
Article

Not peer-reviewed version

Mathematical Decomposition of Fault

Signature using Multinomial Identity and

Differentiating for Detection of Broken

Rotor Bar in Induction Motor

Habib Behnamnia , Mohammad Mardaneh , Ehsan Jamshidpour 

*

Posted Date: 16 May 2023

doi: 10.20944/preprints202305.1108.v1

Keywords: Fault detection; Motor Current Signature Analysis (MCSA); Broken Rotor Bar (BRB); Squirrel Cage

Induction Motor (SQIM); Fast Fourier Transform (FFT)

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2940907
https://sciprofiles.com/profile/22107
https://sciprofiles.com/profile/699320


Article

Mathematical Decomposition of Fault Signature
using Multinomial Identity and Differentiating for
Detection of Broken Rotor Bar in Induction Motor

Habib Behnamnia 1, Mohammad Mardaneh 1 , and Ehsan Jamshidpour 2,*

1 Department of Electrical Engineering, Shiraz University of Technology,Shiraz, Iran,
habib.electrical@yahoo.com, mardaneh@sutech.ac.ir

2 Université de Lorraine-GREEN, 54000 Nancy, France
* Correspondence: ehsan.jamshidpour@univ-lorraine.fr; Tel.: +33 (0)372744380

Abstract: Fault detection at the early stage of development is of great importance in the maintenance
of electric motors. In this regard, Motor Current Signature Analysis (MCSA) is cited in many articles
to detect rotor bar fracture. The popularity of MCSA is due to its non-invasive and non-destructive
nature, simplicity, and, compatibility with several signal processing tools. The vast variety of the
signal processing tools which are commonly used for detecting the broken rotor bar fault is based on
the Fast Fourier Transform (FFT) of the stator current signal and analysis of the produced Fourier
spectrum; however, because of the small amplitude at the fault frequency relative to the main
frequency amplitude, the former cannot be easily discriminated from the latter. Therefore, the peak
at the fault frequency is hidden in the shadow of the main frequency component, hence the fault
will not be detectable. As a solution to vanish the base frequency component, a method based on
the Algebraic Identity of trinomial expansion is proposed in this paper which enables us to display
the difference between the frequency of the fault signature and the base frequency. In this article,
the fault of the broken rotor bars of the squirrel cage induction motor is revealed by the proposed
method. In addition, a frequency weighting technique is presented to magnify the component at the
fault related frequency compared to the lower frequencies. To validate the proposed methods, they
are examined on the laboratory data obtained from three different operating conditions including the
direct online start, the direct torque control, and the scalar control and the results show the ability of
the proposed methods in fault detection of an induction motor.

Keywords: fault detection; motor current signature analysis (MCSA); broken rotor bar (BRB); squirrel
cage induction motor (SQIM); Fast Fourier Transform (FFT)

1. Introduction

Squirrel cage induction motors (SQIM) are widely used in various industries [1,2]. In industries,
where uninterrupted motor operation is necessary, timely detection of rotor faults is important, as
these faults account for approximately 10% of all motor faults. This issue is especially critical in harsh
environments, such as oil and gas environments, traction, and mines, where motor failures can result
in heavy process losses [3,4].

Over the past few years, the use of induction motors in the electric vehicle (EV) industry has
become increasingly widespread. The electric motor is a crucial component of an EV as it converts
electric energy to mechanical energy [5]. Therefore, any failure in any of its components can directly
impact the reliability of the powertrain and the safety of passengers [6,7]. As a result, it is crucial
to develop an electric motor that enhances the efficiency and performance of EVs [8,9]. Among the
various types of electric motors used in EVs, the induction motor (IM) is more effective and economical
than others due to its reliability, simple mechanical design, and effective field-weakening characteristics
[8].

To increase the reliability of IMs used in EVs, researchers have focused on different fault diagnosis
methods in the past decade, in line with the growth of the EV industry. These methods are aimed at
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identifying and diagnosing faults in IMs before they lead to motor failure, and include techniques such
as vibration analysis, Motor Current Signal Analysis (MCSA), and motor current signature analysis
[8,10–17]. By implementing these fault diagnosis methods, the reliability of IMs can be enhanced,
thereby improving the overall performance and safety of EVs.

A broken rotor bar (BRB) is a type of rotor fault that can cause damage to other parts of the motor,
including the winding, bearings, and mechanical parts. In addition, BRBs can lead to torque and speed
pulsation and create harmonics in the current, air-gap flux, and induced voltage of stray flux [3,18,19].
Therefore, given that the BRB of SQIM is a common type of rotor defect, this article will focus on the
diagnosis of BRBs.

Generally, there are three groups of fault detection (FD) methods [20–22]:

1. Signal-based methods
2. Model-based methods [23]
3. Knowledge-based methods [24]

Model-based approaches require a precise and accurate mathematical model of the motor, and
knowledge-based approaches have low accuracy in transient conditions and require different and
high-volume data for diagnosing different motors [25]. Therefore, signal-based methods are of great
interest for fault detection in electric motors.

Any type of faults affects the general signals of the motor, such as current, torque, speed, and
voltage, in a specific way and creates special harmonics in them. Most of the existing electrical
condition monitoring and fault detection methods are based on the analysis of the measured output
signals [3,26,27]. To detect the fault based on the signal, three steps are usually taken:

1. acquiring a suitable signal to detect the fault,
2. using the proper method to analyze the signal,
3. determining the index to make the decision about the faulty or healthy condition.

According to articles analyzing various types of motor output signals, research on fault diagnosis
includes MCSA, methods based on terminal voltage analysis, air gap torque analysis, impedance
sequence component analysis, leakage flux measurement, infrared detection, stray flux detection,
vibration analysis, thermal analysis, acoustic analysis, electromagnetic field interference, and more
[28,29]. Among these methods, MCSA is utilized in this paper due to its non-destructive nature,
compatibility with several signal processing tools, and being a spectral analysis method that is
commonly used for online and remote monitoring of induction motors in industrial environments
[18,30,31]. The following are some MCSA methods: frequency spectral analysis, current envelope
analysis method, components of negative, positive, and zero current sequences, and Park’s vector
representation of three-phase current and Clark transformation [4,27,32].

Although positive, negative, and zero sequence components of current or Park and Clark vector
transformations can be used for MCSA, they require sampling of three-phase current [33], which
increases the cost compared to single-phase current sampling, and there is no indicator to recognize
the fault type in many cases. In the current envelope analysis method, there is a challenge to produce
a suitable envelope without auxiliary processing tools, and it does not show clear results for fault
detection. A common and simple frequency-domain method for detecting BRB is applying the FFT on
the stator current and then analyzing the produced spectrum [3,25]. However, the sampled current is
almost always accompanied by noise, and for motors that operate at small slips, the fault frequency is
hidden in the shadow of the base frequency. This means that base frequency leakage can mask fault
frequencies, making rotor fault detection difficult, and motor damage may progress to severe damage
[34]. Therefore, direct application of frequency spectral analysis and FFT method on the stator current
will not have a useful and usable result and requires initiatives and auxiliary processing tools.

In order to increase the slip and distinguish between the fault frequency and the base frequency,
a rotor breakage detection test has been performed in [35], which is not in the steady state motor
operation mode. In [36], a normalized energy operator in the frequency domain (FDEO) is proposed

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 May 2023                   doi:10.20944/preprints202305.1108.v1

https://doi.org/10.20944/preprints202305.1108.v1


3 of 17

for BRB fault detection, and energy operators have also been used to diagnose the broken rotor bar in
some other papers [37]. Among the different methods, those that can be practical in the condition of
high current noise are preferred, and in order to reduce the cost, sampling the current of one phase is
preferable. Therefore, in this paper, we sample the current of one phase of the stator and use the sum
square identity along with methods to remove unnecessary frequency components from the current
signal.

Different signal processing tools have been utilized in various studies. Typically, these tools can
be categorized into three groups: time domain, frequency domain, and time-frequency domain [38].
Time domain indicators such as mean, median, peak, kurtosis, and skewness are less commonly used
to detect BRB faults. Instead, some research studies have utilized time-frequency decomposition tools
to identify fault components and harmonics [39,40]. For example, the Hilbert-Huang transform (HHT)
is often used for analyzing non-linear and non-stationary signals, but identifying the signal with the
fault frequency can be challenging [41]. Another commonly used time-frequency domain transform is
the wavelet transform. In some applications, wavelet transform is used as a filter, and simple filters
can also be effective. In some articles, wavelet transform has been used for time-frequency analysis of
non-stationary signals [42]. In other cases, the short-time Fourier transform (STFT) has also been used
[35], but it has lower ability compared to the wavelet transform.

Other methods belonging to the time-frequency signal processing tools include the adaptive slope
transform (AST), the Multiple Signal Classification (MUSIC) algorithm, the Wigner-Ville distribution
(WVD), and the Choi-William distribution [43,44]. While fault detection and evaluation in the
time-frequency domain may require a skilled user with powerful pattern recognition techniques,
it also takes more time for investigation and a relatively long start-up time.

In this paper, FFT is used for BRB fault detection due to its high speed and ease of analyzing
the FFT spectrum results to identify the dominant frequency of the BRB. Furthermore, FFT is widely
applied in other articles [45,46] and provides the possibility to define an index for the detection of the
severity of the fault and its type.

The rest of the paper is structured as follows: In Section 2, the methodology used in this study is
explained. Section 3 presents the benchmark and experimental results. Sections 4 and 5 are dedicated to
techniques for elevating the peak at the fault frequency, using derivation and convolution, respectively.
The paper concludes with a summary in Section 6.

2. Methodology

The fault-related component obtained through direct FFT analysis of the current signal is often
characterized by a much lower amplitude when compared to the fundamental frequency component
(as illustrated in Figure 1). Furthermore, given that the fault frequency is usually very close to the
fundamental frequency, the latter can mask the former, particularly during low-slip operations. In other
words, within the FFT spectrum, the fault frequency spectrum can be concealed within the shadow
of the fundamental frequency spectrum, thus rendering the fault undetectable [47]. To overcome
this issue, it is crucial to attenuate the fundamental frequency component while magnifying the fault
frequency component to distinguish the fault frequency in the spectrum. To this end, one possible
solution is to calculate the difference between the fault frequency and the base frequency. In this
context, we propose a mathematical method that is based on a particular identity, which we present in
the following.
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Figure 1. Direct application of FFT on stator current and comparison of the healthy rotor and one
broken bar in DTC operating condition and low load.

The frequencies resulting from the BRB fault [48] are as (1).

fbrb = (1 ± 2ks) fs (1)

where fbrb is the fault frequency of broken rotor bar, k = 1, 2, 3, . . . ., s is slip and fs is the
fundamental frequency. A fault detection method is proposed in which the fault signature concealed
by the fundamental frequency component is detected using the trinomial expansion. To facilitate
understanding of this approach, the identity of the trinomial expansion is presented in equation (2).

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca (2)

where a, b, c are either numbers or variables. In cases of squirrel-cage induction motor (SQIM)
with rotor bar breakage, two sideband frequencies related to the rotor bar breakage will appear in
the stator current signal spectrum, around the fundamental frequency ( fs). Specifically, referring to
equation (1) with k = 1, these frequencies are denoted by f2 and f3, and they are both situated in
proximity to fs. Let us consider a signal comprising three sinusoidal terms :

x(t) = a1cos
(

2π f1t
)

+ a2cos
(

2π f2t
)

+ a3cos
(

2π f3t
)

(3)

Here f1 = fs. It is known that cos
(

2π( f3 − f1)t
)

= cos
(

2π( f1 − f2)t
)

and a2
∼= a3. Using the

trigonometric relations and neglecting the term of 2a2a3cos(2π f2t)cos(2π f3t) yields:

x2(t) ∼=a2
1cos2(2π f1t) + a2

2cos2(2π f2t) + a2
3cos2(2π f3t)+

2a1a2cos(2π( f1 − f2)t) + a1a2
[

cos(2π
(

f1 + f2)t
)

+

cos
(

2π( f1 + f3)t
)]

(4)

Thus, (4) has one component at DC and six terms with frequencies twice or nearly twice the base
frequency (2 fs) and one component at the difference of the base frequency and the fault frequency or
at f1 − f2. Six components among them are filtered out, and only the component at the frequency of
f1 − f2 is used in the proposed fault detection method. Table 1 shows all of these components and
indicates that which of them are going to be used in the proposed fault detection technique. Therefore,
what remains is the following signal, which is used to diagnose the faulty motor:

ξ(t) = 2a1a2cos(2π( f1 − f2)t) (5)
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Table 1. Analysis of terms and frequency components of relation (4)

Term Frequency Used for
FD

Frequency elimination
method

a2
1cos2(2π f1t) DC and 2 fs no DC part by removing the

average value and f = 2 fs

by low pass filter
a2

2cos2(2π f2t) DC and 2 fs no DC part by removing the
average value and f ≈ 2 fs

by low pass filter
a2

3cos2(2π f3t) DC and 2 fs no DC part by removing the
average value and f ≈ 2 fs

by low pass filter
2a1a2cos

(

2π( f1 − f2)t
)

Difference of base and
fault frequencies

yes needed for fault diagnosis

a1a2cos
(

2π( f1 + f2)t
)

nearly 2 fs no f ≈ 2 fs by low pass filter
a1a3cos

(

2π( f1 + f3)t
)

nearly 2 fs no f ≈ 2 fs by low pass filter

Pseudo code

1- acquiring x(t)
2- band pass filtering (Butterworth 35-65 Hz)
3- normalization
4- computing x2(t)
5- making up the analytical signal: xa(t) = x2(t) + jH

(

x2(t)
)

6- z(t)= absolute value
(

xa(t)
)

7- filtering of z(t) using an LPF filter and obtaining z f (t)

8- obtaining u(t) by DC term cancelling: u(t) = z f (t)− mean
(

z f (t)
)

9- U( f ) = F
(

u(t)
)

Figure 2. The proposed technique.

A pseudo code of the proposed technique is shown in Figure 2. By applying the trinomial
expansion identity to the stator current signal and subsequently obtaining its corresponding
Hilbert transform while removing unwanted frequencies, a resulting signal can be obtained that
contains expression (5). The differential frequency of this expression can be obtained by using FFT
transformation.

3. Benchmark and experimental results

The characteristics of the motor under examination are presented in Table 2. The experimental
setup comprises a 3 kW AC generator, a 1.5 kW induction motor with broken rotor bars, and the
corresponding load, a LA55-P/SP1 Hall effect current sensor and a DSP, TMS320F28379D and a control
drive and a computer. The resolution level of the DSP analog to digital converter is 12 bits. A photo of
the setup is illustrated in Figure 3.

Table 2. The specifications of the experimented motor.

Rated Power 1.5 kW Rated Voltage (∆, Y) 220/380 V
Rated Frequency 50 Hz Rated Current (∆, Y) 5.7/3.3 A
Rated Speed 1500 RPM Power Factor 0.81
Efficiency 85.3% Pole no. 4
Rotor Bar no. 28 Air Gap Length 0.25 mm
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Figure 3. The experimental setup and the rotor with two broken bars.

The proposed methods were tested under three different operating conditions, including direct
online start (DOL), direct torque control (DTC), and scalar control. Each operating condition was
evaluated under three load levels: light, medium, and heavy (full) loads. The light load mode
represented the condition where no electric load was connected to the generator. In the medium and
full load modes, 600 watts and 1200 watts of electric loads were respectively connected to the generator.
Accounting for the 80% efficiency of the generator, the load on the motor was 750 watts and 1500
watts for medium and full load modes respectively. The sampling frequency used was 10 kHz. The
experimental setup was illustrated in Figure 4.

Coupling

SQIMGenerator

3 ph. Source

Adjustable 

Resistive Load

current probe

oscilloscope

Drive

Figure 4. Schematic diagram of the test.

For instance, in direct online start (DOL) operation mode under the light load condition, the
signal to be analyzed is shown in Figure 5. After removing the DC component and the component at
frequencies around twice the base frequency ( f = 2 fs), the resulting signal is used for analysis. The
rotor speed in this case is 1493 RPM, and the corresponding slip is s = 7/1500 = 0.467%. The results
for three scenarios, including the healthy state, one broken rotor bar, and two broken rotor bars, are
depicted in Figure 6.
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Figure 5. Sample output signal containing equation (5) in DOL operating mode under the light load.
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Figure 6. Produced spectrum, under the light load mode in the case of DOL operating conditions, with
(a) healthy rotor, (b) one broken bar, and (c) two broken bars.
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Figure 7 illustrates the analysis results for the case of direct torque control (DTC) under the
light load operation mode, where the rotor speed is 1490 RPM. The analysis was conducted for three
scenarios, including the healthy rotor, one broken rotor bar, and two broken rotor bars, and the results
are presented in Figure 7.
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Figure 7. Produced spectrum, under the light load mode in the case of DTC operating conditions, with
(a) healthy rotor, (b) one broken bar, and (c) two broken bars.

Figure 8 shows the results for the case of scalar control under the light load mode of operation. In
this case the rotor speed is 1492 RPM and the situation of healthy motor, one broken rotor bar and two
broken rotor bars are studied.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 May 2023                   doi:10.20944/preprints202305.1108.v1

https://doi.org/10.20944/preprints202305.1108.v1


9 of 17

0 1 2 3 4 5 6 7

  Frequency (Hz)

0

1

2

3

4

5

A
m

p
li

tu
d
e

10
-3 Health

X 0.524521

Y 0.00136112

0 1 2 3 4 5 6 7

  Frequency (Hz)

0

1

2

3

4

5

A
m

p
li

tu
d
e

10
-3 1 BRB

X 0.524521

Y 0.00372104

0 1 2 3 4 5 6 7

  Frequency (Hz)

0

1

2

3

4

5

A
m

p
li

tu
d
e

10
-3 2 BRB

X 0.524521

Y 0.00381647

Figure 8. Produced spectrum, under the light load mode in the case of scalar control, with (a) healthy
rotor, (b) one broken bar, and (c) two broken bars.

Table 3 and Figure 9 demonstrate that there is a strong correlation between the fault frequencies
obtained from (1) and those obtained from the proposed method. Additionally, there is a relationship
between the peak values and the number of broken rotor bars, as evidenced by the results presented.
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Table 3. Summarizing the frequency results obtained by the method

Starting
Method

Load
Amount

Motor
Status

Amplitude ×103 Measured
Frequency

DOL

Low
Healthy 0.00256664 0.495911
1BRB 0.00314357 0.495911
2BRB 0.00397067 0.495911

Medium
Healthy 0.00403241 1.15256
1BRB 0.00546961 1.22071
2BRB 0.00626237 1.2207

Full
Healthy 0.00365003 2.32697
1BRB 0.00383345 2.32697
2BRB 0.00455207 2.36511

DTC

Low
Healthy 0.00156775 0.667572
1BRB 0.00642336 0.667572
2BRB 0.00870922 0.667572

Medium
Healthy 0.00207091 1.4782
1BRB 0.00647853 1.4782
2BRB 0.00825256 1.52588

Full
Healthy 0.00113611 2.81334
1BRB 0.00402521 2.81334
2BRB 0.00514829 2.86102

Scalar

Low
Healthy 0.00136112 0.524521
1BRB 0.00372104 0.524521
2BRB 0.00381647 0.524521

Medium
Healthy 0.0026973 1.19209
1BRB 0.00603295 1.23978
2BRB 0.00728799 1.28746

Full
Healthy 0.0028846 2.38419
1BRB 0.00459908 2.43187
2BRB 0.00413 2.47955
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Figure 9. Summarizing the frequency results obtained by the proposed method.
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4. Elevating the peak at the fault frequency using derivation

After differentiating Equation (5), the following equation is obtained, in which the amplitude is
weighted by the difference between the fault frequency and the base frequency:

dξ(t)

dt
= −4π( f1 − f2)a1a2sin

(

2π( f1 − f2)t
)

(6)

This technique elevates the peak at the fault frequency in comparison to the neighboring peaks at
lower frequencies, making the fault signature more prominent and facilitating fault detection. The
results for the DOL operating condition under full load, with one broken rotor bar, without frequency
weighting and with frequency weighting through derivation, are depicted in Figure 10. Comparison of
Figure 10 ((a)) and ((b)) reveals that the differentiating technique increases the ratio of the peak value
at the fault frequency relative to the lower frequency region.

0 0.5 1 1.5 2 2.5 3 3.5 4

  Frequency (Hz)

0

1

2

3

4

5

6

  
A

m
p

li
tu

d
e

10
-3

A

B

A/B = 2.9553
X 2.32697

Y 0.00383345

X 0.495911

Y 0.00129713
X 0.991821

Y 0.00108865

0 0.5 1 1.5 2 2.5 3 3.5 4

  Frequency (Hz)

0

2

4

6

8

A
m

p
li

tu
d

e

10
-6

A

B

A/B = 8.2773

X 0.991821

Y 6.81982e-07
X 0.495911

Y 4.32557e-07

X 2.32697

Y 5.645e-06

Figure 10. Comparison of fault frequency detection (a) without frequency weighting and (b) with
frequency weighting through derivation.

5. Elevating the peak at the fault frequency using convolution

The convolution of two time-discrete signals x and y is defined as follows [49]:

(x ∗ y)[n] =
+∞

∑
m=−∞

x[m] · y[n − m] (7)
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Based on the convolution theorem, convolution in the time domain corresponds to multiplication
in the frequency domain [45,47,50].

F
(

(x ∗ y)[n]
)

= X(ω) · Y(ω) (8)

Therefore, by performing the convolution of the ξ(t) and its derivative ξ̇(t) in the time domain
while strengthening the fault component amplitude with frequency weighting in the time domain, the
fault frequency amplitude is magnified in the frequency domain. Consequently, in the FFT spectrum,
the amplitude of the fault frequency is amplified, while the amplitude of the frequency components
around the fault frequency is weakened. The block diagram of the proposed method is shown in
Figure 11.

ξ (t) Convolution

d/dt
Convolution

FFT

Frequency spectrum 

evaluation and fault 

frequency

Figure 11. Proposed method for high resolution FFT.

By using this technique, the peak at the fault frequency in the FFT spectrum is more pronounced
compared to neighboring peaks. This means that the fault signature becomes more visible in the
spectrum with high resolution. To illustrate, Figure 12 depicts the fault frequency spectrum using the
proposed method during Direct-On-Line (DOL) operation under full load conditions with a single
Broken Rotor Bar (BRB). Figure 13 illustrates the fault frequency spectrum under light load mode and
during Direct Torque Control (DTC) operation.
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Figure 12. Fault frequency spectrum with proposed method in DOL operation at full load state and
one BRB.
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Figure 13. Fault frequency spectrum with proposed method in DTC operation at light load state and
one BRB.

Figure 14 shows the scalar operation mode and light load condition to distinguish the severity of
faults with one or two broken rotor bars from the healthy state. The figure illustrates that the proposed
method accurately detects the state and severity of faults compared to the healthy state.
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Figure 14. Comparing healthy, one and two broken bars condition in the scalar operation mode and
light load.

6. Conclusion

This article presents a diagnostic approach to identify and detect the broken rotor bar defect in
squirrel cage induction motors using the identity of the square of sum, and the results are compared
and analyzed. To validate the proposed methods, laboratory data obtained from three different
operating conditions, including Direct-On-Line (DOL) start, Direct Torque Control (DTC), and scalar
control, are examined, and the results demonstrate the effectiveness of the proposed methods in fault
detection of induction motors.

Through the analysis of results and formulas, it is evident that the proposed method accurately
identifies the broken rotor bar defect in squirrel cage induction motors. As the severity of the rotor bar
breakage increases, the amplitude of the spectrum at the fault frequency also increases. Additionally, a
frequency weighting tool is presented to enhance the clarity of observing the fault frequency in the
resulting spectrum. The accuracy of the proposed method is shown to be higher with the frequency
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weighting method, which involves deriving the signal under spectrometry to obtain a frequency
weighting factor.

In conclusion, this article presents a high-resolution broken rotor bar fault detection method,
which has the potential to improve the performance of induction motors in various applications.

References

1. Ojaghi, M.; Sabouri, M.; Faiz, J. Performance Analysis of Squirrel-Cage Induction Motors Under Broken
Rotor Bar and Stator Inter-Turn Fault Conditions Using Analytical Modeling. IEEE Transactions on Magnetics

2018, 54, 1–5. doi:10.1109/TMAG.2018.2842240.
2. Gyftakis, K.N.; Spyropoulos, D.V.; Kappatou, J.C.; Mitronikas, E.D. A Novel Approach for Broken Bar Fault

Diagnosis in Induction Motors Through Torque Monitoring. IEEE Transactions on Energy Conversion 2013,
28, 267–277. doi:10.1109/TEC.2013.2240683.

3. Mirzaeva, G.; Saad, K.I. Advanced Diagnosis of Rotor Faults and Eccentricity in Induction Motors
Based on Internal Flux Measurement. IEEE Transactions on Industry Applications 2018, 54, 2981–2991.
doi:10.1109/TIA.2018.2805730.

4. Gyftakis, K.N.; Spyropoulos, D.V.; Mitronikas, E.D. Advanced Detection of Rotor Electrical Faults
in Induction Motors at Start-Up. IEEE Transactions on Energy Conversion 2021, 36, 1101–1109.
doi:10.1109/TEC.2020.3025786.

5. Haghgooei, P.; Jamshidpour, E.; Corne, A.; Takorabet, N.; Khaburi, D.A.; Baghli, L.; Nahid-Mobarakeh, B. A
Parameter-Free Method for Estimating the Stator Resistance of a Wound Rotor Synchronous Machine. World

Electric Vehicle Journal 2023, 14. doi:10.3390/wevj14030065.
6. Eldeeb, H.H.; Zhao, H.; Mohammed, O.A. Detection of TTF in Induction Motor Vector Drives for EV

Applications via Ostu’s-Based DDWE. IEEE Transactions on Transportation Electrification 2021, 7, 114–132.
doi:10.1109/TTE.2020.3032225.

7. Kral, C.; Haumer, A.; Kapeller, H.; Pirker, F. Design and Thermal Simulation of Induction Machines
for Traction in Electric and Hybrid Electric Vehicles. World Electric Vehicle Journal 2007, 1, 190–196.
doi:10.3390/wevj1010190.

8. Aishwarya, M.; Brisilla, R.M. Design and Fault Diagnosis of Induction Motor Using ML-Based Algorithms
for EV Application. IEEE Access 2023, 11, 34186–34197. doi:10.1109/ACCESS.2023.3263588.

9. Zechmair, D.; Steidl, K. Why the Induction Motor Could be the Better Choice for Your Electric Vehicle
Program. World Electric Vehicle Journal 2012, 5, 546–549. doi:10.3390/wevj5020546.

10. Gor, C.; Shah, V. Modelling, Analysis And Control of Five Phase Induction Motor Drive under Open Circuit
Fault for Electric Vehicle. 2019 IEEE 1st International Conference on Energy, Systems and Information
Processing (ICESIP), 2019, pp. 1–6. doi:10.1109/ICESIP46348.2019.8938312.

11. Praneeth, A.; Williamson, S.S. Algorithm for prediction and control of induction motor stator interturn faults
in electric vehicles. 2017 IEEE Transportation Electrification Conference and Expo (ITEC), 2017, pp. 130–134.
doi:10.1109/ITEC.2017.7993259.

12. Yepes, A.G.; Shawier, A.; Abdel-Azim, W.E.; Abdel-Khalik, A.S.; Ahmed, S.; Doval-Gandoy, J. General
Online Current-Harmonic Generation for Increased Torque Capability With Minimum Stator Copper Loss in
Fault-Tolerant Multiphase Induction Motor Drives. IEEE Transactions on Transportation Electrification 2023,
pp. 1–1. doi:10.1109/TTE.2023.3244742.

13. Choudhary, A.; Mian, T.; Fatima, S.; Panigrahi, B.K. Fault Diagnosis of Electric Two-Wheeler Under
Pragmatic Operating Conditions Using Wavelet Synchrosqueezing Transform and CNN. IEEE Sensors

Journal 2023, 23, 6254–6263. doi:10.1109/JSEN.2023.3239383.
14. Chikondra, B.; Muduli, U.R.; Behera, R.K. An Improved Open-Phase Fault-Tolerant DTC Technique for

Five-Phase Induction Motor Drive Based on Virtual Vectors Assessment. IEEE Transactions on Industrial

Electronics 2021, 68, 4598–4609. doi:10.1109/TIE.2020.2992018.
15. Berzoy, A.; Eldeeb, H.H.; Mohammed, O.A. On-Line Detection of Stator Faults in DTC-Driven IM Using

SC Impedance Matrix Off-Diagonal Term. IEEE Transactions on Industry Applications 2019, 55, 5906–5915.
doi:10.1109/TIA.2019.2940871.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 May 2023                   doi:10.20944/preprints202305.1108.v1

https://doi.org/10.1109/TMAG.2018.2842240
https://doi.org/10.1109/TEC.2013.2240683
https://doi.org/10.1109/TIA.2018.2805730
https://doi.org/10.1109/TEC.2020.3025786
https://doi.org/10.3390/wevj14030065
https://doi.org/10.1109/TTE.2020.3032225
https://doi.org/10.3390/wevj1010190
https://doi.org/10.1109/ACCESS.2023.3263588
https://doi.org/10.3390/wevj5020546
https://doi.org/10.1109/ICESIP46348.2019.8938312
https://doi.org/10.1109/ITEC.2017.7993259
https://doi.org/10.1109/TTE.2023.3244742
https://doi.org/10.1109/JSEN.2023.3239383
https://doi.org/10.1109/TIE.2020.2992018
https://doi.org/10.1109/TIA.2019.2940871
https://doi.org/10.20944/preprints202305.1108.v1


15 of 17

16. Kral, C.; Kapeller, H.; Pirker, F. A Stator and Rotor Fault Detection Technique for Induction Machines in
Traction Applications for Electric or Hybrid Electric Vehicles. World Electric Vehicle Journal 2007, 1, 184–189.
doi:10.3390/wevj1010184.

17. Zhang, X.; Han, K.; Cao, H.; Wang, Z.; Huo, K. Fault Injection Model of Induction Motor for Stator Interturn
Fault Diagnosis Research Based on HILS. World Electric Vehicle Journal 2021, 12. doi:10.3390/wevj12040170.

18. Shin, J.; Park, Y.; Lee, S.B. Flux-Based Detection and Classification of Induction Motor Eccentricity,
Rotor Cage, and Load Defects. IEEE Transactions on Industry Applications 2021, 57, 2471–2480.
doi:10.1109/TIA.2021.3066960.

19. Hosseinpoor, Z.; Arefi, M.M.; Razavi-Far, R.; Mozafari, N.; Hazbavi, S. Virtual Sensors for Fault
Diagnosis: A Case of Induction Motor Broken Rotor Bar. IEEE Sensors Journal 2021, 21, 5044–5051.
doi:10.1109/JSEN.2020.3033754.

20. Ali, M.Z.; Shabbir, M.N.S.K.; Liang, X.; Zhang, Y.; Hu, T. Machine Learning-Based Fault Diagnosis for
Single- and Multi-Faults in Induction Motors Using Measured Stator Currents and Vibration Signals. IEEE

Transactions on Industry Applications 2019, 55, 2378–2391. doi:10.1109/TIA.2019.2895797.
21. Gao, Z.; Cecati, C.; Ding, S.X. A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault

Diagnosis With Model-Based and Signal-Based Approaches. IEEE Transactions on Industrial Electronics 2015,
62, 3757–3767. doi:10.1109/TIE.2015.2417501.

22. Gao, Z.; Cecati, C.; Ding, S.X. A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part II: Fault
Diagnosis With Knowledge-Based and Hybrid/Active Approaches. IEEE Transactions on Industrial Electronics

2015, 62, 3768–3774. doi:10.1109/TIE.2015.2419013.
23. Ying, X. Characteristic Performance Analysis of Squirrel Cage Induction Motor With Broken Bars. IEEE

Transactions on Magnetics 2009, 45, 759–766. doi:10.1109/TMAG.2008.2009934.
24. Chang, L.; Xu, X.; Liu, Z.g.; Qian, B.; Xu, X.; Chen, Y.W. BRB Prediction With Customized Attributes

Weights and Tradeoff Analysis for Concurrent Fault Diagnosis. IEEE Systems Journal 2021, 15, 1179–1190.
doi:10.1109/JSYST.2020.2991161.

25. Shao, S.; Yan, R.; Lu, Y.; Wang, P.; Gao, R.X. DCNN-Based Multi-Signal Induction Motor Fault Diagnosis.
IEEE Transactions on Instrumentation and Measurement 2020, 69, 2658–2669. doi:10.1109/TIM.2019.2925247.

26. Naha, A.; Samanta, A.K.; Routray, A.; Deb, A.K. A Method for Detecting Half-Broken Rotor Bar in Lightly
Loaded Induction Motors Using Current. IEEE Transactions on Instrumentation and Measurement 2016,
65, 1614–1625. doi:10.1109/TIM.2016.2540941.

27. de la Barrera, P.M.; Otero, M.; Schallschmidt, T.; Bossio, G.R.; Leidhold, R. Active Broken Rotor Bar
Diagnosis in Induction Motor Drives. IEEE Transactions on Industrial Electronics 2021, 68, 7556–7566.
doi:10.1109/TIE.2020.3007108.

28. Nandi, S.; Toliyat, H.; Li, X. Condition Monitoring and Fault Diagnosis of Electrical Motors—A Review.
IEEE Transactions on Energy Conversion 2005, 20, 719–729. doi:10.1109/TEC.2005.847955.

29. Morales-Perez, C.; Rangel-Magdaleno, J.; Peregrina-Barreto, H.; Amezquita-Sanchez, J.P.;
Valtierra-Rodriguez, M. Incipient Broken Rotor Bar Detection in Induction Motors Using Vibration Signals
and the Orthogonal Matching Pursuit Algorithm. IEEE Transactions on Instrumentation and Measurement 2018,
67, 2058–2068. doi:10.1109/TIM.2018.2813820.

30. Puche-Panadero, R.; Martinez-Roman, J.; Sapena-Bano, A.; Burriel-Valencia, J. Diagnosis of Rotor
Asymmetries Faults in Induction Machines Using the Rectified Stator Current. IEEE Transactions on Energy

Conversion 2020, 35, 213–221. doi:10.1109/TEC.2019.2951008.
31. Spyropoulos, D.V.; Panagiotou, P.A.; Arvanitakis, I.; Mitronikas, E.D.; Gyftakis, K.N. Extraction of Frequency

Information for the Reliable Screening of Rotor Electrical Faults Via Torque Monitoring in Induction Motors.
IEEE Transactions on Industry Applications 2021, 57, 5949–5958. doi:10.1109/TIA.2021.3112137.

32. Mazzoletti, M.A.; Donolo, P.D.; Pezzani, C.M.; Oliveira, M.O.; Bossio, G.R.; De Angelo, C.H. Stator Faults
Detection on Induction Motors Using Harmonic Sequence Current Components Analysis. IEEE Latin America

Transactions 2021, 19, 726–734. doi:10.1109/TLA.2021.9448286.
33. St-Onge, X.F.; Cameron, J.; Saleh, S.; Scheme, E.J. A Symmetrical Component Feature Extraction Method

for Fault Detection in Induction Machines. IEEE Transactions on Industrial Electronics 2019, 66, 7281–7289.
doi:10.1109/TIE.2018.2875644.

34. Agah, G.R.; Rahideh, A.; Khodadadzadeh, H.; Khoshnazar, S.M.; Hedayatikia, S. Broken Rotor Bar
and Rotor Eccentricity Fault Detection in Induction Motors Using a Combination of Discrete Wavelet

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 May 2023                   doi:10.20944/preprints202305.1108.v1

https://doi.org/10.3390/wevj1010184
https://doi.org/10.3390/wevj12040170
https://doi.org/10.1109/TIA.2021.3066960
https://doi.org/10.1109/JSEN.2020.3033754
https://doi.org/10.1109/TIA.2019.2895797
https://doi.org/10.1109/TIE.2015.2417501
https://doi.org/10.1109/TIE.2015.2419013
https://doi.org/10.1109/TMAG.2008.2009934
https://doi.org/10.1109/JSYST.2020.2991161
https://doi.org/10.1109/TIM.2019.2925247
https://doi.org/10.1109/TIM.2016.2540941
https://doi.org/10.1109/TIE.2020.3007108
https://doi.org/10.1109/TEC.2005.847955
https://doi.org/10.1109/TIM.2018.2813820
https://doi.org/10.1109/TEC.2019.2951008
https://doi.org/10.1109/TIA.2021.3112137
https://doi.org/10.1109/TLA.2021.9448286
https://doi.org/10.1109/TIE.2018.2875644
https://doi.org/10.20944/preprints202305.1108.v1


16 of 17

Transform and Teager–Kaiser Energy Operator. IEEE Transactions on Energy Conversion 2022, 37, 2199–2206.
doi:10.1109/TEC.2022.3162394.
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