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Abstract: In the current paper, we present our work towards developing a solution combining 

computer vision and AI to support footrest design customization in the wheelchair industry. 

Wheelchairs and postural systems are complex and often user centric in the design process. Those 

products require a wide range of adjustments to adapt to the various anthropometries and disabilities 

of patients. Most commercial products, dedicated to severe disability, also include a series of 

additional elements, designed to keep the patient in a comfortable but “fixed” position. Such systems 

do not allow to “fix and maintain” the position of patient foot, especially for patients who have no 

control over their lower limbs. For that reason, it becomes essential to supply wheelchairs with 

specific elements to hold patient's shoe in place. Commercial foot supports are typically developed 

on standard sizes and do not always cover the entire population. In addition, those designs are based 

on standard shoes, thus they do not lend themselves well to adapting to special shoes or orthopedic 

shoes.  Feet final position therefore becomes a key element in correct postural management. In this 

paper, we investigate the use of computer vision and AI to correctly define customization parameters 

of the footrest. The proposed design has been developed based on the specifications received from 

the Pro Medicare S.r.l1 orthopedic technicians. We present suitable algorithms, design principles and 

well defined components towards the implementation of our proof of concept. We also present the 

testing activities we have undertaken and the obtained performance results.  

Keywords: additive manufacturing; artificial intelligence; deep learning; design customization; 

wheelchair; footrest; Kyklos 4.0; circular economy 

 

1. Introduction 

Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is one of the 

most appealing aspects in industry 4.0 since it promises a radical transformation to industrial 

production by enabling the creation of lighter, stronger parts and systems 1. AM is expected to gain 

more and more momentum in the future thanks to the advantages that it offers over traditional 

manufacturing. Cost reduction, time efficiency, and customization of products with complex 

geometries seem to be the main aspects driving the rapid deployment of AM in production 

environments 2. Unfortunately, variability in products quality and process reliability remain a big 

challenge that needs to be addressed 2. The use of AI in the context of additive manufacturing is still 

being explored by academia and industry. The related use cases cover the entire production life cycle 

and range from design recommendation, through defect detection, to predictive maintenance. 

                                                 
1 https://www.promedicare.eu/en/ 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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Designing and producing wheelchairs is a big challenge since it is expected that this wheelchair 

will offer appropriate seating and postural support without compromising important aspects such 

as strength and safety2. Wheelchairs are composed of a series of elements designed to be adjusted 

and adapted to the various anthropometries and disabilities of patients. Most commercial products, 

dedicated to severe disability, also include a series of additional elements, designed to keep the 

patient in a comfortable but “fixed” position. Postural pads and belts are typical elements used on 

cushion backrest. Feet final position therefore becomes a key element in correct postural 

management. Most wheelchairs have fixed or foldable planar footrests as showed in the following 

picture. 

 

 

Figure 1. (left) Standard footrest design, (right) Footrest design example. Alt Text: This figure shows 

a standard footrest as well as a new one that will be designed by Kyklos 4.0. 

Such systems do not allow to “fix and maintain” the position of patient foot, especially for 

patients who have no control over their lower limbs. For that reason, it becomes essential to supply 

wheelchairs with specific elements to hold patient's shoe in place. Commercial foot supports are 

typically developed on standard sizes and do not always cover the entire population. In addition, 

those designs are based on standard shoes, thus they do not lend themselves well to adapting to 

special shoes or orthopedic shoes. 

Based on these considerations, we decided to exploit Artificial Intelligence to correctly define 

customization parameters of the footrest. The proposed design has been developed on the basis of 

the specifications received by orthopedic technicians from the company Pro Medicare S.r.l3.  The 

system consists of a base that can be fixed by screws to standard footrests already provided in the 

wheelchair, and its design provides two vertical walls, conformed to the shape of the shoe, which 

stabilize and firmly maintain the heel and sides of the shoe. 

Once the customization parameters are computed, this information will be communicated to a 

3D modelling engine that will adapt the CAD model and consequently to the 3D printer to produce 

the footrest. The main goal of this new approach is to simplify the procedure to obtain best fitting 

design, 

2. Related Work 

Although the use of AI in the context of additive manufacturing is still in an exploratory phase, 

the use cases that have been demonstrated so far by academia and industry seem to be promising. 

The manufacturing stages where the AI applications were proposed cover the entire AM life cycle.  

The AI research company EMERJ 3 has explored the potential use of AI in additive 

manufacturing and found that the related applications span the following four segments 4, 

1. Improving efficiency in the prefabrication stage: Here, a user willing to manufacture a given part, 

takes the CAD files describing this part as well as the desired output and check whether AM is 

suitable for processing the production. In the context of generative design, machine learning can 

be in particular used for generating and evaluating digital models that will be used in the 3D 

printing production  

                                                 
2 https://www.ncbi.nlm.nih.gov/books/NBK143784/ 
3 https://www.promedicare.eu/en/ 
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2. Defect detection: An AM technology, like any other, is prone to defects. This means the part that 

was produced from 3D printing could reveal some aberrations. In order to detect such failures 

and discard the concerned parts, computer vision and AI can be utilized.  Here, the printing 

process will be inspected through high-resolution cameras, and suitable machine leaning 

algorithms will be used to match the recorded patterns to well-known defects in the AM 

technology 

3. Real-time build control: The idea here is to take defect detection using computer vision and 

dynamically control 3D printers to compensate for the defects. This approach will certainly help 

in limiting waste of time and materials 

4. Predictive maintenance: According to Fortune Business Insights 5, the 3D printing industry market 

size that was US$ 10,41 billion in 2019, could reach US$ 54,96 billion by 2027. An important 

segment in this market is the spare parts industry 6. Concretely, 3D printing is offering many 

benefits to this industry including less production costs, 3D digital inventory (printing parts on 

demand), and faster delivery time.  Machine learning and predictive maintenance will also 

play a crucial role in the expansion of this segment. For instance, applying machine learning to 

predict in an accurate way the remaining useful life of a certain part can help in scheduling an 

appointment for the part replacement. 

The authors of 7 reviewed machine learning (ML) methods used in AM and divided the different 

approaches into three categories: geometrical design, process parameter configuration and anomaly 

detection. In the area of geometric design, AM enables the construction of complex lattice structures 

with different material distributions that meet the requirements of the respective application. In the 

part process parameter configuration, the authors address the work that uses ML methods to 

influence the quality of the final printed products through the choice of process parameters. In 

addition, justifications for the use of ML are provided, as well as recent literature such as 8 and 9 on 

the application of ML to optimize and interpret the analytical relationship between process 

parameters and product quality. Finally, the authors address the approaches (computer vision 

methods, improved test setups and novel simulation approaches) that deal with the detection of 

anomalies in the manufacturing process (detection of defective ones). These methods aim to assess 

the printing condition and product quality efficiently and accurately. 

The use of machine learning in AM was also discussed in detail in 10. The authors analysed fifty 

papers, identified where and how machine learning techniques were applied to AM, and organized 

in an easy way the obtained findings. The approach followed by the authors partially overlaps with 

the one discussed previously by EMERJ. Here, the use of machine learning was explored through all 

the production lifecycle stages, namely, design, process planning, building, post processing, and 

testing and validation (10, 11). Within each stage, a variety of functions can be implemented using 

machine learning techniques as it is shown in Table 1, the implemented techniques are used for 

instance for prediction, performance optimization, defect detection, classification, regression, or 

forecasting (10, 12). 

Table 1. Overview of ML Algorithms used in AM applications. 

Production Stage Implemented Functions 
Examples of ML techniques 

used 

Design 

• Design Recommendation 

• Topology Optimization 

• Tolerancing and Manufacturability 

assessment 

• Material selection 

Hierarchical clustering, SVM, 

NNs, genetic algorithms 

AM process and 

performance 

optimisation 

• Predicting process response 

• Predicting property and performance 

response 

• Process parameter determination 

• Process Optimization 

Self-organizing maps, Back 

propagation NN, Gaussian 

process regression, polynomial 

regression 
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IN-SITU process 

monitoring and 

control 

Post-process 

monitoring and 

control 

• Anomaly/Defect/ Failure Detection 

• Machine condition monitoring 

• Real time process control 

• Detecting cyber physical attacks 

KNN, Bayesian classifier, PCA, 

SVM, Spectral CNN 

Quality assessment 

• Product inspection 

• Testing and validation 

• Surface metrology 

• Defect Detection and Classification 

KNN, Decision tree, Augmented 

layerwise spatial log Gaussian 

Cox process (ALS-LGCP) 

In this paper, the use of machine learning for AM falls within the “design” stage and under the 

“design recommendation” function (see Table 1). However, the context is completely different. In 13, 

machine learning was used to assist inexperienced AM designers by offering them an automated AM 

design feature recommendation method. The latter combines hierarchical clustering (unsupervised 

learning) and support vector machine (SVM) (supervised learning). Other researchers (14, 15) have 

used various neural networks techniques to help designers estimate build time factors for instance. 

In KYKLOS 4.0, a machine learning based solution was developed to predict some anthropometric 

measurements needed for the design of the footrest of the wheelchair. The solution is customer/user 

friendly since it only requires a picture of the contour of the shoe of this person. Here, computer 

vision and Neural Networks (NN) are combined to predict the length, top width, and the bottom 

width of the footrest. The generated information is sent then to the 3D modelling component to 

further design this part. 

3. Wheelchair design support: The Kyklos 4.0 Approach 

To be able to accomplish the proposed workflow to produce personalized products using 

Additive Manufacturing, the collaboration of various components is required. The functionality 

introduced by the DL Toolkit, a Data Analytics Enabler component in its essence, is leveraged to 

support the functionality of the KYKLOS 4.0 Smart Design Enablers.  

In fact, a specific part of Kyklos 4.0 Project is focused on mass customization through the 

development of a product parametric design methodology able to collect input data from 

anthropometric measures, design constraints and producer expertise, and to automatically process 

and translate them for using as design inputs for dimensioning a 3D parametric model of the 

customized product. The entire workflow includes the best definition of variables (dimensions) that 

should be used as inputs for the final product configuration; the usage of a 3D parametric model in 

order to create a custom part, and the introduction of specific tool to simplify procedure and measure 

of custom parameter. Specific components developed within this project, as listed below, are closely 

connected to the DL Toolkit an allows the definition of customizable products such as the footrest 

design:  

• Parametric Design Methodology by CETMA: This component was specifically developed in 

order to transform anthropometric dimensions into custom parameters for the wheel chair 

production. This methodology also defines which are the main important dimensions that 

should be extracted by the DL Toolkit through the image contour analysis. The output of this 

approach will be a solution that could be applied to create product parametric design engine. 

The analyzed workflow includes the best definition of variables (dimensions) that should be 

used as inputs for the final product configuration; the usage of a 3D parametric model in order 

to create a custom part, or a custom assembly, based on provided inputs. Thanks to this 

methodology, and guided by Pro Medicare technicians, we were able to define a set of variable 

to determine the footrest correct parametrization. This approach could be used for mass 

customization thanks to the use of both the DL Toolkit as well as the Web 3D Modelling 

Component. 

• Web 3D Modelling Component by TWI: The Web 3D Modelling component receives the 

extracted dimensions as input. Using the functionalities provided by the Web 3D Modelling 
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component, a watertight CAD model of the footrest is automatically generated. This tool is based 

on scripting modelling that is able to drive the design of a 3D model, using a set of independent 

variables. In this case, these variables are the extracted dimensions presented in this paper. The 

footrest design is built in a way to be able to be automatically exported in a watertight 3D 

printable format, and pushed for manufacturing via AM by just receiving input from the DL 

toolkit. This can be done rapidly to provide different configurations of the footrest template and 

conform to a variety of patient characteristics (i.e. different shoe size, shape, etc.). An example 

of generated footrests can be seen in Figure 2. 

 

Figure 2. Web 3D Modelling Component - Footrest iterations. Alt Text: This figures shows a series of 

footrests generated by the 3D modelling component. 

The footrest models presented in the above figure are exported in both .stl and .step format to 

be either directly 3D printable or editable in other CAD software. A key factor to enable the 

generation of highly personalized models is the utilization of web collaboration tools. The Web 3D 

Modelling Component has been developed in a way that it can be accessible through the web. The 

patients are able to access the tool, upload a picture of their shoe contour traced in a piece of A4 paper 

and then further process the generated 3D model. The overall workflow for the AI driven design of 

the footrest is presented in Figure 3. 

 

Figure 3. Personalised footrest value chain. The design process begins with a contour of the patient's 

show, the associated anthropometric dimensions are extracted which then drive the design of a 

parametric footrest CAD model. Alt Text: This figure summarizes the steps undertaken for the design 

of footrests. 
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By using the design principles dictated by the Parametric Design Methodology, we developed a 

framework for providing personalized products such as the footrest component. In the heart of this 

framework lies the scripting modelling language CADQuery. The footrest component has been 

designed following an algorithmic approach that enables the generation of the footrest component as 

an output of a constraint driven function. The CADQuery script receives as input the independent 

variables of the design and generates the corresponding personalized design according to the input 

received. 

 

Figure 4. Running in the back, a Python script running in the environment of CADQuery library 

receives as input the extracted dimensions and generates a watertight 3D model of the footrest 

component. Alt text: This figures shows how the 3D model I generated from the received 

anthropometric measurements. 

The constraints set by the anthropometry of each specific patient regarding his/her shoe can be 

summarized by the following two parameters, (i) Shoe Length, and (ii) Shoe Width. Therefore, our 

design would need to accurately cover each combination of the aforementioned parameters. To be 

able to implement the above constraints in our design, the following parameters to use as 

independent design variables are received as input from the Parametric Design Methodology, the (i) 

Heel Radius – r, the (ii) Shoe Length – L, and the (iii) Footrest Angle – φ. The anthropometry of the 

patient, as well as the design variables, are presented in Figure 5. 
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Figure 5. Principle dimensions and independent design variables extracted by the patient's 

anthropometry. Alt text: The figure shows the measurements that need to be computed to be able to 

design the footrest. 

The user input (i.e. shoe contour), inspection of the generated model, further processing, and 

export for 3D printing are all implemented inside the Web 3D Modelling Component of the 

KYKLOS4.0 project. The interconnections between the front-end interface, DL Toolkit, and 

CADQuery script enable the generation of virtually infinite number of personalized products 

through a user-friendly interface. An example of generated footrest, as well as further processing 

controls is presented in Figure 6. 

 

Figure 6. The Web 3D Modelling Component can be accessed through the web. The interconnections 

with the core components have been put in place and the tool can be used to provide manufacturable 

models of the footrest component. Alt Text: This figure shows the web interface for accessing the 3D 

modelling component. 

4. Footrest Design Support 

4.1. Overview 

The footrest design is supported by using a streamlined dimension extraction of the footrest. 

This is done by using a computer vision component to extract the dimensions of the contours of the 

shoe on an A4 sheet of paper, followed by using a machine learning component trained to rectify the 

computer vision biases as opposed to the dimensions measured by hand. 

1. Contours of a patients' shoe are drawn on an A4 sheet on paper and photographed. 

2. The model extracts the dimensions of an object using OpenCV (OpenCV is a computer vision 

library with which we can extract the dimensions of an Object from an image if a reference object 

with known dimensions exists in the image) 

• Computer vision-based extraction of shoe length from an image 

• Computer vision-based extraction of top shoe width from an image 

• Computer vision-based extraction of bottom shoe width from an image 

3. It uses the dimensions found by OpenCV and feeds them into a ML-model, which predicts the 

anthropometric measurements of the patient's shoe. 

The following figure (Figure 7) gives an overview of the overall structure of the implementation.  
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Figure 7. Footrest design customisation implementation. Alt Text: This figures shows how computer 

vision and machine learning are combined to extract the antropometric measurements. 

4.2. Computer Vision Component for the Footrest Design Support 

The second step described in Figure 7 requires a step wherein an A4 sheet is detected within an 

image and cropped out. The current implementation draws the contours of the image and then 

extracts the largest A4 sheet shaped object in the image as shown in Figure 8. The A4 sheet extraction 

takes place to be able to have a reference when attempting to evaluate the shoe contour dimensions. 

 

Figure 8. Shoe’s contour detection. Alt text: Examples of shoes’ contours used in the footrest design. 

The Computer vision component also has three extraction respective methods with which the 

three individual shoe contour dimensions are evaluated: 

• Length extractor: the length extractor is a function that fits a linear line to the contour, finds its 

intersections with the shoe contour and evaluates the pixel distance between the top and the 

bottom pixels. This value is then divided by the density of the image (Pixels Per Millimetre 

Square), which can be calculated when one considers the dimensions of the A4 sheet. 
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Figure 9. Shoe length extraction. Alt Text: These figures show how the shoe length is extracted. 

• The top width extraction crops the contours of the show using a minimum area rectangle. It then 

crops the top 30% of the resulting contour and then evaluated its width. This method has proven 

to be highly effective in that the estimations and the true labels correlated heavily. 

 
Figure 10. Top width extraction. Alt text: This figure shows how the top width is computed. 

• Bottom width extractor is the more complicated algorithm of the three; it draws a minimum area 

triangle around the shoe, which due to the shape of the shoe will always have a vertex 

underneath the shoe and two towards the upper parts. Due to the orientation of the triangle two 

of its edges will intersect with the circle forming the back part of the shoe. We draw a straight 

line from the lowest most point in the contour as a line that passed through there must 

necessarily form a constant function. Every three lines can form a circle, so we use the 

information we have about the three lines and evaluate the value of the diameter of the circle 

formed between them above the constant line. This diameter appears to correlate with the 

measured bottom width labels. The following graph depicts the process under consideration. 
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Figure 11. Bottom width extraction. Alt Text: This figure shows how the bottom width is extracted. 

4.3. Deep Learning for the Footrest Design Support 

The extracted values of the computer vision algorithm can have some constant imbedded biases. 

The algorithm could always overestimate or underestimate certain values. 

To deal with this the value estimations of the computer vision algorithm are feed into a machine 

learning algorithm which rectifies any error or bias shown by the computer vision component. The 

machine learning algorithm constitutes a simple Multilayer perceptron with 1 hidden layer of size 2 

nodes. We elected to use a smaller model due to training data size constraints. Every dimension has 

its own trained model, meaning that 3 models are trained for the length, the top width, and the 

bottom width respectively. 

Note that we used Adam optimizer 16 and we found that a learning rate of 0.01 works well with 

our limited data. 

5. Experiments 

5.1. Data Overview 

The data that has been used in this work is labelled training data composed of the A4 sheet scan 

or image in accordance with the image taking guide -said guide can be found in the appendix. 

The data includes the hand-made measurements of the shoe, which are only used during 

training, as the actual use case involves streamlining the dimension measurement by outsourcing it 

to the algorithm. Shoe samples collected so far have the following features. 

Table 2. Shoes samples. 

(No. samples = 24) length Top width Bottom width 

Max 275 mm 110 mm 85 mm 

Min 135 mm 65 mm 48 mm 

Average 216 mm 86 mm 64 mm 

Median 222 mm 88 mm 65 mm 

5.2. Data Structure 
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The raw data is composed of an images folder that contains all the images stored whose title is 

best described using the following regular expression: 

[0-9]{3}_[ft].jpg 

Example figure that shows an example raw images directory. The letters f and t at the end of the 

name refer to true and false as an answer to the question of whether the image constitutes a scan or 

a photographed image of an A4 sheet of paper. 

 

Figure 12. Samples of shoes’ contours. Alt Text: Some samples of shoes’ contours used in the 

experiments. 

The labels are stored in a numpy file which contains a single numpy array with the shape nX3, 

where n is the number of traces. 

5.3. Data Collection Procedure 

This paragraph simply gives an overview of how the data (mainly pictures) is being collected in 

the promedicare use case.  

5.3.1. Basic Idea 

Taking shoe image 

• Place the shoe in the center of the A4 sheet 

• trace the outline of the shoe around the sheet with a pen/marker 

• Take an image of the outline or scan it 

Measure actual shoe dimensions 

Motivations: Only relying on the picture can make our software overestimate the actual shoe 

sizes. So it's very helpful to measure the actual shoe dimensions by hand. 

• Needed measurements: The top width, the bottom width and the length as shown in the picture. 

 

5.3.2. Thing to take into account when taking the picture 

1. Blank non-white Background: If you don't send a scan, please make sure that the background 

has no visible patterns. Also make sure that there is a visible contrast between the background and 

the the sheet of paper (Please don't place sheet on a white background) 

2. No Folds: Please make sure that the A4 sheet is not folded and is completely visible 
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3. No shadows: Images without shadows and ones that are evenly lit are sure to work in the 

program 

4. Pens/Marker: Use a pen or marker when marking the outline and not a pencil 

5. Naming: We would greatly appreciate it if you titled the image as in the example in millimeters 

For example: shoe_180_77_65.png, where the length=180mm, top width=77mm, and bottom 

width=65mm 

Examples: 

Here are good and bad example of images we've received or taken so far, 

Table 3. Examples of good and bad taken images. 

Example  Taken Image Description 

1 

 

Scan image is perfect. 

The Shoe is placed up straight in the center of the image. It was taken with a 

scanning device, the lines are clean and visible. 

Name: img_174_75_60_t.png 

2 

 

Image is very good. 

The background shows a good contrast, the entire A4 sheet is visible and the 

shoe is properly marked. The shoe isn't perfectly lit, but that's okay. 

Name: example_276_115_88_f.jpg  

3 

 

Image is very good. 

The background shows a good contrast and the entire A4 sheet is visible. The 

lines were drawn with a pen. 

Name: example_276_115_88_f.jpg  

4 

 

The image is not good. 

We took this image with a noisy background. It interferes with the current 

implementation of the software. 

The image does have good lighting, which is good. 

5 

 

The image is not good. 

The drawing is great, but there is no contrast between A4 sheet and the white 

background.  

5.4. Performance 

Here are graphs showing the performance of the computer vision component. Due to the small 

size of samples (N=24) that were collected, the machine learning component showed negligible 

advantage over the pre-processed data. The values were scaled using a Min Max Scaler 17, a 
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transform that scales each feature to the range between 0 and 1, where the minimal number is mapped 

to 0 and maximum value to one. 

The length shows a very tight correlation, which indicates that our length estimation heuristic 

was very accurate when used with our training data. The same can be said to a lesser extent 

regarding the top width estimations and even less so about the bottom width estimations. We did 

however see a high correlation between the bottom width the other values, which indicates that the 

other values can with enough training contribute to the estimation of the bottom width.

 

Figure 13. Anthropometric measurements evaluation. Alt Text: This figure provides some 

performance results. 

Another thing to consider is the fact that we refrained from utilizing the contours in our training, 

this is mainly due to training data size constraints. With enough data, a machine learning algorithm 

would have no need for the shoe dimension estimations and would be able to evaluate the shoe 

dimensions only using the contours and the pixel density (The pixels per metric discussed earlier in 

this section). 
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7. Conclusion and Future Work 

The main goal of this work, whose end-user is ProMedicare, is to simplify the entire workflow 

of customization process. In standard procedure, the possibility to introduce human errors during 

measure taking is quite high due to: acquisition of measurements, manual writing of values, manual 

redesign of each component of the product based on data manually reported on the order form. From 

the point of view of the innovations introduced, it is highlighted how the methodology enables the 

introduction of an automated procedure that is effective in reducing human error as well as the 
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evident reduction of product delivery times. The methodology developed has also been effective in 

implementing the product platform concept, even on existing products, by-passing the necessity of 

expert designer involved in the customization design activity. 

This paper started by discussing how additive manufacturing and 3D printing can be a key 

factor in optimizing the design and production of wheelchairs. It also presented the tangible benefits 

that this approach brings especially when combined with artificial intelligence and machine learning 

techniques. After having given an overall architecture of the solution, the focus was more on the 

design of the footrest component and the use of deep learning techniques and computer vision to 

generate appropriate anthropometric measurements. The solution was also validated through 

experiments based on real data. Although the amount of data used in the experiments is small, the 

obtained results are promising and will be improved in the near future by considering larger datasets.  
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