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Abstract: In this work, we offer a novel and accurate method in order to find the solution of the 

linear differential equations over the intervals [0, 1) based on the generalization of Legendre 

wavelets. The mechanism is still upon workable implementation of the operational matrix of 

integration and its derivatives. This method reduces the problems into algebraic equations via the 

properties of generalized Legendre wavelet (GLW) together with the operational matrix of 

integration. The function approximation has been picked out in such a way so as to enumerate the 

connection coefficients in an facile manner. The proposed numerical technique, based on the GLW, 

has been examined on three linear problems as a consequence of this investigation. The outcomes 

have shown that this method, as opposed to some other existing numerical and analytical methods, 

is a very useful and advantageous for tackling such problems. 

Keywords: Generalized Legendre wavelet; operational matrix of integration; linear differential 

equations; product operation matrix; convergence analysis; accuracy 
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1. Introduction 

Polynomial series and orthogonal functions play an essential rule for solving various problems 

of dynamic systems [1-8]. One of those problems is solving differential or integral equations. The 

major idea of employing orthogonal basis is that it decreases these problems in order to solve a system 

of linear algebraic equations, approximating some signals involved in these equations, by the use of 

both of the truncated orthogonal sequence and the matrix of integrations P  to exclude the integral 

operations.  

Consider the equation ,)x(Pdx)x(
t

0

χχ = with the obtained operational matrix P  by 

using the orthogonal functions’ basis 1n10 ,,, −ψψψ  and [ ]1n10 −= ψψψχ ,,,  . 
Lately, Wavelets are very important in various studies such as science and engineering. Various 

authors have studied different forms of wavelets such as Fourier series, Walsh functions, Legendre 

polynomials, Bessel series and Chebyshev polynomials (see [9-16]). The Wavelet analysis is a 

probable mechanism to solve such difficulty in Physics, signal and image processing by deletion of 

numerous terms in gaining demand precision. Gu and Jiang [17] developed the Haar Wavelet 

operational matrix. Chen and Hsiao [18] solved some problems in image processing, communication 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 May 2023                   doi:10.20944/preprints202305.1001.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202305.1001.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

and physics using the wavelet analysis. Shyam and Susheel [19] estimated a new theorem on 

preferable wavelet approximation of the functions from the generalized lipschitz class by the use of 

Haar scaling function. 

By the use of Haar wavelets, Lepik [20] proposed the segmentation method to solve differential 

equations, numerically. Lepik [21] demonstrated that the Haar wavelet method is a strong tool for 

finding the solution of various forms of integral and partial differential equations, his method’s major 

feature is its simplicity and small calculation charge. Jhangeer et al. [22] studied the Bogoyavlenskii–

Kadomtsev–Petviashvili (BKP) equation by means of Lie symmetry analysis. Tavassoli Kajani et al. 

[23] studied the Chebyshev wavelets matrix of integration, Sripathy et al. [24] presented the 

chebyshev wavelet method in order to solve some non-linear differential equations arising in 

engineering. Shyam and Rakesh [25] obtained five new estimates of any function f on ),[ 10  

having bounded derivative by the method of the extended Legendre wavelet. Owais et al. [26] 

developed the comprehensive theory of biorthogonal wavelets on the spectrum. Sharma and Lal [27] 

presented the operational matrix of integration by the use of the Legendre wavelet in order to solve 

different types of differential equations in both linear and non-linear forms. This manuscript is 

orderly as follows: in the second section, we present the definition of Legendre wavelet beside its 

properties. Also, we present the definition of the extended Legendre wavelet expansion together with 

the function approximation. In section 3, we offer a novel and accurate method for solving linear 

differential equations over the intervals [0, 1) based on the generalization of Legendre wavelets. The 

mechanism is still upon workable implementation of the operational matrix of integration and its 

derivatives. This method reduces the problems into algebraic equations. Our proposed numerical 

technique will be examined on three linear problems in the fourth section. We summarize our work 

in the fifth section. 

2. Definitions and Preliminaries 

2.1. Legendre wavelet and its properties 

Considering a single function “mother wavelet” )t(ψ , from which wavelets represent a family 

of functions by dilating and transforming this single function. This family of continuous wavelets 

[17] has the following form: 

    
1
2

, ( ) , , , 0 .a b

t b
t a a b R a

a
ψ

− − 
= ∈ ≠ 

 
     (2.1) 

The Legendre wavelets on the interval ),[ 10  defined by 
 

  
21

2
ˆ ˆ1 1ˆ2 (2 ), ;

( ) 2 2,
0

k
k

m k k

n n
m L t n t

t
n m

otherwise

ψ

− +
+ − ≤ <

= 


  (2.2) 

for which k  is positive integer, 
1k221n −= ,,,  and 1n2n −=ˆ , the order of the Legendre 

Polynomial is denoted by M210m ,,,, =  and the normalized time is denoted by t . The 

Legendre Polynomials mL  which are obtained in the above definition is proposed as follows: 

   1

1 1

0
( )

2 1( ) ( ) ( ) , 1, 2, 3,
1 1

( ) 1 ,
,

m m m

L t

m m
L t t L t L t m

m m

L t

t

+ −

+
= − =

+ +

=

=



  (2.3) 

which are orthogonal over [-1,1] with weighting function 11w =)( , for more details (see Balaji [28]). 
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2.2. Function approaches 

A function )( tf  which is defined on ),[ 10 can be extended as Legendre Wavelet infinite 

series of the following type 

     , ,
1 0

( ) n m n m

n m

f t c ψ
∞ ∞

= =

=        (2.4) 

where mnmn fc ,, ,ψ=
. 

After being trimmed, Eq. (2.4) can be rewritten as follows.  

    
12 1

, ,
1 0

( ) ( ).
k M

T

n m n m

n m

f t c C tψ ψ
− −

= =

≈ =      (2.5) 

where

T

1M1k211k201k21M11101 ccccccC 



=

−−−−− ,,,,,, 
 and 

T

1M1k211k201k21M11101t 



=

−−−−− ,,,,,,)( ψψψψψψψ  . 

2.3. Generalized Legendre Wavelet Expansion [25] 

In this section we introduce a generalization for Legendre wavelets given in (2.2) .The proposed 

Generalized Legendre wavelets )(GLW  on the interval ),[ 10  are defined by 
 

 






 +
<≤

−
−+

=

otherwise0

1n
t

1n
ntLm

t kk

k
m

2
k

2
1

mn
;

ˆˆ
),ˆ(

)(,
)( µµ

µµ
ψ µ   (2.6) 

for which k  is positive integer, 
1k21n −= µ,,,  and 1n2n −=ˆ and the order of the Legendre 

Polynomial is denoted by M210m ,,,, =  and the normalized time is denoted by t . 

Lemma 2.1 (Orthonormality of the generalized Legendre wavelets) 

The generalized Legendre wavelets which are defined in Eq. (2.6) are orthonormal on 

]
ˆ

,
ˆ

[
kk

1n1n

µµ

+−
. 

Proof:  

First we show that )(,
)( tmn

µψ  are orthogonal on ]
ˆ

,
ˆ

[
kk

1n1n

µµ

+−  where 1n2n −=ˆ . 

From the definition of GLW given in Eq.(2.6), we have  

 −−+′+=

−+′−+=

+

−
′

′′

k

1n

k

1n

k
m

k
m

k

2
1

2
1

k
m

2
k

2
1k

m
2
k

2
1

dtntLntLmm

ntLmntLmtt mnmn

µ

µ

µµ

µµµ

µµµµψψ

ˆ

ˆ

)()(

)ˆ()ˆ(

)ˆ(),ˆ()(),( ,,
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Set yntk =− ˆµ , then for 
k

1n
t

µ

−
=

ˆ
 , we have 1y −= , and for 

k

1n
t

µ

+
=

ˆ
 , we have 1y =  and 

dy
1

dt
kµ

= . 

Hence,  

+′+=
−

′′

1

1
mm

k

2
1

2
1 dyyLyLmmtt mnmn )()()(),( ,,

)()( µψψ µµ  

Since the Legendre polynomials are orthogonal on ],[ 11− , then we conclude that. 

    .)(),( ,,
)()( 0tt mnmn =′

µµ ψψ        (2.7) 

To show the generalized Legendre wavelets are orthonormal on ]
ˆ

,
ˆ

[
kk

1n1n

µµ

+−
, we only need to 

show they are normalized, that is 1t
2

2
mn =)(,

)( µψ   

 +−





 +

=
−

k

n2

k

2n2

k2
m

k
2

2
dt1n2tL

2

1m2
tmn

µ

µ

µ µµψ )()(,
)(  

Set: 1n2tv k +−= µ , then dtdv kµ=  

Therefore we have 

 1
1m2

2

2

1m2
dvvL

2

1m2
t

1

1

2
m

2

2
mn =








+






 +

=





 +

=
−

)()(,
)( µψ    (2.8) 

From (2.7) and (2.8) it is clear that our generalized Legendre wavelets that are defined in Eq. (2.6) are 

orthonormal. 

A function )( tf  which is defined on ),[ 10 can be expanded as generalized Legendre 

wavelet infinite series of the following type  

      =
∞

=

∞

=1n 0m

mnmnctf ,,)( µψ  ,       (2.9) 

where 
mnmn fc ,, , µψ=

. 
After being trimmed, Eq. (2.9) can be expressed as follows: 

     
1

, ,
1 0

( ) ( ) ( ) ,
k

M
T

n m n m

n m

f t c t C t
µ

µψ ψ

−

= =

≈ =     (2.10) 

where

T

M1k11k01kM21202M11101 cccccccccC ],...,,...,,...,,,,...,[
,,,,,,,,, −−−=

µµµ  and 

[ ] .)( ,,,,,,,,,
T

M1k11k01kM21202M11101t −−−= µµµ
µµµµµµµµµ ψψψψψψψψψψ   

3.1. Generalized Legendre Wavelet Operational Matrix of Integration 

Now, we will present our new generalized Legendre wavelet operational matrix of integration 

for 32K3M === µ,, , then it used to solve the differential equations. The variation between 

exact solution and Legendre wavelet solution is negligible. 

With the use of the definition of Legendre wavelet for 3210m ,,,= and .,, 321n =  
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we get that 

   







<≤
=

otherwise,0

9

2
t0,

2

3

)t(0,1

µ
ψ     (3.1) 

   
[ ]







<≤−

=

otherwise,0

9

2
t0,1t9

2

3
3

)t(1,1

µ
ψ     (3.2) 

   
( )[ ]







<≤−−

=

otherwise,0

9

2
t0,11t93

2

5

2

3

)t(
2

2,1

µ
ψ    (3.3) 

  
( ) ( )[ ]







<≤−−−

=

otherwise,0

9

2
t0,1t931t95

2

7

2

3

)t(
3

3,1

µ
ψ     (3.4) 

    






<≤

=

otherwise,0

9

4
t

9

2
,

2

3

)t(0,2

µ
ψ    (3.5) 

  [ ]







<≤−

=

otherwise,0

9

4
t

9

2
,3t9

2

3
3

)t(1,2

µ
ψ     (3.6) 

   ( )[ ]






<≤−−

=

otherwise,0

9

4
t

9

2
,13t93

2

5

2

3

)t(
2

2,2

µ
ψ    (3.7) 

( ) ( )[ ]






<≤−−−

=

otherwise,0

9

4
t

9

2
,3t933t95

2

7

2

3

)t(
3

3,2

µ
ψ   (3.8) 

    






<≤

=

otherwise,0

9

6
t

9

4
,

2

3

)t(0,3

µ
ψ    (3.9) 

    [ ]







<≤−

=

otherwise,0

9

6
t

9

4
,5t9

2

3
3

)t(1,3

µ
ψ    (3.10) 
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    ( )[ ]






<≤−−

=

otherwise,0

9

6
t

9

4
,15t93

2

5

2

3

)t(
2

2,3

µ
ψ    (3.11) 

  ( ) ( )[ ]






<≤−−−

=

otherwise0

9

6
t

9

4
5t935t95

2

7

2

3

)t(
3

3,3

µ
ψ    (3.12) 

Now by integrating Eq. (3.1), we have 

   









<≤

=
otherwise,

3

2

9

2
t0,t

2

3

dt)t(
t

0
0,1

µ
ψ    (3.13) 

Now expanding Eq. (3.13) in the type of basis function, yields that 

)t(000
9

2
000

9

2

9

1
0

27

3

9

1
dt)t( 12

t

0
0,1 Ψψ

µ









= , 

where 

.)t(
T

3,32,31,30,33,22,21,20,23,12,11,10,112 



=

µµµµµµµµµµµµ
ψψψψψψψψψψψψΨ  

In the same procedure, making the same mechanism for the other functions of basis, implies that 

)t(00000000
27

3

135

15
0

27

3
dt)t( 12

t

0
1,1 Ψψ

µ









−−= , 

)t(0000000000
135

15
0dt)t( 12

t

0
2,1 Ψψ

µ









−= , 

)t(00000000
9

1
0

27

3

9

1
dt)t( 12

t

0
3,1 Ψψ

µ









= , 

)t(000
9

2

9

1
0

27

3

9

1
0000dt)t( 12

t

0
0,2 Ψψ

µ









= , 

)t(0000
27

3

135

15
0

27

3
0000dt)t( 12

t

0
1,2 Ψψ

µ









−−= , 

 

)t(000000
135

15
00000dt)t( 12

t

0
2,2 Ψψ

µ









−= , 
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)t(0000
9

1
0

27

3

9

1
0000dt)t( 12

t

0
3,2 Ψψ

µ









= , 

)t(
9

1
0

27

3

9

1
00000000dt)t( 12

t

0
0,3 Ψψ

µ









= , 

)t(
27

3

135

15
0

27

3
00000000dt)t( 12

t

0
1,3 Ψψ

µ









−−= , 

)t(00
135

15
000000000dt)t( 12

t

0
2,3 Ψψ

µ









−= , 

)t(
9

1
0

27

3

9

1
00000000dt)t( 12

t

0
3,3 Ψψ

µ









= . 

Thus we propose the operational matrix of integration as follows: 

.

9
10

27
3

9
100000000

00
135

15000000000
27

3
135

150
27

300000000
9
10

27
3

9
100000000

0000
9
10

27
3

9
10000

000000
135

1500000

0000
27

3
135

150
27

30000

000
9
2

9
10

27
3

9
10000

00000000
9
10

27
3

9
1

0000000000
135

150

00000000
27

3
135

150
27

3

000
9
2000

9
2

9
10

27
3

9
1



































































−

−−

−

−−

−

−−

=P

 

Thus, 

     12 12
0

( ) ( ) .
t

x dx P tΨ = Ψ       (3.14) 

3.2. Convergence criteria of the proposed (GLWM) 

In this subsection, we discuss the theoretical analysis of the convergence of our approach to solve 

the general linear differential equation of order n defined below: 
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( ) ( 1)

1 1 0
( 1)

0 0 0 1 0 1

( ) ( ) ( ) ( ) ,
( ) , ( ) , , ( ) .

n n

n

n

n

y P t y P t y P t y h t

y t y y t y y t y

−
−

−
−

′+ + + + =

′= = =




   (3.15)

 

Theorem 3.1 

The series solution  

)()( ,, tcty
1n 0m

mnmn =
∞

=

∞

=

µψ defined in Eq.(2.9) using generalized Legendre wavelet method 

converges to ).( ty  

 

Proof: 

Let )( RL2
 be the Hilbert space. 

Since we have shown that )ˆ()(,
)( ntLmt k

m
2
k

2
1

mn −+= µµψ µ  forms an orthonormal 

basis.  

Let =
=

M

0i
nini thty )()( µψ be a solution of Eq. (3.15) where )(),( ttyh i1i1

µψ=  for 1n =  in 

which .,.  denotes the inner product. 

Let we denote )()( ttni
µµ ψψ = and )(),( ttyj

µψα =  

=
=

M

1i
i1i1 tttyty )()(),()( µµ ψψ  

Consider the sequences of partial sums  

=
−

=
−

1n

1j
jj1n tW )(µψα  and =

−

=
−

1m

1j
jj1m tW )(µψα  

Then, 

 

.)(),()(),(),(
21n

1j
j

1n

1j
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1j
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1n

1j
jj1n ttyttyWty ====

−

=

−

=

−

=

−

=
− αααψαψα µµ  

Moreover,  

21n

1mi
i

1n

1mi

1n

1mj
jiii

1n

1mj
jj

1n

1mi
ii

2
1n

1mj
jj

2

1m1n

tt

tt

tWW

=

 =

=

=−

−

+=

−

+=

−

+=

−

+=

−

+=

−

+=
−−

α

ψψαα

ψαψα

ψα

µµ

µµ

µ

)(,)(

)(,)(

)(

 

As ∞→n , by Bessel’s inequality, we get that 

21n

1mi
i

−

+=

α is convergent, it yields that { }1nW − is a 

Cauchy sequence and it converges to W  (say). 

Now, we have 
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0

tt

tW

tW

ttytWttyW

jj

jj

1n

1j
jj

n

jj1n
n

jj1n
n

jjj

=−=

−=

−=

−=

−=−

−

=∞→

−
∞→

−
∞→

αα

αψψα

αψ

αψ

ψψψ

µµ

µ

µ

µµµ

)(,)(lim

)(,lim

)(,lim

)(),()(,)(),(

 

Which is satisfied only in the case if Wty =)( . Thus, =
∞

=1j
jj tty )()( µψα . 

4. Numerical test and discussion 

To demonstrate the effectiveness of our proposed generalized Legendre wavelet method 

(GLWM), we implement GLWM to some ordinary differential equations of linear form with constant 

and variable coefficients. All the numerical test examples were carried out with MATLAB R2015a. 

Example 1 

We deem the differential equation 

       .)(,. 00ytyy250 ==+′     (4.1) 

whose exact solution is given by )1t4e(
4

1
)t(y t4 −+= −

. 

We apply Generalized Legendre wavelets (GLWM) for 3M = 2k, = , 3=µ .  

For this choice of µ,k,M , the function approximation for )t(y will take the summation 

form: 

,C)t(c)t(c)t(y T
m,n

3

1n

3

0m
m,nm,n

1k

1n

M

0m
m,n Ψψψ

µµµ

= = ≈
= =

−

= =

 

where
T

3,32,31,30,33,22,21,20,23,12,11,10,1112 ]cccccccccccc[C =×  and 

.)t()t()t()t()t()t()t()t()t()t()t()t()t(
T

3,32,31,30,33,22,21,20,23,12,11,10,1112 



=×

µµµµµµµµµµµµ
ψψψψψψψψψψψψΨ  

Now, we approximate the function t)t(f =  in terms of the set of the basis functions )t(Ψ as: 

      .)()( 112
T tettf ×≅= Ψ       (4.2) 

where in this case the coefficient vector e  is given by 

[ ]T
0524.0e 00   0.0302   0.261900  0.0302  0.157100  0.0302= , 

and we present the operational matrix of integration 1212P ×  as follows: 
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

































=×

0

94/5005

0

0

0

0

0

0

0

0

0

0

94/5005

0

489/17045

0

0

0

0

0

0

0

0

0

0

489/17045

0

260/4053

0

0

0

0

0

0

0

0

0

0

260/4053

1/9

0

0

0

2/9

0

0

0

2/9

0

0

0

0

0

94/5005

0

0

0

0

0

0

0

0

0

0

94/5005

0

489/17045

0

0

0

0

0

0       

       0       

       0       

       0       

       0       

 489/17045  

        0       

  260/4053  

          0       

       0       

       0       

       0  

0

0

0

0

0

0

260/4053

         1/9

0

0

0

2/9

0

0

0

0

0

0

0

0

0

94/5005

0

0

0

0

0

0

0

0

0

0

94/5005

0

489/17045

0

0

0

0

0

0

0

0

0

0

489/17045

0

260/4053

0

0

0

0

0

0

0

0

0

0

260/4053

1/9

1212P  

Therefore, we obtain 

    .)()( tPdxx 1121212

t

0x
112 ××

=
× = ΨΨ      (4.3) 

Now we used this operational matrix in order to find the solution of the deferential Eq. (4.1). 

By integrating equation (4.1) and using equations (4.2) and (4.3), we have 

,dx)x(edx)x(ydx
dx

dy
25.0

t

0
112

T
t

0

t

0

=+ ×Ψ
 

which can rewritten in the following form 

.)()()(25.0 112×Ψ=Ψ+Ψ tPetCPtC TTT

 
Form which we obtain, 

.ePCPC25.0 TTT =+
 

Taking the transpose of the last equation we get the following system of equations 

ePC)PI25.0( TT =+ and I is the 1212 × identity matrix. Solving for the unknown vector C we 
get: 

[ ]T
C 5-1.89e   4-5.08e   0.0351   0.276   5-1.72e   4-2.95e   0.032   0.16   5-1.64e   5-9.67e   0.0305   0.0526=  
Table 4.1 compares the approximate solutions gained using the proposed method and regular 

Legendre wavelet method [27] with the exact solutions. In comparison to the standard Legendre 

wavelets method, the proposed method clearly provides better accuracy. 

Remark: We take both algebraic systems derived from applying our proposed technique (GLWM) 

and (LWM) are of the same size for the sake of fair comparison.  

The accuracy comparison between our proposed method (GLWM) and the standard Legendre 

wavelets method (RLWM) [27] is evident as shown in Tables 1 and 2. Also, the absolute errors for 

both methods are compared in Figure 1 as shown above. It is clear the suggested technique gives 

better accuracy compared to the regular Legendre wavelets. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 May 2023                   doi:10.20944/preprints202305.1001.v1

https://doi.org/10.20944/preprints202305.1001.v1


 11 

 

Table 1. Evaluation of differences between the approximate solution of Example 1 using generalized 

Legendre wavelets for M = 3; k = 2; 3=µ , against the exact and Legendre wavelets [27] solutions 

for M = 3; k = 3. 

t Exact Sol. 

Generalized Legendre wavelets 

(proposed method) 

for M=3, k=2, 3=µ  

Regular Legendre wavelets [27] 

 for M=3 and k=3 

Approximate Sol. Absolute Error Approximate Sol. Absolute Error 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.01758 

0.06233 

0.12529 

0.20047 

0.28383 

0.37268 

0.017559 

0.062345 

0.1253 

0.20048 

0.28384 

0.37268 

2.1156e-05 

1.253e-05 

2.6631e-06 

1.0317e-05 

2.6723e-06 

1.5045e-06 

0.01787 

0.06191 

0.12548 0.20032 

0.28365 

0.37271 

 

2.9000e-04 

4.2000e-04 

1.9000e-04 

1.5000e-04 

1.8000e-04 

3.0000e-05 

Table 2. Evaluation of differences between the approximate solution of Example 1 using generalized 

Legendre wavelets for M = 3; k = 2; 4=µ , against the exact and Legendre wavelets [27] solutions 

for M = 4; k = 3. 

t Exact Sol. 

Generalized Legendre wavelets 

(proposed method) for M=3, k=2, 

4=µ  

Regular Legendre wavelets [27] 

for M=4 and k=3 

Approximate Sol. Absolute Error Approximate Sol. Absolute Error 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.01758 

0.06233 

0.12529 

0.20047 

0.28383 

0.37268 

0.017559 

0.062345 

0.1253 

0.20048 

0.28384 

0.37268 

2.1156e-05 

1.253e-05 

2.6631e-06 

1.0317e-05 

2.6723e-06 

1.5045e-06 

0.01787 

0.06191 

0.12548 0.20032 

0.28365 

0.37271 

 

2.9000e-04 

4.2000e-04 

1.9000e-04 

1.5000e-04 

1.8000e-04 

3.0000e-05 

 
Figure 1. Absolute error comparison for Example 1 for M = 3; k = 2; 4=µ , against the Regular 

Legendre wavelets (RLWM) [27] solutions for M = 4; k = 3. 

Example 2 

We deem the differential equation [3, 14] 

     .)(,)()()(. 00ytutyty250 ==+′    (4.4) 
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where )t(u  is the unit step function. The analytic solution of (4.4) is given by .e1)t(y t4−−=  

This problem has been solved by Legendre wavelets with k = 3, M = 3 by Razzaghi and Yousefi 

[3], and by Chebyshev wavelets, with k = 2, M = 3 by Babolian and Fattahzadeh, see [14]. We apply 

Generalized Legendre wavelets (GLWM) for 3M = 2k, = , 3=µ . We suppose that the unknown 

function 

,C)t(c)t(c)t(y T
m,n

3

1n

3

0m
m,nm,n

1k

1n

M

0m
m,n Ψψψ µµ

µ

= = ≈
= =

−

= =

 

where )t(Ψ  and C  are as the preceding example. Integrating (4.4) from 0 to t and with the use of 

the operational matrix 1212P ×  as computed in Example 1, we obtain 

  12 10.25 ( ) ( ) ( ) .T T TC t P C t e P t ×Ψ + Ψ = Ψ      (4.5)
 

The above Eq. (4.5) holds for all the time t in the interval [0 , 1). 

Thus, form which we obtain, 

     0.25 ,T T TC P C P e+ =      (4.6)
 

where )(tu is expressed as 

[ ] .)t(e)t(1
3

2
)t(u 112

T
112

T
×× == ΨΨ00   0   100  0  100 0  

Equation (4.6) can be expressed in the following form 

      ,QC D=         (4.7) 

where 0.25 , .T TQ I P D P d= + =  

Solving Eq. (4.7) for C , we obtain the approximate solution .C)t(y TΨ=  

In Table 3, a comparison is made between the approximate values using the present approach 

together with the exact solutions and the regular Legendre wavelets method. 

Table 3. Evaluation of differences between the approximate solution of Example 2 using 

generalized Legendre wavelets for M = 3; k = 2; 3=µ , against the exact and Legendre 

wavelets [3] solutions for 3=M ; k = 2 and 3=k  . 

T 
Exact 

Solution 

(proposed method) for  

3=M , 2=k , 3=µ  

Regular Legendre wavelets for 

3=M  

Appr. Sol Absolute Error 
Appr. Sol 

2=k [3] 
Absolute 

Error  

Appr. Sol. 

3=k  
Absolute Error 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

 0 

 0.3297 

 0.5507 

 0.6988 

 0.7981 

 0.8647 

 0.9093 

0.0002416 

 0.3298 

 0.5506 

 0.6988 

 0.7981 

 0.8647 

 0.9093 

 0.0002416 

 8.462e-5 

 5.012e-5 

 1.065e-5 

 4.127e-5 

 1.069e-5 

 6.018e-6  

0.0002 

0.3284 

0.5523 

0.6980 

0.7987 

0.8653 

0.9091 

2.0e-4 

 0.00128 

 0.00163 

 8.06e-4 

 5.97e-4 

 6.35e-4 

 1.82e-4 

0.0051813 

 0.3285 

 0.55233 

 0.69808 

 0.79872 

 0.86537 

 0.90912 

5.1813e-03 

1.1825e-03 

1.6606e-03 

7.3067e-04 

6.1326e-04 

7.0400e-04 

1.5817e-04 

It is evident that the proposed method (GLWM) gives better accuracy compared to regular 

Legendre wavelets method (RLWM). Note the numerical results for the case 3=M and 2=k are 

taken from [3], while the approximate solution and the absolute error for 3=M and 3=k , we wrote 

our own MATLAB program. 
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The absolute errors for our suggested approach (GLWM) and the conventional Legendre and 

Chebyshev wavelets methods are contrasted in the following table (Table (4)). The absolute errors 

displayed in the table below indicate how the suggested method (GLWM) outperforms the 

conventional Legendre and Chebyshev wavelets methods. 

Remark:  

Since these are only the points 2.0,1.0,0.0=t  taken into consideration in [14], as can be seen 

in Table 1 on page 425, in [14], we take into account the absolute errors at these points. 

Table 4. Evaluation of differences between the absolute errors of Example 2 using generalized 

Legendre wavelets for M = 3; k = 2; 3=µ , against Legendre wavelets [3] and Chebyshev wavelets 

method [14]. 

T 

(proposed method) 

for  

3=M , 2=k , 

3=µ  

Legendre wavelets for 

2=k  
Chebyshev wavelets 

Method [14] 

Absolute Error 

Absolute 

Error  

3=M  

Absolute 

Error 

4=M  

Absolute 

Error  

3=M  

Absolute 

Error 

4=M  

Absolute 

Error 

5=M  

0.0 

0.1 

0.2 

2.4160e-04 

8.462e-5 

5.012e-5 

2.0e-4 

1.2800e-03 

 1.6300e-03 

5.1813e-03 

1.1825e-03 

1.6606e-03 

1.2700e-02 

 1.4500e-02 

 3.8000e-03 

2.1000e-03 

 1.3200e-03 

 1.7000e-03 

0.2038e-3 

0.0208e-3 

0.1467e-3 

The absolute errors list in the table above show the demonstrate the superiority of the proposed 

method (GLWM) against the regular Legendre and Chebyshev wavelets methods. 

Example 3: Bessel differential equation of order zero 
We deem the differential equation [14] 

    .)(,)(, 00y10y0tyyyt =′==+′+′′      (4.8) 

A solution known as the Bessel function of the first kind of order zero denoted by )t(J0  is (O’Neil 

[29]) 
q2

0q
2

q

0 )
2

t
(

)!q(

)1(
)t(J 

−
=

∞

=

.We will first suppose that the unknown function )t(y ′′  is given 

by 

      .)t(C)t(y T Ψ=′′
 
       (4.9) 

Using the boundary conditions in (4.8) and (4.9) yields that 

.1)t(PC)t(y,)t(PC)t(y 2TT +==′ ΨΨ  

Now, approximating 1,t  where ).t(d1,)t(et TT ΨΨ ≅≅  

Thus, our differential equation (4.8) is reduced to  

( ) ,0dPCePCCe T2TTTTT =+++ ΨΨΨΨΨΨ  

which can be written as 

  2( ) ( ) ( ) 0.
TT T T T T T T Te C P C e P C e dΨ Ψ + Ψ + Ψ Ψ + Ψ Ψ =    (4.10) 

In order to solve the example under investigation, we will use the following feature of the product of 

two generalized Legendre wavelet function vectors: 
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      ( ) ( ) ,T T TC t t CΨ Ψ ≈ Ψ        (4.11) 

where
T

M,1k1,1k0,1kM,21,20,2M,11,10,1 ]c,...,cc,...,c,...,c,c,c,...,cc[C −−−=
µµµ

and in the 

same way we can gain )t(Ψ  and C
~

 is a MM 1jk1k −− × µµ  matrix. 
To represent the calculation process, we pick out 3M = 2k, = , 3=µ . 

In this case, we have 

Now, we approximate the function t)t(f =  in terms of the set of the basis functions )t(Ψ  

as: 

      ,)t(et)t(f 112
T

×≅= Ψ       (4.12) 

where in this case the coefficient vector e  is given by 

T

27

2
e 








= 00   

81

6

27

   25
00  

81

6
 

9

 2
00  

81

6
, 

and 

T

d 







= 00   0

3
 200  0 

3
 200  0

3
2

. 

Moreover, we will use the following feature of the product of two generalized Legendre wavelet 

function vectors: 

   =)t()t( TΨΨ

















T
33

T
22

T
11

00

00

00

ΨΨ

ΨΨ

ΨΨ

,     (4.13) 

where  

  .3,2,1i,

3,i3,i2,i3,i1,i3,i0,i3,i

3,i2,i2,i2,i1,i2,i0,i2,i

3,i1,i2,i1,i1,i1,i0,i1,i

3,i0,i2,i0,i1,i0,i0,i0,i

T
ii =





















=

µµµµµµµµ

µµµµµµµµ

µµµµµµµµ

µµµµµµµµ

ψψψψψψψψ

ψψψψψψψψ

ψψψψψψψψ

ψψψψψψψψ

ΨΨ   (4.14) 

In (4.13) we used the fact that 0l,kj,i =µµ ψψ  for .ki ≠  

Also, we have  

,3,2,1,0j,3,2,1i,
2

3
j,ij,i0,i === µµµ ψψψ  

,3,2,1i,
10

6

2

3
2,i0,i1,ii,1 =+≈ µµµµ ψψψψ  

,3,2l,3,2,1i,
10

6
1l,i1,i1,i ==≈ −

µµµ ψψψ  

.3,2,1i,
356

27
1,i3,i2,i =≈ µµµ ψψψ  
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Conserving only the elements of )t(Ψ yields that: 

,0 ,1 ,2 ,3

,1 ,0 ,2 ,1 ,2

,2 ,1 ,0 ,2 ,1

,3 ,2 ,1 ,0 ,2

3 3 3 3
2 2 2 2
3 3 6 6 6
2 2 10 10 10

, 1,2,3.3 6 3 6 27
2 10 2 10 6 35
3 6 27 3 6
2 10 2 106 35

i i i i

i i i i i

T

i i

i i i i i

i i i i i

i

µ µ µ µ

µ µ µ µ µ

µ µ µ µ µ

µ µ µ µ µ

ψ ψ ψ ψ

ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ

 
 
 
 + 
 Ψ Ψ = =
 + 
 
 

+ 
 

(4.15) 

From (4.11) we get 

   
2( ) ( ) ( ) 0 ,

TT T T T TE C P C E P C E dΨ + Ψ + Ψ + Ψ =      (4.16) 

or 

    
2 0 ,

TTEC P C EP C E d+ + + =  
      (4.17) 

where E
~

 can be computed in the same manner of (4.9) as follows: 
















=

3

2

1

E00

0E0

00E

E
~ , 

1E =





























+

+

+

41233

23123

32312

4321

e
10

6
e

2

3
e

356

27
e

10

6
e

2

3

e
356

27
e

10

6
e

2

3
e

10

6
e

2

3

e
10

6
e

10

6
e

10

6
e

2

3
e

2

3

e
2

3
e

2

3
e

2

3
e

2

3

 

= 





























9

1

105

35
00

105

35

9

1

135

60
0

0
135

60

9

1

27

3

00
27

3

9

1

. 

Similarly, we can compute 2E and 3E where we obtain: 
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2E =





























3

1

105

35
00

105

35

3

1

135

60
0

0
135

60

3

1

27

3

00
27

3

3

1

, 3E =





























9

5

105

35
00

105

35

9

5

135

60
0

0
135

60

9

5

27

3

00
27

3

9

5

. 

Equation (4.17) is a set of algebraic equations which can be solved for C  which is given as: 

C =[-0.2343 0.001259 0.0003123 -5.349e-5 -0.2256 0.003718 0.0003092 -1.943e-5 -0.2087 

0.006028  0.0002839  -1.285e-5]T . 

The approximate solution utilizing the suggested approach (GLWM), the regular Legendre 

wavelets (RLWM) are compared in Table 3 to the solution function )(0 tJ . Also, the absolute errors 

for both methods are compared in Table 3 and Figure 2 as shown below. It is clear the suggested 

method gives better accuracy compared to the regular Legendre wavelets. 

Table 3. Evaluation of differences between the approximate values using our proposed approach 

(GLWM), ( RLWM) together with the solution of )(0 tJ . 

T 
Exact solution 

)(0 tJ  

Generalized Legendre wavelets 

(proposed method) for M=3, k=2, 3=µ  
Regular Legendre wavelets for 

M=3 and k=3 [14] 

Appr. Solution Absolute Error Appr. solution Absolute Error 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.997502 

0.990025 

0.977626 

0.960398 

0.93847 

0.912005 

0.997501 

0.990025 

0.977626 

0.960398 

0.93847 

0.912005 

2.6760e-07 

4.8122e-08 

1.0624e-07 

8.9834e-08 

7.0354e-08 

4.3358e-08 

0.997502 

0.990024 

0.977625 

0.960396 

0.938468 

0.912004 

4.3793e-07 

9.7224e-07 

1.2465e-06 

2.2267e-06 

1.8072e-06 

8.6350e-07 

 
Figure 2. Absolute error comparison for Example 3 M=3, k=2, 3=µ against the Regular Legendre 

wavelets (RLWM) [14] solutions for M=3 and k=3  
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5. Conclusion 

In this paper, a novel and accurate mechanism so as to find the solution of linear differential 

equations over the intervals [0, 1) based on the generalization of Legendre wavelets is offered. Our 

technique reduced the problems into algebraic equations through the features of generalized 

Legendre wavelet (GLW) simultaneously with the operational matrix of integration. We chose the 

function approximation in such a manner so as to compute the connection coefficients in an easy 

manner. The proposed numerical technique, based on the GLW, has been examined on three linear 

problems as a consequence of this investigation. 
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