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Abstract: With the rise of piano teaching in recent years, many people have joined the team of piano

learners. However, the expensive cost of manual instruction and the unique one-on-one teaching

model have made piano learning an extravagant event. Most existing approaches based on the

audio modality aim to evaluate piano players’ skills. Unfortunately, these methods ignored the

information contained in the video, which led to a one-sided and simplistic evaluation of the piano

player’s skills. More recently, multimodal-based methods are proposed to assess the skill level of

piano players using both video and audio information. However, existing multimodal approaches

use shallow networks to extract video and audio features, which are deficient in extracting complex

spatio-temporal and time-frequency features from piano performance. Furthermore, the fingering

and the pitch-rhythm information of the piano performance is contained in the spatio-temporal

and time-frequency features, respectively. In the paper, we propose a ResNet-based audio-visual

fusion model that combines video and audio features to assess the skill level of piano players. Firstly,

ResNet18-3D is used as the backbone network for our visual branches, which can extract feature

information from the video data. Then, we consider ResNet18-2D as the backbone network of the

aural branch and extract the feature information from the audio data. The extracted video features

are fused with the audio features to generate multimodal features for the final piano skill evaluation.

The experimental results on the PISA dataset show that our proposed audio-visual fusion model,

with a validation accuracy of 70.80%, outperforms the state-of-the-art methods in both performance

and efficiency. Then, we also explore the impact of different layers of ResNet on model performance,

and the experimental results show that the audio-visual fusion model dealing with the piano skill

assessment problem can make full use of both feature information when the number of video features

is close to the number of audio features.

Keywords: multimodal machine learning; automated piano skill evaluation; residual network

1. Introduction

Automated assessment of skills involves quantifying how proficient a person is in the task at

hand. Automated skill assessment can be used in many areas, such as physical movement assessment

and music education. With the higher cost of manual instruction and space limitations, face-to-face

piano instruction between teacher and student has become difficult, which makes automated skill

assessment very important.

As we all know that piano performances are made up of visual and auditory aspects, therefore

the assessment of piano players can also be done from both visual and auditory aspects. For the visual

aspect, a piano performance judge can score the performance by observing the fingering of the player.

Similarly, for the aural aspect, the judge scores the performance by judging the rhythm of the music

played by the performer.

At present, most studies on piano performance evaluation have been conducted based on a single

audio mode [1–3], ignoring the information contained in the video mode, such as playing technique
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and playing posture, resulting in a one-sided assessment of the player’s skill level and an inability to

make a comprehensive assessment from multiple aspects.

However, most of the existing studies on multimodal piano skill assessment are based on shallow

networks, which are deficient in extracting complex spatio-temporal features and time-frequency

features. There is also a large gap between the number of extracted video features and extracted audio

features when the feature fusion, leading to models that do not fully utilize feature information from

both modalities.

Aiming at addressing the issues, we consider ResNet as the backbone network of the model,

which can expand the network to deeper layers through the structure of residual connections to better

extract complex features. ResNet-3D [4] and ResNet-2D [5] are used to extract video features and

audio features, respectively. To fully utilize the video features and the audio features, we exploit

ResNet18-3D and ResNet18-2D to deal with the issue of feature extraction, keeping the number of

video and audio features uniform.

The main contributions of this paper are as follows.

(1) We present a novel ResNet-based audio-visual fusion model to evaluate piano players’

proficiency by utilizing both video and audio information, which effectively solves the problem

that the unimodal approaches fail to utilize video information and the multimodal approaches fail

to fully utilize video and audio information. Firstly, we extract video features and audio features by

ResNet-3D and ResNet-2D, respectively. Further, the extracted features are fused to form multimodal

features that will be used for piano skills evaluation.

(2) We present an effective method that can make full use of video features as well as audio

features by keeping the number of video features close to the number of audio features. When the

number of features of one modality is much larger than that of the other, it causes the model to tend to

place more emphasis on the modality with more features and ignore the modality with fewer features.

This can make the performance of the model limited and unable to make full use of the information of

all the modes to make more accurate predictions.

(3) We evaluated the proposed audio-visual fusion model on the PISA dataset and compared it

with the state-of-the-art methods. The results suggest that our model is superior in evaluating piano

players’ skills as well as in computational efficiency.

2. Related Work

2.1. Traditional Skills Assessment

Recently, there have also been significant advances in research in the area of skills assessment.

Seode et al. [6] proposed an autoencoder whose intermediate layer is an LSTM layer to detect runners’

skills such as characteristics and habits, which aimed to improve the runners’ performance. Lid et

al. [7] constructed a novel RNN-based spatial attention model that evaluates human operational

skills while performing a task from video, considering accumulated attention state from previous

frames as well as high-level information about the progress of an undergoing task. Doughty et al.

[8] proposed a model called Rank-Aware Attention to determine relative skills from long videos by

means of a learnable temporal attention module. And presented a method to assess the relative overall

level of skills in long videos by focusing on skill-related components. Lee et al. [9] proposed a novel

dual-stream convolutional neural network, combining video and audio, to determine which notes

on the piano are being played at any given time and to identify the fingers used to press those notes.

Doughty et al. [10] proposed a pairwise deep ranking model which utilizes both spatial and temporal

streams in combination with a novel loss to determine and rank skill.

2.2. Piano Performance in Unimodality

The most widely used method for piano skill evaluation is based on aural mode. Chang et al.

[1] proposed an LSTM-based piano performance evaluation strategy to evaluate piano performance,
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carried out from the three indicators of overall evaluation, rhythm, and expressiveness. Wang et al.

[11] proposed two different audio-based systems for piano performance evaluation. The first one is a

sequential and modularized system that extracts acoustic features by convolutional neural networks,

matches them by dynamic time warping, and performs score regression. The second system is an

end-to-end system with CNNs and the attention mechanism. It takes two acoustic feature sequences as

input and directly predicts a performance score. Varinya et al. [12] evaluated piano playing by using

four different approaches: Support Vector Machine (SVM), Naive Bayes (NB), Convolutional Neural

Network (CNN), and Long Short-Term Memory (LSTM). The evaluated results were classified as

"good", "normal" and "bad", and they found that the CNN approach outperformed the other methods.

Liao et al. [13] presented a musical instrument digital interface(MIDI) piano evaluation scheme based

on RNN structure and Spark computational engine to compensate for the shortcomings of rule-based

evaluation methods, which can not consider the coherence and expressiveness of music.

2.3. Piano Performance in Multimodality

Every source or form of information can be called a modality. For example, humans have the

senses of touch, sight, hearing, and smell; the communication media of information are speech,

video, text, etc. Multimodal machine learning aims to achieve the ability to process and understand

multisource modal information through machine learning methods. Multimodal machine learning has

been used in a wide variety of fields. [14] shows that combining audio and video data can improve

the transcription obtained from each modality alone. Parmar et al. [15] were the first to propose

combining video and audio to assess piano skills, using C3D and ResNet18-2D to process video and

audio information separately, and achieved good performance on their proposed PISA dataset.

2.4. Transfer Learning

Transfer learning is a method of extending a model trained on a specific task with a large amount

of data to another similar task, using the prior knowledge it has learned to extract useful features for

the new task. In recent years, transfer learning has demonstrated exceptional performance in a variety

of research tasks. Pre-trained models trained on large corpus such as ImageNet have been widely

used in various fields, such as graph segmentation [16,17], medical image analysis [18,19]. In [20], C3D

[21] trained from scratch on UCF101, achieved 88%. However, using a pre-trained model trained on

Kinetics, 98% performance was achieved.

In general, most existing studies on piano skill assessment are based on audio modality, ignoring

the video information, while few studies based on multimodality, such as [15], suffer from the inability

to capture complex spatio-temporal features that embody fingering information and pitch information,

and fail to make full use of video features and audio features. Therefore, we propose a ResNet-based

audio-visual fusion model, which is able to capture complex spatio-temporal features and take full use

of extracted features.

3. Methodology

In this section, we detail the audio-visual fusion model for assessing the skill level of piano

performers. Figure 1 shows the framework of our proposal. It consists of three main parts: data

pre-processing, feature extraction and fusion, and performance evaluation. First, the video data

is framed and cropped to serve as the input for the visual branch. The raw audio is converted to

the corresponding Mel-spectrogram by signal processing techniques and spectral analysis methods.

Secondly, we feed the processed video and audio data into the audio-visual fusion model to extract the

respective features, and fuse the extracted features to form multimodal representations. Finally, we

pass the multimodal features as input to the fully connected layer and then perform prediction.
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Figure 1. Framework of audio-visual fusion model for piano skill evaluation.

3.1. Data Pre-Processing

For the visual input, the background, face, and other information contained in the video is useless.

So we crop the video data before feeding it into the model. In the end, the visual information includes

the forearm, hand, and piano of the player, as shown in Figure 2.

For the auditory input, we convert the raw audio into the corresponding Mel-spectrogram, which

helps us to better extract the information such as the pitch that is embedded in the audio data. Firstly,

we convert the raw audio into the corresponding spectrogram by STFT(Short Time Fourier Transform):

STFT(t, f ) =
∫

∞

−∞

x(τ)w(τ − t)e−j2π f τdτ (1)

where STFT(t, f ) represents the outcome of the STFT, w(τ − t) means the window function, x(τ)

refers to the time-domain waveform of the original signal, f represents the frequency, t indicates the

time, and j is the imaginary unit, which satisfies j2 = −1. Then, the obtained spectrogram is mapped

to the corresponding Mel-spectrogram by Mel-scale [22]:

m = 2595 log10(1 +
f

700
) (2)

where m represents the Mel frequency and f means the original frequency. Finally, the Mel-spectrogram

information is expressed in decibels.
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Figure 2. Examples of samples from the dataset. Images after cropping (only a part of the complete

sample is shown).

3.2. Feature Extraction and Fusion

Visual branch: There are some skills of the performers that can only be observed and judged by

sight rather than by hearing. Such as the fingering skills of the performer. For example, a professional

pianist playing a piece at high speed might use his index and ring fingers to play 8 intervals, which is

difficult for an average pianist. For a pianist, the lack of such skills would not give any indication as to

the level of one. However, if a pianist possesses these skills, it can prove that he has achieved a high

level of technical achievement.

The movements of fingers from videos involve both appearance and temporal dynamics of

the video sequences. Efficient modeling of the spatio-temporal dynamics of the video sequences

plays a crucial role in extracting robust features, which in-turn improves the performance of the

model. 3D-CNNs are found to be efficient in capturing the spatio-temporal dynamics in videos.

Specifically, we consider ResNet-3D [4] to extract spatiotemporal features of the performance clips

from a video sequence. Compared with conventional 3D-CNNs, ResNet-3D can effectively capture

the spatio-temporal dynamics of video modality with higher computational efficiency. In addition, it

can utilize the trained pre-trained model to improve the model performance as shown in Algorithm 1.

Finally, we consider the averaging method as our aggregation scheme (see 3.2).

Algorithm 1 Model Initialization Algorithm

Input: model_dict:the dictionary of model parameters; pretrained_dict:the dictionary of pre-trained
model parameters;

Output: model_dict:the model dictionary after completing the update;
1: function MODELINIT(model_dict, pretrained_dict)
2: for each pair(k, v) ∈ pretrained_dict do
3: if k ∈ model_dict.keys then
4: model_dict[k].value← pretrained_dict[k].value;
5: end if
6: end for
7: return model_dict;
8: end function

Aural branch: We can also get a lot of information about the piano from the audio. The rhythm,

notes, and pitches of the piano can be perceived through listening, and this is a common, simple, and

practical way to evaluate a piano piece. In fact, different scores differ greatly in terms of style, rhythm,

etc. This requires the judges to have great proficiency in the piece that the performer is playing in a

piano competition or performance, making some judges who are not familiar with the piece somewhat

deficient in judging the skills of the performers.

Information such as the pitch and rhythm of a piano performance is contained in the audio

data, and both raw audio waveform [23,24] and spectrograms [25,26] can be used to extract auditory

features. However, the spectrogram can provide more detailed and accurate audio features. Specifically,

we consider converting the raw audio data into the corresponding Mel-spectrogram, which can be

regarded as image data for it is in the form of a two-dimensional matrix. Further, compared to the

traditional 2D-CNN, ResNet-2D [5] outperforms in terms of computational efficiency and feature

extraction. Also, it can utilize the pre-trained model to improve performance. Therefore, we prefer
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ResNet-2D to extract auditory features. Finally, we consider the averaging method as our aggregation

scheme (see 3.2).

Multimodal branch: Let Xv and Xa represent two sets of deep feature vectors extracted for the

visual and aural modalities, where Xv =
{

x1
v, x2

v, . . . , x
M
v

}

∈ R
M×d, and Xa =

{

x1
a, x2

a, . . . , x
N
a

}

∈

R
N×d. The d represents the dimension of the visual and aural feature representations, and M and N

denote the number of extracted visual and aural features respectively. The multimodal features, Xm,

are obtained by splicing Xv with Xa through the Algorithm 2:

Xm = [Xv; Xa] ∈ R
L×d (3)

where L = M + N denotes the number of the fused features, as shown in Figure 3.

Figure 3. The structure of feature fusion.

Algorithm 2 Feature Fusion Algorithm

Input: Xv: the video features extracted by ResNet-3D; Xa: the audio features extracted by ResNet-2D;
Output: Xm: multimodal features;

1: function FEATUREFUSION(Xv, Xa)
2: v_shape← Xv.shape[0];
3: a_shape← Xa.shape[0];
4: if v_shape = a_shape then
5: Xm_shape← list(Xv.shape);
6: Xm_shape[1]← Xm_shape[1] + Xa.shape[1];
7: Xm ← torch.zeros(Xm_shape);
8: Xm[:, : Xv.shape[1]]← Xv;
9: Xm[:, Xv.shape[1] :]← Xa;

10: end if
11: return Xm;
12: end function

Aggregation option: During the piano performance, the score obtained by the players can be

perceived as an additive operation. It is often advantageous to perform linear operations on the

learned features, which enhances the interpretability and expressiveness of the learned features. Linear

operations can also be utilized to reduce the dimensionality of the features, which enhances the

efficiency and generalization capabilities of the model. Consequently, we propose the utilization of

linear averaging as the preferred aggregation scheme. The application of linear averaging is detailed

in Algorithm 3 and Figure 4 below.
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Algorithm 3 Feature Average Algorithm

Input: f eats_list: The list of features obtained from the network;
Output: f eats_avg: Features after averaging process;

1: Initialize f eats_cat to Tensor format;
2: for each f eats in f eats_list do
3: f eats_temp← f eats;
4: f eats_temp← f eats_temp.unsqueeze_(0);
5: f eats_temp← f eats_temp.transpose_(0, 1);
6: f eats_cat← torch.cat(( f eats_cat, f eats_temp), 1);
7: end for
8: f eats_avg← f eats_cat.mean(1);
9: return f eats_avg;

Figure 4. Feature average option.

3.3. Performance Evaluation

In the visual and aural branches, to reduce the dimensionality of the features to 128, we pass them

through a linear layer, as shown in Figure 3, and finally input them into the prediction layer. In the

multimodal branch, our operations are similar to others, except that we do not back-propagate from

the multimodal branch to a separate modal backbone to avoid cross-modal contamination.

4. Experiments

In the paper, we conduct the experiment on the real dataset and evaluate the performance of our

proposal. In Section 4.1, we introduce the details of the PISA dataset. In Section 4.2, we show the

evaluation metric that we used. Implementation Details are presented in Section 4.3. And in Sections

4.4 and 4.5, we discuss the experimental results and the ablation study, respectively.

4.1. Multimodal PISA Dataset

PISA: Piano Skills Assessment (PISA) dataset. It consisted of 61 videos of piano performances

collected from YouTube and rated the performers’ skill level on a scale of 1-10, as shown in Figure 5(a).

Non-overlapping samples were obtained by uniform sampling as shown in Figure 5(b). And there is

no overlap between the training set and the test set. The details are shown in Table 1.

Table 1. Overview of the dataset.

Total samples Training samples Test samples

PISA Dataset 992 516 476
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Figure 5. (a)Histograms of player-levels. (b)Sampling scheme:Time along the x-axis. Each sample

consists of squares with the same color, and each square represents a clip of 16 frames.

4.2. Evaluation Metric

Aiming to evaluate the performance of the proposed model, we use accuracy (in %) as the

performance metric.

ACC =
TP

TP + FP
(4)

where TP represents the number of samples that are labeled as positive samples and also classified

as positive samples; FP refers to the number of samples labeled as negative samples but classified as

positive samples.

4.3. Implementation Details

The entire model is built by pytorch [27]. For regularizing the network, dropout is used with p =

0.5 on the linear layers. The initial learning rate of the network is set to be 1e - 4 and the ADAM [28]

is used as the optimizer for all experiments. Also, weight decay of 1e - 1 is used. Due to hardware

limitations and memory constraints, the batch size of the model is set to 4. The number of epochs is set

to 100, while the training time of each epoch is recorded.

Visual branch: The finger images are resized to 112 × 112 and a horizontal flip is applied to them

in the training, which are finally fed into the ResNet-3D model. In order to generate more samples,

the videos of the dataset are converted to sequences of 160 frames with a subsequence length of 16,

resulting in 516 training samples and 476 validation samples. The structure of ResNet-3D is shown in

Table 2, which is pre-trained on the KM dataset [4] (merged Kinetics-700 [29] and MiT [30]). Finally,

to explore the effect of different layers for ResNet-3D on the multimodal fusion model, we consider

networks with 18, 34, and 50 layers for our experiments.
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Table 2. ResNet-3D for visual branch. All conv. layers are followed by Batch Normalization (BN) and

Rectified Linear Units (ReLu). "[ ] x m" means repeat this block m times.

Stage 18-layer 34-layer 50-layer

Block1
Conv: 64, 7×7×7, 2×2×2
Max pool: 3×3×3, 2×2×2

Block2_x

[

Conv : 64, 3× 3× 3
Conv : 64, 3× 3× 3

]

× 2

[

Conv : 64, 3× 3× 3
Conv : 64, 3× 3× 3

]

× 3





Conv : 64, 1× 1× 1
Conv : 64, 3× 3× 3
Conv : 256, 1× 1× 1



× 3

Block3_x

[

Conv : 128, 3× 3× 3
Conv : 128, 3× 3× 3

]

× 2

[

Conv : 128, 3× 3× 3
Conv : 128, 3× 3× 3

]

× 4





Conv : 512, 1× 1× 1
Conv : 128, 3× 3× 3
Conv : 128, 1× 1× 1



× 4

Block4_x

[

Conv : 256, 3× 3× 3
Conv : 256, 3× 3× 3

]

× 2

[

Conv : 256, 3× 3× 3
Conv : 256, 3× 3× 3

]

× 6





Conv : 256, 1× 1× 1
Conv : 256, 3× 3× 3
Conv : 1024, 1× 1× 1



× 6

Block5_x

[

Conv : 512, 3× 3× 3
Conv : 512, 3× 3× 3

]

× 2

[

Conv : 512, 3× 3× 3
Conv : 512, 3× 3× 3

]

× 3





Conv : 512, 1× 1× 1
Conv : 512, 3× 3× 3
Conv : 2048, 1× 1× 1



× 3

Block6 Adaptive average pool:1×1×1

Block7 Linear:in = 512, out = 128 Linear:in = 2048, out = 128

Block8 Linear:in = 128, out = 10

Aural branch: The audio signal is extracted from the corresponding video sequence and

re-sampled to 44.1KHz, which is further segmented into short audio segments. Firstly, we split the

extracted audio signal into sub-audio segments, the shortest of which is 5.33 seconds and the longest is

6.67 seconds, corresponding to a sequence of 160 frames in the visual branch. The spectrogram is first

obtained by short-time Fourier transform (STFT) of each sub-audio segment, and then the spectrogram

is filtered to obtain the Mel-spectrogram, where the window length is considered to be 2048, the step

size is 512, and the number of Mel-bands generated is 128. Then the obtained Mel-spectrogram is

converted to decibels, expressed in dB, and resized to 224 x 224. These Mel-spectrograms are then

fed into ResNet-2D described in Table 3, where the initial weights of the network are initialized with

values from the ImageNet [31] pre-trained model. To match the pre-trained model with our model, we

change the input channels of the first convolutional layer of the pre-trained network from 3 to 1. As

with the visual branch, to explore the effect of different layers for ResNet-2D on the multimodal fusion

model, we consider networks with 18, 34, and 50 layers for our experiments.

Table 3. ResNet-2D for aural branch. All conv. layers are followed by Batch Normalization (BN) and

Rectified Linear Units (ReLu). "[ ] x m" means repeat this block m times.

Stage 18-layer 34-layer 50-layer

Block1
Conv:64, 7×7, 2×2
Max pool:3×3, 2×2

Block2_x

[

Conv : 64, 3× 3
Conv : 64, 3× 3

]

× 2

[

Conv : 64, 3× 3
Conv : 64, 3× 3

]

× 3





Conv : 64, 1× 1
Conv : 64, 3× 3
Conv : 256, 1× 1



× 3

Block3_x

[

Conv : 128, 3× 3
Conv : 128, 3× 3

]

× 2

[

Conv : 128, 3× 3
Conv : 128, 3× 3

]

× 4





Conv : 512, 1× 1
Conv : 128, 3× 3
Conv : 128, 1× 1



× 4

Block4_x

[

Conv : 256, 3× 3
Conv : 256, 3× 3

]

× 2

[

Conv : 256, 3× 3
Conv : 256, 3× 3

]

× 6





Conv : 256, 1× 1
Conv : 256, 3× 3
Conv : 1024,×1



× 6

Block5_x

[

Conv : 512, 3× 3
Conv : 512, 3× 3

]

× 2

[

Conv : 512, 3× 3
Conv : 512, 3× 3

]

× 3





Conv : 512, 1× 1
Conv : 512, 3× 3
Conv : 2048, 1× 1



× 3

Block6 Average pool:7×7, 1×1

Block7 Linear:in = 512, out = 128 Linear:in = 2048, out = 128

Block8 Linear:in = 128, out = 10

4.4. Results of Experiments

Table 4 and Figure 6 show the results of unimodal models and the audio-visual fusion models on

the PISA dataset. Basically, both the unimodal model and the audio-visual fusion model can achieve
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good results. Moreover, the audio-visual fusion model can obtain better results than the unimodal

model, which indicates that the multimodal method can well compensate for the inability of the audio

model alone to utilize visual information and provide more accurate and comprehensive evaluation

results. And our audio-visual fusion model obtained the best experimental results, achieving an

accuracy rate of 70.80%.

Table 4. Performance (% accuracy) of multimodal evaluation. V : A: the ratio of the number of video

features to the number of audio features.

Model V : A Accuracy (%)

C3D + ResNet18-2D [15] 8:1 68.70

ResNet18-3D + ResNet34-2D 1:1 66.39

ResNet34-3D + ResNet18-2D 1:1 66.81

ResNet34-3D + ResNet34-2D 1:1 65.97

ResNet50-3D + ResNet50-2D 1:1 59.45

ResNet18-3D + ResNet18-2D (Ours) 1:1 70.80

Figure 6. Performance (% accuracy) of unimodal evaluation.

As shown in Table 5, our audio-visual fusion model outperforms in computational efficiency

compared to the other models. This is due to the residual structure that accelerates the convergence

speed of the network and the small convolutional kernel that reduces the complexity of the

convolutional operation, thus achieving the result of accelerating the computational efficiency of

the model.

Table 5. Average time to train 100 epochs per model.

Model Calculation time (s)

C3D + ResNet18-2D 111.08

ResNet18-3D + ResNet34-2D 87.91

ResNet18-3D + ResNet50-2D 96.75

ResNet34-3D + ResNet18-2D 97.95

ResNet34-3D + ResNet34-2D 110.33

ResNet34-3D + ResNet50-3D 118.79

ResNet50-3D + ResNet18-2D 96.71

ResNet50-3D + ResNet34-2D 109.79

ResNet50-3D + ResNet50-2D 119.93

ResNet18-3D + ResNet18-2D (Ours) 74.02

The results in Table 6 show that the accuracy improvement of the audio-visual fusion model is

smaller when the ratio of the number of video features to the number of audio features is relatively

large. However, when the number of features of both is close to each other, the accuracy improvement

is relatively larger. The reason may be that the number of features of one modality is much larger than
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that of the other, which causes the model to tend to place more emphasis on the modality with more

features and ignore the modality with fewer features.

Table 6. Performance (% accuracy). V : A: the ratio of the number of video features to the number of

audio features.

Model V : A Accuracy (%)

C3D + ResNet18-2D 8:1 68.70

ResNet18-3D + ResNet50-2D 1:4 65.55

ResNet34-3D + ResNet50-2D 1:4 67.02

ResNet50-3D + ResNet18-2D 4:1 64.50

ResNet50-3D + ResNet34-2D 4:1 61.34

RsetNet18-3D + ResNet18-2D (Ours) 1:1 70.80

4.5. Ablation Study

Impact of Pretraining. We compare the experimental results of the randomly initialized

audio-visual fusion model with the audio-visual fusion model initialized by the KM and ImageNet

pre-trained models. As shown in Table 7, the audio-visual fusion model using the pre-trained model

significantly outperforms the randomly initialized audio-visual fusion model on the PISA dataset and

the time consumed by the two methods is similar. Transferring the pre-trained model trained on a

large dataset to our model can effectively improve the accuracy of the model.

Table 7. Performance impact due to pretraining. KM: the merged Kinetics-700 and Moments in Time

(MiT).

Accuracy (%) Calculation time (s)

Without Pretrain 57.98 73.99
KM + ImageNet Pretrain(Used) 70.80 74.02

Impact of Dropout Rate. After extracting the multimodal features, we used Dropout on them

and also investigated the effect of different drop rates on the performance of the audio-visual fusion

model. The results are shown in Figure 7. When we trained the audio-visual fusion model without

Dropout, the accuracy is only 65.55%. As the dropout rate increases, the model accuracy gradually

increases and reaches its highest at 0.5, and then gradually decreases.

Figure 7. Performance impact due to dropout rate.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 May 2023                   doi:10.20944/preprints202305.1065.v1

https://doi.org/10.20944/preprints202305.1065.v1


12 of 13

5. Conclusions

In this work, we propose a ResNet-based audio-visual fusion model for piano skill evaluation,

which compensates for the inability of the audio model alone to use visual information. Also, the

proposed model can effectively utilize feature information from both video and audio modalities to

evaluate players’ skill levels in a more accurate and multifaceted manner. We investigate the effect

of combining different layers with ResNet on the performance and find that the best performance is

achieved by combining 18 layers. With a similar number of video and audio features, the model can

take advantage of both to achieve better performance. Compared with the previous models, our model

is better in computational efficiency.
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