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Abstract: In this paper, under the symmetric entropy and the scale squared error loss functions, we consider 

the maximum likelihood (ML) estimation and Bayesian estimation of the Shannon entropy and Rényi entropy 

of the two-parameter inverse Weibull distribution. In the ML estimation, the dichotomy is used to solve 

likelihood equation. In addition, the approximation confidence interval is given by the Delta method. Because 

the form of estimation results is more complex in the Bayesian estimation, the Lindley approximation method 

is used to achieve the numerical calculation. Finally, Monte Carlo simulations and a real data set are used to 

illustrate the results derived. By comparing the mean square error between the estimated value and the real 

value, it can be found that the performance of ML estimation of Shannon entropy is better than that of 

Bayesian estimation, and there is no significant difference between the performance of ML estimation of Rényi 

entropy and that of Bayesian estimation 

Keywords: inverse Weibull distribution; symmetric entropy loss function; Rényi entropy; Bayesian 
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1. Introduction 

Information is an abstract concept. In the face of a large amount of data, it is easy to know how 

much data there is, but it is not clear how much information this data contain. Entropy is one of the 

important terms in physics. Shannon [1] introduced the concept of entropy into statistics, which 

represents the uncertainty of events. This entropy is generally called “Shannon entropy”. Generally 

speaking, when we hear a message within expectation, we think it contains less information. When 

we hear an unexpected message, we think that the amount of information it conveys to us is huge. In 

statistics, the probability is usually used to describe the uncertainty of an event. Therefore, Shannon 

believes that probability can be used to describe the amount of information contained in an event. 

After that, Alred Rényi [2] generalized Shannon entropy and put forward the concept of Rényi 

entropy. Since then, the study of entropy has attracted a lot of attention [3,4]. For example, Chacko 

and Asha [5] considered the maximum likelihood (ML) estimation and Bayesian estimation of 

Shannon entropy for generalized exponential distribution by the importance sampling method 

based on record values. Liu and Gui [6] considered the ML estimation and Bayesian estimation of 

Shannon entropy for two-parameter Lomax distribution by the Lindley method and the 

Tierney-Kadane method under a generalized progressively hybrid censoring test. Shrahili et al. [7] 

considered the estimation of entropy of Log-Logistic distribution. The estimations of different 

entropy functions are obtained by the ML method, and the approximate confidence intervals are 

obtained by using various censoring methods and sample sizes. Mahmoud et al. [8] considered the 

estimation of entropy and residual entropy of two-parameter Lomax distribution based on the 

generalized type-II hybrid censoring scheme. The ML estimators and Bayesian estimators of 

entropy and residual entropy are obtained. The simulation study of estimating performance under 
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different sample sizes is described. Finally, the conclusion is discussed. Hassan and Mazen [9] 

estimated three entropy measures for the inverse Weibull distribution using progressively Type-II 

censored data, which are Shannon entropy, Rényi entropy, and q-entropy. The method of 

maximum likelihood and maximum product of spacing are used to estimate them. Mavis et al. [10] 

proposed and studied gamma-inverse Weibull distribution, and some mathematical properties 

were given including moments, mean deviations, Bonferroni and Lorenz curves, and entropies. 

Basheer [11] introduced a new generalized alpha power inverse Weibull distribution, and the 

Shannon entropy and Rényi entropy were obtained. Valeriia and Broderick [12] proposed the 

weighted inverse Weibull class of distributions and derived the expressions of Shannon entropy 

and Rényi entropy. 

In 1982, Keller and Kamath [13] introduced the Inverse Weibull Distribution (IWD) to model 

the degradation of mechanical components of diesel engines. It is a useful lifetime probability 

distribution, and it can be used to represent various failure characteristics. Depending on the value 

of the shape parameter of the IWD, the risk function can be changed flexibly. The use of IWD for 

data fitting is therefore more appropriate in many cases. For example, Abhijit and Anindya [14] 

found that the use of IWD was superior to previous normal models when measuring concrete 

structures using ultrasonic pulse velocities. Chiodo et al. [15] proposed a new model generated from 

an appropriate mixture of IWD for modeling extreme wind speed scenarios. Langlands et al. [16] 

observed that breast cancer mortality data could be analyzed using IWD for modeling analysis. That 

is why two-parameter IWD has attracted more and more researchers to pay attention to and discuss 

in recent years [17,18]. For example, Asuman and Mahmut [19] considered the classical and 

Bayesian estimation of parameters and the reliability function of the IWD. In classical estimation, 

they derived the ML estimators and modified ML estimators. In Bayesian estimation, they utilized 

the Lindley method to calculate the Bayesian estimators of parameters under symmetric and 

asymmetric loss functions. Sultan et al. [20] discussed the estimation of parameters of IWD based on 

the progressive type-II censored sample. They put forward an approximate maximum likelihood 

method to obtain the ML estimator and used Lindley's approximation to obtain the Bayesian 

estimators. Amirzadi et al. [21] considered the Bayesian estimation of scale parameter and reliability 

in the inverse generalized Weibull distribution. In addition to general entropy, squared log error, 

and weight squared error function. They introduced a new loss function to carry out Bayesian 

estimation. Peng and Yan [22] studied the Bayesian estimation and prediction for shape and scale 

parameters of the IWD under a general progressive censoring test. Sindhu et al. [23] assumed 

different priors and loss functions, and discussed the Bayesian estimation of inverse Weibull 

mixture distributions based on doubly censored data. Mohammad and Sana [24] obtained the Bayes 

estimators and ML estimators for the unknown parameters of IWD under lower record values. 

Faud [25] developed a linear exponential loss function, and estimated parameter and reliability of 

IWD based on lower record values under this loss function. Li and Hao [26] considered the 

estimation of a stress-strength model when stress and strength are two independent IWDs with 

different parameters. Ismail and Tamimi [27] proposed a constant stress partially accelerated life test 

model and analyzed it using type-I censored data from IWD. Kang and Han [28] derived the 

approximate maximum likelihood estimators of parameters of IWD under multiply type-II 

censoring and also proposed a simple graphical method for a goodness-on-fit test. Saboori et al. [29] 

introduced generalized modified inverse Weibull distribution, and some statistical and probabilistic 

properties were derived. 

This paper will consider the Bayesian estimation of Shannon entropy and Rényi entropy of 

two-parameter IWD based on complete samples. In Section 2, some related knowledge is introduced 

first, and then the specific expressions of Shannon entropy and Rényi entropy of two-parameter 

IWD are derived. In Section 3, the maximum likelihood estimators of the scale parameter and shape 

parameter of IWD are derived by the dichotomy method, and then the ML estimators of Shannon 

entropy and Rényi entropy are obtained. In Section 4, the gamma distribution is adopted as the prior 

distribution (PD) of the scale parameter. A non-informative PD is adopted as the PD of the shape 

parameter. And then the Bayesian estimators of Shannon entropy and Rényi entropy are obtained 
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based on the symmetric entropy loss function and scale squared error loss function. Lindley 

approximation is used to achieve the numerical calculation of the Bayesian estimators of entropy, on 

account of the complexity of these Bayesian estimators. In Section 5, Monte Carlo simulations are 

utilized to simulate and compare the estimators that are mentioned above. In Section 6, a real data 

set has been analyzed for illustrative purposes. Finally, the conclusions of the article are given in 

Section 7. 

2. Preliminary Knowledge 

The probability density function (pdf) of two-parameter IWD is defined as Eq. (1). 

 1( ; , ) exp( ), 0, 0, 0f t t t tυ υω υ ωυ ω ω υ− − −= − > > > , (1) 

and the cumulative distribution function (cdf) of two-parameter IWD is defined as Eq. (2) 

 ( ; , ) exp( ), 0, 0, 0F t t tυω υ ω ω υ−= − > > > , (2) 

where the scale parameter is ω , and the shape parameter is υ .  

Figure 1 shows the pdf of IWD under different values of shape and scale parameters, 

respectively. 

 

Figure 1. The curves of the pdf of IWD with respect to different values of parameters. 

The Shannon entropy is defined in Equation (Eq. 3) [1] 

 ( ) ( ) ln[ ( )]sH t f t f t dt
+∞

−∞
= − , (3) 

and the Rényi entropy is defined in Equation (Eq. 4) [2] 

 1( ) ln ( ) , 0, 1
1

r

rH t f t dt r r
r

+∞

−∞
= > ≠

−  , (4) 

where ( )f t  is the pdf of a continuous random variable T . 

Theorem 1. Let 1 2, ,..., nT T T  is a random sample that follows IWD with the pdf (1), 1 2, ,..., nt t t  are the sample 

observations of 1 2, ,..., nT T T . 

(i) Shannon entropy of IWD is showed in Eq. (5) 

 1(ln ) ln 1sH
υ

ω γ ωυ
υ

+
= + − + . (5) 

 (ii) Rényi entropy of IWD is showed in Eq. (6) 

 1 [ ln ln ln ln ( 1)]
1r

r r r r
H r r r

r

υ
ω υ

υ υ υ

+
= − + + + Γ + +

−
, (6) 

where ( )Γ ⋅ the gamma function and γ  is Euler constant. 

Proof. The log density of pdf (1) of IWD is showed in Eq. (7) 
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 ln[ ( )] ln ( 1) lnf t t t υωυ υ ω −= − + − . (7) 

According to the log-density function (7), and Eq. (3), the Shannon entropy of IWD can be 

derived as follows: 

0

0 0 0

( )[ln ( 1)ln ]

(ln ) ( ) ( 1) ( ) ln ( )

ln ( 1) (ln ) ( )

sH f t t t dt

f t dt f t tdt t f t dt

E T E T

υ

υ

υ

ωυ υ ω

ωυ υ ω

ωυ υ ω

+∞
−

+∞ +∞ +∞
−

−

= − − + −

= − + + +

= − + + +


   . 

Obviously, 

1

0

0

( )

( ) ( )

(1 )

c c t

t c

t

c

E T t t e dt

t e d t

c

υ

υ

υ ω

υ ω υυ υ

υ

ωυ

ω ω ω

ω
υ

−

−

+∞
− − −

−+∞
− − −

=

=

= Γ −



 . 

Let c υ= − , 

1 1( ) (2)E T υ ω
ω

− −= Γ = . 

Because 

( )( ln )

1 1(1 ) ln (1 )

1 [ (1 ) ln (1 )].

c
c

c c

c

dE T
E T T

dc

c c

c c

υ υ

υ

ω ω ω
υ υ υ υ

ω ω
υ υ υ

=

′= Γ − − Γ −

′= Γ − − Γ −

 

Let 0c = , 

1(ln ) (ln )E T ω γ
υ

= + . 

Therefore, Shannon entropy of two-parameter IWD can be expressed as 

ln ( 1) (ln ) ( )
1(ln ) ln 1

sH E T E T υωυ υ ω

υ
ω γ ωυ

υ

−= − + + +

+
= + − +

. 

Obviously, 

1

0

0

( ) ( )

( )

(1 )

r t r

r r r r t

r r r

r

f t dt t e dt

t e dt

r r
r

υ

υ

υ ω

υ ω

υ

υ υ

ωυ

ωυ

υ
ω υ

υ

−

−

+∞ +∞
− − −

−∞

+∞
− − −

− −

=

=

+
= Γ +

 
  

Then, according to Eq. (4), the Rényi entropy of two-parameter IWD can be expressed as 

1 [ ln ln ln ln (1 )]
1r

r r r r r
H r r

r

υ υ
ω υ

υ υ υ

− − +
= + + + Γ +

−
. 

3. Maximum Likelihood Estimation 
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Suppose that 1 2, ,..., nT T T  is a random sample that follows IWD with the pdf (1), 1 2, ,..., nt t t  are the 

sample observations of 1 2, ,..., nT T T . Thus, the likelihood function (LF) can be derived as Eq. (8) 

 1

11
( ; , ) ( )exp( )

n n
n n

i i

ii

s t t tυ υω υ ω υ ω− − −

==

= − ∏ . (8) 

Then, the corresponding log LF of Eq. (8) is showed in Eq. (9) 

 
1 1

( ; , ) ln ( ; , ) ln ( 1) ln
n n

i i

i i

S t s t n t t υω υ ω υ ωυ υ ω −

= =

= = − + −  . (9) 

For convenience, we denote ( ; , )S t ω υ  as S . Thus, the likelihood equations can be expressed 

respectively as Eq. (10) and Eq. (11) 

 
1

0
n

i

i

S n
t υ

ω ω
−

=

∂
= − =

∂
 , (10) 

 
1 1

ln ln 0
n n

i i i

i i

S n
t t tυω

υ υ
−

= =

∂
= − + =

∂
  . (11) 

The ML estimators ω̂  and υ̂  can be obtained by solving Eq. (10) and Eq. (11) with dichotomy, 

whose calculation steps are listed as follows: 

(i) According to Eq. (10) and Eq. (11), there are  

      ˆ 1

1

ˆ ( )
n

i

i

n t υω − −

=

=  , 

 (12) 

1

1 1 1
ln ( ) ln 0

n n n

i i i i

i i i

n
t n t t tυ υ

υ
− − −

= = =

− + =   . (13) 

(ii) Denote 1

1 1 1
( ) ln ( ) ln

n n n

i i i i

i i i

n
y t n t t tυ υυ

υ
− − −

= = =

= − +   , given the accuracy ε , determine the 

interval [ , ]u lυ υ  and verify ( ) ( ) 0u ly yυ υ⋅ < . 

(iii) Find the midpoint mυ  of the interval [ , ]u lυ υ  and calculate ( )my υ . 

(iv) If ( ) 0my υ = , ˆ
mυ υ= . 

(v) If ( ) ( ) 0u my yυ υ⋅ < , l mυ υ= ; If ( ) ( ) 0l my yυ υ⋅ < , u mυ υ= . 

(vi) If | |u lυ υ ε− < , υ̂  is equal to uυ  or lυ . If not, return to step (iii) to step (vi). 

Due to the invariance of ML estimation, the ML estimators of Shannon entropy and Rényi 

entropy can be obtained by putting ω̂  and υ̂  into Eq. (3) and Eq. (4), and their mathematical 

expressions are showed in Eq. (14) and Eq. (15) 

 1
ˆ 1ˆ ˆ ˆ ˆ(ln ) ln 1

ˆsH
υ

ω γ ωυ
υ

+
= + − + , (14) 

 

1
ˆ ˆ1ˆ ˆ ˆ[ ln ln ln ln (1 )]
ˆ ˆ ˆ1r

r r r r r
H r r

r

υ υ
ω υ

υ υ υ

− − +
= + + + Γ +

−
.(15) 

Next, the Delta method is used to derive the approximate confidence intervals (briefly, ACIs) of Shannon 

entropy and Rényi entropy. 

Denote vector sD  and rD as 

 ˆ ˆ,( , )s s
s

H H
D ω ω υ υ

ω υ
= =

∂ ∂
=

∂ ∂
, (16) 

 ˆ ˆ,( , )r r
r

H H
D ω ω υ υ

ω υ
= =

∂ ∂
=

∂ ∂
, (17) 

in which sD  and rD  are calculated through Eq. (18) and Eq. (19). 
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 2
1 ln 1,   s sH H γ ω

ω ωυ υ υ υ

∂ ∂ − −
= = −

∂ ∂
 (18) 

1

1
ln ln (1 ),  [1 ]

(1 ) (1 ) (1 )
r rH Hr r r r r

r r r r

ω υ

ω ωυ υ υ υ υ υ

−

−

′∂ ∂ − Γ + +
= = + −

∂ − ∂ − Γ + +
 (19) 

According to the Delta method, calculate the estimated variance of 1
ˆ
sH  and 1

ˆ
rH  as Eq. (20) and Eq. (21). 

I  is the Fisher information matrix of ω  and υ , and Eq. (22) gives the elements of I . 1I −  is the inverse 

matrix of I . 

 1 T
ˆ ˆ,s s sV D I D ω ω υ υ

−
= ==  (20) 

 1 T
ˆ ˆ,r r rV D I D ω ω υ υ

−
= ==  (21) 

2 2 2

2 2
1

2
2

2 2
1

,   ln

(ln )

n

i i

i

n

i i

i

S n S S
t t

S n
t t

υ

υ

ω ω ω υ υ ω

ω
υ υ

−

=

−

=

∂ ∂ ∂
= − = =

∂ ∂ ∂ ∂ ∂

∂
= − −

∂




 (22) 

Then, the 100(1 )%α−  ACI of Shannon entropy is Eq. (23), and the 100(1 )%α−  ACI of Rényi entropy 

is Eq. (24), where 
2

zα  is the upper ( 2
α )th quantile of the standardized normal distribution. 

 1 1
2 2

ˆ ˆ(  , )s s s sH z V H z Vα α− +  (23) 

 1 1
2 2

ˆ ˆ(  , )r r r rH z V H z Vα α− +  (24) 

4. Bayesian Estimation 

Bayesian estimation is a method of introducing prior information to deal with decision 

problems. The advantage is that it can include the prior information in statistical inference and 

improve the accuracy of the taken decision. From the time when Bayesian estimation was proposed 

to now, many researchers have adopted this method in estimating parameters and related functions. 

For example, Kundu and Howlader [30] considered the Bayesian inference and prediction of inverse 

Weibull distribution, based on type-II censored data. A Gibbs sampling procedure was used for 

MCMC samples, and Bayes estimation was computed by this sample. Sultan et al. [31] considered 

the Bayesian estimation of inverse Weibull parameters based on progressive type-II censored data. 

Because the Bayes estimators can’t be obtained explicitly, the Lindley approximation was used to 

calculate them. Mohammad and Mina [32] presented the Bayesian inferences of parameters of 

inverse Weibull distribution based on type-I hybrid censored data and computed the Bayes 

estimates using Lindley approximation. Algarni et al. [33] considered the Bayes estimation of 

parameters for the inverse Weibull distribution employing a progressive type-I censored sample. 

Metropolis-Hasting (MH) algorithm was used to compute the Bayesian estimates. 

In addition to the areas mentioned above, there are some recent applications of the Bayesian 

method. Zhou and Luo [34] developed a supplier's recursive multiperiod discounted profit model 

based on Bayesian information updating. Yulin et al. [35] put forward a Bayesian approach to tackle 

the misalignments for over-the-air computation. Taborsky et al. [36] presented a novel generic 

Bayesian probabilistic model to solve the problem of parameters marginalization under the 

constraint of forced community structure. Oliver [37] introduced the Bayesian toolkit and showed 

how geomorphic models might benefit from probabilistic concepts. Ran et al. [38] proposed a 

Bayesian approach to measure the loss of privacy in a mechanism. Luo et al. [39] used the Bayesian 

information criterion for model selection when revisiting the lifetime data of brake pads. Peng et al. 

[40] extended a general Bayesian framework to deal with the degradation analysis of sparse 

degradation observations and evolving observations. František et al. [41] illustrated Bayesian 
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estimation of how to benefit parametric survival analysis. Liu et al. [42] proposed fuzzy Bayesian 

knowledge tracing models to address continuous score scenarios. 

In this paper, the Bayesian estimations of Shannon entropy and Rényi entropy of IWD are 

investigated under symmetric entropy (SE) and scale squared error (SSE) loss functions, which are 

widely used in Bayesian statistical inference [43–45]. 

(i) SE loss function is defined in Equation (Eq. 25) [43] 

 1

ˆˆ( , ) 2ˆ
H H

L H H
HH

= + − , (25) 

where Ĥ  is the estimator of H .  

Lemma 1. Suppose that T  is the historical data information about the entropy function H . Then, 

under the SE loss function (25), the Bayesian estimator 1Ĥ  for any prior distribution is showed in 

Eq. (26) 

1
2

1 1

( )ˆ [ ]
( )
E H T

H
E H T−

= , (26) 

where ( | )E H T  is the posterior expectation of H and 1( | )E H T−  is the posterior expectation of 
1H − . 

Proof. Under the SE loss function (25), the Bayesian risk of Ĥ  is 

 1
ˆ ˆ( ) ( ( ( , ) ))HR H E E L H H T= . 

To minimize ˆ( )R H , only need to minimize 1
ˆ( ( , ) | )E L H H T . For convenience, 

let 1
ˆ ˆ( ) ( ( , ) | )g H E L H H T= . 

Because 

    1 1ˆ ˆ ˆ( ) ( ) ( ) 2g H H E H T HE H T− −= + − , 

and the derivative is 

  2 1ˆ ˆ( ) ( ) ( )g H H E H T E H T− −′ = − + . 

The Bayesian estimator 1Ĥ  can be obtained by ˆ( ) 0g H′ = . 

(ii) SSE loss function is defined in Equation (Eq. 27) [45] 

 
2

2

ˆ( )ˆ( , )
k

H H
L H H

H

−
= , (27) 

where k is a nonnegative integer. 

Lemma 2. Suppose that T  is the historical data information about the entropy function H . Then, under 

the SSE loss function (27), the Bayesian estimator 2Ĥ  for any prior distribution is 

 
1

2

( )ˆ
( )

k

k

E H T
H

E H T

−

−
= , (28) 

where 1( | )kE H T−  is the posterior expectation of 1 kH − and ( | )kE H T−  is the posterior expectation 

of kH − . 

Proof. Under the SSE loss function (27), the Bayesian risk of Ĥ  is 

  2
ˆ ˆ( ) ( ( ( , ) ))HR H E E L H H T= . 

To minimize ˆ( )R H , only need to minimize 2
ˆ( ( , ) | )E L H H T . Similarly, let 

2
ˆ ˆ( ) ( ( , ) | )h H E L H H T= . 

Because 
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2 2

2 1 2

ˆ ˆ2ˆ( ) ( )

ˆ ˆ( ) 2 ( ) ( )

k

k k k

H HH H
h H E T

H

E H T HE H T H E H T− − −

− +
=

= − +

, 

and the derivative of ˆ( )h H  is 
  1ˆ ˆ( ) 2 ( ) 2 ( )k kh H E H T HE H T− −′ = − + . 

The Bayes estimator 2Ĥ  can be obtained by ˆ( ) 0h H′ = . 

Assume that the scale parameter ω  and shape parameter υ  of two-parameter IWD are 

independent random variables, which ω  obey ( , )a bΓ  and υ  obey non-informative PD as 

follows: 

 1
1( ) , 0, 0

( )

b
b aa

P e a b
b

ωω ω − −= > >
Γ

, (29) 

 2
1( )P υ
υ

∝ . (30) 

Thus, the joint PD of ω  and υ  is 

1( , )
( )

b
b aa

P e
b

ωω υ ω
υ

− −∝
Γ

. (31) 

Referring to Bayesian formulation, the posterior distribution of ω  and υ  is 

 

0 0

( , ) ( ; , )( , )
( , ) ( ; , )

P s t
P T

P s t d d

ω υ ω υ
ω υ

ω υ ω υ ω υ
+∞ +∞

=

 
. (32) 

Thus, the Bayesian estimators of Shannon entropy and Rényi entropy under SE can be 

expressed as 

 
1 1

0 02 2
2 1 1

0 0

( , )( )ˆ [ ] [ ]
( ) ( , )

ss

s

s
s

H P T d dE H T
H

E H T H P T d d

ω υ ω υ

ω υ ω υ

+∞ +∞

+∞ +∞−
−

= =
 
 

, (33) 

 
1 1

0 02 2
2 1 1

0 0

( , )( )ˆ [ ] [ ]
( ) ( , )

rr

r

r
r

H P T d dE H T
H

E H T H P T d d

ω υ ω υ

ω υ ω υ

+∞ +∞

+∞ +∞−
−

= =
 
 

. (34) 

The Bayesian estimators of Shannon entropy and Rényi entropy under SSE can be expressed as 

 
11

0 0
3

0 0

( , )( )ˆ
( ) ( , )

kk
ss

s k
k

s
s

H P T d dE H T
H

E H T H P T d d

ω υ ω υ

ω υ ω υ

+∞ +∞
−−

+∞ +∞−
−

= =
 
 

, (35) 

 
11

0 0
3

0 0

( , )( )ˆ
( ) ( , )

kk
rr

r k
k

r
r

H P T d dE H T
H

E H T H P T d d

ω υ ω υ

ω υ ω υ

+∞ +∞
−−

+∞ +∞−
−

= =
 
 

. (36) 

From Eq. (33) to Eq. (36), it can be seen that the calculation of Bayesian estimators of Shannon 

and Rényi entropy are complex and difficult to calculate. Thus, Lindley approximation will be 

employed to achieve the approximate calculation results of 3
ˆ
sH  and 3

ˆ
rH . 

4.1. Bayesian Estimation by using Lindley approximation under SE loss function 

Referring to Lindley approximation, ( )I t  can be defined as 

 
( ; , ) ( , )

( ; , ) ( , )

( , ) ( , )
( ) [ ( , ) ]

( , )

S t G

S t G

U e d
I t E U T

e d

ω υ ω υ

ω υ ω υ

ω υ ω υ
ω υ

ω υ

+

+
= =




, (37) 
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where ( , )U ω υ  is a function of independent variables ω  and υ , ( ; , )S t ω υ  is log LF defined in Eq. 

(9), ( , )G ω υ  is the log of joint PD defined in Eq. (31). 

If the sample size is large, Eq. (37) can be expressed as  

 1ˆ ˆ( ) ( , ) ( )
2

I t U A B C Dω υ= + + + + , (38) 

where ω̂  and υ̂  are the ML estimators of ω  and υ , and 

 

ˆ ˆˆ ˆ ˆ ˆˆ ˆ( 2 ) ( 2 )
ˆ ˆˆ ˆ ˆ ˆˆ ˆ( 2 ) ( 2 )

ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( )( )
ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( )( + )

A U U G U U G

B U U G U U G

C U U S S S S

D U U S S S S

ωω ω ω ωω υω υ ω υω

ωυ ω υ ωυ υυ υ υ υυ

ω ωω υ ωυ ωωω ωω ωυω ωυ υωω υω υυω υυ

ω υω υ υυ ωωυ ωω ωυυ ωυ υωυ υω υυυ υυ

σ σ

σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

= + + +

= + + +

= + + + +

= + + +

 (39) 

ijσ ( , ,i j ω υ= ) is the element of inverse matrix of ijS− . 

The Ûωω  is denoted that taking the second derivative of ( , )U ω υ  with respect to ω  and 

putting ω̂  into it. Similarly, others can be expressed as 

 

3

3
3

1 1

30,   

2ln ,   (ln )

1 1,   

n n

i i i i

i i

n
S S S S

n
S S S t t S t t

b
G a G

ωωυ ωυω υωω ωωω

υ υ
ωυυ υωυ υυω υυυ

ω υ

ω

ω
υ

ω υ

− −

= =

= = = =

= = = − = +

−
= − =

  . (40) 

Under the SE loss function, the step of numerical calculation of Shannon entropy 2
ˆ
sH  by 

Lindley approximation is shown as follows: 

When ( , ) sU Hω υ = , 

 
2

2 3 2 2

1 ln 1,   

1 2ln 2 1 1,   ,   

U U

U U U U

ω υ

ωω υυ ωυ υω

γ ω

ωυ υ υ
ω γ

ω υ υ υ ωυ

− −
= = −

+
= − = + = = −

. (41) 

Put Eq. (40) and Eq. (41) into Eq. (38), ( | )sE H T  is obtained. 

Similarly, when 1( , ) sU Hω υ −= , 

 

2 2
2

3 2
2 2 2

3 2 2
2 3 2

3 2
3 2 2

1 ln 1,   ( )

1 12

ln 1 2ln 2 12 ( ) ( )

ln 1 12 ( )

s s

s s

s s

s s

U H U H

U H H

U H H

U U H H

ω υ

ωω

υυ

ωυ υω

γ ω

ωυ υ υ

ω υ ω υ
γ ω ω γ

υ υ υ υ
γ ω

ωυ ωυ ωυ

− −

− −

− −

− −

+
= − = +

= +

− − +
= − − +

− −
= = − +

. (42) 

Then, put Eq. (40) and Eq. (42) into Eq. (38), 1( )sE H T−  is obtained. Thus, the numerical calculation 

of Shannon entropy 2
ˆ
sH  is calculated by Eq. (33). 

Under the SE loss function, the numerical calculation of Rényi entropy 2
ˆ
rH  by Lindley 

approximation is shown as follows: 

When ( , ) rU Hω υ = , 
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2 2

1

1

1 2 1 1

3 2 4 1 2 2

,   ,   
(1 ) (1 ) (1 )

ln ln (1 )[1 ]
(1 ) (1 )
2 (ln ln ) [ (1 )] (1 ) (1 )

(1 ) (1 ) [ (1 )] (1 )

r r r
U U U U

r r r

r r r r
U

r r r

r r r r r r r r r
U

r r r r r r

ω ωω ωυ υω

υ

υυ

ωυ ω υ ωυ

ω υ

υ υ υ υ

ω υ υ υ

υ υ υ υ

−

−

− − −

− −

− −
= = = =

− − −

′− Γ + +
= + −

− Γ + +

′ ′′− Γ + + − Γ + + Γ + +
= − −

− − Γ + + −

(43) 

Put Eq. (40) and Eq. (43) into Eq. (38), ( | )rE H T  is obtained. 

When 1( , )
r

U Hω υ −= , 

 

2 2 1

1

2 3 2

2 2 2 2

2 3 1

2 2 1

1 2

ln ln (1 ),   [1 ]
(1 ) (1 ) (1 )

2 ,
(1 ) (1 )

2 ln ln 1 (1 )[1 ]
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rH rH r r r
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U
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ωω

ωυ υω
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ω υ

ωυ υ υ υ υ

ω υ ω υ

ω υ

ωυ υ υ υ

υ υ

− − −

−

− −

− −

−

− −

′− − − Γ + +
= = + −

− − Γ + +

= +
− −

′− Γ + +
= = + −

− Γ + +

′ ′′Γ + + − Γ + +
=

21 1

2 4 1 2 2 2 3 2

2 3 1

2 2 1

) (1 ) 2 (ln ln )
(1 ) [ (1 )] (1 ) (1 )

2 ln ln (1 )[1 ]
(1 ) (1 )

r

r r

r

rHr r r r

r r r r H r r H

r H r r r

r r r

υ ω

υ υ υ υ

ω υ

υ υ υ υ

−−

− −

− −

−

Γ + + −
+ −

− Γ + + − −

′− Γ + +
+ + −

− Γ + +

 (44) 

Put Eq. (40) and Eq. (44) into Eq. (38), 1( | )
r

E H T−  is obtained. Thus, the numerical calculation of Shannon 

entropy 2
ˆ
rH  is calculated by Eq. (34). 

4.2. Bayesian Estimation by using Lindley approximation under SSE loss function 

Under the SSE loss function, the step of numerical calculation of Shannon entropy 3
ˆ
sH  by 

Lindley approximation is shown as follows: 

When 1( , ) k

sU Hω υ −= , 

 

2

1 2
2

1 2
2 3 2

1
2 2

1 ln 1(1 ) ,   (1 ) ( )

1 1(1 ) ( ) (1 )

ln 1 2ln 2 1(1 ) ( ) (1 ) ( )

1 ln 1 1(1 ) ( ) (1 )

k k

s s

k k

s s

k k

s s

k k

s s

U k H U k H

U k k H k H

U k k H k H

U U k k H k H

ω υ

ωω

υυ

ωυ υω

γ ω

ωυ υ υ

ωυ ω υ
γ ω ω γ

υ υ υ υ
γ ω

ωυ υ υ ωυ

− −

− − −

− − −

− − −

− −
= − = − −

= − − − −

+ +
= − + + − +

+
= = − + − −

. (45) 

Then, putting Eq. (40) and Eq. (45) into Eq. (38), 1( )k

sE H T−  is obtained.  

When ( , ) k

sU Hω υ −= , 

 

1 1
2

2 2 1
2

2 2 1
2 3 2

2 1
2 2

1 ln 1,   ( )

1 1( 1) ( )

ln 1 2ln 2 1( 1) ( ) ( )

1 ln 1 1( 1) ( )

k k

s s

k k

s s

k k

s s

k k

s s

U kH U kH

U k k H kH

U k k H kH

U U k k H kH

ω υ

ωω

υυ

ωυ υω

γ ω

ωυ υ υ

ωυ ω υ
γ ω ω γ

υ υ υ υ
γ ω

ωυ υ υ ωυ

− − − −

− − − −

− − − −

− − − −

+
= − = +

= + +

− − +
= + − − +

− −
= = + − +

. (46) 
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Then, putting Eq. (40) and Eq. (46) into Eq. (38), ( )k

sE H T−  is obtained. Thus, the numerical 

calculation of Shannon entropy 3
ˆ
sH  is calculated by Eq. (35). 

Under the SSE loss function, the step of numerical calculation of Rényi entropy 3
ˆ
rH  by Lindley 

approximation is shown as follows: 

When 1( , ) k

rU Hω υ −= , 
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2 2 2 2

2 1 1

2 2 1

(1 ) (1 ) ln ln (1 ),   [1 ]
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k

r

k

r
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U
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−

′− − Γ + + − −
= + − +
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− −

− − Γ + + −

 (47) 

Put Eq. (40) and Eq. (47) into Eq. (38), 1( | )k

rE H T−  is obtained. 

When ( , ) k

rU Hω υ −= , 
1 1 1
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rkHr r r r r r
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 (48) 

Put Eq. (40) and Eq. (48) into Eq. (38), ( )k

rE H T−  is obtained. Thus, the numerical calculation of 

Rényi entropy 3
ˆ
rH  is calculated by Eq. (36). 

5. Monte Carlo simulation 

In this chapter, Monte Carlo simulation is used to generate random samples that obey 

two-parameter IWD, and repeat 1000 experiments respectively with different sample sizes 

( 10, 20,30, 40,50,60,70,80,90,100n = ). The true values of the parameters in the two-parameter IWD 

are taken as 1ω =  and 2υ = , the parameters of the gamma distribution are taken as 5a =  and 

1b = , the parameters in SSE are taken as 10k = , and the parameters of the Rényi entropy are taken 

as 0.5r = . Then, the mean squared error (briefly, MSE) is used to compare the performance of each 

estimator. The results of Shannon entropy are shown in Table 1, and the results of Rényi entropy are 

shown in Table 2. For showing the performance of 100(1 )%α−  ACIs, the coverage probability is 

calculated and the results are shown in Table 3. 

For convenience, 0sH  and 0rH  represent the true values of Shannon entropy and Rényi 

entropy, 1
ˆ
sM  and 1

ˆ
rM  represent mean values of 1000 ML estimates of entropy respectively, 2

ˆ
sM  

and 2
ˆ
rM  represent mean values of 1000 Bayesian estimates of entropy respectively under SE loss 
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function, 3
ˆ
sM  and 3

ˆ
rM  represent mean values of 1000 Bayesian estimates of entropy respectively 

under SSE loss function, 1sMSE  and 1rMSE  represent MSEs of ML estimates of entropy 

respectively, 2sMSE  and 2rMSE  represent MSEs of Bayesian estimates of entropy respectively 

under SE loss function, 3sMSE  and 3rMSE  represent MSEs of Bayesian estimates of entropy 

respectively under SSE loss function. The ˆ
sjM  and 

sjMSE ( 1,2,3j = ) are calculated by Eq. (49) and 

Eq. (50), where 1000m =  and ,
ˆ
sj iH  represents the i-th ML estimate or Bayesian estimate of Shannon 

entropy. The ˆ
rjM  and rjMSE ( 1, 2,3j = ) are calculated by Eq. (51) and Eq. (52), where 1000m =  

and ,
ˆ
rj iH  represents the i-th ML estimate or Bayesian estimate of Rényi entropy. 

 ,
1

1ˆ ˆ
m

sj sj i

i

M H
m =

=  , (49) 

 2
, 0

1

1 ˆ( )
m

sj sj i s

i

MSE H H
m =

= − , (50) 

 ,
1

1ˆ ˆ
m

rj rj i

i

M H
m =

=  , (51) 

 2
, 0

1

1 ˆ( )
m

rj rj i r

i

MSE H H
m =

= − . (52) 

Table 1. Estimates and MSEs of Shannon entropy ( 0 =1.1727sH ). 

Sample 

size ( n ) 

Estimate MSE 

1
ˆ
sM  2

ˆ
sM  3

ˆ
sM  1sMSE  2sMSE  3sMSE  

10 1.0604 0.8259 0.8914 0.1903 0.3666 0.2065 

20 1.1183 0.9631 0.9683 0.0863 0.1282 0.1186 

30 1.1388 1.0301 1.0076 0.0558 0.0751 0.0766 

40 1.1355 1.0526 1.0292 0.0445 0.0574 0.0592 

50 1.1461 1.0788 1.0379 0.0323 0.0404 0.0472 

60 1.1503 1.0938 1.0506 0.0287 0.0343 0.0399 

70 1.1579 1.1093 1.0646 0.0244 0.0282 0.0334 

80 1.1623 1.1196 1.0694 0.0197 0.0224 0.0284 

90 1.1653 1.1272 1.0803 0.0171 0.0191 0.0256 

100 1.1628 1.1284 1.0777 0.0161 0.0183 0.0244 

Table 2. Estimates and MSEs of Rényi entropy ( 0 =1.5641rH ). 

Sample 

size ( n ) 

Estimate MSE 

1
ˆ
rM  2

ˆ
rM  3

ˆ
rM  1rMSE  2rMSE  3rMSE  

10 1.6681 1.7793 1.7682 0.0525 0.1075 0.0954 

20 1.6056 1.6512 1.6587 0.0178 0.0218 0.0186 

30 1.5999 1.6278 1.6229 0.0129 0.0136 0.0112 

40 1.5903 1.6113 1.6082 0.0103 0.0103 0.0075 

50 1.5829 1.5992 1.5972 0.0072 0.0071 0.0064 

60 1.5809 1.5954 1.5896 0.0055 0.0057 0.0049 

70 1.5765 1.5885 1.5878 0.0046 0.0046 0.0045 

80 1.5781 1.5886 1.5857 0.0044 0.0041 0.0034 

90 1.5752 1.5845 1.5779 0.0038 0.0038 0.0032 

100 1.5731 1.5814 1.5775 0.0032 0.0032 0.0031 

Table 3. The coverage probability of 100(1 )%α−  ACIs with different α . 
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Sample size 

( n ) 

Shannon entropy Rényi entropy 

0.1α =  0.05α =  0.1α =  0.05α =  

10 0.9637 0.9752 0.9662 0.9791 

20 0.9798 0.9894 0.9789 0.9884 

30 0.9829 0.9916 0.9847 0.9930 

40 0.9839 0.9941 0.9860 0.9953 

50 0.9857 0.9946 0.9894 0.9957 

60 0.9876 0.9947 0.9936 0.9954 

70 0.9875 0.9947 0.9925 0.9965 

80 0.9875 0.9940 0.9929 0.9972 

90 0.9894 0.9955 0.9934 0.9966 

100 0.9865 0.9950 0.9929 0.9971 

Based on the above tables, the following conclusions can be drawn: 

(1) For Shannon entropy, the ML estimation performs better than the Bayesian estimation. 

While for Rényi entropy, the performance of ML estimation is similar to Bayesian estimation. 

(2) In Bayesian estimation, it is better to select the SE to estimate Shannon entropy. On the 

contrary, it is better to select the SSE to estimate Rényi entropy. 

(3) The sample size has a great influence on Shannon entropy than Rényi entropy. When the 

sample size increases gradually, the Bayesian estimation of Shannon entropy under SE is close to the 

ML estimation, but it has no obvious effect on Rényi entropy. 

(4) In Table 3, it can be noted that the coverage probability of ACIs is quite close to confidence 

levels. 

6. Real data analysis 

There is a real data set given by Bjerkdal [46], which represents the survival time (in days) of 

guinea pigs after the injection of different doses of tubercle bacilli. Kundu and Howlader [47] proved 

that this set of data sets using the IWD fitting effect is very good, therefore, this data set can be seen 

as a sample of IWD. In Reference [46], the regimen number refers to the common logarithm of 

bacillary units contained in 0.5 ml of challenge solution. In other words, regimen 6.6 represents 

4.0*106 bacillary units per 0.5 ml. Corresponding to regimen 6.6, the 72 observed observations are 

listed as follows: 

12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 60, 

61, 62, 63, 65, 65, 67,68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 

129, 131, 143, 146, 146, 175, 175, 211,233, 258, 258, 263, 297, 341, 341, 376. 

Using the proposed estimates described in the above sections, the ML estimates and Bayesian 

estimates of Shannon entropy and Rényi entropy are displayed in Table 4. It’s obvious that the ML 

estimates of entropies are all smaller than Bayesian estimates under SE respectively, and the 

Bayesian estimates under SSE of entropies are all smaller than ML estimates respectively. 

Table 4. The estimates and ACIs of entropies based on the real data set. 

 
ML  

estimates 

Bayesian estimates 100(1 )%α−  ACIs 

Under  

SE 

Under 

SSE 
0.1α =  0.05α =  

Shannon 

entropy 
5.6307 5.6998 4.8706 (5.1858, 6.0757) (5.1328, 6.1287) 

Rényi  

entropy 
5.4129 4.7280 4.8706 (5.1877, 5.6381) (5.1609, 5.6649) 
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7. Conclusions 

This paper considers the Bayesian estimations of Shannon entropy and Rényi entropy based on 

two-parameter IWD. First, the expressions of these entropies of two-parameter IWD are derived in 

Theorem 1. For ML estimation, due to the invariance of ML estimation, the ML estimators of 

parameters are obtained by the dichotomy method at first. And then, the ML estimators of entropies 

can be obtained. Additionally, the approximate confidence intervals are given by the Delta method. 

For Bayesian estimation, the symmetric entropy loss function and scale squared error loss function 

are chosen. However, the forms of Bayesian estimators are complex and difficult to calculate. 

Lindley approximation is used to solve this problem. Finally, the mean square errors of the above 

estimators are used to compare their performances. For Shannon entropy, it’s better to use ML 

estimator. And for Rényi entropy, the performances of the ML estimator and Bayesian estimator are 

analogous. 
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