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Abstract: This study aims at investigating the catalytic performance of Pd, Pd/Pt, and Pd/Au nano-

catalysts toward the 2-propanol electro-oxidation reaction (2POR) in an alkaline medium. The cata-

lyst components (Pd, Pt, and Au) were sequentially electrodeposited onto a glassy carbon (GC) elec-

trode surface and further characterized using electrochemical (cyclic voltammetry (CV)) and mate-

rials (Field-emission scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray 

(EDX)) characterization methods. The Pd/Au/GC catalyst showed the highest catalytic activity in 

terms of the highest oxidation current (0.386 mA) and the highest stability in terms of the highest 

obtained current after 1800 s of continuous electrolysis. This behaviour was attributed to the en-

hancement in the charge transfer kinetics where the Pd/Au/GC catalysts acquired the lowest charge 

transfer resistance (Rct, 1.85 kΩ) during the 2POR.   
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1. Introduction 

The energy dilemma is undeniably one of the most pressing concerns confronting modern soci-

ety, as it plays a critical role in global and domestic economic development and security [1,2]. Due to 

the overwhelming increase in global population, coupled with the continuous economic growth seen 

in multiple developed and developing nations, an increase in global energy demand and consump-

tion is unavoidable [3,4]. To address these concerns, cost-effective, clean, and renewable energy 

sources that could be used as viable substitutes for fossil fuels are urgently needed [5-11]. Energy 

storage and conversion devices have received worldwide interest as a key step toward the use of 

renewable energy resources as primary energy sources, and it has become necessary to thoroughly 

examine the various promising energy conversion and storage solutions, such as fuel cells (FCs) [12-

18], and embark on their implementation [4,15]. In this regard, the direct alcohol fuel cells, such as 

the direct 2-propanol FCs (D2PFCs), appeared as excellent candidates [19,20].  

In fact, 2-propanol is an excellent solvent and is involved in many industry processes such as 

cosmetics and pharmaceutical industries. Being twice as effective as ethanol, 2-propanol is the widely 

used disinfectant within pharmaceutics, hospitals, cleanrooms, and electronics or medical device 

manufacturing [21]. It's also used as a gasoline additive to keep carburettors from freezing up in 

internal combustion vehicles [22]. The higher gravimetric energy density (8.6 kWh/kg) compared 

with that of methanol (6.1 kWh/kg) and ethanol (8.0 kWh/kg) is one more advantage for 2-propanol 

as a liquid fuel [23].  

Recently, interests have been more dedicated to alkaline than acidic D2PFCs because of their 

higher performance which is likely resulted from the faster kinetics of the alcohol electrooxidation 

and the oxygen electroreduction in alkaline medium [24-26]. As the alkaline 2POR proceeds at low 

overpotential via the acetone production pathway (CH3CHOHCH3 + 2OH− → CH3COCH3 + 2H2O + 

2e−) [26-28], several noble metals, including Pt, Pd, and Au, that exhibited previously excellent cata-

lytic properties for several vital processes, have been recommended for2POR [5,12,29-33]. However, 
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the obtained oxidation currents (Ip) decayed dramatically at low overpotentials which implies the 

rapid poisoning of the catalyst surface from the oxidation products [26,34,35]. Acetone was the sus-

picious poisoning species, as previously proposed for 2POR at Pd surfaces in alkaline medium [36]. 

This research addresses the impact of modifying a nanoparticle-based Pd surface with Pt and 

Au nanoparticles to test their potential to mitigate the activity deterioration of the Pd substrates dur-

ing 2POR due to acetone poisoning. Three different catalysts (Pd/GC, Pd/Pt/GC, and Pd/Au/GC) will 

be prepared, characterized, and catalytically evaluated toward 2POR. The relationship between the 

concentration of electrolyte medium (NaOH) and the potential scan rate on the Ip will be obtained 

and the mechanism of enhancement toward the 2POR will be discussed. 

2. Experimental 

A cleaned GC (d = 5.0 mm), an Ag/AgCl/NaCl (3M), a spiral Pt wire were served, respectively, 

as the working, reference, and counter electrodes. The cleaning of the GC electrode was carried out 

through the conventional cleaning procedures described previously [37,38].  

All chemicals in the current study were of high purity and were used without any prior purifi-

cation. The electrodepositions of Pd, Pt, and Au were all carried out in 0.1 M Na2SO4 solutions con-

taining, respectively, 2.0 mM Pd(CH3COO)2, 2.0 mM H2PtCl6.6H2O, 2.0 mM HAuCl4.3H2O at 0.1 V, 

allowing the passage of 10 mC.  

All electrochemical experiments were conducted at room temperature (25 ± 1 °C) in a two com-

partments three electrodes glass cell using a Bio-Logic SAS potentiostat (model SP-150) operated with 

EC-Lab software.  

The surface morphology and composition of the proposed catalysts were obtained using a Zeiss 

Ultra 60 field emission scanning electron microscope (FE-SEM) equipped with an energy-dispersive 

X-ray spectroscopy (EDX). 

3. Results and discussion 

3.1. Electrochemical and Materials characterization 

Figure 1 shows the typical behaviour of Pd-based catalysts in alkaline media where the Pd oxi-

dation to PdO which extended from −0.2 to 0.6 V was coupled with the subsequent reduction of PdO 

to Pd again at −0.4 V. Along with that, the hydrogen adsorption/desorption (Hads/des) region was ob-

served between −0.6 and −0.9 V. This behaviour was observed for all proposed catalysts (Fig. 1a-d). 

A deeper inspection of Fig. 1 reveals several other important observations: 

• Compared to the bulk Pd catalyst (Fig. 1a), a larger surface 

area (SA) was obtained at the nanoparticles-modified cat-

alysts (Fig. 1b-d). The SA was calculated to be 0.08, 0.52, 

0.59, and 0.83 cm2 for the Pd, Pd/GC, Pd/Pt/GC, and 

Pd/Au/GC catalysts, respectively, based on the charge as-

sociated with the PdO reduction peak using a reference 

value of 420 µC cm−2 [38,39]. . This trend appeared again 

in the Hads/des region because of the large surface area of-

fered by nanoparticles. 

• The Pd/Pt/GC (Fig. 1c) and the Pd/Au/GC (Fig. 1d) cata-

lysts acquired a broader PdO reduction peak compared to 

that obtained at the Pd/GC catalyst (Fig. 1a). This high-

lighted the role of adding the Pt and Au surface modifiers 

in providing diverse Pd−Pd and Pd−O bonding and/or 

facets' reconstruction for the Pd surface. 

• The large Hads/des peaks at the Pd/Pt/GC catalyst referred to 

the participation of both Pd and Pt in this reaction [40]. 
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• The disappearance of the Au characteristic peaks at the 

Pd/Au/GC catalyst (Fig. 1d) might refer to the formation 

of a “core (Au)-shell (Pd)” structure [40,41]. 

 

Figure 1. CVs obtained at the (a) Pd, (b) Pd/GC, (c) Pd/Pt/GC, and (e) Pd/Au/GC catalysts in 0.1 M 

NaOH. Potential scan rate: 100 mV s−1. 

Additionally, by using the stat-of-art technologies, the surface morphology (Fig. 2) of the pro-

posed catalysts; Pd/C (Fig. 2A), Pd/Pt/GC (Fig. 2B), and Pd/Au/GC (Fig. 2C) was obtained using the 

FE-SEM. Figure 1A confirmed the successful deposition of Pd in the Pd/GC catalyst as well-distrib-

uted spherical nanoparticles having an average diameter of ca. 30 nm. Too larger sizes (100 and 120 

nm) of spherical Pd particles were obtained, respectively, at the Pd/Pt/GC (Fig. 2B) and the Pd/Au/GC 

(Fig. 2C) catalysts. It seems that Pt and Au were simultaneously deposited with Pd in single bigger 

particles [37,42]. 
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Figure 2. FE-SEM images of the (A) Pd/GC, (B) Pd/Pt/GC, and (C) Pd/Au/GC catalysts. 

To further confirm the successful deposition of all ingredients of the proposed catalysts, EDX 

analysis was obtained. Figure 3 shows the EDX analyses of the Pd/GC (Fig. 3a), Pd/Pt/GC (Fig. 3b), 

and the Pd/Au/GC (Fig. 3c) catalysts. As clearly shown, all catalysts’ components (C, O, Pd) were 

existed in the three proposed catalysts additionally with Pt and Au that were observed respectively 

at the Pd/Pt/GC and the Pd/Au/GC catalysts.  
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Figure 3. EDX analyses of the (a) Pd/GC, (b) Pd/Pt/GC, and (c) Pd/Au/GC catalysts. 

3.2. Electrocatalytic activities of the catalysts toward EOM 

Figure 4 shows the alkaline 2POR at the proposed catalysts. All catalysts showed the typical 

behaviour of the 2POR where two anodic peaks were observed at ca. −0.15 and −0.28 V, respectively, 

in the positive and the negative going scans, which agreed with previous literature [27,31,34]. The 

low oxidation current (Ip, ca. 0.029 mA) obtained at the Pd catalyst (Fig. 4a) was attributed to the 

surface poisoning with the strongly adsorbed oxidation product, acetone, at the Pd surface [36]. The 

poisoning with acetone was assumed to block most of the Pd active sites and therefore diminish the 

overall activity of the 2POR. A better scenario was observed at the Pd/GC (Fig. 4b) catalyst at which 

the Ip reached ca. 0.279 mA (ca. 10 times higher than that obtained at the Pd catalyst). 

 

Figure 4. CVs obtained at the (a) Pd, (b) Pd/GC, (c) Pd/Pt/GC, and (d) Pd/Au/GC catalysts in 0.1 M 

NaOH solution containing 0.3 M 2-propanol. Potential scan rate: 100 mV s−1. Inset shows the current 

values normalized to the Pd mass (specific currents) of the (a) Pd/GC, (b) Pd/Pt/GC, and (c) Pd/Au/GC 

catalysts. 
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The consecutive modification of the Pd/GC catalyst with Pt and Au could further diminish such 

a poisoning impact where the Ip value reached 0.299 and 0.386 mA respectively at the Pd/Pt/GC (Fig. 

4c) and the Pd/Au/GC (Fig. 4d) catalysts. The inset of Fig. 4 shows the current values normalized to 

the mass of deposited Pd (specific currents) for the Pd/GC, Pd/Pt/GC, and the Pd/Au/GC catalysts. 

The obtained values were 51, 55, and 71 mA mgPd−1, respectively.  

The enhancement behavior in the catalytic activity was also reflected in measuring the catalytic 

stability. Figure 5 shows the current transients (i-t) of the proposed catalysts. The enhancement in the 

catalytic stability in terms of achieving higher currents after 1800s of continuous electrolysis. As ob-

served, the current trend was in the order of Pd (Fig. 5a) < Pd/GC (Fig. 5b) < Pd/Pt/GC (Fig. 5c) < 

Pd/Au/GC (Fig. 5d).  

 

Figure 5. Current transients measured at −0.4 V at the (a) Pd, (b) Pd/GC, (c) Pd/Pt/GC, and (d) 

Pd/Au/GC catalysts in 0.1 M NaOH solution containing 0.3 M 2-propanol. 

To understand the mechanism of enhancement toward the 2POR, in terms of the charge transfer, 

Nyquist plots were obtained and analysed (see Figure 6). As well-known, Nyquist plots assess the 

charge transfer resistance (Rct) of the catalyst, which is obtained from the semicircle diameter; evalu-

ating the reaction kinetics [37,40]. In agreement with the data of Figs. 4a and 5a depicting, respec-

tively, the poor activity and stability of the Pd catalyst, Fig. 6a assigned the highest Rct value (45.39 

kΩ) for the same "pristine" Pd catalyst toward the 2POR. This indicates a sluggish kinetics toward 

the 2POR at the Pd catalyst.  
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Figure 6. Nyquist plots obtained recorded at AC potential amplitude of −0.4 V obtained at the (a) Pd, 

(b) Pd/GC, (c) Pd/Pt/GC, and (d) Pd/Au/GC catalysts in 0.1 M NaOH solution containing 0.3 M 2-

propanol. Frequency ranged from 10 mHz to 100 kHz. 

On the other hand, the Pd/GC (Fig. 6b), Pd/Pt/GC (Fig. 6c), and the Pd/Au/GC catalysts offered 

much lower Rct values (2.79, 2.18, and 1.85 kΩ, respectively); indicating faster charge transfer kinetics 

toward the 2POR. It is thought that such an enhancement came from the weak adsorption of acetone 

and/or its faster removal at the modified catalysts [26]. 

3.3. Parameters affecting 2POR 

To achieve a better electrocatalytic 2POR, the effect of changing the NaOH concentration and 

scan rate were examined. Figure 7A-D shows the effect of changing the NaOH concentration on the 

Ip value of the 2POR at all proposed catalysts. It was obvious that increasing the NaOH concentration 

increases the Ip value in a linear way with a correlation coefficient of ca. 0.98. It seems that increasing 

the OH− concentration facilitated the removal of the adsorbed intermediates that increased the avail-

ability of more active sites for the 2POR [43].  
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Figure 7. The linear correlation between Ip and NaOH concentration at the (A) Pd, (B) Pd/GC, (C) 

Pd/Pt/GC, and (D) Pd/Au/GC catalysts. The CVs measured for 2POR at 100 mV s−1 in NaOH with 

different concentrations containing 0.3 M methanol (pH = 3.5). 

Additionally, Fig. 8A-D shows the effect of changing the scan rate on the Ip value of the 2POR at 

all proposed catalysts. It was clear that a slight shift of the Ip to more positive values was observed 

with increasing the potential scan rates, suggesting a kinetic limitation [44]. Moreover, as the scan 

rate increases, the Ip value increases and a linear dependence of the square root of the scan rate and 

the Ip was observed with a correlation coefficient ranging from 0.95 to 0.99, which confirmed the 

diffusion-controlled process [45].   
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Figure 8. The linear correlation between Ip and the square root of the potential scan rate at the (A) Pd, 

(B) Pd/GC, (C) Pd/Pt/GC, and (D) Pd/Au/GC catalysts. The CVs measured for 2POR in 0.1 M NaOH 

containing 0.3 M methanol (pH = 3.5). 

4. Conclusion 

This research aimed at examining the electro-catalytic performance toward 2POR in an alkaline 

medium at several proposed (Pd/GC, Pd/Pt/GC, and Pd/Pt/GC) nanocatalysts. The Pd/Au/GC cata-

lyst showed the highest catalytic activity and stability in terms of the highest current values. Nyquist 

plots assessed the charge transfer enhancement where the Pd/Au/GC catalyst showed the fastest 

charge transfer kinetics (the lowest Rct value) toward the 2POR. From another perspective, the effects 

of changing the potential scan rate and the NaOH concentration on the oxidation currents were mon-

itored and several mechanistic correlation were deduced in view of the recommended modifications 

at all the proposed catalysts. 
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