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Abstract: In this work, we offer a novel and accurate method in order to find the solution of the
linear differential equations over the intervals [0, 1) based on the generalization of Legendre
wavelets. The mechanism is still upon workable implementation of the operational matrix of
integration and its derivatives. This method reduces the problems into algebraic equations via the
properties of generalized Legendre wavelet (GLW) together with the operational matrix of
integration. The function approximation has been picked out in such a way so as to enumerate the
connection coefficients in an facile manner. The proposed numerical technique, based on the GLW,
has been examined on three linear problems as a consequence of this investigation. The outcomes
have shown that this method, as opposed to some other existing numerical and analytical methods,
is a very useful and advantageous for tackling such problems.
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1. Introduction

Polynomial series and orthogonal functions play an essential rule for solving various problems
of dynamic systems [1-8]. One of those problems is solving differential or integral equations. The
major idea of employing orthogonal basis is that it decreases these problems in order to solve a system
of linear algebraic equations, approximating some signals involved in these equations, by the use of
both of the truncated orthogonal sequence and the matrix of integrations P to exclude the integral
operations.

t
Consider the equation | y(x)dx =P y(x), with the obtained operational matrix P by
0

using the orthogonal functions’ basis ¥/, ¥,,...,¥,_;and ¥ = [y/(), Vieen, Wn—l]-

Lately, Wavelets are very important in various studies such as science and engineering. Various
authors have studied different forms of wavelets such as Fourier series, Walsh functions, Legendre
polynomials, Bessel series and Chebyshev polynomials (see [9-16]). The Wavelet analysis is a
probable mechanism to solve such difficulty in Physics, signal and image processing by deletion of
numerous terms in gaining demand precision. Gu and Jiang [17] developed the Haar Wavelet
operational matrix. Chen and Hsiao [18] solved some problems in image processing, communication
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and physics using the wavelet analysis. Shyam and Susheel [19] estimated a new theorem on
preferable wavelet approximation of the functions from the generalized lipschitz class by the use of
Haar scaling function.

By the use of Haar wavelets, Lepik [20] proposed the segmentation method to solve differential
equations, numerically. Lepik [21] demonstrated that the Haar wavelet method is a strong tool for
finding the solution of various forms of integral and partial differential equations, his method’s major
feature is its simplicity and small calculation charge. Jhangeer et al. [22] studied the Bogoyavlenskii—
Kadomtsev—Petviashvili (BKP) equation by means of Lie symmetry analysis. Tavassoli Kajani et al.
[23] studied the Chebyshev wavelets matrix of integration, Sripathy et al. [24] presented the
chebyshev wavelet method in order to solve some non-linear differential equations arising in
engineering. Shyam and Rakesh [25] obtained five new estimates of any function fon/0,1)

having bounded derivative by the method of the extended Legendre wavelet. Owais et al. [26]
developed the comprehensive theory of biorthogonal wavelets on the spectrum. Sharma and Lal [27]
presented the operational matrix of integration by the use of the Legendre wavelet in order to solve
different types of differential equations in both linear and non-linear forms. This manuscript is
orderly as follows: in the second section, we present the definition of Legendre wavelet beside its
properties. Also, we present the definition of the extended Legendre wavelet expansion together with
the function approximation. In section 3, we offer a novel and accurate method for solving linear
differential equations over the intervals [0, 1) based on the generalization of Legendre wavelets. The
mechanism is still upon workable implementation of the operational matrix of integration and its
derivatives. This method reduces the problems into algebraic equations. Our proposed numerical
technique will be examined on three linear problems in the fourth section. We summarize our work
in the fifth section.

2. Definitions and Preliminaries

2.1. Legendre wavelet and its properties

Considering a single function “mother wavelet” ('t ), from which wavelets represent a family

of functions by dilating and transforming this single function. This family of continuous wavelets
[17] has the following form:

—i(t=b
v,,()=la 2[—),a,beR,a¢0. 2.1)
' a
The Legendre wavelets on the interval [0 ,/) defined by
I3 n—1 n+1
Jm+L+2:L (2Ft—n), <t< :
v, 0= 7 2k ) 2k 2 2.2)
’ 0 otherwise

for which k is positive integer, n=1,2,..., 251 and n=2n-1 , the order of the Legendre
Polynomial is denoted by m=0,1,2,..., M and the normalized time is denoted by ¢ The

Legendre Polynomials L, which are obtained in the above definition is proposed as follows:
L (=1,
L=t , (2.3)
L ()= 2m+1

m+1
which are orthogonal over [-1,1] with weighting function w(' /)= I, for more details (see Balaji [28]).

(L ()——2—L () , m=1,2,3,...
m+1
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2.2. Function approaches
A function f(¢) which is defined on [0, 1) can be extended as Legendre Wavelet infinite
(2.4)

series of the following type
SO=22 Con Vo

n=1 m=0
where S = <f’ l//”’”’>.
After being trimmed, Eq. (2.4) can be rewritten as follows
2 -1 ,
f(t) = Z Z Cn,m Wn’m = C W(t)' (2'5)
T
and

n=1 m=0

C=|c¢c,,c;;...C
10€11 IM-1 k=15 Cok-1 k=1 4,
T
WZk_I,M—I:l '

where

t)= . . .

w(t) [V/],o Vir-Yim-1--Yoe-1,¥ k-1,
2.3. Generalized Legendre Wavelet Expansion [25]
In this section we introduce a generalization for Legendre wavelets given in (2.2) .The proposed
Generalized Legendre wavelets (GLW) on the interval /0, ] ) are defined by
%L( oy i=l_ i+l
0 otherwise
=1,2,..., ,Uk_I and 7 = 2n— [ and the order of the Legendre
M and the normalized time is denoted by 7

for which k is positive integer, n

Polynomial is denoted by m=0,1, 2
Lemma 2.1 (Orthonormality of the generalized Legendre wavelets)
The generalized Legendre wavelets which are defined in Eq. (2.6) are orthonormal on

n—1 n+1
[—— .
u*
n1n+1
,——] where n=2n-1

Proof:
First we show that y(*/, ,(t) are orthogonal on/—~
From the definition of GLW given in Eq.(2.6), we have
g k s k
S UL, (ut—n), SuL(ut=n)

ﬁ+1

< (ﬂ) m(t), W(ﬂ) ’(t)>=<
Lt I L,(u't=i) Ly(u't—i) dt

=>

m +4

+ 1
2
,u
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ko _n—1 __; _n+l
Set y"t—n =y, then for I—F ,wehave y=-],and for l‘——k

,wehave y =1 and

1
(W nm (), y i (1)) =m+ '+l (L (9) Lo y) dy
°1

Since the Legendre polynomials are orthogonal on [—/, 1], then we conclude that

<w(‘”n,m( 1), W (t )> =0. 2.7)
. n-1 n+l
To show the generalized Legendre wavelets are orthonormal on /——,——/, we only need to
ut o ou
2
show they are normalized, that is Hy/(” Jum(t )H2 =]
2n
k
2 K (2m+1
v nmce)] =] ( J”k B(ptt—2n+1) dt
2 2\ 2
P
o, VEMT=2n+1 o dv=y* di
Therefore we have
2 (2m+1) 1 2m+1 2
v n,m(r)HZ ( ; j T Lv) ( ; j(2m+1j i 2.8)

From (2.7) and (2.8) it is clear that our generalized Legendre wavelets that are defined in Eq. (2.6) are
orthonormal.
A function f(t) which is defined on [0,]) can be expanded as generalized Legendre

wavelet infinite series of the following type

f(1)=3 % Com W 2.9)

n=1m=0 >
— H
Cn,m _<f’ 4 ",m>
where

After being trimmed, Eq. (2.9) can be expressed as follows:

‘ukfl M
T
fO=22 V" n@®=Cy(0), (2.10)
n=1 m=0
C=[Clp CryrrCiags C29Coprios CongrosC gy € pp v € 4y ] 7
where ' ' ' ' ’ ’ A T ut M and

T
lﬂ(t)=[!ﬂ”1,0 A O VAl R YR VA VIR a0 W IR Ve N VAR Vi) W”ﬂk‘f,L--W”ﬂ"‘],M] :

3.1. Generalized Legendre Wavelet Operational Matrix of Integration

Now, we will present our new generalized Legendre wavelet operational matrix of integration
for M =3,K =2, =3, then it used to solve the differential equations. The variation between
exact solution and Legendre wavelet solution is negligible.

With the use of the definition of Legendre wavelet for m=0,1,2,3 and n=1,2,3.
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we get that
i i B 0<t< z
Wip(t) =42 9 (3.1)
0o , otherwise
3 2
u 3.= [9t-1], 0<t<—
Wi(t)= \/; [ | 9 (3.2)
0 , otherwise
3 /5 5 2
u —.|=3t-1y -1], 0<t<=—
Wi,(t)=142 \/;[ ( ) ] 9 (3.3)
0 otherwise
3 |7 3 2
u — = 59r=-1) -3(9t-1)|, 0<t<—
wis(t)=42\2 [ ( ) -3 )] 9 (3.4)
0, otherwise
H \/z 2 <t< hd
Wopl(t)=\2 ~ 97 9 (3.5)
0 , otherwise
3 2 4
u 3.= [9t-3], — << —
Wz,l(t) = \/; [ ] 9 9 (3.6)
0 , otherwise
3 |5 5 2 4
u —. =13 9r=-3) -1, — << —
Woo(t)=42 \/;[ ( ) ] 9 9 (3.7)
0, otherwise
3 |7 3 2 4
u —. = 159t-3) =39t -3)|, —<t<—
P b C SR ORI RIS o8
0, otherwise
3 4 6
u -, —<t<—
Wio(t)=3\2 9 9 (3.9)
0 , otherwise
3 4 6
u 3.= [9¢t-5], —<t<—
Wi (t)= \/; [ ] 9 9 (3.10)
0 , otherwise
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3 |5 ) 4 6
u —. = BYr-5) -1f, —<t<—
wsa(t)=42\2 [ ( ) ] 9 9 (3.11)
0, otherwise
3 |7 3 4 6
u —. = 15(9t=5) —3(9r-5 —<t<—
Wi3(t)=42\2 [ ( ) ( )] 9 9 (3.12)
0 otherwise
Now by integrating Eq. (3.1), we have
) % t 0<t< %
[Wio(t) di= 5 (3.13)
’ =5 otherwise

Now expanding Eq. (3.13) in the type of basis function, yields that

JARNE]

j}wf,‘o(t) dt = [— 2

1 2
S0 2000 S 0 0 0¥t
9 27 9 9 9 }””»

where
T
U u u u u u u u u U u U
l’”]z(t):[‘/fw Vie Vi Wiz Woo Vor Voo Vo VWip VWi Vs ‘//3,3} .

In the same procedure, making the same mechanism for the other functions of basis, implies that

6w Vi NI B
1) di=|-X2 0 X2 X2 9 90 0 0 0 0 0 0|¥,(t
A [ 27 135 27 } (),
t ]
[wi(t) dt=0 A s 00000 0 0¥, (t)
0 ’ L 135 )
t ]
Tw s(t) dt:é 2£; 0oL 0000000 o}yf,zm
0 5

L ou 1 /3 I 2
t) dt=|0 0 0 0 — — 0 = = 0 0 0|¥,(t
£‘//2,0() i 9 27 9 } 12 ),
y | NERSERN T RN
t) dt=|0 0 0 0 —— 0 —— ——=—= 0 0 0 0|¥,(t
(I)'//z,z() I 57 135 57 } 12(),

JIs

t
[Was(t) dt=|0 0 0 0 0 ~5s 00000 0}0,2(:)
() b
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o |~

{0 0 0 0 0 0

Lou
[wso(t) dt=
0

t
Iwﬂﬂ)w=P 0000 0
0

t
Jwio(t) di= 000 0 0
0

t
[wis(t) dt=|0 0 0 0 0 0 0 0
0

Thus we propose the operational matrix of integration as follows:

oy, 2
9 27 9 9
V3o, 5 3
27 135 27
0 —E 0 0 0 0
135
l ﬁ () l 0 0
9 27 9 J_
1 3
0 0 0 0 — —
9 27
0 0 0 0 —ﬁ 0
p= 27
0 0 0 0 0 —E
\1/;5
1 3
0 0 0 0 — —
9 27
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Thus,

[¥,(x) ax=P
0

3.2. Convergence criteria of the proposed (GLWM)

: 15 May 2023

é 0 0 O(ﬁ%xu’

1 3 1

7 77 0 ;}!{’12(0,

—g 0 E _ﬁ}%(”
7 135 27 >

0 —ﬁ 0 0}”12(0,

1 3 1

9 27 0 ;}%zﬁ),

0 0 2 0 0 0
9
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 2
0 — = 0 0 0
9 9
135 27
0 0 0 0 0 0
0 1 0 0 0 0
9
9 27 9
o o Y3 o 5 3
27 135 27
0 0 0 —E 0 0
j/;S
1 3 1
0 0 — -— 0 —
9 27 9 |
¥ () . (3.14)

In this subsection, we discuss the theoretical analysis of the convergence of our approach to solve

the general linear differential equation of order

n defined below:

doi:10.20944/preprints202305.1001.v1
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y(n) + ])l(t)y("—l) 4ot I)n—l(t)yl-l_ ])O(t)y = h(t) ,

, () (3.15)
y(to):yoay(to):yw---vy (to):ynfr

Theorem 3.1
The series solution

y(t)= i i Cpm l//#’ (1) defined in Eq.(2.9) using generalized Legendre wavelet method

n=1 m=0

converges to y(t).

Proof:
Let I’(R) be the Hilbert space.

k
Since we have shown that yw*/, ,(t)= m+< u2L (u*t—7i) forms an orthonormal

basis.
M
Let y(t)= Y h,; Wh(t)be a solution of Eq. (3.15) where 7, =<y(t),l//ﬁ(l‘)> for n=1 in
i=0
which< .. > denotes the inner product.

Let we denote W.(1)=y"(t)and o; :<)’(Z);1//#(t)>

M
¥()= XVl vt

Consider the sequences of partial sums
n—1I U m—1 U
W= _zlaj wyo(t;) and W,_, = Zlaj wo(t;)
j= j=
Then,

<y(t)’Wn—1> :<y(t)::§jaj l//ﬂ(tj)>: jgjﬁj <y(t)’l//#(tj)>:jgjc_¥j a; =jZ ‘aj‘ :

Moreover,
2
2 n—1 u
RS S0y
Jj=m+1
n—1 " n—1 "
= X oqy'(t) X oay(t)
i=m+1 J=m+1
n=1 n-1 o U U
= 3 Y aq@ ). vh)
i=m+1 j=m+1
n—1 2
=3 |a|
i=m+1
n—1 2
As n — oo, by Bessel’s inequality, we get that > | a; | is convergent, it yields that {W;_ I}is a
i=m+1

Cauchy sequence and it converges to W (say).
Now, we have
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(W =vopt e )= 1)) = (s(0p (1))
:<,,ITZ°W"_I ,l//ﬂ(fj)>_0‘j

= lim <W;1—1 N )> —9

n—1
= lim <Z]0{j l//lu(tj)’ l///‘(tj)>—0(j
n—>oo j:

:aj—aj:O

Which is satisfied only in the caseif y(7)=W .Thus, y(t)= Y «, wt (t;).
=1

4. Numerical test and discussion

To demonstrate the effectiveness of our proposed generalized Legendre wavelet method
(GLWM), we implement GLWM to some ordinary differential equations of linear form with constant
and variable coefficients. All the numerical test examples were carried out with MATLAB R2015a.

Example 1
We deem the differential equation

025y +y=t ,y(0)=0. (4.1)
whose exact solution is given by y(t)= é( e v4-1).

We apply Generalized Legendre wavelets (GLWM) forM =3 k=2, u=3.

For this choice of M, k , i, the function approximation for y(t) will take the summation

form:
k-1
U M u 3 3 Y7 T
Wt)= 21 Zocn,m Wum(t)= Z] ZOCn,m Wom (1)=C¥,

T
C =/¢C/y C;; C/» Crz Crp Co7 Cry Crz C2py C3; Czo C
where = 12x1 [¢ro €11 €12 €13 Cop Cop Cap Coz C39 C31 C32 C33 ] and

T
%M(r){vfi;(z) V) Uit W) W W) WD W) W) ) v wﬁ;m} .

Now, we approximate the function f(¢)=1¢ in terms of the set of the basis functions ¥(t) as:

f()=1=e"¥(1),, . (4.2)

where in this case the coefficient vector e is given by

e=[0.0524 0.0302 0 0 01571 0.0302 0 0 02619 0.0302 0 O]T

and we present the operational matrix of integration /. ;, as follows:
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1/9 260/4053 0 0 2/9 0 0 0 2/9 0 0 0
260/40530 489/170450 0 0 0 0 0 0 0
0 489/170450 94/50050 0 0 0 0 0 0
0 0 94/5005 0 0 0 0 0 0 0 0
0 0 0 0 1/9 260/4053 0 0 2/9 0 0 0
P]}<12: 0 0 0 0 260/4053 0 489/170450 0 0 0 0
0 0 0 0 0 489/170450 94/5005 0 0 0 0
0 0 0 0 0 0 94/5005 0 0 0 0 0
0 0 0 0 0 0 0 0 1/9 260/4053 0 0
0 0 0 0 0 0 0 0 260/40530 489/170450
0 0 0 0 0 0 0 0 0 489/170450 94/5005
0 0 0 0 0 0 0 0 0 0 94/5005 0
Therefore, we obtain
t
[(X )1218x = Ppagys (1) (4.3)

x=0
Now we used this operational matrix in order to find the solution of the deferential Eq. (4.1).
By integrating equation (4.1) and using equations (4.2) and (4.3), we have
tdy t -
0.25 [—dx+ [y(x)dx=[e ¥ (x),,dx ,

o dx 0 0

which can rewritten in the following form
025CTW@W) + PCTW(@) =l PW(1) 0
Form which we obtain,
0.25C"+PC"=P"e

Taking the transpose of the last equation we get the following system of equations

(0.251+P")C =P" e and Iisthe 12x12 identity matrix. Solving for the unknown vector C we

get:
C=[0.0526 0.0305 9.67¢-5 1.64e-5 0.16 0.032 2.95¢-4 1.72¢-5 0.276 0.0351 5.08¢-4 1.89¢-5]"

Table 4.1 compares the approximate solutions gained using the proposed method and regular
Legendre wavelet method [27] with the exact solutions. In comparison to the standard Legendre
wavelets method, the proposed method clearly provides better accuracy.

Remark: We take both algebraic systems derived from applying our proposed technique (GLWM)
and (LWM) are of the same size for the sake of fair comparison.

The accuracy comparison between our proposed method (GLWM) and the standard Legendre
wavelets method (RLWM) [27] is evident as shown in Tables 1 and 2. Also, the absolute errors for
both methods are compared in Figure 1 as shown above. It is clear the suggested technique gives
better accuracy compared to the regular Legendre wavelets.
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Table 1. Evaluation of differences between the approximate solution of Example 1 using generalized
Legendre wavelets for M =3; k=2; U = 3, against the exact and Legendre wavelets [27] solutions

for M =3; k=3.

Generalized Legendre wavelets
(proposed method)
for M=3, k=2, =3

Approximate Sol.  Absolute Error Approximate Sol. = Absolute Error

Regular Legendre wavelets [27]

t Exact Sol. for M=3 and k=3

0.1 0.01758 0.017559 2.1156e-05 0.01787 2.9000e-04
0.2 0.06233 0.062345 1.253e-05 0.06191 4.2000e-04
0.3 0.12529 0.1253 2.6631e-06 0.12548 0.20032 1.9000e-04
0.4 0.20047 0.20048 1.0317e-05 0.28365 1.5000e-04
0.5 0.28383 0.28384 2.6723e-06 0.37271 1.8000e-04
0.6 0.37268 0.37268 1.5045e-06 3.0000e-05

Table 2. Evaluation of differences between the approximate solution of Example 1 using generalized
Legendre wavelets for M=3; k=2; U = 4, against the exact and Legendre wavelets [27] solutions

for M=4; k=3.

Generalized Legendre wavelets

(proposed method) for M=3, k=2, Regular Legendre wavelets [27]

t Exact Sol. for M=4 and k=3

H=4
Approximate Sol. Absolute Error Approximate Sol. Absolute Error
0.1 0.01758 0.017559 2.1156e-05 0.01787 2.9000e-04
0.2 0.06233 0.062345 1.253e-05 0.06191 4.2000e-04
0.3 0.12529 0.1253 2.6631e-06 0.12548 0.20032 1.9000e-04
0.4 0.20047 0.20048 1.0317e-05 0.28365 1.5000e-04
0.5 0.28383 0.28384 2.6723e-06 0.37271 1.8000e-04
0.6 0.37268 0.37268 1.5045e-06 3.0000e-05
I rET T R
-3.5 j. -
i - . -
40+ |

-®- Absolute error of RLWM
- Absolute error of presented method

Log,, error

Figure 1. Absolute error comparison for Example 1 for M =3; k=2; U = 4, against the Regular
Legendre wavelets (RLWM) [27] solutions for M =4; k= 3.

Example 2
We deem the differential equation [3, 14]

0.25y'(t)+ y(t)=u(t) ,y(0)=0". (4.4)
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whereu(t) is the unit step function. The analytic solution of (4.4) is givenby y(t)=1—e™*.

This problem has been solved by Legendre wavelets with k = 3, M = 3 by Razzaghi and Yousefi
[3], and by Chebyshev wavelets, with k =2, M = 3 by Babolian and Fattahzadeh, see [14]. We apply
Generalized Legendre wavelets (GLWM) forM =3,k =2, u = 3. We suppose that the unknown

function
w1y . 303 p ;
W)= 2 X mWun(t)=2 2 ¢ wWun(1)=CY¥,
n=1 m=0 n=I1m=0

where ¥ (t) and C are as the preceding example. Integrating (4.4) from 0 to t and with the use of

the operational matrix P, ;, as computed in Example 1, we obtain
025C™W () + PC™Y(t)=e' PY(),,, - (4.5)

The above Eq. (4.5) holds for all the time t in the interval [0, 1).
Thus, form which we obtain,

025C"+PC"=P" e (4.6)

whereu(?) is expressed as

2

u(t)z?[l 0 001 0 001 0 0 0]"F(t),y=e¥(t),

Equation (4.6) can be expressed in the following form
oc=D , (4.7)
where 0=025I+P", D=P"d.
Solving Eq. (4.7) for C, we obtain the approximate solution y(¢) = C"¥ .

In Table 3, a comparison is made between the approximate values using the present approach
together with the exact solutions and the regular Legendre wavelets method.

Table 3. Evaluation of differences between the approximate solution of Example 2 using
generalized Legendre wavelets for M = 3; k = 2; (=3, against the exact and Legendre

wavelets [3] solutions for M =3;k=2andk =3 .

(proposed method) for Regular Legendre wavelets for
Exact M=3,k=2, u=3 M=3
Solution Appr. Sol Absolute Error A}f l;rzsg} AIEi::):te AP}S r: 301' Absolute Error
0.0 0 0.0002416 0.0002416 0.0002 2.0e-4 0.0051813  5.1813e-03
0.1 0.3297 0.3298 8.462e-5 0.3284 0.00128 0.3285 1.1825e-03
0.2 0.5507 0.5506 5.012e-5 0.5523 0.00163 0.55233 1.6606e-03
0.3 0.6988 0.6988 1.065e-5 0.6980 8.06e-4 0.69808 7.3067e-04
0.4 0.7981 0.7981 4.127e-5 0.7987 5.97e-4 0.79872 6.1326e-04
05  0.8647 0.8647 1.069e-5 0.8653 6.35e-4 0.86537 7.0400e-04
0.6 0.9093 0.9093 6.018e-6 0.9091 1.82e-4 0.90912 1.5817e-04

It is evident that the proposed method (GLWM) gives better accuracy compared to regular
Legendre wavelets method (RLWM). Note the numerical results for the case M =3and k =2 are

taken from [3], while the approximate solution and the absolute error for M =3 and k =3, we wrote
our own MATLAB program.
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The absolute errors for our suggested approach (GLWM) and the conventional Legendre and
Chebyshev wavelets methods are contrasted in the following table (Table (4)). The absolute errors
displayed in the table below indicate how the suggested method (GLWM) outperforms the
conventional Legendre and Chebyshev wavelets methods.

Remark:
Since these are only the points #=10.0,0.1,0.2 taken into consideration in [14], as can be seen

in Table 1 on page 425, in [14], we take into account the absolute errors at these points.

Table 4. Evaluation of differences between the absolute errors of Example 2 using generalized
Legendre wavelets for M =3; k=2; U= 3, against Legendre wavelets [3] and Chebyshev wavelets

method [14].
(proposed method)
for Legendre wavelets for Chebyshev wavelets
M=3, k=2, k=2 Method [14]
T u=3

Absolute Absolute Absolute Absolute Absolute

Absolute Error Error Error Error Error Error

M=3 M =4 M =3 M =4 M =5
0.0 2.4160e-04 2.0e-4 5.1813e-03 1.2700e-02 2.1000e-03 0.2038e-3
0.1 8.462e-5 1.2800e-03 1.1825e-03 1.4500e-02 1.3200e-03 0.0208e-3
0.2 5.012e-5 1.6300e-03  1.6606e-03 3.8000e-03 1.7000e-03 0.1467e-3

The absolute errors list in the table above show the demonstrate the superiority of the proposed
method (GLWM) against the regular Legendre and Chebyshev wavelets methods.

Example 3: Bessel differential equation of order zero
We deem the differential equation [14]

ty'+y + v=0 ,y(0)=1, y(0)=0. (4.8)
A solution known as the Bessel function of the first kind of order zero denoted by J,(¢) is (O’Neil
_o (=) - e
29]) Jy(t)= 2 (T 5 )°? We will first suppose that the unknown function y“(t) is given
q=0({!
by
V'i(t)=C" ¥(t). (4.9)

Using the boundary conditions in (4.8) and (4.9) yields that
V(t)=CT P¥(t) ,y(t)=C"P*¥(t)+1.

Now, approximating ¢, / where t=e’ ¥(t) , 1 = d" ¥(t).
Thus, our differential equation (4.8) is reduced to

THCT W +CT PY + (TP 4 dT )=0,
which can be written as
P (W)C +PPIC+ P (" P)PTC+ W (W) d =0. (4.10)

In order to solve the example under investigation, we will use the following feature of the product of
two generalized Legendre wavelet function vectors:
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C"Y() Y1) =¥ C (4.11)

T .
whereC=/ ¢, C1/,esCiprs C292Copreees Coppreens € k=1 y C =1 oo € kol / ~ and in the

u u
same way we can gain ¥ (¢) and C isa 15 M x M matrix.

To represent the calculation process, we pick out M =3 , k=2, u=3.

In this case, we have

Now, we approximate the function f(¢)=t¢ in terms of the set of the basis functions ¥ (t)
as:

T
f(t)=t=e ¥ (1), (4.12)
where in this case the coefficient vectore is given by

ez[ﬁﬁooﬂﬁ Wﬁoor
9 ,

0 0 —/— —
27 81 81 27 81

and

T
d:{gOOO%OOO%O OO}.

Moreover, we will use the following feature of the product of two generalized Legendre wavelet
function vectors:

w0 0
vi)¥Yi)=| 0 w¥ 0 | (4.13)
0 0 ¥

where

whowty vhowl vhwl, wivl
T Wi‘l Wlﬁo l//,i‘z w‘;] W,ZI V/Zz ng] v/’;s
VizVio Vi2Vii Vi2Vi> VixVis
l//i!,IS l//i!,IO Wil,ts Wi/,lI ‘/’fs ‘/’fz ‘/’53 Wfl,t3

In (4.13) we used the fact that ' j Wi, = 0 for i#k.

,i=123. (4.14)

Also, we have

Wl wl = %wfj L i=123, j=0123,

U

3 6 ,
Wi Wi ﬁy/’% +ﬁl//flfz, i=1.23,

6 .
ViVl = syl =123, 1=23

27 ,
vihyls = Wl//ﬁ , =123
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Conserving only the elements of #/('t ) yields that:

3 3 3 3
\5%’,‘0 ﬁWﬁ \5%’3 ﬁ%
3 3 6 6 6
—yt =yt —— ——V;
NN TR T o s
¥ = 6 3 6 2 =123, 419
= =V =Vt =V, =V
\/E i2 \/E i \/E i \/F) i, m i,
3 6 27 3 6
el Z -V, ——V —Vvi+—
\/51/11#3 \/El/ltﬁz ml//ﬁ \/El//luo \/ﬁl//zﬂz
From (4.11) we get
YI(EYC +¥'PIC+¥Y(E)PC+¥Y(E)d=0, (4.16)
or
I T o2’ I _
EC +PC+EP C+Ed=0, 4.17)

where £ can be computed in the same manner of (4.9) as follows:

E, 0 0
E=|0 E, 0],
0 0 E
ie ie ie ie
V2 V2 V2 V2
P \/3 2 ﬁ 1 70 3 m 2 m 3
\/E 3 m 2 \/E 1 70 3 \/g\/g 2
> 3 m 3 \/g\/g 2 ﬁ 1 m 4
LA E
9 27
G @,
—| 27 9 135
, N0 1 435
135 9 105
o o Y1
105 9

Similarly, we can compute £, and E; where we obtain:
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3 27 9 27
NI G5 da
B =27 3 135 g =27 9 135
o, Neoo 1 T Yoo s V35
135 3 105 135 9 105
o o V31 o o YB3
105 3 105 9

Equation (4.17) is a set of algebraic equations which can be solved for C which is given as:

C=/-0.2343 0.001259 0.0003123 -5.349¢-5 -0.2256 0.003718 0.0003092 -1.943e-5 -0.2087

0.006028 0.0002839 -1.285¢-5]".
The approximate solution utilizing the suggested approach (GLWM), the regular Legendre
wavelets (RLWM) are compared in Table 3 to the solution function J(#). Also, the absolute errors

for both methods are compared in Table 3 and Figure 2 as shown below. It is clear the suggested

method gives better accuracy compared to the regular Legendre wavelets.

Table 3. Evaluation of differences between the approximate values using our proposed approach

(GLWM), (RLWM) together with the solution of J 0 (l ) .

Exact solution

Generalized Legendre wavelets
(proposed method) for M=3, k=2, u=3

M=3 and k=3 [14]

Regular Legendre wavelets for

Jo(t) Appr. Solution Absolute Error  Appr. solution Absolute Error

0.1 0.997502 0.997501 2.6760e-07 0.997502 4.3793e-07
0.2 0.990025 0.990025 4.8122e-08 0.990024 9.7224e-07
0.3 0.977626 0.977626 1.0624e-07 0.977625 1.2465e-06
0.4 0.960398 0.960398 8.9834e-08 0.960396 2.2267e-06
0.5 0.93847 0.93847 7.0354e-08 0.938468 1.8072e-06
0.6 0.912005 0.912005 4.3358e-08 0.912004 8.6350e-07

T T ‘ T T

°

-6.0 ®

Log,, error

-6.5

-®-Absolute error of RLWM
-m- Absolute error of presented method

Figure 2. Absolute error comparison for Example 3 M=3, k=2, u =3 against the Regular Legendre
wavelets (RLWM) [14] solutions for M=3 and k=3
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5. Conclusion

In this paper, a novel and accurate mechanism so as to find the solution of linear differential
equations over the intervals [0, 1) based on the generalization of Legendre wavelets is offered. Our
technique reduced the problems into algebraic equations through the features of generalized
Legendre wavelet (GLW) simultaneously with the operational matrix of integration. We chose the
function approximation in such a manner so as to compute the connection coefficients in an easy
manner. The proposed numerical technique, based on the GLW, has been examined on three linear
problems as a consequence of this investigation.
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