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Abstract: In this paper, under the symmetric entropy and the scale squared error loss functions, we consider
the maximum likelihood (ML) estimation and Bayesian estimation of the Shannon entropy and Rényi entropy
of the two-parameter inverse Weibull distribution. In the ML estimation, the dichotomy is used to solve
likelihood equation. In addition, the approximation confidence interval is given by the Delta method. Because
the form of estimation results is more complex in the Bayesian estimation, the Lindley approximation method
is used to achieve the numerical calculation. Finally, Monte Carlo simulations and a real data set are used to
illustrate the results derived. By comparing the mean square error between the estimated value and the real
value, it can be found that the performance of ML estimation of Shannon entropy is better than that of
Bayesian estimation, and there is no significant difference between the performance of ML estimation of Rényi
entropy and that of Bayesian estimation
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1. Introduction

Information is an abstract concept. In the face of a large amount of data, it is easy to know how
much data there is, but it is not clear how much information this data contain. Entropy is one of the
important terms in physics. Shannon [1] introduced the concept of entropy into statistics, which
represents the uncertainty of events. This entropy is generally called “Shannon entropy”. Generally
speaking, when we hear a message within expectation, we think it contains less information. When
we hear an unexpected message, we think that the amount of information it conveys to us is huge. In
statistics, the probability is usually used to describe the uncertainty of an event. Therefore, Shannon
believes that probability can be used to describe the amount of information contained in an event.
After that, Alred Rényi [2] generalized Shannon entropy and put forward the concept of Rényi
entropy. Since then, the study of entropy has attracted a lot of attention [3,4]. For example, Chacko
and Asha [5] considered the maximum likelihood (ML) estimation and Bayesian estimation of
Shannon entropy for generalized exponential distribution by the importance sampling method
based on record values. Liu and Gui [6] considered the ML estimation and Bayesian estimation of
Shannon entropy for two-parameter Lomax distribution by the Lindley method and the
Tierney-Kadane method under a generalized progressively hybrid censoring test. Shrahili et al. [7]
considered the estimation of entropy of Log-Logistic distribution. The estimations of different
entropy functions are obtained by the ML method, and the approximate confidence intervals are
obtained by using various censoring methods and sample sizes. Mahmoud et al. [8] considered the
estimation of entropy and residual entropy of two-parameter Lomax distribution based on the
generalized type-Il hybrid censoring scheme. The ML estimators and Bayesian estimators of
entropy and residual entropy are obtained. The simulation study of estimating performance under
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different sample sizes is described. Finally, the conclusion is discussed. Hassan and Mazen [9]
estimated three entropy measures for the inverse Weibull distribution using progressively Type-II
censored data, which are Shannon entropy, Rényi entropy, and g-entropy. The method of
maximum likelihood and maximum product of spacing are used to estimate them. Mavis et al. [10]
proposed and studied gamma-inverse Weibull distribution, and some mathematical properties
were given including moments, mean deviations, Bonferroni and Lorenz curves, and entropies.
Basheer [11] introduced a new generalized alpha power inverse Weibull distribution, and the
Shannon entropy and Rényi entropy were obtained. Valeriia and Broderick [12] proposed the
weighted inverse Weibull class of distributions and derived the expressions of Shannon entropy
and Rényi entropy.

In 1982, Keller and Kamath [13] introduced the Inverse Weibull Distribution IWD) to model
the degradation of mechanical components of diesel engines. It is a useful lifetime probability
distribution, and it can be used to represent various failure characteristics. Depending on the value
of the shape parameter of the IWD, the risk function can be changed flexibly. The use of IWD for
data fitting is therefore more appropriate in many cases. For example, Abhijit and Anindya [14]
found that the use of IWD was superior to previous normal models when measuring concrete
structures using ultrasonic pulse velocities. Chiodo et al. [15] proposed a new model generated from
an appropriate mixture of IWD for modeling extreme wind speed scenarios. Langlands et al. [16]
observed that breast cancer mortality data could be analyzed using IWD for modeling analysis. That
is why two-parameter IWD has attracted more and more researchers to pay attention to and discuss
in recent years [17,18]. For example, Asuman and Mahmut [19] considered the classical and
Bayesian estimation of parameters and the reliability function of the IWD. In classical estimation,
they derived the ML estimators and modified ML estimators. In Bayesian estimation, they utilized
the Lindley method to calculate the Bayesian estimators of parameters under symmetric and
asymmetric loss functions. Sultan et al. [20] discussed the estimation of parameters of IWD based on
the progressive type-II censored sample. They put forward an approximate maximum likelihood
method to obtain the ML estimator and used Lindley's approximation to obtain the Bayesian
estimators. Amirzadi et al. [21] considered the Bayesian estimation of scale parameter and reliability
in the inverse generalized Weibull distribution. In addition to general entropy, squared log error,
and weight squared error function. They introduced a new loss function to carry out Bayesian
estimation. Peng and Yan [22] studied the Bayesian estimation and prediction for shape and scale
parameters of the IWD under a general progressive censoring test. Sindhu et al. [23] assumed
different priors and loss functions, and discussed the Bayesian estimation of inverse Weibull
mixture distributions based on doubly censored data. Mohammad and Sana [24] obtained the Bayes
estimators and ML estimators for the unknown parameters of IWD under lower record values.
Faud [25] developed a linear exponential loss function, and estimated parameter and reliability of
IWD based on lower record values under this loss function. Li and Hao [26] considered the
estimation of a stress-strength model when stress and strength are two independent IWDs with
different parameters. Ismail and Tamimi [27] proposed a constant stress partially accelerated life test
model and analyzed it using type-I censored data from IWD. Kang and Han [28] derived the
approximate maximum likelihood estimators of parameters of IWD under multiply type-II
censoring and also proposed a simple graphical method for a goodness-on-fit test. Saboori et al. [29]
introduced generalized modified inverse Weibull distribution, and some statistical and probabilistic
properties were derived.

This paper will consider the Bayesian estimation of Shannon entropy and Rényi entropy of
two-parameter IWD based on complete samples. In Section 2, some related knowledge is introduced
first, and then the specific expressions of Shannon entropy and Rényi entropy of two-parameter
IWD are derived. In Section 3, the maximum likelihood estimators of the scale parameter and shape
parameter of IWD are derived by the dichotomy method, and then the ML estimators of Shannon
entropy and Rényi entropy are obtained. In Section 4, the gamma distribution is adopted as the prior
distribution (PD) of the scale parameter. A non-informative PD is adopted as the PD of the shape
parameter. And then the Bayesian estimators of Shannon entropy and Rényi entropy are obtained
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based on the symmetric entropy loss function and scale squared error loss function. Lindley
approximation is used to achieve the numerical calculation of the Bayesian estimators of entropy, on
account of the complexity of these Bayesian estimators. In Section 5, Monte Carlo simulations are
utilized to simulate and compare the estimators that are mentioned above. In Section 6, a real data
set has been analyzed for illustrative purposes. Finally, the conclusions of the article are given in
Section 7.

2. Preliminary Knowledge
The probability density function (pdf) of two-parameter IWD is defined as Eq. (1).
f(t;,0)= oot exp(-at™),w>0,0>0,t>0, (1)
and the cumulative distribution function (cdf) of two-parameter IWD is defined as Eq. (2)
F(t;w,v)=exp(-at™"),w>0,0>0,t>0, )

where the scale parameter is @, and the shape parameteris v.
Figure 1 shows the pdf of IWD under different values of shape and scale parameters,
respectively.

subfigures a) Inverse Weibull PDF with w=2
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subfigures b) Inverse Weibull PDF with u=2
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Figure 1. The curves of the pdf of IWD with respect to different values of parameters.

The Shannon entropy is defined in Equation (Eq. 3) [1]

H () ==[ _fOWlf@©kt, ©
and the Rényi entropy is defined in Equation (Eq. 4) [2]
Hr(t)=1L1nj+°°f’(t)dt,r>o,r¢1, &)
—-r —oo

where f(f) is the pdf of a continuous random variable 7.

Theorem 1. Let T,T,,..,T, is a random sample that follows IWD with the pdf (1), t,.t,,....,t, are the sample

observations of 1.,T,,....T.
(i) Shannon entropy of IWD is showed in Eq. (5)
HsszH(lna)+7/)—lna)v+1. 5)
(i1) Rényi entropy of IWD is showed in Eq. (6)
1 - ro+r

H=— Inr+ZIneo+rnv+In D +=+1)], (6)
1-r v v v

where I'(-) the gamma function and y is Euler constant.
Proof. The log density of pdf (1) of IWD is showed in Eq. (7)
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In[f(6)]=nwv—(@+1)Int—art™ . )

According to the log-density function (7), and Eq. (3), the Shannon entropy of IWD can be
derived as follows:

H, =—j:"f(z)[lnwu—(w1)1nt—wf”]dz

=—(In am)jo”" (@t + @+ 0+°° () Intdt + a;j(:“’f” F(t)dt .
=—Inwv+W+1)E(InT)+wE(T™")

Obviously,
E(T*)= j.O+°° ovtt™" e ™ dt
t 4
_ o™ -v\ o o -v
_wjo (@) ve ™ d(axt™).
=w'T(1-5)
v
Let ¢c=-0,
ET")=w'TQ2)= 1
®
Because
E(T‘InT)= dE(T")
dc
1 £ c 1 £, ¢
=—w'l'l-——)ho-—w'T"(1--)
v v v v
L ora-Sme-ra-9.
v v v
Let ¢=0,

E(InT):%(lnaH ».

Therefore, Shannon entropy of two-parameter IWD can be expressed as
H =-lnov+@+1)E(InT)+wE(T™")

2 o+ ) -+
[

Obviously,
teo teo —v-1_—wr?
j Fr(t)dt = jo (vt ey dt
_ r (Y —ro—r —rer™
=(wv) jo e dt
=r v e T+ Y
Then, according to Eq. (4), the Rényi entropy of two-parameter IND can be expressed as
1 —rvo-r r ro+r
’:1_[ Inr+—Inw+rhov+InT(1+ ).
-r v (%

3. Maximum Likelihood Estimation
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Suppose that 7,7,...,7, is a random sample that follows IND with the pdf (1), ¢,¢,,....¢, are the

n

sample observations of 7,7,...,T . Thus, the likelihood function (LF) can be derived as Eq. (8)

s@to,v) =" ([ ] exp(-w) 17). (8)
i=1 i=l1
Then, the corresponding log LF of Eq. (8) is showed in Eq. (9)
S(t;w,0) =Ins(t;@,0) =nlnov-(V+1)Y Int, - . )
i=1 i=1

For convenience, we denote S(#;w,v) as S. Thus, the likelihood equations can be expressed

respectively as Eq. (10) and Eq. (11)

9S _n_ =0, (10)
v o S
S n -
—=——>YInt+w) t’Int. =0. 11
ov v ,Z:; l ,Z:l:l l v

The ML estimators @ and ¢ can be obtained by solving Eq. (10) and Eq. (11) with dichotomy,
whose calculation steps are listed as follows:
(i) According to Eq. (10) and Eq. (11), there are

=YY",
i=l1
(12)
%—anlnq +n(Zn:t;”)'IZn:t;” Int. =0 (13)
i=1 i=1 i=1

(ii) Denote y(v) =£—Zlnt,. +n(2ti' ”)'IZI[ “Int, , given the accuracy &, determine the
[

i=1 i=1
interval [v,,v,] and verify y(v,)-¥(y,)<0.
(iii) Find the midpoint v, of the interval [v,,v,] and calculate y(v,).
v If y(v,)=0, D=v,.
W It y@) ywv,)<0, v=v,;If y©) yv,)<0, v,=0v,.
(vi)If |v, -y, |<e, D isequalto v, or v,.If not, return to step (iii) to step (vi).
Due to the invariance of ML estimation, the ML estimators of Shannon entropy and Rényi

entropy can be obtained by putting @ and ¢ into Eq. (3) and Eq. (4), and their mathematical
expressions are showed in Eq. (14) and Eq. (15)

A

A, =2 o+ ) -man+1, (14)
0
H, :L[—rvﬂ—r lnr+41n@+ rind+InT(1+ rv:i-r)] (15)
l-r D % v

Next, the Delta method is used to derive the approximate confidence intervals (briefly, ACls) of Shannon
entropy and Rényi entropy.

Denote vector D, and D, as

0H. oH
D =(— = 16
s ( aw aU ) w=0,0=0 ( )
oH J0H
D, = - b - w=0,0=0 / 17
»=( ow 9V o a7

inwhich D, and D, are calculated through Eq. (18) and Eq. (19).
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H H, —y-
. _ 1 M _—y-mo 1 as)
Jw wv Jv v v
H H - ’ -
oH, __ r ’ oH, _ r 1+lnr lna)_l“(1+r+rv_l) (19)
ow (I-rwv Jdv (-rw v ul(l+r+rv)
According to the Delta method, calculate the estimated variance of H, and H, as Eq.(20) and Eq. (21).
I is the Fisher information matrix of @ and v, and Eq. (22) gives the elements of 1. I is the inverse
matrix of 1.
Vs = Dsl_leT 0=0,0=0 (20)
Vr = l)rlill)rT w=0,0=0 (21)
9°S n 9SS 9 -,
—=——, ————= =>t"Int,
Jw ©  Jwv JWw ‘S 22)
0’S n 4
=—— - 7’(Int,)’
v ; )
Then, the 100(1 - )% ACI of Shannon entropy is Eq. (23), and the 100(1—a)% ACI of Rényi entropy
is Eq. (24), where Zoy is the upper ( % )th quantile of the standardized normal distribution.
2
(Hyy =2y V., + 2, V) (23)
H, =z, \[V, \H,+z,,V 24
(Hyy =2y [V, B,y +2,V) (24)

4. Bayesian Estimation

Bayesian estimation is a method of introducing prior information to deal with decision
problems. The advantage is that it can include the prior information in statistical inference and
improve the accuracy of the taken decision. From the time when Bayesian estimation was proposed
to now, many researchers have adopted this method in estimating parameters and related functions.
For example, Kundu and Howlader [30] considered the Bayesian inference and prediction of inverse
Weibull distribution, based on type-II censored data. A Gibbs sampling procedure was used for
MCMC samples, and Bayes estimation was computed by this sample. Sultan et al. [31] considered
the Bayesian estimation of inverse Weibull parameters based on progressive type-II censored data.
Because the Bayes estimators can’t be obtained explicitly, the Lindley approximation was used to
calculate them. Mohammad and Mina [32] presented the Bayesian inferences of parameters of
inverse Weibull distribution based on type-I hybrid censored data and computed the Bayes
estimates using Lindley approximation. Algarni et al. [33] considered the Bayes estimation of
parameters for the inverse Weibull distribution employing a progressive type-I censored sample.
Metropolis-Hasting (MH) algorithm was used to compute the Bayesian estimates.

In addition to the areas mentioned above, there are some recent applications of the Bayesian
method. Zhou and Luo [34] developed a supplier's recursive multiperiod discounted profit model
based on Bayesian information updating. Yulin et al. [35] put forward a Bayesian approach to tackle
the misalignments for over-the-air computation. Taborsky et al. [36] presented a novel generic
Bayesian probabilistic model to solve the problem of parameters marginalization under the
constraint of forced community structure. Oliver [37] introduced the Bayesian toolkit and showed
how geomorphic models might benefit from probabilistic concepts. Ran et al. [38] proposed a
Bayesian approach to measure the loss of privacy in a mechanism. Luo et al. [39] used the Bayesian
information criterion for model selection when revisiting the lifetime data of brake pads. Peng et al.
[40] extended a general Bayesian framework to deal with the degradation analysis of sparse
degradation observations and evolving observations. FrantiSek et al. [41] illustrated Bayesian
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estimation of how to benefit parametric survival analysis. Liu et al. [42] proposed fuzzy Bayesian
knowledge tracing models to address continuous score scenarios.

In this paper, the Bayesian estimations of Shannon entropy and Rényi entropy of IWD are
investigated under symmetric entropy (SE) and scale squared error (SSE) loss functions, which are
widely used in Bayesian statistical inference [43-45].

(i) SE loss function is defined in Equation (Eq. 25) [43]

LI(H,FI)=}~I+£—2, (25)
H H

where H is the estimator of H .
Lemma 1. Suppose that T is the historical data information about the entropy function H . Then,
under the SE loss function (25), the Bayesian estimator #, for any prior distribution is showed in
Eq. (26)
. E(H|T) !
H =[—7F], (26)
E(H|T)
where E(H |T) is the posterior expectation of H and E(H'|T) is the posterior expectation of
H™.
Proof. Under the SE loss function (25), the Bayesian risk of H is

R(H)=E, (E(L,(H,H)|T)).

To minimize R(ﬁ) , only need to minimize E(L(H ,ﬁ)|T ) . For convenience,
letg(H)=E(L(H,H)|T).
Because

g(H)=H"E(H|T)+HEH'|T)-2,

and the derivative is
g(H)=-H EH|T)+EH'|T).
The Bayesian estimator H, can be obtained by g’(H)=0.
(ii) SSE loss function is defined in Equation (Eq. 27) [45]
(H-HY

L,(H,H)= P (27)

where £ is a nonnegative integer.
Lemma 2. Suppose that T is the historical data information about the entropy function H . Then, under
the SSE loss function (27), the Bayesian estimator H, for any prior distribution is

- EH'D)
Hy=—p—, (28)
E(H™|T)
where E(H'™ |T) is the posterior expectation of H'*“and E(H*|T) is the posterior expectation

of H".
Proof. Under the SSE loss function (27), the Bayesian risk of H is

R(H)=E, (E(L,(H,H)|T)).
To minimize R(]:I ) , only need to minimize E(L,(H JH )|T) . Similarly, let

h(H)=E(L,(H,H)|T).

Because
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H?-2HH + H’®
Hk |T)
= E(H* |- 2HE(H"™*|T)+ H E(H ™ |T)
and the derivative of h(H) is
W(H)=-2E(H"*|T)+2HE(H *|T).
The Bayes estimator H , can be obtained by W(H)=0.

Assume that the scale parameter @ and shape parameter U of two-parameter IWD are

h(H)=E(

independent random variables, which @ obey I(a,h) and v obey non-informative PD as

follows:
b
P(@)=—2— e, a>0,b>0, (29)
()
1
P (v)e<—. (30)
[
Thus, the joint PD of @ and v is
b
P(0,0) < —— g™, (1)
vl'(b)

Referring to Bayesian formulation, the posterior distribution of @ and v is
P(w,v)s(t; w,0)
J:M j':o P(w,v)s(t; w,0)dwdv

P(w,v|T)= (32)

Thus, the Bayesian estimators of Shannon entropy and Rényi entropy under SE can be
expressed as

]:I =[ E(HS T) ]% _ .[0 J.O HsP(G),U|T)da)dU % (33)
52 — e
E(H'|T) IO J-o H - Pe,0|T)daody
A EH|T) L +oo +°°H,~P(a),‘[) TYdwdv 1
Hr2 :[ ( r ) 2 — J.O J‘O > (34)

EH'|D) [ (™ g
(H'|T) [7[ " P
The Bayesian estimators of Shannon entropy and Rényi entropy under SSE can be expressed as
P EH™T) IO J-O H " P(w,0|Tdwdv
s3 T _ T oo poo ’
E(H*|T) [7[7 P, Tdwdv

T)dwdv

(35)

o BN [7[7 B P@v|ndwdy |
© BT J.OM_[OMH;"P(a)m T)dwdv

From Eq. (33) to Eq. (36), it can be seen that the calculation of Bayesian estimators of Shannon
and Rényi entropy are complex and difficult to calculate. Thus, Lindley approximation will be

(36)

employed to achieve the approximate calculation results of H_, and H,,.

4.1. Bayesian Estimation by using Lindley approximation under SE loss function

Referring to Lindley approximation, 7(¢) can be defined as

1) [0U( )|T] J.(/ (o, U)eS(t;w,v)JrG(a),u)d(m’ ) a7
H=E[U(w,0)|T]= ,
J.eS(z;w,u)JrG(a),u)d(w, U)
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where U(w,v) is a function of independent variables @ and v, S(#;@,v) islog LF defined in Eq.
(9), G(w,v) is the log of joint PD defined in Eq. (31).
If the sample size is large, Eq. (37) can be expressed as
I(z):U(cb,ﬁ)+%(A+B+C+D), (38)
where @ and O are the ML estimators of @ and v, and
4=, +20,G,)6,,+U,,+2U0,G,)6,,
B=U,, +2U0,G,)é, +U,, +2U,G,)é,,

. (39)
C (Uw [2/0) + UUO-(UU )(Swwwo-ww + Swvw wv + SU(U(U VO SUU(U vV
D (U!U VO + U‘UO-UU )(Swwv wa) wvv (1)1} + vau vw DUU U‘l))

0, (i, j = ,v) is the element of inverse matrix of —S; .

The U,, is denoted that taking the second derivative of U(w,v) with respect to @ and

putting @ into it. Similarly, others can be expressed as

S&)(()U = S&)UCD = SUQ)C() = O’ SCDC()C() = 3_};1
w
v 271 c -0 3
Svs =Somn =So0e = —Zt Int,, S,,=—<5+wy "(nz) . (40)
v i1
1 1

6, =21 4 ¢ -

w v

Under the SE loss function, the step of numerical calculation of Shannon entropy H,, by

Lindley approximation is shown as follows:
When U(w,v)=H_,

1 —y—1 1
U,=—, Uvzw__
> 1 021 1; 1 1 “h)
+
V=== Uy, = nw3 }/+_2’ Up =Uppy ===
w'v U v v
Put Eq. (40) and Eq. (41) into Eq. (38), E(H,|T) is obtained.
Similarly, when U(w,0)=H, ",
1 1 1
Uy==H—, U,=H>224 )
v v
Uy =2H——+H —;
v v
1 1, 2lnw+2 ' )
U =20 -y—hao Ly na)+ Y, 2)
v v
v, =U, =200 1 e 1
‘U v v

of Shannon entropy H_, is calculated by Eq. (33).

Under the SE loss function, the numerical calculation of Rényi entropy H,, by Lindley

approximation is shown as follows:
When U(w,v)=H,,
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_r _—rz, U U =—— "
(1-r)wv (1-rwv

v v 2

(1-rywv

22 wo —

T 1_'_lnr—lna)_1“'(1+r+r1f')
Y (1-r)p v l(d+r+rv™)
U = 2rn@w—Inr) [C(+r+r )P -T'A+r+roHCA+r+r0™)  r
v (1-r’ (1= [TA+r+rv "] (1-rp’

(43)

Put Eq. (40) and Eq. (43) into Eq. (38), E(H,|T) is obtained.

When U(w,v)=H,",

—rH’ _ —rH? | - C'd+r+rv™)
(1-rnwv’ " (1 )V v uL(l+r+rv)

2r°H N rH?
(1-rw'v* (1-ra’v’

r2H” Inr-lnw 1T0+r+rv™")
(1 r)’ wv’ v vI(+r+r))

[C'A+r+ro ") =T"A+r+ro YT +7r+rv™ ) rH? 2r(lnw—Inr)
w= (- )r 0 [T+ r+r0 ) H T (-ro i
2r°H Inr—nw T(+r+rv’)

[1+

(1-r)’v* v uC(1+r+rv™)

(0

ww

=U,, (44)

Put Eq. (40) and Eq. (44) into Eq. (38), E(H'|T) is obtained. Thus, the numerical calculation of Shannon
entropy H,, is calculated by Eq. (34).

4.2. Bayesian Estimation by using Lindley approximation under SSE loss function

Under the SSE loss function, the step of numerical calculation of Shannon entropy H,, by
Lindley approximation is shown as follows:
When U(w,v)=H"",
7/ lna) 1

U, =(-HH  ——, U, =(1-k)H*( 1
[0 v

U,,=-k(1-k)H*" (—)2 -(-kH* 12
v v

. (45)
}/+1na)
2 2)

va = k(l_k)Hs_k_l(
v

- 21na)+2}/
- +(-kH  (———*
) (A=k)H( >

1

;/+1na) _) (-kyH*
oV’

v, =U,,=k(l1- k)H"“ —(
av

Then, putting Eq. (40) and Eq. (45) into Eq. (38), E(H,™|T) is obtamed.
When U(w,v)=H.",

R AL
v D ()

U, = k(k+1)H () 4k 12
wv [0

v (46)
qu — k(k + I)Hs—k—2 (_7/—2111 [0 _1)2 _ kHS_k_l (211’1 6()3+ 27/ + Lz)

v v ) )
U, =U,, =k(k+HE*2 7O 1y e 1
o)) v v v
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Then, putting Eq. (40) and Eq. (46) into Eq. (38), E(H."

T) is obtained. Thus, the numerical
calculation of Shannon entropy A, is calculated by Eq. (35).

Under the SSE loss function, the step of numerical calculation of Rényi entropy H,, by Lindley
approximation is shown as follows:

When U(w,v)=H'",
_ (1-k)yrH* U - (1-kyrH* 1+ Inr—new T(+r+rv’)

U , U,
C (I-rwv (I-rw v uC(l+r+rv™")
kF2H7k71 rH*k
Voo =k _l)[a - r)zra)zvz - r)ra)zv
2 rr—k-1 _ _ 4 -1 —k _
U, ZUuw:kr H; 2(k 21) 1+1nr ho F(1+r+rv_l) +rHr (k 1) @n
(1-r)yowv v ul'(+r+rv) (-rwv
_ erH;k"l(k—l)[l_l_ Inr-ho C'd+r+rv™) , + 2r(lnw—Inr)(1-k)
v (1-r)v’ v L +r+rv™h) (1-rw'H!
[CA+r+rv )P =T +r+rv YDA+r+rv™") (-k)H *r
(A=) 1—k) 20 [T +r+r0 ) H* Y

Put Eq. (40) and Eq. (47) into Eq. (38), E(H!™"|T) is obtained.

When U(w,0)=H.",

_ rkH ! rkH T'(+r+r07) Inr-Inw
©T (U-rav’ ' (I-rp ul(+r+r0) v |
kr rH 2 (k=1
“"”:(l—r)afv v i
U U, = ﬂ?l(f - 12)Hr_2’"2 pynr-o C'(l+r+ rvill) N rl_cHr—k—l 2 s
r) v v u(l+r+rv) (1-rwv
_ Pk(k-1)H 7 i+ Inr—Ino T'(+r+rv'), 2rk(lnw-Inr)
v (1-r)* v v ur(l+r+rv™) (1-ro’H™
. [C'A+r+ro ) -T"A+r+rv HYCA+r+rv™") N rkH !
(A-ryr 0%k H' [ TA+r +r0 ™) (1-rp?

Put Eq. (40) and Eq. (48) into Eq. (38), E(H,*|T) is obtained. Thus, the numerical calculation of

Rényi entropy H,, is calculated by Eq. (36).

5. Monte Carlo simulation

In this chapter, Monte Carlo simulation is used to generate random samples that obey
two-parameter IWD, and repeat 1000 experiments respectively with different sample sizes
(n=10,20,30,40,50,60,70,80,90,100 ). The true values of the parameters in the two-parameter IWD
are taken as w=1 and v=2, the parameters of the gamma distribution are taken as a=5 and
b =1, the parameters in SSE are taken as k =10, and the parameters of the Rényi entropy are taken
as r=0.5. Then, the mean squared error (briefly, MSE) is used to compare the performance of each
estimator. The results of Shannon entropy are shown in Table 1, and the results of Rényi entropy are
shown in Table 2. For showing the performance of 100(1-&)% AClIs, the coverage probability is
calculated and the results are shown in Table 3.

For convenience, H, and H,, represent the true values of Shannon entropy and Rényi
entropy, M, and M, represent mean values of 1000 ML estimates of entropy respectively, M,

s

and M,, represent mean values of 1000 Bayesian estimates of entropy respectively under SE loss
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function, M, and M,, represent mean values of 1000 Bayesian estimates of entropy respectively
under SSE loss function, MSE, and MSE, represent MSEs of ML estimates of entropy
respectively, MSE, and MSE,, represent MSEs of Bayesian estimates of entropy respectively
under SE loss function, MSE, and MSE,, represent MSEs of Bayesian estimates of entropy
respectively under SSE loss function. The M, ; and MSE (j=1,2,3) are calculated by Eq. (49) and
Eq. (50), where m =1000 and ﬁsj,i represents the i-th ML estimate or Bayesian estimate of Shannon
entropy. The M ; and MSE_ (j=1,2,3) are calculated by Eq. (51) and Eq. (52), where m =1000

and H .. represents the i-th ML estimate or Bayesian estimate of Rényi entropy.

M, = Ly, (49)
[ r=T
1 .
MSE,; = _Z (H,, - H,), (50)
m i
MﬁziZﬁm, (51)
m i ’
MSE, =i2(ﬁ,ﬁf —H,)*. (52)
m- i

Table 1. Estimates and MSEs of Shannon entropy ( /{,,=1.1727).

Sample Estimate MSE

size (n) M, M, M, MSE,, MSE,, MSE,,
10 1.0604 0.8259 0.8914 0.1903 0.3666 0.2065
20 1.1183 0.9631 0.9683 0.0863 0.1282 0.1186
30 1.1388 1.0301 1.0076 0.0558 0.0751 0.0766
40 1.1355 1.0526 1.0292 0.0445 0.0574 0.0592
50 1.1461 1.0788 1.0379 0.0323 0.0404 0.0472
60 1.1503 1.0938 1.0506 0.0287 0.0343 0.0399
70 1.1579 1.1093 1.0646 0.0244 0.0282 0.0334
80 1.1623 1.1196 1.0694 0.0197 0.0224 0.0284
90 1.1653 1.1272 1.0803 0.0171 0.0191 0.0256
100 1.1628 1.1284 1.0777 0.0161 0.0183 0.0244

Table 2. Estimates and MSEs of Rényi entropy (H,,=1.5641).

Sample Estimate MSE

size (n) M, M, M, MSE,, MSE,, MSE,,
10 1.6681 1.7793 1.7682 0.0525 0.1075 0.0954
20 1.6056 1.6512 1.6587 0.0178 0.0218 0.0186
30 1.5999 1.6278 1.6229 0.0129 0.0136 0.0112
40 1.5903 1.6113 1.6082 0.0103 0.0103 0.0075
50 1.5829 1.5992 1.5972 0.0072 0.0071 0.0064
60 1.5809 1.5954 1.5896 0.0055 0.0057 0.0049
70 1.5765 1.5885 1.5878 0.0046 0.0046 0.0045
80 1.5781 1.5886 1.5857 0.0044 0.0041 0.0034
90 1.5752 1.5845 1.5779 0.0038 0.0038 0.0032
100 1.5731 1.5814 1.5775 0.0032 0.0032 0.0031

Table 3. The coverage probability of 100(1— )% ACIs with different .
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Sample size Shannon entropy Rényi entropy

(n) a=0.1 a=0.05 a=0.1 a=0.05
10 0.9637 0.9752 0.9662 0.9791
20 0.9798 0.9894 0.9789 0.9884
30 0.9829 0.9916 0.9847 0.9930
40 0.9839 0.9941 0.9860 0.9953
50 0.9857 0.9946 0.9894 0.9957
60 0.9876 0.9947 0.9936 0.9954
70 0.9875 0.9947 0.9925 0.9965
80 0.9875 0.9940 0.9929 0.9972
90 0.9894 0.9955 0.9934 0.9966
100 0.9865 0.9950 0.9929 0.9971

Based on the above tables, the following conclusions can be drawn:

(1) For Shannon entropy, the ML estimation performs better than the Bayesian estimation.
While for Rényi entropy, the performance of ML estimation is similar to Bayesian estimation.

(2) In Bayesian estimation, it is better to select the SE to estimate Shannon entropy. On the
contrary, it is better to select the SSE to estimate Rényi entropy.

(3) The sample size has a great influence on Shannon entropy than Rényi entropy. When the
sample size increases gradually, the Bayesian estimation of Shannon entropy under SE is close to the
ML estimation, but it has no obvious effect on Rényi entropy.

(4) In Table 3, it can be noted that the coverage probability of AClIs is quite close to confidence
levels.

6. Real data analysis

There is a real data set given by Bjerkdal [46], which represents the survival time (in days) of
guinea pigs after the injection of different doses of tubercle bacilli. Kundu and Howlader [47] proved
that this set of data sets using the IWD fitting effect is very good, therefore, this data set can be seen
as a sample of IWD. In Reference [46], the regimen number refers to the common logarithm of
bacillary units contained in 0.5 ml of challenge solution. In other words, regimen 6.6 represents
4.0*10¢ bacillary units per 0.5 ml. Corresponding to regimen 6.6, the 72 observed observations are
listed as follows:

12,15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 60,
61, 62, 63, 65, 65, 67,68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127,
129, 131, 143, 146, 146, 175, 175, 211,233, 258, 258, 263, 297, 341, 341, 376.

Using the proposed estimates described in the above sections, the ML estimates and Bayesian
estimates of Shannon entropy and Rényi entropy are displayed in Table 4. It's obvious that the ML
estimates of entropies are all smaller than Bayesian estimates under SE respectively, and the
Bayesian estimates under SSE of entropies are all smaller than ML estimates respectively.

Table 4. The estimates and ACIs of entropies based on the real data set.

ML Bayesian estimates 100(1- )% ACIs
. Under Under
estimates =0. =0.
1 SE SSE a=0.1 a=0.05
h
Shannon 5.6307 5.6998 48706  (5.1858,6.0757)  (5.1328, 6.1287)
entropy
Rénvi
e 5.4129 4.7280 48706  (5.1877,5.6381)  (5.1609, 5.6649)

entropy
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7. Conclusions

This paper considers the Bayesian estimations of Shannon entropy and Rényi entropy based on
two-parameter IWD. First, the expressions of these entropies of two-parameter IWD are derived in
Theorem 1. For ML estimation, due to the invariance of ML estimation, the ML estimators of
parameters are obtained by the dichotomy method at first. And then, the ML estimators of entropies
can be obtained. Additionally, the approximate confidence intervals are given by the Delta method.
For Bayesian estimation, the symmetric entropy loss function and scale squared error loss function
are chosen. However, the forms of Bayesian estimators are complex and difficult to calculate.
Lindley approximation is used to solve this problem. Finally, the mean square errors of the above
estimators are used to compare their performances. For Shannon entropy, it's better to use ML
estimator. And for Rényi entropy, the performances of the ML estimator and Bayesian estimator are
analogous.
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