Pre prints.org

Article Not peer-reviewed version

A Unified Representation of Q- and H-
Integrals and Consequences in
Inequalities

Da Shi, Ghulam Farid : , B. Younis , Hanaa Abu- Zinadah , Matloob Anwar

Posted Date: 15 May 2023
doi: 10.20944/preprints202305.1029.v1

Keywords: g-derivative; g-integral; h-derivative; h-integral; g-h-derivative; g-h-integral; inequalities

E E Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of

Err-'ir Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/3307562
https://sciprofiles.com/profile/547951
https://sciprofiles.com/profile/820538
https://sciprofiles.com/profile/849316

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 May 2023 do0i:10.20944/preprints202305.1029.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
A Unified Representation of g- and h-Integrals and
Consequences in Inequalities

Da Shi 1, Ghulam Farid %*, B. A. Younis 3, Hanaa Abu-Zinadah ¢ and Matloob Anwar >

School of Computer Science, Chengdu University, Chengdu, China; shida@cdu.edu.cn
Department of Mathematics, COMSATS University Islamabad, Attock Campus, Pakistan
King Khalid University, College of Arts and Sciences, Saudi Arabia; byounis@kku.edu.sa
University of Jeddah, College of Science, Department of Statistics, Jeddah, Saudi Arabia;
hhabuznadah@uj.edu.sa

School of Natural Sciences, NUST, Islamabad, Pakistan.; manwar@sns.nust.edu.pk

*  Correspondence: ghlmfarid@ciit-attock.edu.pk

1t These authors contributed equally to this work.

B W N e

Abstract: This paper aims to unify g-derivative/g-integral and h-derivative/h-integral in a single
definition, this will be called g — h-derivative/q — h-integral. These notions are further extended
on finite interval [g, b] in the form of left and right g — h-derivatives and g — h-integrals. Some
inequalities are studied for g — h-integrals which are directly connected with well known results.
In diverse fields of science and engineering the theory based on g-derivatives/g-integrals and
h-derivatives/h-integrals can be unified by using the concept of q — h-derivative/q — h-integral.

Keywords: g-derivative; g-integral; h-derivative; h-integral; q — h-derivative; q — h-integral;
inequalities

1. Introduction

The h-derivative and the g-derivative of a function v have been defined by the quotients

vir+h) —v(r) 4 var) —v()

h (g—1)7

respectively. The h-derivative is usually denoted by the quotient Dyv(y) = W) ywhile the

dpy
d”g;(,;r), where dyv(y) = v(y+h) —v(y) is

called the h-differential and d,v(y) = v(gy) — v(7) is called the g-differential for the function
v. As an example the h-derivative and the g-derivative of 4" can be computed in the forms
(77%21"77” = ny" 4+ Ln{l)’Y"*zh + ...+ B*~1 and %7“71 = (g" '+ ..+ 1)9"! respectively.

g-derivative is denoted by the quotient Dyv(y) =

For the sake of simplicity, the notation [n]; is used instead of q;%ll, and then Dgy" = [n]y" L.

_ dv(y)
=21,

Since ;13} Dyv(y) = ;11135 Dy () the h-derivative and the g-derivative are generalizations of

ordinary derivative. The g-derivative leads to the subject of g-calculus, see [5] for details.
The sum and product formula of g-derivatives for functions v; and v; are given by;

Dy{v1(7) +va(7)} = Dgvi(y) + Dgva(7) 1)

and
Dy{vi(v)va(7)} = vi(97)Dgvaly) +va(r)Dgv1(7), )

respectively. Since v (7)va(7y) = v2(7)v1(7y), (2) is equivalent to the upcoming formula

Dy{vi(v)v2(7)} = v1(7)Dgva(y) +v2(q7) Pgvi(7y)- 3)
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In view of (2), the quotient formula of g-derivatives is given by;
vi(7)\  v2(7)Dgvi(y) — vi(r)Dgva(y)
D, = : (4)
v2(7) v2(7)v2(q7)
In view of (3), the quotient formula of g-derivatives is given by;
v1(7)\ _ v2(q7)Dgvi () — vi(g7)Dgva(y)
Dy = . (5)
v2(7) va(7)v2(q7)
The formulae of h-derivatives are as follows:
Dp{vi(7) +v2(7)} = Dypva(7) + Dpva(y), (6)
Dy{vi(y)va(r)} = vi(7)Dpva(y) + v2(y + h)Dyva (), 7)
and
D, (Vl (7) ) _ »(MDpvi () =i (1) Pura(y) ®)
v2(7) va(y)va(y +h)

Next, we give the definition of g-derivative on a finite interval.

Definition 1 ([2]). Let p : I = [a,b] — R be a continuous function. For 0 < q < 1 the q-derivative ;D on
1, is given by;
_ mge+ (1 —q)a) —pu(C) o
qu.”(‘:) T (q—l)(C—a) ’ g 7é a, aDq,u(a) - %}g}lapqﬂ(g) (9)
Function y is called g-differentiable on [a, b] if ,;Dy(&) exists for all § € [a, b]. For a = 0, we have
0D (&) = Dyu(&) and Dyp(S) is the g-derivative of  at ¢ € [a, b] defined as follows:

Dop(§) := HR 8 (‘(75)_132(5), ¢ #0. (10)

The g-integral of function y on interval [a, b] is defined as follows:

Definition 2 ([2]). Let y : I = [a,b] — R be a function. For 0 < q < 1 the q-definite integral on I is given by;
C )
/a H(V) adgy =1 =q)(&—a) }_ q"u(g"¢+ (1—q")a), ¢ € [a,b]. (11)
n=0
In (11), by setting a = 0, the Jackson g-definite integral given in [5], is deduced as follows:

¢ ¢ ©
| p oy = [T u(ndgy = 1= 0)¢ ¥ a"(@"¢), ¢ € la, bl (12)
n=0
If ¢ € (a,{), then the g-definite integral on [c, {] is calculated as follows:

¢ ¢ c
/C 1) adq'Y:/a V('Y)udtﬁ_/ﬂ 1 () adgy- (13)

We are intent to unify the g-derivative and h-derivative in a single notion which will be named
q — h-derivative. We give sum/difference, product and quotient formulas for g — h-derivatives, also
the definition of g — h-integral is given. Further, we will define g — h-derivative and g4 — h-integral on
finite interval. The composite derivatives and integrals will provide the opportunity to study theoretical
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and practical concepts and problems of different fields related to g-derivative and h-derivative
simultaneously. This paper will be interesting and productive for scientists and engineers.

2. A Generalization of g- and h-Derivatives

The (g — h)-differential of a real valued function y is defined by;

ndq($) = u(q(&+h)) — u(g). (14)

Then for i = 0, and g — 1in (14), we have

0dgu(8) = u(qg) — u(g) = dgu()

and
nd1p(§) = p(§ +h) = u(&) = ndp(g)-
In particular,
ndq(8) = g8 +qh— &= (g —1)¢ +qh. (15)
Then for h = 0, and g — 1in (15), we have
0dg(§) = (a—1) = dg(5) and d1(3) = h = dy(3). (16)

For u(Z) = p(€) + v(€) the (q — h)-differential of u is given by;
ng(u(8)) = pdg(u(Z) +v(E)) = (n +v)(q( +h)) = (n+v) () = ndgu(Z) + ndqv(8).  (17)
For a € R the (q — h)-differential of ay is given by;
ndq (@) (§) = ndq(ap) (@) = (a)(q(E +h)) — (ap)(8) = o pedgp(8). (18)

From (17) and (18) one can see that (q — h)-differential is linear. Here we see that if p(&) = u(&)v($),
then (q — h)-differential is calculated as follows:

I
I = =

)
)

(q( Jv(q(
(q( Jv(q(
u(q(g+h)v(g) —p
u(g(&+h))v(q(C+h)
+v()[u(q( +h))

widg(p(&)) = ndg(u($)v(E)) §+h)—uv(c)
E4h)+pu(q(G+h)v(g)
(

()

g+ )
E+h
£+

) —v(S)]
— 1@
Hence we get

ndg(u(E)v(C)) = p(q(S + h))ndqv(C) +v(E)ndqu(S)- (19)
Forh =0,and g4 — 1in (19), we have

0dg(H(E)(§)) = dg(1(E)v(Z)) = #(a)odqv(Z) +v(E) 0dgp(S)
= #(q8)dqv () +v(5)dgp(Z)

and

w1 ((E)v(S)) = dn(u(E)v(S)) = u(& + h)pdrv(¢) +v(E)nd1p(S)
= u(&+h)dyv(8) +v()dnu(f),

respectively. Next, we define the g — h-derivative as follows:
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Definition 3. Let 0 < g < 1,h € Rand yu : I — R be a continuous function. Then the q — h-derivative of

is defined by
_ 1dq (@) p@@(G+h)) —p(@) qh _

CthV(C)* hdqg - (q_1)€+qh r§7é 1_‘7.760 (20)

CiDgu(&e) = lim C Dyl
Provided g(¢ + h) € I.

For h = 0 and g — 1in (20), we have
d _
CxDyu(g) = Dyu(g) = ) - D 2D @

and

d,c h
By setting h = 0, ¢ — 1 in (20), we get the ordinary derivative of y, provided the limit exists.

Example 1. Consider P(x) = ¢", n € N. Then

et S et VIS 7 (& h+ ..+ k")
(=15 +qh — (9—1)¢+4qh (9 —1)¢ +4qh

For h = 0 and g — 1in (23), we have

CDy(e) = e = L = g = Dy(@), (1)

ChDy(P(x)) =

(23)

and

CyD1(E") = W =ng" !+ @C"*Zh F o L (25)

In particular we have FllinB CyD1(&") = ne" 1L,
—

2.1. Linearity

The g — h-derivative is linear i.e. for a, B € R and using the linearity of (g — h)-differentials we
have:

CuDy(apu(§) + pv(S)) = aCyDyp () + B ChDyv(0)-
2.2. Product formula

The following formula for product of functions by using (19), can be obtained:

ChDy(u(E)v(E)) = hdq(.“ff)v(g)) _ #(q(& +h))pdqv(E) +n dgu(S)v(E) 6
niql wdqG

= u(q(&+h))CyDav () +v(E)CrDyu().

The product formula for g-derivatives and h-derivatives can be obtained as follows:
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By setting 1 = 0 in (26), the g-derivative formula for products of functions is yielded:

CoDy(u(E)v(&)) = RO — D (u(@)v () 27)

1#(q5)CoDgv () + v(8)CoDygp($)
= 1(q8)Dgv($) +v(&) Dgp(8)-

By taking g — 1in (26), the h-derivative formula for products of functions is yielded:

BEOVE) _p,

Oy (p(Ew() = L

w(Ev(g)) (28)

= u(+h)CD1v(g) +v(E)CrD1p(8)
= u( +h)Dyv(8) +v(S)Dpu(Q)-

By using symmetry, we can have from (26):
CrDq(v(E)n(&)) = v(g(& +h))ChDap(G) + 1(E)ChDav(S)- (29)
Both (26) and (29) are equivalent.

2.3. Quotient formula

By using (26) and (29), the quotient formula of g — h-derivatives is calculated as follows: We have

forv(¢) #0 @
Hs)
V(G)@ = (%) (30)
By using definition of g — h-derivative and (26), we have
6y (vOUE ) = amy (@), @
viae+m)ePy (B8 + B8epnie) = 6oy (ue)) ®)
Now
W@\ CnDa(u(@) = H5CDy(w(©)
i) - v + ) )
_ V(&)ChDy(p(§)) — #(E)ChDy(v(S))
v(g(§+m)v(¢)
By using (29), one can get
FAEER) o o (o) 2y k@)Y _
e (v0) a5 =am (o).
that is:
p@)\ _ GDy(r(8)v(q(€+ 1) — p(g(E +h))ChDq(v(E))
5 (55) - VG IE) | )
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Remark 1. By putting h = % for w > 0, equation (26) produces product and (33) produces quotient formulas
for (g, w)-derivatives given in [3].

Next, let us define the g — h—binomial ({ —a); g analogue to ({ — a)" as follows:

. 1 n=0,
€7 = {<5—a><¢—q<a+h>><«:— Plat )G ot (-1, =1

Then it is clear that for 1 = 0 we have (& — ) = (¢ —a)y i.e. the g-analogue of (¢ —a)" is obtained
which is defined in [5, Page 8, Definition] as follows

C-ap=4" "0 (36)
TolE-a)E-qa).(C—q"ta, n>1

Also, from (35), for g — 1 we have ({ —a)}}; = (¢ — a)}, i.e. the h-analogue of ({ — a)" is obtained, it is
defined in [5, Page 80, Definition] as follows:

1 n=20
—a)t = ’ / 37
(&= {((j—a)(g—a—h)...(é—a— (n—1)h), n>1 7

In the next, we find the g — h—derivative of g — h—binomial (§ — a)j; S follows:
Forn =1, we have

1Dg((§ —a)h,) = 1Dg(§ —a) = 1.

For n = 2, we have

1Dg((€ —a)},) = wDy((G—a) (& —qla+1))) = (qE+h) —qla+1).1+ (& —a)
= (- a)(1+9q) = 24(E —a)j,

Ash — 0 we have ¢Dy((¢ — a)%,q) = Dq((g—a)g) = [2]4(¢ - a)}i. While as ¢ — 1 we have ;D1 ((& —
a)i1) = Dy((E —a)}) = 2(C — ),
For n = 3, we have
1Dg((&—a); ) = wDy((§ — a)h4(& — 4 (a+2h)))
= (€ +h) —q*@+2m) {(g+ D~ a)} + (- )1
=q(q+1D(E-a) € —qla+h) +q01-g)E -a)h+(—a),
=@+ 1) —a)i,+ (E—a), +q(1—4*)(E —a)h
= (@ +q+ D)~ ), 91 =) (€ —a)h = [B]4(¢ —a)j; +q(1 = gh(E — a)j,.

Ash — 0 we have ¢D,;(( — a)g,q) =D,((¢—a)d) =[3]4(& - a)%. While as ¢ — 1 we have ;D1 (({ —

q
)i1) = Di((& —a)}) =3(E — )3
For n = 4, we have
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Dg((& = )i g) = 1Dq((§ = a)j 4 (E — 4> (a+3h)))
= (gE+ ) —Plat 3h>>{[31q<¢ a2, +q(1— PG - a>}w} F(E-a),1

= [3144(& — @)} 4(& — 4*(a +21)) + hq* (1 — 4*)(§ — a)(§ — q*(a +2h))
T Blogh(l - )& — ), + (1 — PPIAE —a) + (€ - a),
= (1+3]49) (G — )i, + Blga(1 — 4*)1(G — a)j, , + ha* (1 = 4°) (G — a)
{x —q*(a+3h)+h}
= [4]q(§ —a)j, + Blagh(1 = 4%) (G — a®)ig +hg?(1 = %) (G — a) (& — q(a +h))
—¢*)(q(a+h) —q*(a+3h) +h)(& —a)
= [4g(G — )y, +a(L+9)*(1 = g)h(G —a)i,
+ hg*(1 —g*)(q(a +h) — g*(a + 3h) + h) (¢ — a).

As h — 0 we have ¢D,;(( — “)3,q) =Dy((E—a)}) = [4]4(¢ - a)g. While as ¢ — 1 we have ,D;((¢ —

q
D)) = Dyl(E—a)f) = 4(E —a)}.
Inductively,one can see that:
As h — 0 we have ¢Dy((¢ —a)g,
As g — 1wehave ;D ((¢ —a)j,
If p is g — h-derivative of u i.e. u(g) =
q — h-anti-derivative is denoted by [ 1(¢)

) =Dy((& —a)f) = [n]g(§— )y~

) = h(( a)p) =n(G—a) .

(¢ Cthy( ¢), then u is called g — h-anti-derivative of p. The
) ndgx

3. g — h-Derivative on a Finite Interval
Here throughout the section, I := [a,b] for a,b € R. The ¢ — h—derivative on I is given in the

upcoming definition.

Definition 4. Let 0 < g < 1, h € R, ¢ € Iand u : I — R be a continuous function. Then left
q — h—derivative Cth u and right q — h—derivative ChDS’ u on I are defined by;

Dy u(e) = MUZ DI AC L) Z0@) oy aht g, (38)
6D () = MO zlqzé‘q;(g(f ;L)hl)q; o).« W’ — o, (39)

provided that (1 —q)a+q(+h) € [a,&] and (1 —q)¢ +q(b+h) € [¢,b]. Also, ChD;ﬁ‘u(u) =
lim C;, D" (&) and €, Dy~ p(v) = lim C, Dy~ ().
C—u {—v

We say u is left g — h-differentiable on (a, x + h), if for each of its point Cth (&) exists, and
y is called right g — h-differentiable on (& + I, b), if at each of its point Cth 1(&) exists. One can
see that ChD‘ﬁy(b) = ChDZ’ #(a). In (38), by setting i = 0 one can get the g-derivative defined in
Definition 1, i.e. Cqu #(¢) = aDyu(g). Also for a = 0 one can have C,D O+y(§) = CyDyu(g), i.e. the
g — h-derivative given in (20) is deduced; for h = 0 = a one can have CODq u(¢) = Dyu(g), ie. the

g-derivative is deduced; for a = 0, ¢ = 1 one can have Cth u(&) = Dyu(g) ie. the h-derivative is
deduced; forh = 0 = a and taking limit 4 — 1 one can get the usual derivative for a differentiable
function y i.e. 11m Cqu (@) = %y(g ). One can get similar results from equation (39). The definition

of left and rlght g—derivatives defined on I can be obtained from (39) by setting 1 = 0 as follows:
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Definition 5. Let0 < g <1,h € R,{ € Iand u: I — R be a continuous function. Then left g—derivative
fo u and right q—derivatives DZ’ u on I are defined as follows:

DZ+]/[(€) — ‘u(qg(‘; (_1(1_)53‘1_)6_)7"(‘:)’ E>a, (40)
DI u(e) = ”(qba(_lbﬁfg’g_)b_)"(b); £<b. (41)

It is notable that from (40), we have D‘gﬁ #(¢) = Dyp(¢) i.e. the left g—derivative coincides with
g—derivative defined in Definition 1.

Definition 6. Let 0 < q < land p : I = [a,b] — R be a continuous function. Then left g — h-integral I;Zy

/!

and right q — h-integral | g—h u on I are defined as follows:

4
(@) = [ r(n) adyy )
= ((1—9)(¢ —a) +qh) Zoq”u(q”ﬁ (1—¢")¢+nq"h), ¢ > a,

b
k(@) = [ H)wdey (43)

=((1—q)(b—¢)+qh) i}q”u(q"ﬁ (1—4¢")b+nq"h), & <b.

Example 2. Consider y(y) = v —aand v(7y) = b — . The left and right q — h-integrals are calculated as
follows:

; e - -
14 u(g) :/a (y —a) udgy = & q)gg_ q”)“’h (q(1§+ q”) +(1—q)hnzonq2"> (44)

and

b ) (b—8)+qh (b o
I,;];V(‘:)—/(:(b_’”hdq’)’—(l Wg_q@” <1+§+(1—q)hr§nq2”), (45)

where 1 is the radius of convergence of the series involved in above integrals.

Example 3. Let j(y) = ¢ — yand v(y) = v — &. Then we have

a ¢ 1— —a)+qgh (& — = o
Iq,ZV(C)Z/R(C—V)hdw:( q)gg_q”) q <§+g—(l—q)hn§)m]2> (46)

and

v(g) = /;(’Y—é’)hdw: (1—q)(b—¢&) +qh <q(b_g)

1— hoo n 47

where 1 is the radius of convergence of the series involved in above integrals.

By setting i = 0, left and right g-integrals can be obtained and defined as follows:
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Definition 7. Let 0 < g < land p : I = [a,b] — R be a continuous function. Then the left q-integral If;er
and right g-integral Ig u on I are given by;

L%on(8) = I u(@) =/ju(7)dw= (1—q)(G—a Zq u(q'a+(1—9")E), & >a,  (48)
b
(&) = 1y u(g) =/§ u(y)dgy = (1—q)(b—20) Zq u(@" e+ (1 —g"b), E<b.  (49)

Left g-integral is same as g,-definite integral, and right g-integral is same as q’-definite integral
defined in [2] and [1] respectively.

Example 4. Consider p(7y) = v —aand v(y ) = b — . Bysetting h = 0 in Example 2, one can have
(@) = (@) = [y —a)dgy = 52 and 1= (2) = 10 p(2) = [ (0 — 1)dgy = G

By considering g — 1, one can have left and right h-integrals defined in upcoming definition.

Definition 8. Let y : I = [a,b] — R be a continuous function. Then the left h-integral I} *y and right
h-integral If: u on I are defined as follows:

I p(§) = lim I3 (), € > a, (50)

I w() = Em I u(@), ¢ <. (51)

It is noted from Definition 6 that I‘;’Zy(b) = Islﬁy(a) = fab 1() ndgt.

4. Some q — h-integral inequalities for convex functions

In this section we give inequalities for g — h-integrals of convex functions. A function i : [a,b] — R
is called convex if the following inequality holds for all u,v € [a,b] and A € [0, 1]:

u(Au+ (1 —2A)v) < Au(u) + (1 —A)u(v) (52)

Theorem 1. Let yu : | — R be a convex function. Also, let a,b € ]°, the interior of |. The left and right
q — h-integrals satisfy the following inequalities:

e < U @‘?%[ﬁ:ﬂh{ﬂ@) (f—_kq -1 qpns) 9
(@) (‘“f;q“) +(- q)hS) }
and
i) < o {u(@) (15 + s &
+ u(b) (’1(11:5) +(1- q)h5> }

where S = Z ng*"

n=0
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Proof. For v € [a,{], we have % € [0,1]. By selecting A =

following inequality:

= ¢ in (52) we get the

By taking g — h-integral over [a, ] we have

g(_al €i(E- v) ndgy + g(_gly € 1s(y—a) ndgy-

By using values of integrals involved in above inequality from (44) and (46), one can obtain the
required inequality (53). On the other hand for v € [, b], we have % € [0,1]. By selecting

A= 27 7 U= ¢, v="bin (52) we get the following inequality:

€ Y5u(y) ndgy <

Hr) < (@) + T ene).

By taking g — h-integral over [¢, b] we have

(é) p(b)

€ 1eu(y )ndgy < e G'Yg(b or dq'Y‘*‘ﬁ € 1E(v — &) ndg-

By using values of integrals involved in above inequality from (45) and (47), one can obtain the required
inequality (54). O

Corollary 1. As an application of the above theorem, the following inequalities for left and right g-integrals

hold:
@ <uto) ($0) +n0 (B0, 5
and
B <00 (155 )+ (52 )
Remark 2. By taking & = b in (55) or € = a in (56), one can obtain the following inequality:
€ bu(y) adgy < OO (“)11";‘“). (57)

The above inequality (57) is independently proved in [2, Theorem 12].
The following lemma is required to prove the next result.

Lemma 1 ([4]). Let u : [a,b] — R be a convex function. If u is symmetric about “zib, then the following

inequality holds:
a+b

forall ¢ € [a,b].
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Theorem 2. If y is symmetric about # along with the assumptions of Theorem 1, then the following inequality
holds:

a-+b 1—q 1—g b
V( 2 )S (1—4)(¢ +qh/ Mg+ —q)(b—g)—i—qh/g n() wdgy,  (59)

&€ lab)].

Proof. A convex function symmetric about #

g — h-integration of (58) over [a, {| we have

satisfies the inequality (58). Therefore by taking

a+b —a)+qh
p(50) LoD ) (60
On the other hand by taking g — h-integration of (58) over [, b] we have
a+b\ (1—q)(b—¢) +qh b
() BB o

By adding (60) and (61), one can get the inequality (59). O

Remark 3. By taking x = b in (60) or x = a along with h = 0 in (61), one can obtain the following inequality:

b 1 b
H(a; >§b_u/a u(y)dgy- (62)

The above inequality (62) is independently proved in [2, Theorem 3.2], but unfortunately the proof is not correct,
see [6, Example 5]. But here we have imposed an additional condition of symmetric function to get the result.
Hence if we impose a condition of symmetry in addition to assumptions of [2, Theorem 3.2], we get the correct
result.

Conclusions

This article aims to provide a base in unifying the theory of g— and h-derivatives given in [5]
by Kac and Cheung. In this effort, the notion of g — h-derivative is introduced which generates
g-derivative and h-derivative. The g — h—binomial (¢ — a)j; , analogue to (& —a)" is defined,
which generates g—binomial (¢ — a); and h—binomial (¢ — a)} in particular. The g — h-derivatives
of g — h—binomial (¢ — a)j g are found which generate g-derivative of g—binomial (¢ —a)j and
h-derivative of h—binomial (¢ — a)j in particular. Rest of the theory in [5] needs attention of
researchers, it may be unified. Also, g — h-derivatives and integrals are defined on an interval [a, 1],
which are used to establish some inequalities which are linked with recent research and provide
correct proof of an inequality of [2].
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