xi(1),

Xj(1)) and ηi,j = −ηj,i such that

E[Xi(s)Xj(t)] =
σiσj

2
{(ρi,j + ηi,jsign(s))|s|Hi+Hj + (ρi,j − ηi,jsign(t))|t|Hi+Hj

− (ρi,j − ηi,jsign(t − s))|t − s|Hi+Hj}.
(2)

(2) If Hi + Hj = 1, there exist σi > 0, σj > 0, (ρ̃i,j, η̃i,j) ∈ [−1, 1]×R with ρ̃i,j = ρ̃j,i = corr(Xi(1),

Xj(1)) and η̃i,j = −η̃j,i such that

E[Xi(s)Xj(t)] =
σiσj

2
{ρ̃i,j(|s|+ |t| − |s − t|) + η̃i,j(t ln |t| − s ln |s| − (t − s) ln |t − s|)}. (3)

Remark 1. Note that coefficients ρi,j, ρ̃i,j, ηi,j, η̃i,j depend on the parameters (Hi, Hj). Assuming the

continuity of the cross covariances function with respect to the parameters (Hi, Hj), the expression (3)

can be deduced from (2) by taking the limit as Hi + Hj tends to 1, noting that ((s + 1)H − sH − 1)/(1 −

H) → s ln |s| − (s + 1) ln |s + 1| as H → 1. We obtain the following relations between the coefficients:

as Hi + Hj → 1

ρi,j ∼ ρ̃i,j and (1 − Hi − Hj)ηi,j ∼ η̃i,j.

This convergence result can suggest a reparameterization of coefficients ηi,j in (1 − Hi − Hj)ηi,j.

The multivariate models evoke several applications where matrix-based scaling laws are expected

to appear, such as in long range dependent time series (see, e.g., [2,5,6,9,12,22]) and queueing systems

(see, e.g., [7,13,20,21]). Like fractional Brownian motion in the univariate setting, operator fractional

Brownian motion is a natural starting point in the construction of estimators for operator self-similar

processes due to its tight connection to stationary fractional processes and its being Gaussian (on

the general theory of operator self-similar processes, see [4,11,14,19]). The fractal nature for operator

fractional Brownian motion such as the Hausdorff dimension of the image and graph, and spatial

surface properties such as hitting probabilities, transience, and the characterization of polar sets were

studied by Mason and Xiao [24].

The purpose of this paper is to investigate the rates of change of spatial surfaces for operator

fractional Brownian motion in any given direction. We obtain the estimations of small ball probability

and the prediction error for operator fractional Brownian motion in any given direction. Applying

these estimates we investigate its small values and prove its Chung’s law of the iterated logarithm. A

Chung’s law of the iterated logarithm for multivariate fractional Brownian motion is derived from it

as a consequence. Our results show that the rates of change of spatial surfaces for operator fractional

Brownian motion in any given direction are completely determined by the self-similarity exponent.

Our method of proof relies heavily on the multivariate regular variation theory developed by

Meerschaert [25,26], Meerschaert and Scheffler [28,29], Seneta [32] and Wang [36], which is the key

ingredient of the proof of our main results (see Sections 2 and 3).

We use the notations ft ∼ gt if lim ft/gt = 1, ft ≍ gt if there exits a constant K > 0 such that

K−1 ≤ lim inf ft/gt ≤ lim sup ft/gt ≤ K. All constants K appearing in this paper (with or without

subscript) are positive and may not necessarily be the same in each occurrence. More specific constants

in Section i will be denoted by K
i,1

, K
i,2

, ... For x ∈ R, let log x = ln(x ∨ e), log log x = ln ln(x ∨ e2).
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2. Methodology

2.1. Spectral index function and exponential operators

From the Jordan decomposition’s theorem (see [10] p. 129 for instance), as done in [29] for the

study of operator-self-similar Gaussian random fields, there exists a real invertible p × p matrix P such

that E = P−1DP is of the real canonical form, which means that E is composed of diagonal blocks

which are either Jordan cell matrix of the form




v 0 . . . 0

1 v
. . .

...
...

. . .
. . . 0

0 . . . 1 v




with v a real eigenvalue of D or blocks of the form




Λ 0 . . . . . . 0

I2 Λ
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 . . . 0 I2 Λ




with Λ =

(
a −b

b a

)
and I2 =

(
1 0

0 1

)
, (4)

where the complex numbers a ± ib (b ̸= 0) are complex conjugated eigenvalues of D.

Let us recall that the eigenvalues of D are denoted by vj, j = 1, ..., d and that 0 < aj = ℜ(vj) < 1

for j = 1, ..., d. There exist J1, ..., Jd, where each Jj is either a Jordan cell matrix or a block of the form (4),

and P a real p × p invertible matrix such that

D = P




J1 0 . . . 0

0 J2 0
...

...
. . .

. . . 0

0 . . . 0 Jd




P−1.

We can assume that each Jj is associated with the eigenvalue vj of D and that

0 < a0 ≤ a2 ≤ · · · ≤ ad < 1.

If vj ∈ R, Jj is a Jordan cell matrix of size l̃j = lj ∈ N \ {0}. If λj ∈ C \R, Jj is a block of the form (4) of

size l̃j = 2lj ∈ 2N \ {0}. Then for any t > 0,

tD = P




tJ1 0 . . . 0

0 tJ2 0
...

...
. . .

. . . 0

0 . . . 0 tJd




P−1.

We denote by (e1, ..., ep) the canonical basis of Rp and set f j = Pej for every j = 1, ..., p. Hence,

( f1, ..., fp) is a basis of Rp. For all j = 1, ..., d, let

Vj = span
(

fk;
j−1

∑
i=1

l̃i + 1 ≤ k ≤
j

∑
i=1

l̃i

)
.
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Then, each Vj is a D-invariant set and Rp = V1 ⊕ · · · ⊕ Vd is a direct sum decomposition of Rp into

D-invariant subspaces. We may write D = D1 ⊕ · · · ⊕ Dp, where Di : Vi → Vi and every eigenvalue of

Di has real part equal to ai. The matrix for D in an appropriate basis is then block-diagonal with p

blocks, the ith block corresponding to the matrix for Di.

Let λi = a−1
i so that λ1 > · · · > λd. Let λ(θ) : Rp \ {0} → {λ1, · · · , λd} be the spectral index

function, that is,

λ(θ) = λi = 1/ai for all θ ∈ Li \ Li−1, (5)

where Li = V1 ⊕ · · · ⊕ Vi and V1, ..., Vd is the spectral decomposition Rp = V1 ⊕ · · · ⊕ Vd with respect

to D. Choose an inner product ⟨·, ·⟩ on Rp such that Vi ⊥ Vj for i ̸= j, and let ∥x∥ =
√
⟨x, x⟩ be the

associated Euclidean norm. The operator norm of the linear operator A on L(Rp) is defined by

∥A∥ = sup{∥Ax∥ : ∥x∥ = 1}.

We first state several useful facts about the operator norm and exponential operators whose proofs are

easy (see, e.g., [29] or [36] for their proofs) and will be used to our proofs.

i) ∥x∥/∥A−1∥ ≤ ∥Ax∥ ≤ ∥A∥ · ∥x∥ for all A ∈ L(Rp) and all x ∈ Rp;
ii) ∥AB∥ ≤ ∥A∥ · ∥B∥ for all A, B ∈ L(Rp);

iii) If A ∈ L(Rp) and s, t > 0, then sAtA = (st)A;
iv) If A ∈ L(Rp) and t > 0, then t−A = (1/t)A = (tA)−1;
v) If AB = BA and t > 0, then tAtB = tA+B.

vi) If t ≥ 1, then K
2,1

ta1−ϵ ≤ ∥tD∥ ≤ K2,2 tad+ϵ for any 0 < ϵ < a1;
vii) If 0 < t < 1, then K2,3 tad+ϵ ≤ ∥tD∥ ≤ K

2,4
ta1−ϵ for any 0 < ϵ < a1;

Let U = (uij) be a real invertible d × d matrix U such that Cov(X(1)) = UU∗. In fact, it is

symmetric and holds whenever Cov(X(1)) is invertible. For any vector θ ∈ Γ := Rp \ {0}, define

φ : (0, ∞) → (0, ∞) by φ(x) = φ(x, θ) = ∥(xDU)∗θ∥, where A∗ denotes the transpose of the matrix or

vector A.

Lemma 1. Let θ ∈ Rp be an unit vector. Then, for any ϵ > 0 and s > 0,

φ(hs)

φ(s)
≥





K2,5 h
1

λ(θ)
−ϵ

if h ≥ 1

K2,6 ha1+ϵ if h ≤ 1
and

φ(hs)

φ(s)
≤





K2,7 h
1

λ(θ)
+ϵ

if h ≥ 1

K2,8 ha1−ϵ if h ≤ 1
(6)

Proof. The proof of both cases is similar, so we only proof the case h ≥ 1. For any θ ∈ Γ, there exists

a unique 1 ≤ i ≤ d such that θ ∈ Li \ Li−1, where Li = V1 ⊕ · · · ⊕ Vi and V1, ..., Vd is the spectral

decomposition Rp = V1 ⊕ · · · ⊕ Vd with respect to D. Moreover, for any θ ∈ Li \ Li−1, there exist

θj ∈ Vj, θj ̸= 0, 1 ≤ j ≤ i, such that θ = θ1 + · · ·+ θi and (tDU)∗θ = (tD1U1)
∗θ1 + · · ·+ (tDi Ui)

∗θi,

where D1, .., Dd is the spectral decomposition of D and U1, .., Ud is the spectral decomposition of U.

Then, for any h ≥ 1,

φ2(h, θ)

φ2(h, θi)
=

∥(hDU)∗θ∥2

∥(hDi Ui)∗θi∥2
= 1 +

i−1

∑
j=1

∥(hDj Uj)
∗θj∥

2

∥(hDi Ui)∗θi∥2
.

Noting that every eigenvalue of Dj has real part equal to aj, by Facts i), ii) and vi), we have that for any

ϵ > 0 and 1 ≤ j ≤ i,

∥(hDj Uj)
∗θj∥ ≤ ∥(hDj)∗θj∥ · ∥Uj∥ ≤ K2,9∥hDj∥ ≤ K

2,10
haj+ϵ (7)

and

∥(hDj Uj)
∗θj∥ ≥ ∥(hDj)∗θj∥/∥U−1

j ∥ ≥ K
2,11

∥θj∥/∥(1/h)Dj∥ ≥ K
2,12

haj−ϵ. (8)
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Since ϵ > 0 is arbitrary and aj < ai for all 1 ≤ j ≤ i − 1, we have φ(h, θ) ≍ φ(h, θi). Thus, by Facts ii)

and vi), for any ϵ > 0,

φ(hs)

φ(s)
≍

φ(hs, θi)

φ(s, θi)
=

∥(hDi )∗(sDi Ui)
∗θi∥

∥(sDi Ui)∗θi∥
≤ ∥(hDi )∗∥ ≤ K

2,13
hai+ϵ.

Similarly to the above inequality, we have

φ(s)

φ(hs)
≤ ∥((1/h)Di )∗∥ ≤ K

2,14
h−ai+ϵ.

The proof is completed.

Now we summarize some basic facts about Gaussian processes. Let {Z(t); t ∈ S} be a Gaussian

process. We provide S with the following metric

d(s, t) = ∥Z(s)− Z(t)∥2

where ∥Z∥2 = (E(Z2))1/2. We denote by Nd(S, ϵ) the smallest number of open d-balls of radius ϵ

needed to cover S and write R = sup{d(s, t); s, t ∈ S}.

The following lemma is well known. It is a consequence of the Gaussian isoperimetric inequality

and Dudley’s entropy bound(see [35]).

Lemma 2. There exists an absolute constant C > 0 such that for any u > 0, we have

P

(
sup
s,t∈S

|Z(s)− Z(t)| ≥ C(u +
∫ R

0

√
log Nd(S, ϵ)dϵ)

)
≤ exp(−Ku2). (9)

Lemma 3. Consider a function ψ such that Nd(S, ϵ) ≤ ψ(ϵ) for all ϵ > 0. Assume that for some constant

C > 0 and all ϵ > 0 we have

ψ(ϵ)/C ≤ ψ(
ϵ

2
) ≤ Cψ(ϵ).

Then

P

(
sup
s,t∈S

|Z(s)− Z(t)| ≤ u
)
≥ exp(−Kψ(u)). (10)

This is proved in [34]; see also [30] and [18]. It gives an estimate for the lower bound of the small

ball probability of Gaussian processes.

2.2. Strong local nondeterminism

Now we start to construct a moving average representation of operator fractional Brownian

motion.

Lemma 4. Let D ∈ L(Rp) be a linear operator with 0 < a1, ad < 1. For t > 0, define

X(t) =
∫ 0

−∞
(t − x)D− 1

2 I − (−x)D− 1
2 IB(dx) +

∫ t

0
(t − x)D− 1

2 IB(dx), (11)

where I ∈ L(Rp) is the identity operator and {B(s),−∞ < s < ∞} is p-dimensional standard Brownian

motion and i.i.d. components. Then the random field X = {X(t), t ∈ R} is an operator fractional Brownian

motion with exponent D. Furthermore, X is isotropic in the sense that for every t ∈ R,

X(t)
d
= |t|DX(1), (12)

and X has a version with continuous sample paths almost surely.
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Proof. The proof is similar to that for the stochastic integral representation of operator fractional

Brownian motion given in Theorem 3.1 in [24], we omit the details. The proof is completed.

The following result establishes the strongly locally nondeterministic for operator fractional

Brownian motion in any given direction θ ∈ Γ.

Lemma 5. Let X = {X(t), t ∈ R} be an operator fractional Brownian motion in Rp with exponent D. If

0 < a1, ap < 1 and detCov(X(1)) > 0, then for any vector θ ∈ Γ, all 0 < h < h0 and all 0 < t < h0 − h

with some h0 > 0,

Var(⟨X(t + h), θ⟩ | ⟨X(s), θ⟩ : 0 ≤ s ≤ t) ≥ K
3,1

φ2(h). (13)

Proof. From the representation (11) it easily follow that if {X(t)} is an operator fractional Brownian

motion with exponent D, then

Var(⟨X(t + h), θ⟩ | ⟨X(s), θ⟩ : 0 ≤ s ≤ t)

≥ Var
( ∫ t+h

t
⟨(t + h − x)D− 1

2 IB(dx), θ⟩
)

= Var
( ∫ t+h

t
⟨(t + h − x)D∗− 1

2 Iθ, B(dx)⟩
)

=
∫ t+h

t
∥(t + h − x)D∗− 1

2 Iθ∥2dx

=
∫ h

0
∥(h − x)D∗− 1

2 Iθ∥2dx.

(14)

It follows from Facts v), vi) and vii) that φ(h) ≤ ∥U∥∥(hD)∗θ∥ and ∥(h − x)D∗− 1
2 Iθ∥ ≥ ∥(h −

x)D∗
θ∥/∥(h − x)

1
2 I∥. Thus, by Lemma 1,

∫ h

0
φ−2(h)∥(h − x)D∗− 1

2 Iθ∥2dx

≥
∫ h

0

∥(h − x)D∗
θ∥2

∥U∥2∥(h − x)
1
2 I∥2∥(hD)∗θ∥2

dx

≥
∫ h

0

(1 − x/h)2a1+2ϵ

∥U∥2(h − x)
dx

=
∫ h

0

(h − x)2a1−1+2ϵ

∥U∥2h2a1+2ε
dx

≥ K3,2

(15)

Combining (14) and (15), we get (13). The proof is completed.

2.3. Small ball probability

We establish the following estimation of small ball probability of spatial surfaces for operator

fractional Brownian motion in any given direction θ ∈ Γ.

Proposition 2. Let X = {X(t), t ∈ R} be an operator fractional Brownian motion in Rp with exponent D. If

0 < a1, ad < 1 and detCov(X(1)) > 0, then for every compact set T ⊂ R, any t0 ∈ T and any vector θ ∈ Γ

and all x ∈ (0, 1),

exp
(
−

K3,3 h

Ψ(x2)

)
≤ P(M(t0, h) ≤ x) ≤ exp

(
−

K
3,4

h

Ψ(x2)

)
, (16)

where M(t0, h) = M(t0, h, θ) = sups∈T,|s|≤h |⟨X(t0 + s)− X(t0), θ⟩| denotes the local modulus of continuity

of X(t) on t0 in direction θ, Ψ(x) = inf{y : φ(y) > x} is the right-continuous inverse function of φ.
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Proof. Since Cov(X(1)) is invertible, there exists a real invertible p × p matrix U such that

Cov(X(1)) = UU∗. By the operator self-similarity, for every h ∈ R \ {0},

Cov(X(h)) = Cov(|h|DX(1)) = |h|DU(|h|DU)∗. (17)

We denote the matrix |h|DU by Uh. Then, for h ∈ R \ {0}, U−1
h X(h) is normal random variables in Rp

with mean 0 and covariance matrix Id. Thus, for all x ∈ R,

P(φ−1(h)⟨X(t + h)− X(t), θ⟩ ≤ x)

= P(φ−1(h)⟨X(h), θ⟩ ≤ x)

= P(φ−1(h)⟨UhU−1
h X(h), θ⟩ ≤ x)

= P(φ−1(h)⟨U−1
h X(h), θ̄h⟩ ≤ x)

= P(⟨U−1
h X(h), θ̃h⟩ ≤ x),

(18)

where θ̄h = (Uh)
∗θ and θ̃h = ∥(Uh)

∗θ∥−1(Uh)
∗θ is an unit vector in Rd. Noting that ⟨U−1

h X(h), θ̃h⟩ is a

standard normal random variable, (18) implies that φ−1(h)⟨X(t + h)− X(t), θ⟩ is a standard normal

random variable. Thus,

E[|⟨X(t + h)− X(t), θ⟩|2] = φ2(h). (19)

Equip S = [0, h] with the canonical metric

d(s, t) = ∥⟨X(s)− X(t), θ⟩∥2, s, t ∈ S, (20)

and denote by Nd(S, ϵ) the smallest number of d-balls of radius ϵ > 0 needed to cover S. Then it is

easy to see that for all ϵ ∈ (0, 1),

Nd(S, ϵ) ≤
K3,5 h

Ψ(ϵ2)
. (21)

Moreover, it follows from Lemma 1 that Ψ has the doubling property, i.e., K3,6 Ψ(ϵ) ≤ Ψ(ϵ/2) ≤

K3,7 Ψ(ϵ). Hence the lower bound in (16) follows from Lemma 3.

The proof of the upper bound in (16) is based on an argument in [30]. For any integer n ≥ 2, we

choose n points tn,i ∈ [0, 1], where tn,i = ih/n, i ∈ {1, ..., n}. Then,

P(M(t0, h) ≤ x) ≤ P

(
max

1≤i≤n
|⟨X(tn,i), θ⟩| ≤ x

)
. (22)

By Anderson’s inequality for Gaussian measures and Lemma 5, we derive the following upper

bound for the conditional probabilities

P(X(tn,i) ≤ x|X(tn,j), 1 ≤ j ≤ i − 1) ≤ Φ
( K3,8 x

φ(n−1h)

)
, (23)

where Φ(x) is the distribution function of a standard normal random variable. It follows from (22) and

(23) that

P(M(t0, h) ≤ x) ≤
[
Φ
( K3,9 x

φ(n−1h)

)]n
. (24)

By taking n to be the smallest integer h[Ψ(x2)]−1, we obtain the upper bound in (16).
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3. Results

3.1. Zero-one laws for operator fractional Brownian motion

We establish the following zero-one laws for operator fractional Brownian motion to have Chung’s

law of the iterated logarithm, which may be of independent interest.

Lemma 6. Let X = {X(t), t ∈ R} be an operator fractional Brownian motion in Rp with exponent D. If

0 < a1, ad < 1 and detCov(X(1)) > 0, then for every compact set T ⊂ R, any t0 ∈ T and any vector θ ∈ Γ,

there exist a constant 0 ≤ C ≤ ∞ such that

lim inf
h→0+

fh M(t0, h) = C a.s., (25)

where

fh =
1

φ(h/ log log(1/h))
. (26)

Proof. Let m be a scattered Gaussian random measure on R with Lebesgue measure l as its control

measure; that is, {m(A), A ∈ E} is a centered Gaussian process on E = {E ⊂ R : l(E) < ∞} with

covariance function

E[m(E)m(F)] = l(E ∩ F).

Let m1, ..., md be d independent copies of m, and define

m(A) = (m1(A), ..., md(A)).

Then, we consider a version of operator fractional Brownian motion

X(t) =
∫

R

(1 − cos(tx))
( 1

|x|

)D+I/2
dm(x) +

∫

R

sin(tx)
( 1

|x|

)D+I/2
dm′(x), (27)

where m′ is an independent copy of m. This stochastic integral representation of operator fractional

Brownian motion is given in [24].

Let Ω1 := O(0, 1) ⊂ R and for n ≥ 2, Ωn := O(0, n) \ O(0, n − 1) ⊂ R such that Ω1, Ω2, ..., are

mutually disjoint, where the following notation is used: O(x, r) = {y ∈ R : |x − y| ≤ r}. For n ≥ 1

and t ∈ R, let

Zn(t) :=
∫

Ωn

(1 − cos(tx))
( 1

|x|

)D+I/2
dm(x) +

∫

Ωn

sin(tx)
( 1

|x|

)D+I/2
dm′(x), (28)

Then Zn = {Zn(t), t ∈ R}, n = 1, 2, ..., are independent Gaussian fields. By (28), we express

X(t) =
∞

∑
n=1

Zn(t), t ∈ R.

Equip S = [0, 1] with the canonical metric

dZn(s, t) = dZn(s, t, θ) = ∥⟨Zn(s)− Zn(t), θ⟩∥2, s, t ∈ T,

and denote by N(dZn , S, ϵ) the smallest number of dZn -balls of radius ϵ > 0 needed to cover S.
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It follows from (28) that

⟨Zn(s)− Zn(t), θ⟩ =
∫

Ωn

(cos(tx)− cos(sx))
〈( 1

|x|

)D∗+I/2
θ, dm(x)

〉

+
∫

Ωn

(sin(sx)− sin(tx))
〈( 1

|x|

)D∗+I/2
θ, dm′(x)

〉
.

Thus,

dZn(s, t) =
(

2
∫

Ωn

(1 − cos((t − s)x))
∥∥∥
( 1

|x|

)D∗+I/2
θ
∥∥∥

2
dx
)1/2

≤ |t − s|
( ∫

Ωn

|x|2
∥∥∥
( 1

|x|

)D∗+I/2
θ
∥∥∥

2
dx
)1/2

=: |t − s|Kn, s, t ∈ R.

(29)

To obtain the last inequality, in the integral we bound 1 − cos(tx) by |t|2|x|2/2. Then, by (29) and

Theorem 4.1 in [27], we have

lim sup
h→0+

sup
t,t+s∈T:|s|≤h

|⟨Zn(t + s)− Zn(t), θ⟩|

τ(0, h)
≤ K

4,1
a.s., (30)

where τ(0, h) = |h|
√

log(1/h). Put

XM(t) =
M

∑
n=1

Zn(t), t ∈ T.

It follows from Facts i)-vii) and 0 < a1 < 1 that

h
√

log(1/h) fh ≤ K
4,2

h1−a1+ϵ → 0

as h tends to zero. This, together with (30), yields that

lim
h→0+

sup
s∈T:|s|≤h

fh|⟨XM(t0 + s)− XM(t0), θ⟩| = 0 a.s.

Therefore, the random variable

lim inf
h→0+

fh M(t0, h)

is measurable with respect to the tail field of {Zn}∞
n=1 and hence is constant almost surely. This implies

that (25) holds. The proof is completed.

3.2. Chung’s law of the iterated logarithm for spatial surfaces

We shall establish the following Chung’s law of the iterated logarithm for operator fractional

Brownian motion.

Theorem 1. Let X = {X(t), t ∈ R} be an operator fractional Brownian motion in Rp with exponent D. If

0 < a1, ad < 1 and detCov(X(1)) > 0, then for every compact set T ⊂ R, any t0 ∈ T and any vector θ ∈ Γ,

lim inf
h→0+

fh M(t0, h) = K
4,3

a.s. (31)

Denote the standard basis of Rp by (e1, ..., ep). By choosing θ = ei and using Theorem 1 we obtain

the following result about Chung’s law of the iterated logarithm for the components Xi(i = 1, ..., p) of

X.
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Corollary 1. Let X = {X(t), t ∈ R} be an operator fractional Brownian motion in Rp with exponent D. If

0 < a1, ad < 1 and detCov(X(1)) > 0, then for every compact set T ⊂ R, t0 ∈ T and every i = 1, ..., p,

lim inf
h→0+

fi,h Mi(t0, h) = K
4,4

a.s., (32)

where Mi(t0, h) = Mi(t0, h, θ) = sups∈T,|s|≤h |Xi(t0 + s) − Xi(t0)| denotes the uniform modulus of

continuity of the i-th component of X(t) on t0, and

fi,h =
1

∥((h/ log log(1/h))DU)∗ei∥
.

Remark 2. By making use of (4.6) and (4.8) in [24], (32) implies that there exists a constant pi ≥ 1 such that

for every compact set T ⊂ R, t0 ∈ T and every i = 1, ..., p,

lim inf
h→0+

(log log(1/h))ai

hai (log 1/h)pi−1
Mi(t0, h) ≤ K

4,5
a.s., (33)

where ai is defined in Section 2.

By choosing D = diag{H1, ..., Hp} in Corollary 1, where Hi ∈ (0, 1) for all 1 ≤ i ≤ p, as an

immediate consequence of Corollary 1, we have the following Chung’s law of the iterated logarithm

for the multivariate fractional Brownian motion, which may be of independent interest.

Proposition 3. Let X = {X(t), t ∈ R} be a multivariate fractional Brownian motion in Rp with exponent

D = diag{H1, ..., Hp}, and U = (uij) be a real invertible p × p matrix U such that Cov(X(1)) = UU∗.

Then, for every compact set T ⊂ R, any t0 ∈ T and any vector θ ∈ Γ,

lim inf
h→0+

(log log(1/h))Hk

hHk
M(t0, h) = K

4,3
θk

√
u2

k1 + · · ·+ u2
kp a.s., (34)

where k = arg min{H1, ..., Hp} and K
4,3

is given as in (31), and for for every compact set T ⊂ R, t0 ∈ T and

every i = 1, ..., d,

lim inf
h→0+

(log log(1/h))Hi

hHi
Mi(t0, h) = K

4,4

√
u2

i1 + · · ·+ u2
ip a.s., (35)

where K
4,4

is given as in (32).

Remark 3. (34) implies that the minimum growth rate of multivariate fractional Brownian motion in

any given direction θ is determined by the minimum of {H1, ..., Hp}. In addition, arg min(H1, ...Hp)

determines the constant on the right hand side of (34). Although as stated in Section 1, the i-th

component of the multivariate fractional Brownian motion is a fractional Brownian motion with

exponent Hi ∈ (0, 1), 1 ≤ i ≤ p, (35) implies that the minimum growth rate of the i-th coordinate

direction of multivariate fractional Brownian motion depends on corresponding covariance matrix

and hence the interrelationship between all directions.

Proof of Theorem 1. Throughout, it is sufficient to consider h-values which make the iterated

logarithm positive and t0 = 0. Put M(h) = M(0, h). We first show that

lim inf
h→0+

fh M(h) ≥ K
4,6

a.s. (36)

Let ϵ > 0 and γ > 1, and for k = 1, 2, ... put hk = γ−k and βk = φ(K
3,4
(1 + ϵ)−1hk/ log log(1/hk)).

Then, by (16),
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∞

∑P(M(hk) ≤ βk) ≤ K
∞

∑(log γk)−(1+ϵ)
< ∞

where the sums are over all k large enough to make k log γ > 1 and βk < 1. Hence, by the Borel-Cantelli

lemma, M(hk) ≥ βk for all k greater than some k0 = k0(ω). Further, for k ≥ k0 and hk ≤ h < hk−1,

M(h) ≥ M(hk) ≥ βk = f−1
h ( fhβk).

Hence, by Lemma 1, (36) holds.

Next, we prove that

lim inf
h→0+

fh M(h) ≤ K
4,7

a.s. (37)

Let ϵ ∈ (0, 1) and q > 1 be arbitrary real number. This time we choose

hk = e−kq
, Jk = kekq

, γk = φ(K3,3(1 − ϵ)−1hk/ log log(1/hk)).

Define the process Yk(t) := Y(t, Jk−1, Jk) by

Y(t, Jk−1, Jk) =
∫

|x|∈(Jk−1,Jk)
(1 − cos(tx))

( 1

|x|

)D+I/2
dm(x)

+
∫

|x|∈(Jk−1,Jk)
sin(tx)

( 1

|x|

)D+I/2
dm′(x),

(38)

and denote Ỹk(t) := X(t)− Yk(t). Clearly, by (27), X(t) = Yk(t) + Ỹk(t), and for every k = 1, 2, ...,

Yk(·) has stationary increments and Yk(·), k = 1, 2, ... are independent due to the virtue of independent

increments of m.

For simplify notation, put M(h) = M(Y; 0, h, θ) and M̃(h) = M(Ỹ; 0, h, θ), where M is defined in

Lemma 6. For any ϵ ∈ (0, 1), put

Gk = {M(hk) ≤ γk}, Gk = {M(hk) ≤ (1 − ϵ)γk} and G̃k = {M̃(hk) ≥ ϵγk}.

It follows from (38) that

⟨Ỹk(t), θ⟩ =
∫

|x|/∈(Jk−1,Jk)
(1 − cos(tx))

〈( 1

|x|

)D+I/2
dm(x), θ

〉

+
∫

|x|/∈(Jk−1,Jk)
sin(tx)

〈( 1

|x|

)D+I/2
dm′(x), θ

〉

=
∫

|x|/∈(Jk−1,Jk)
(1 − cos(tx))

〈( 1

|x|

)D∗+I/2
θ, dm(x)

〉

+
∫

|x|/∈(Jk−1,Jk)
sin(tx)

〈( 1

|x|

)D∗+I/2
θ, dm′(x)

〉
.

By Lemmas 1 and Facts i)-vii) we have

γ−1
k

∥∥∥
( 1

|x|

)D∗+I/2
θ
∥∥∥

= ∥U∗((K3,3(1 − ϵ)−1hk/ log log(1/hk))
D)∗θ∥−1 ·

∥∥∥
( 1

|x|

)I/2( 1

|x|

)D∗

θ
∥∥∥

≤ K∥U∥
( 1

|x|

)1/2
∥((hk/ log log(1/hk))

D)∗θ∥−1 ·
∥∥∥
( 1

|x|

)D∗

θ
∥∥∥

≤





K∥U∥
( 1

|x|

)1/2( log log(1/hk)

hk|x|

)a1−ε
if |x| ≥ Jk,

K∥U∥
( 1

|x|

)1/2( log log(1/hk)

hk|x|

) 1
λ(θ)

+ε
if |x| ≤ Jk−1.

(39)
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Thus,
E[|γ−1

k ⟨Ỹk(hk), θ⟩|2]

=
∫

|x|/∈(Jk−1,Jk)
(1 − cos(hkx))

(
γ−1

k

∥∥∥
( 1

|x|

)D∗+I/2
θ
∥∥∥
)2

dx

≤ K∥U∥2h
− 2

λ(θ)
−2ε

k (log log(1/hk))
2

λ(θ)
+2ε

∫

|x|≤Jk−1

(1 − cos(hkx))
dx

|x|
2

λ(θ)
+1+2ϵ

+ K∥U∥2h
−2a1+2ε
k (log log(1/hk))

2a1−2ε
∫

|x|≥Jk

(1 − cos(hkx))
dx

|x|2a1+1−2ϵ

≤ K
4,8
((hk Jk−1)

2− 2
λ(θ)

−2ϵ
(log k)

2
λ(θ)

+2ε
+ (hk Jk)

−2a1+2ϵ(log k)2a1−2ε).

(40)

To get the second inequality from bottom, in the first integral we bound 1 − cos(tx) by |t|2|x|2, and the

second one by 2 to get the required bound. Thus, since λ(θ) ≥ a−1
d > 1,

hk Jk−1 ≤ (k − 1)e−q(k−1)q−1
, hk Jk = k,

we have

E[|γ−1
k ⟨Ỹk(hk), θ⟩|2] ≤ K

4,9
k−2a1+ϵ (41)

for all large k.

By (44) and Corollary 3.2 in [17], p.59, we get we get

∞

∑P(G̃k) ≤ K
∞

∑ exp(−K
4,10

ϵ2k2a1−ϵ) < ∞. (42)

This implies that

lim sup
k→∞

γ−1
k M̃(hk) ≤ ϵ a.s. (43)

It follows from (16) that

∞

∑P(M(hk) ≤ γk) ≥ K
∞

∑ k−q(1−ϵ) = ∞ (44)

by choosing q > 1 small enough such that q(1 − ϵ) < 1, where the sums are over all k large enough to

make γk < 1.

It follows easily that

P(Gk) ≥ P(Gk)− P(G̃k),

which, together with (42) and (44), yields

∑
k

P(Gk) = ∞.

Since Yk(·), k = 1, 2, ... are independent, by the Borel-Cantelli lemma,

lim sup
k→∞

γ−1
k Mk ≤ 1 − ϵ a.s. (45)

From Lemma 1, we have f−1
hk

γ−1
k ≤ K

4,11
. It follows from (43) and (45) that
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lim inf
k→∞

fhk
M(hk)

≤ K
4,11

lim inf
k→∞

γ−1
k M(hk)

≤ K
4,11

(
lim inf

k→∞
γ−1

k M(hk) + lim sup
k→∞

γ−1
k M̃(hk)

)

≤ K
4,11

a.s.

This yields that (37) holds.

We have thus established that

K
4,6

≤ lim inf
h→0+

fh M(h) ≤ K
4,7

a.s.

Lemma 6 guarantees that the liminf is constant. The proof is completed.

4. Conclusions

Applying techniques developed in [30], in this article we obtain the estimations of small ball

probability for spatial surfaces of operator fractional Brownian motion, including multivariate

fractional Brownian motion. We obtain the strongly locally nondeterministic for spatial surfaces

of operator fractional Brownian motion in any given direction θ. Applying these estimates we obtain

Chung’s laws of the iterated logarithm for spatial surfaces of operator fractional Brownian motion in

any given direction θ. By combining our results and the Jordan decomposition theorem applied to

the exponent D, it is possible to analyze the rates of change of spatial surfaces by the real parts of the

eigenvalues of the exponent D.
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