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Abstract: We develop a quantitative microscopic theory of decaying Turbulence by studying the
dimensional reduction of the Navier-Stokes loop equation for the velocity circulation. We have found
an infinite dimensional manifold of solutions of the Navier-Stokes loop equation[1,2] for the Wilson
loop in decaying Turbulence in arbitrary dimension d > 2. This family of solutions corresponds to a
fractal curve in complex space Cd, described by an algebraic equation between consecutive positions
plus a nonlinear periodicity condition. We derive the constrained SDE for the evolution of the fractal
curve at a fixed moment of physical time as a function of an auxiliary stochastic time. We expect
this stochastic process to cover our fixed manifold of the solutions of the decaying Turbulence. The
energy density of the fluid decays as E0/t, where E0 is an initial dissipation rate. Presumably, we
have found a new phase of extreme Turbulence yet to be observed in real or numerical experiments.

Keywords: Turbulence, Fractal, Anomalous dissipation, Fixed point, Velocity circulation, Loop
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0. Introduction

A while ago, we derived [1,3] a functional equation for the so-called loop average [4,5]
or Wilson loop in Turbulence. The path to an exact solution by a dimensional reduction in
this equation was proposed in the ’93 paper [1] but has just been explored.

At the time, we could not compare a theory with anything but crude measurements
in physical and numerical experiments at modest Reynolds numbers. All these experi-
ments agreed with the K41 scaling, so the exotic equation based on unjustified methods of
quantum field theory was premature.

The specific prediction of the Loop equation, namely the Area law [1], could not be
verified in DNS at the time with existing computer power.

The situation has changed over the last decades. No alternative microscopic the-
ory based on the Navier-Stokes equation emerged, but our understanding of the strong
turbulence phenomena grew significantly.

On the other hand, the loop equations technology in the gauge theory also advanced
over the last decades. The correspondence between the loop space functionals and the
original vector fields was better understood, and various solutions to the gauge loop
equations were found.

In particular, the momentum loop equation was developed, similar to our momentum
loop used below [6–8]. Recently, some numerical methods were found to solve loop
equations beyond perturbation theory [9,10].

The loop dynamics was extended to quantum gravity, where it was used to study
nonperturbative phenomena [11,12].

All these old and new developments made loop equations a major nonperturbative
approach to gauge field theory.

So, it is time to revive the hibernating theory of the loop equations in Turbulence,
where these equations are much simpler.

The latest DNS [13–16] with Reynolds numbers of tens of thousands revealed and
quantified violations of the K41 scaling laws. These numerical experiments are in agreement
with so-called multifractal scaling laws [17].

However, as we argued in [2,18], at those Reynolds numbers, the DNS cannot yet
distinguish between pure scaling laws with anomalous dimension ζ(n) and some algebraic
function of the logarithm of scale ζ(n, log r) modifying the K41 scaling.
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Theoretically, we studied the loop equation in the confinement region (large circulation
over large loop C), and we have justified the Area law, suggested back in ’93 on heuristic
arguments [1].

This law says that the tails of velocity circulation PDF in the confinement region are
functions of the minimal area inside this loop.

It was verified in DNS four years ago [13] which triggered the further development of
the geometric theory of turbulence[2,14–16,18–30].

In particular, the Area law was justified for flat and quadratic minimal surfaces [22],
and an exact scaling law in confinement region Γ ∝

√
Area was derived [21]. The area law

was verified with better precision in [14].
It was later conjectured in [18] that the dominant field configurations in extreme

Turbulence are so-called Kelvinons, which were shown to solve stationary Navier-Stokes
equations assuming the sparse distribution of vorticity structures.

These topological solitons of the Euler theory are built around a vortex sheet bounded
by a singular vortex line. This vortex line is locally equivalent to the cylindrical Burgers
vortex [31], with infinitesimal thickness in the limit of a large Reynolds number.

As we argued in [2,18], the Kelvinon has an anomalous dissipation, surviving the
strong turbulent limit. This dissipation is proportional to the square of constant circulation
of the Burgers vortex times a line integral of the tangent component of the strain along the
loop.

The Kelvinon minimizes the energy functional, with anomalous terms coming from the
Burgers core of the vortex line. There is also a constant scale factor Z in the representation
of the Kelvinon vorticity in terms of spherical Clebsch variables:

~ω =
1
2

ZeabcSa~∇Sb × ~∇Sc = ~∇φ1 × ~∇φ2; (1)

S2
1 + S2

2 + S2
3 = 1; (2)

φ2 = arg (S1 + ıS2); φ1 = ZS3; (3)

In that paper, the constant Z was related to the Kolmogorov energy dissipation density
and the boundary value of the S3 variable at the loop C.

The anomalous Hamiltonian [2,18] explicitly violated the K41 scaling by the logarith-
mic terms log Z/ν in the region of small loops C. This region resembles the asymptotically
free QCD. The logarithmic terms were summed up by RG equation with running coupling
constant logarithmically small in this region.

These exciting developments explain and quantitatively describe many interesting
phenomena [2] but do not provide a complete microscopic theory covering the full inertial
range of Turbulence without simplifying assumptions of the sparsity of vortex structures.

Moreover, while the Kelvinon (presumably) solves the stationary Navier-Stokes equa-
tions, it does not solve the loop equations for the following reason.

The loop equation assumes that the velocity field is independent of the loop C. In this
case, the circulation

∮
C vαdrα variations in the loop functional by the shape C of the loop

can be reduced to the Navier-Stokes equation.
Otherwise, the variation would also involve the variation of the velocity field

∮
C δvαdrα.

This problem does not invalidate the Kelvinon theory as an ideal gas of random vortex
rings sparsely distributed in a turbulent flow.

The loop functional is not needed for that statistical theory, and the stationary solution
of the Navier-Stokes equation is sufficient. The shape of the loop and the vortex sheet
inside would become random variables influenced by a background strain like in the pure
vortex sheet solutions [2].

These objections, however, prevent the Kelvinon gas model from being a complete
theory of strong isotropic Turbulence. This model is merely an approximation of the full
theory.
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In the present work, we develop the theory free of these assumptions by exactly solving
the loop equations for decaying Turbulence. Our representation of velocity circulation does
not run into the problems of the Kelvinon gas model, nor do we make any approximations
in the loop equations we are solving.

1. Loop Equation

We introduced the loop equation in Lecture Series at Cargese and Chernogolovka
Summer Schools [1].

Here is a summary for the new generation.
We write the Navier-Stokes equation as follows

∂tvα = ν∂βωβα − vβωβα − ∂α

(
p +

v2
β

2

)
; (4)

∂αvα = 0; (5)

The Wilson loop average for the Turbulence

Ψ[C] =
〈

exp
(

ı
ν

∮
C

vαdrα

)〉
(6)

treated as a function of time and a functional of the periodic function C : rα = Cα(θ); θ ∈
(0, 2π) (not necessarily a single closed loop), satisfies the following functional equation

ıν∂tΨ = HCΨ; (7a)

HC = H(1)
C +H(2)

C (7b)

H(1)
C = ν

∮
C

drα∂βω̂αβ(r); (7c)

H(2)
C =

∮
C

drαω̂αβ(r)v̂β(r); (7d)

ω̂αβ ≡ −ıν
δ

δσαβ
(7e)

v̂β(r) =
1
∂2

µ
∂αω̂βα(r) (7f)

The statistical averaging 〈. . . 〉 corresponds to initial randomized data, to be specified
later.

The area derivative δ
δσαβ

is related to the variation of the functional when the little
closed loop δC is added

Σαβ(δC)
δF[C]

δσαβ(r)
= F[C + δC]− F[C]; (8)

Σαβ(δC) =
1
2

∮
δC

rαdrβ (9)

In the review, [1,2], we present the explicit limiting procedure needed to define these
functional derivatives in terms of finite variations of the loop while keeping it closed.

All the operators ∂µ, ω̂αβ, v̂α are expressed in terms of the spike operator

Dα(θ, ε) =
∫ +ε

−ε
dξ

(
1− |ξ|

ε

)
δ

δCα(θ + ξ)
(10)

The area derivative operator can be regularized as

Ωαβ(θ, ε) = −ıν
δ

δC′α(θ)

∫ ε

−ε
dξ

δ

δCβ(θ + ξ)
− {α↔ β}; (11)
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and velocity operator (with δ, ε→ 0+)

Vα(θ, ε, δ) =
1

D2
µ(θ, ε)

Dβ(θ, ε)Ωβα(θ, δ); (12)

In addition to the loop equation, every valid loop functional F[C] must satisfy the
Bianchi constraint [4,5]

eαβγ...∂α
δF[C]

δσβγ(r)
= 0 (13)

In three dimensions, it follows from identity ~∇ · ~ω = 0; in general dimension d > 3,
the dual vorticity ω̃ is an antisymmetric tensor with d− 2 components. The divergence of
this tensor equals zero identically.

However, for the loop functional, this restriction is not an identity; it reflects that
this functional is a function of a circulation of some vector field, averaged by some set of
parameters.

This constraint was analyzed in [2] in the confinement region of large loops, where it
was used to predict the Area law. The area derivative of the area of some smooth surface
inside a large loop reduces to a local normal vector. The Bianchi constraint is equivalent to
the Plateau equation for a minimal surface (mean external curvature equals zero).

In the Navier-Stokes equation, we did NOT add customary Gaussian random forces,
choosing instead to randomize the initial data for the velocity field.

These random forces would lead to the potential term [2] in the loop HamiltonianHC,
breaking certain symmetries needed for the dimensional reduction we study below.

With random initial data instead of time-dependent delta-correlated random forcing,
we no longer describe the steady state (i.e., statistical equilibrium) but decaying Turbulence,
which is also an interesting process, manifesting the same critical phenomena.

The energy is pumped in at the initial moment t = 0 and slowly dissipates over time,
provided the viscosity is small enough, corresponding to the large Reynolds number we
are studying.

2. Dimensional Reduction

The crucial observation in [1] was that the right side of the Loop equation, without
random forcing, dramatically simplifies in functional Fourier space. The dynamics of the
loop field can be reproduced in an Ansatz

Ψ[C] =
〈

exp
(

ı
ν

∮
dCα(θ)Pα(θ)

)〉
(14)

The difference with the original definition of Ψ[C] is that our new function Pα(θ) depends
directly on θ rather then through the function vα(r) taken at rα = Cα(θ).

This transformation is the dimensional reduction d⇒ 1 we mentioned above. From
the point of view of the loop functional, there is no need to deal with field v(r); one could
take a shortcut.

The reduced dynamics must be fitted to the Navier-Stokes dynamics of the original
field. With the loop calculus developed above, we have all the necessary tools to build
these reduced dynamics.

Let us stress an important point: the function ~P(θ, t) is independent of the loop C. As
we shall see later, it is a random variable with a universal distribution in functional space.

This independence removes our objection in the Introduction to the Kelvinon theory
and any other Navier-Stokes stationary solutions with a singularity at fixed loop C in space.

The functional derivative, acting on the exponential in (14) could be replaced by the
derivative P′ as follows

δ

δCα(θ)
↔ − ı

ν
P′α(θ) (15)
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The equation for P(θ) as a function of θ and also a function of time, reads:

∂tPα =
(
νDβ −Vβ

)
Ωβα (16)

where the operators V, D, Ω should be regarded as ordinary numbers, with the following
definitions.

The spike derivative D in the above equation

Dα(θ, ε) = − ı
ν

∫ 1

−1
dµ sgn(µ)Pα(θ + εµ) (17)

The vorticity (11) and velocity (12) also become singular functionals of the trajectory
P(θ).

The first observation about this equation is that the viscosity factor cancels after the
substitution (17).

As we shall see, the viscosity enters initial data so that at any finite time t, the solution
for P still depends on viscosity.

Another observation is that the spike derivative D(θ, ε) turns to the discontinuity
∆P(θ) = P(θ+)− P(θ−) in the limit ε→ 0+

D(θ, 0+) = − ı
ν

∆P(θ) (18)

The relation of the operators in the QCD loop equation to the discontinuities of the momen-
tum loop was noticed, justified, and investigated in [7,8].

In the Navier-Stokes theory, this relation provides the key to the exact solution.
In the same way, we find the limit for vorticity

Ωαβ(θ, 0+) =
−ı
ν

Pαβ(θ); (19)

Pαβ(θ) = ∆Pα(θ)Pβ(θ)− {α↔ β}; (20)

Pα(θ) ≡
Pα(θ+) + Pα(θ−)

2
(21)

and velocity (skipping the common argument θ )

Vα =
∆Pβ

∆P2
µ

Pβα = Pα −
∆Pα∆PβPβ

∆P2 (22)

The Bianchi constraint is identically satisfied as it should

eαβγ...∆Pα

(
∆PβPγ − {β↔ γ}

)
= 0 (23)

We arrive at a singular loop equation for Pα(θ)

ν∂t~P = −(∆~P)2~P +

∆~P

(
~P · ∆~P + ı

(
(~P · ∆~P)2

∆~P2
− ~P2

))
; (24)

This equation is complex due to the irreversible dissipation effects in the Navier-Stokes
equation.

The viscosity dropped from the right side of this equation; it can be absorbed in units
of time. Viscosity also enters the initial data, as we shall see in the next Section on the
example of the random rotation.

However, the large-time asymptotic behavior of the solution would be universal, as it
should be in the Turbulent flow.
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We are looking for a degenerate fixed point [2], a fixed manifold with some internal
degrees of freedom. The spontaneous stochastization corresponds to random values of
these hidden internal parameters.

Starting with different initial data, the trajectory ~P(θ, t) would approach this fixed
manifold at some arbitrary point and then keep moving around it, covering it with some
probability measure.

The Turbulence problem is to find this manifold and determine this probability mea-
sure.

3. Random Global Rotation

Possible initial data for the reduced dynamics were suggested in the original papers
[1,2]. The initial velocity field’s simplest meaningful distribution is the Gaussian one, with
energy concentrated in the macroscopic motions. The corresponding loop field reads

Ψ0[C] = exp
(
−1

2

∫
C

d~C(θ) · d~C(θ′) f
(
~C(θ)− ~C(θ′)

))
(25)

where f (~r) is the velocity correlation function〈
vα(r)vβ(r′)

〉
=
(

δαβ − ∂α∂β∂−2
µ

)
f (r− r′) (26)

The potential part drops out in the closed loop integral.
The correlation function varies at the macroscopic scale, which means that we could

expand it in the Taylor series

f (r− r′)→ f0 − f1(r− r′)2 + . . . (27)

The first term f0 is proportional to initial energy density,

1
2

〈
v2

α

〉
=

d− 1
2

f0 (28)

and the second one is proportional to initial energy dissipation rate E0

f1 =
E0

2d(d− 1)ν
(29)

where d = 3 is the dimension of space.
The constant term in (27) as well as r2 + r′2 terms drop from the closed loop integral,

so we are left with the cross-term rr′, which reduces to a full square

Ψ0[C]→ exp

(
− f1

(∮
dCα(θ)Cβ(θ)

)2
)

(30)

This distribution is almost Gaussian: it reduces to Gaussian one by extra integration

Ψ0[C]→ const
∫
(dφ) exp

(
−φ2

αβ

)
exp

(
2ı
√

f1φµν

∮
dCµ(θ)Cν(θ)

)
(31)

The integration here involves all d(d−1)
2 = 3 independent α < β components of the antisym-

metric tensor φαβ. Note that this is ordinary integration, not the functional one.
The physical meaning of this φ is the random uniform vorticity at the initial moment.
However, as we see it now, this initial data represents a spurious fixed point unrelated

to the turbulence problem.
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It was discussed in our review paper [2]. The uniform global rotation represents a
fixed point of the Navier-Stokes equation for arbitrary uniform vorticity tensor.

Gaussian integration by φ keeps it as a fixed point of the Loop equation.
The time derivative at this special initial data vanishes so that the exact solution of the

loop equation with this initial data equals its initial value (30).
Naturally, the time derivative of the momentum loop with the corresponding initial

data will vanish as well.
It is instructive to look at the momentum trajectory Pα(θ) for this fixed point.
The functional Fourier transform [1,2] leads to the following simple result for the

initial values of Pα(θ).
In terms of Fourier harmonics, this initial data read

Pα(θ) =
∞

∑
n=1

Pα,n exp(ınθ) + P̄α,n exp(−ınθ); (32)

Pα,n = N (0, 1)∀α, n > 0; (33)

P̄α,n =
4
√

f1

n
φαβPβ,n; ∀β, n > 0; (34)

φαβ = −φβα; (35)

φαβ = N (0, 1)∀α < β; (36)

As for the constant part Pα,0 of Pα(θ) , it is not defined, but it drops from equations by
translational invariance.

Note that this initial data is not real, as P̄α,n 6= P?
α,n . Positive and negative harmon-

ics are real but unequal, leading to a complex Fourier transform. At fixed tensor φ the
correlations are

〈
Pα,nPβ,m

〉
t=0 =

4
√

f1

m
δ−nmφαβ; (37)〈

Pα(θ)Pβ(θ
′)
〉

t=0 = 2ı
√

f1φαβ sign(θ′ − θ); (38)

This correlation function immediately leads to the uniform expectation value of the
vorticity 〈

Pα(θ)∆Pβ(θ)
〉
= 4ı

√
f1φαβ; ∀θ (39)

The uniform constant vorticity kills the linear term in the original loop space, involving
∂αΩ̂αβ = 0.

The nonlinear term V̂αΩ̂αβ vanishes in the coordinate loop space only after integration
around the loop.

Here are the steps involved

V̂β =
1
2

Ω̂αβCβ; (40)∮
Ω̂αβCβΩ̂βγdCα ∝ Ω̂αβΩ̂βγΣαβ(C); (41)

Here the tensor area Σ was defined in (9). It is an antisymmetric tensor; therefore its
trace with a symmetric tensor Ω̂αβΩ̂βγ vanishes.

This calculation demonstrates how an arbitrary uniform vorticity tensor satisfies the
loop equation in coordinate loop space.

We expect the turbulent solution of the loop equation to be more general, with the
local vorticity tensor at the loop becoming a random variable with some distribution for
every point on the loop.
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4. Decay or Fixed Point

The absolute value of loop average Ψ[C] stays below 1 at any time, which leaves two
possible scenarios for its behavior at a large time.

Decay: ~P→ 0; Ψ[C]→ 1; (42)

Fixed Point: ~P→ ~P∞; Ψ[C]→ Ψ∞[C]; (43)

The Decay scenario in the nonlinear ODE (24) corresponds to the 1/
√

t decrease of ~P.
Omitting the common argument θ, we get the following exact time-dependent solution

(not just asymptotically, at t→ +∞).

~P =

√
ν

2(t + t0)
~F; (44)(

(∆~F)2 − 1
)
~F =

∆~F

(
~F · ∆~F + ı

(
(~F · ∆~F)2

∆~F2
− ~F2

))
; (45)

The Fixed Point would correspond to the vanishing right side of the momentum loop
equation (24). Multiplying by (∆~P)2 and reducing the terms, we find a singular algebraic
equation

(∆~P)2
(
(∆~P)2~P− (~P · ∆~P)∆~P

)
=

ı∆~P ·
(
(~P · ∆~P)2 − ~P2(∆~P)2

)
; (46)

The fixed point could mean self-sustained Turbulence, which would be too good to be true,
violating the second law of Thermodynamics. Indeed, it is easy to see that this fixed point
cannot exist.

The fixed point equation (46) is a linear relation between two vectors ~P, ∆~P with
coefficients depending on various scalar products. The generic solution is simply

∆~P = λ~P; (47)

with the complex parameter λ to be determined from the equation (46).
This solution is degenerate: the fixed point equation is satisfied for arbitrary complex

λ.
The discontinuity vector ∆~P aligned with the principal value ~P corresponds to vanish-

ing vorticity in (19), leading to a trivial solution of the loop equation Ψ[C] = 1.
We are left with the decaying turbulence scenario (45) as the only remaining physical

solution.

5. Markov process in complex space

One may try the solution where the discontinuity vector is proportional to the principal
value. However, in this case, such a solution does not exist.

∆~F ?
= λ~F; (48)

λ2~F2 − 1 ?
= λ2~F2; (49)
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There is, however, another solution where the vectors ∆~F,~F are not aligned. This
solution requires the following relations

(∆~F)2 = 1; (50a)

(~F · ∆~F)2 = ~F2 + ı~F · ∆~F (50b)

These relations are very interesting. The complex numbers indicate irreversibility, and lack
of alignment leads to vorticity distributed along the loop.

Also, note that this complex vector ~F(θ) is dimensionless, and the fixed point equation
(50) is completely universal!

One can build this solution as a Markov process by the following method.
Start with a complex vector ~F(θ = 0) = ~F0.
We compute the next values ~Fk = ~F

(
2πk
N

)
from the following discrete version of the

discontinuity equations (50).(
~Fk+1 − ~Fk

)2
= 1; (51a)(

~F2
k+1 − ~F2

k

)2
=
(
~Fk+1 + ~Fk

)2
+ 2ı

(
~F2

k+1 − ~F2
k

)
(51b)

A solution to these equations can be represented using a complex vector~qk subject to
two complex constraints{

~q2
k = 1,~Fk ·~qk =

1
2

(
ı±
√

4~F2
k − 1 + 2ı

)}
(52)

after which we can find the next value

~Fk+1 = ~Fk +~qk; (53)

We assume N steps, each with the angle shift ∆θ = 2π
N .

This recurrent sequence is a Markov process because each step only depends on the
current position ~Fk. On top of this Markov process, there is an extra periodicity requirement
~FN = ~F0.

This requirement represents a nonlinear restriction on initial position ~F0.
With this discretization, the circulation can be expressed in terms of these steps

∮
~F(θ) · d~C(θ) = −

∮
~C(θ) · d~F(θ)⇒ −

N−1

∑
k=0

~Ck+1 + ~Ck
2

·~qk (54)

Note that the complex unit vector is not defined with the Euclidean metric in six
dimensions

〈
~A,~B

〉
= Re ~A ·Re ~B + Im ~A · Im ~B. Instead, we have a complex condition

~q2 = 1 (55)

which leads to two conditions between real and imaginary parts

(Re~q)2 = 1 + (Im~q)2; (56)

Re~q · Im~q = 0; (57)

In d dimensions, there are d− 1 complex parameters of the unit vector; with an extra
linear constraint in (52), there are now d− 2 free complex parameters at every step of our
iteration, plus the discrete choice of the sign of the root in the solution of the quadratic
equation.
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At the last step, k = N − 1, we need to get a closed loop ~FN = ~F0. This is one more
constraint on the complex vectors~q0, . . .~qN−1

N−1

∑
0

~qk = 0; (58)

We use this complex vector constraint to fix the arbitrary initial complex vector ~F0 as a
function of all remaining parameters.

Looking ahead into the rest of our investigation, it turns out that the closure conditions
fix only half of the 2d real parameters in the initial point ~F0. The remaining parameters are
free zero modes of our fixed manifold.

Due to the closure of the space loop ~C(θ), the global translation of the momentum
loop ~P(θ) leaves invariant the Wilson loop; therefore, the translational zero modes of the
momentum loop do not lead to ambiguities.

However, the missing d out of 2d parameters in ~F0 mean that some other d parameters
should be adjusted to provide the momentum loop closure.

We discuss this issue in the next Section, where we derive the SDE for the closed
momentum loop in three dimensions. This SDE has explicit terms, which we computed in
Appendix and coded in Mathematica R©in [32].

The adjustment of parameters we mentioned earlier yields three constraints on the
Wiener process we derived.

Return to the general study of the discrete loop equations (51).
There is a trivial solution to these equations at any even N

~fk =
(−1)k~q

2
; (59)

~q2 = 1; (60)

We reject this solution as unphysical: the corresponding vorticity equals zero, as all
the vectors ~fk are aligned.

Our set of equations has certain mirror reflection symmetry

~Fk ↔ ~F∗N−k (61)

Thus, the complex solutions come in mirror pairs ~Fk,~F∗N−k. The real solutions are only
a particular case of the above trivial solution with real~q.

Each nontrivial solution represents a periodic random walk in complex vector space
Cd. The complex unit step~qk ∈ Cd depends on the current position ~Fk ∈ Cd, or, equivalently,
on the initial position ~F0 plus the sum of the preceding steps.

We are interested in the limit of infinitely many steps N → ∞, corresponding to a
closed fractal curve with a discontinuity at every point.

This solution’s degeneracy (fewer restrictions than the number of free parameters) is a
welcome feature. One would expect this from a fixed point of the Hopf equation for the
probability distribution.

In the best-known example, the microcanonical Gibbs distribution covers the energy
surface with a uniform measure (ergodic hypothesis, widely accepted in Physics).

The parameters describing a point on this energy surface are not specified– in the case
of an ideal Maxwell gas, these are arbitrary velocities of particles.

Likewise, the fixed manifold, corresponding to our fractal curve’s N → ∞ limit, is
parametrized by N arbitrary local rotations, as discussed in the next Section.

This rich internal random structure of our fixed manifold, combined with its rotation
and translation invariance in loop space C, makes it an acceptable candidate for extreme
isotropic Turbulence.
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6. The Probability measure

The simplest case where these equations have nontrivial solutions is the three-dimensional
space. For smaller dimensions of space, there is only a degenerate solution with zero vortic-
ity (a vanishing cross product Ω̂ ∝ ~P× ∆~P ). Thus, we only consider d > 2 in the rest of the
paper.

The complex unit vector in d dimensions can be parametrized by rotation matrix and
a unit real vector in d− 2 dimensions

~q = Ô · ~u(α1, α2, ~w, β); (62a)

~u(α1, α2, ~w, β) = {α1, α2~w, ıβ}; (62b)

~w2 = 1; (62c)

α2
1 + α2

2 = 1 + β2; (62d)

The following steps lead to this canonical form. Take a general complex d-vector~q and
choose the rotation Ô ∈ O(d) to direct its imaginary part at the last axis d.

The imaginary part of the condition~q2 = 1 implies the real part of this vector has zero
component d. This real vector in d− 1 dimensions can be parametrized as {α1, α2~w} with
the unit vector ~w ∈ Sd−3 and arbitrary real parameters α1, α2.

There is a multiple counting of the same unit vector with this parametrization: the
rotation matrix space O(d) must be factored by rotations O(d− 3) of the unit vector ~w.

Ô ∈
(

O(d)/
O(d− 3)

)
(63)

Also, the sign change of α2 is equivalent to the reflection of the vector ~w, so we have to
factor out such reflections and keep the sign of α2 arbitrary

~w ∈
(
Sd−3/

Z2

)
; (64)

{α1, α2} ∈ R2 (65)

The complex constraint for ~Fk ·~qk can be used to fix these α1, α2 as a linear function of β
given a complex vector

~fk = ÔT
k · ~Fk; (66)

as follows:

{α1, α2} = M̂−1.{Re (R)− βIm (c), βRe (c) + Im (R)}; (67)

R =
1
2

(
ı±
√

4~f 2
k − 1 + 2ı

)
(68)

where ~fk = {a,~b, c} and

M̂ =

(
Re (a) Re (~b · ~w)

Im (a) Im (~b · ~w)

)
(69)

After that, α2
1 + α2

2 = 1 + β2 yields a quadratic equation for β.
Note in passing that ~u belongs to De Sitter space dSd−1. However, this is where an

analogy with the ADS/CFT duality ends.
There are, in general, four solutions for β: two signs for R in (68) and two more signs

in a solution of the quadratic equation for β (62d).
We have to choose a particular real solution for β. A universal option is to choose

the step with the smallest Euclidean distance (Re~q)2 + (Im~q)2. We used this choice in
our initial simulations [32], but later we switched to another method, using the SDE we
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describe later in this work. The SDE guarantees the closure condition, unlike the naive
random walk approach.

We arrive at the invariant distribution for our fractal curve. At a fixed N

dΩd(N) =
N−1

∏
k=0

(dÔk)(d~wk)

2|O(d− 3)|

∫
d2d~F0δ2d(~Q); (70a)

~Q = ~FN − ~F0 =
N−1

∑
k=0

~qk; (70b)

~Fk+1 = ~Fk +~qk; ∀k = 0, . . . N − 1; (70c)

where ~qk are complex vectors, parametrized by Ô0, . . . ÔN−1, ~w0, . . . ~wN−1 via recurrent
equations (62),(67).

The complex vector’s integration and delta function is understood as a product of its
real and imaginary parts.

We conclude that the fixed manifold Td(N) of the decaying Turbulence is a subset of
the tensor product of rotational and spherical spaces.

Td(N) ∈
((

O(d)/
O(d− 3)

)
⊗
(
Sd−3/

Z2

))⊗N
(71)

This subset is selected by imposing the closure condition ∑k~qk = 0, which in general
provides 2d nonlinear relations between all parameters: ~λ, Ôk, ~wk for each choice of the real
solutions for β on each step.

This closure condition is sufficient by parameter count to eliminate a complex vector
~F0; however, we discovered in 3D that half of the parameters in complex vector ~F0 are left
undetermined, leading instead to three real constraints on the parameters of the rotation
matrices.

We cannot resolve the global closure conditions, but we found a way to achieve the
same goal by an SDE describing the evolution of our curve from one of the two exact
symmetric solutions we have found; this method preserves the closure condition at each
infinitesimal step of the stochastic process.

7. Symmetric Fixed Point

The above formal definition of the probability measure does not offer a practical
simulation method for covering this manifold.

We attempted to simulate a random walk ~Fk ⇒ ~Fk+1 step by step, taking random
rotation matrices. Unfortunately, there was a rapidly diminishing probability of the return
to the vicinity of the initial point ~FN = ~F0 after N steps.

We could not numerically solve the resulting transcendental equation for the initial
position ~F0 at large N, neither by analytical nor by Monte Carlo methods.

Instead, we have found an alternative algorithm for covering this manifold, preserving
the closed curve.

First, we have found a symmetric solution [32] of our recurrent equation (51) for
arbitrary N

~Φk =
1

2 sin
(

π
N
){cos

(
2πk
N

)
, sin

(
2πk
N

)
~w, ı cos

( π

N

)}
(72)

Here ~w ∈ Sd−3 is a unit vector. As we pointed out in Section 5, a reflected sequence ~Φ∗N−k
also represents a solution to the recurrent equations (51).
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The random walk step ~φk = ~Φk+1 − ~Φk is a real unit vector in this case, corresponding
to Ô = 1, β = 0 in (62) and

α1 + ıα2 = ı exp
(

πı(2k + 1)
N

)
; (73)

Our covering algorithm will use a symmetric fixed point or its reflection as a starting
element.

Due to the global O(d) symmetry, the rotated curve {Ô · ~Φ0, . . . Ô · ~ΦN−1} with arbi-
trary orthogonal matrix Ô is also a solution. We use random global rotation in numerical
simulations.

The imaginary parts of the steps ~qk are zero vectors at the start. Still, the evolution
below will involve complex infinitesimal rotations δ~qk = ~µk ×~qk so that the imaginary
parts appear later in the evolution.

Some constraints are left in the solution for the vectors ~qk even after the complex
rotations. In three dimensions, three scalar constraints remain on the imaginary parts of
the complex rotation vectors ~µk.

These constraints are needed to provide the closure condition. There are only three
scalar constraints among N real vectors, which leads to a nontrivial 3N − 3 dimensional
quotient space.

8. Infinitesimal complex rotations in 3D

Let us assume we already know a particular solution ~F0,~q0, . . .~qN−1 of the recurrent
equations (51) in d = 3 and perturb it by an infinitesimal transformation of the complex
vectors~qk, preserving their square.

We also shift the initial point ~F0 to keep the loop closed after infinitesimal transforma-
tions of all the steps~qk.

δ~qk = ~µk ×~qk; (74)

δ~F0 = ~λ; (75)

Here ~µk,~λ are infinitesimal complex 3D vectors.
The real part Re ~µk ∈ R3 comes from the infinitesimal group transformation δL of

rotation matrices in our canonical form (62)

δLÔk = Ω̂k · Ôk; (76)

Ω̂αβ
k = eαβγΩγ

k ; (77)
~Ωk = −Re ~µk; (78)

δL~qk = Re ~µk ×~qk; (79)

The imaginary part Im ~µk leads to the infinitesimal transformation of parameters α1, α2, β in
two-dimensional de Sitter space dS2; therefore, there are only two independent components
of Im ~µk.

We do not need an explicit split of the parameters of ~µk into these two transformations;
it is sufficient to know that cross product ~µk ×~qk with any complex vector ~µk is orthogonal
to~qk, as we need it in our random walk with~q2

k = 1.
Below, we will parameterize Im ~µk by two scalar parameters.
There are two contributions to the variation of each position ~Fk. One variation comes

from the rotation of the step from the previous position, and another comes from the
variation of the previous position.

δ~Fk = δ~Fk−1 +~µk−1 ×~qk−1 = λ +
k−1

∑
0
~µl ×~ql ; (80)
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By variation of the second of the constraints in (51), which we rewrite as(
~Fk ·~qk −

ı
2

)2
= ~F2

k +
2ı− 1

4
(81)

we find the following set of relations between infinitesimal ~µk,~λ

Gk~Fk ·~µk ×~qk =
(

2~Fk − Gk~qk

)
·
(
~λ +

k−1

∑
0
~µl ×~ql

)
; (82a)

Gk = (2~Fk ·~qk − ı); (82b)

We treat it as a recurrent system of equations for Im ~µk, assuming known values of
Re µl ,~λ.

After that, the complex vector ~λ is supposed to be determined from the closure
equation

N−1

∑
l=0

~µl ×~ql = 0 (83)

assuming all ~µl expressed as linear combinations of Re~λ, Im~λ, Re ~µi.
As we found in [32] in three dimensions, this system of equations for~λ is degenerate:

three parameters in~λ are left undetermined.
The solution for ~λ exists only if N vectors {Re ~µ0, . . . Re ~µN−1} obey three scalar

constraints.
In other words, the complex vector equation (83) reduces to three constraints for~λ and

another three constraints for Re ~µk. The complex vector~λ is left with three free components,
and the vectors {Re ~µ0, . . . Re µN−1} are left with 3N − 3 free components out of 3N.

The solution of these equations, which we find in Appendix , has the form

~λ =
N−1

∑
l=0

Λ̂l ·Re ~µl ; (84)

Im ~µk =
N−1

∑
l=0

Ŝkl ·Re ~µl (85)

with real 3× 3 matrices Ŝkl , and complex 3× 3 matrices Λ̂l ; these matrices depend on the
current values of all the vectors ~Fk.

In addition, we have found three linear constraints on Re ~µl , related to three complex
null vectors of a block matrix Ĥ involved in the equation for~λ.

The vector~λ is defined modulo this null space

~λ⇒ ~λ +
3

∑
i=1

ci~ψi (86)

Due to the closure of the original loop C ∈ bRd, the translation of~λ by arbitrary complex
vector does not change the circulation in (54). This translation of ~λ leads to the global
translation of our momentum curve ~P(θ), preserving the circulation over the closed loop in
space.

We resolved this ambiguity of~λ by choosing the pseudo-inverse of the degenerate
matrix Ĥ when computing the coefficients Λ̂l .
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The three constraints on infinitesimal rotations have a form (A144). These constraints
define a subspace S of the whole space R⊗N

3 of our rotation vectors Re ~µk (dual to elements
of Lie algebra on each SO(3))

S : ∑
k

~Θik ·Re ~µk = 0; i = 1, 2, 3; (87)

~Θik = Re
(
~ψ∗i Ŵk

)
; (88)

The rotation vectors Re ~µk vary in the quotient space

F =

(
R⊗N

3
/
S

)
(89)

The null-vectors ~ψi and coefficients Ŵk, depending on the current positions ~Fk are computed
using recurrent equations in [32].

We get numerical results on a laptop for arbitrary N < 100. Larger values of N would
require a supercomputer.

9. Brownian motion on fixed manifold

Now, we are ready to write down the SDE for the evolution of our complex curve
using the stochastic process d~ξl = Re ~µl :

d~qk =
N−1

∑
l=0

T̂kl · d~ξl ; (90a)

T̂kl = δkl q̂k + ıq̂k · Ŝkl ; (90b)

d~F0 =
N−1

∑
l=0

Λ̂l · d~ξl ; (90c)

~Fk = ~F0 +
k−1

∑
l=0

~ql ; (90d)

N−1

∑
k=0

~Θik · d~ξk = 0; i = 1, 2, 3; (90e)

These constrained stochastic differential equations describe the evolution of the point
on our fixed manifold T3(N) of closed complex curves subject to the loop equations (51),
starting with one of the symmetric fixed points (72)

~Fk

∣∣∣
τ=0

= ~Φk or ~Φ∗N−k (91)

The constrained SDE was studied in the mathematical literature [33].
We use a standard method of the projection of the Brownian motion to a quotient

space. Let us introduce new stochastic real vector variables dη̂ = {d~η0, . . . d~ηN−1} ∈ R⊗N
3

and project out the constraints as follows (in matrix notations)

dξ̂ = dη̂ −P · dη̂; (92)

P = Θ̂† ·
(

Θ̂ · Θ̂†
)−1
· Θ̂; (93)

The variables dη̂ are assumed to be delta correlated (in proper units of stochastic time)〈
dη̂

dτ
⊗ dη̂

dτ′

〉
= Îδ(τ − τ′) (94)

Here Î is a unit matrix in 3N dimensions.
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It is straightforward to check that dξ satisfies the constraints for arbitrary dη̂

Θ̂ · dξ̂ = 0 (95)

The variables dξ̂ do not change when variables dη̂ are shifted by superposition of
transposed constraints

δdη̂ = Θ̂† · dw; (96)

δdξ̂ = 0 (97)

So, our stochastic process dη̂ has some redundant (gauge) degrees of freedom dw.
The variables dξ̂ evolve in the quotient space F , covering it with an O(3) invariant

measure. This invariance is easy to check by noticing that all the matrices Θ̂, Λ̂, Ŝ, T̂ in our
equations are made of rotation-covariant parameters in the linearized recurrent equations.
These parameters are direct products of vectors times some dot products of other vectors.

In mathematical terms, dη̂ is a Wiener process in R⊗N
3 with a unit variance matrix,

and dξ̂ is a Brownian motion in the quotient space F . This quotient space evolves with
stochastic time, as the constraint matrix Θ̂ depends on current values of all vectors ~F..

The projection can be used to redefine the matrices

T = T̂ −P · T̂; (98)

L = Λ̂−P · Λ̂; (99)

after which our SDE takes a usual form

d~qk =
N−1

∑
l=0
Tkl · d~ηl ; (100)

d~F0 =
N−1

∑
l=0
Ll · d~ηl ; (101)

~Fk = ~F0 +
k−1

∑
l=0

~ql ; (102)

We propose this stochastic process as a definition of the fixed manifold of decaying
Turbulence.

The proof of this conjecture and extension to higher dimensions is left for a detailed
mathematical study, which is beyond the scope of this work.

We coded these SDE in [32] using Mathematica R©. This code is convenient for theoretical
development, but the optimized computations should be translated into Python and C++
and run on a supercomputer or a Tensorflow cluster.

Once we fix the initial value at one of the two mirror fixed points ~Φk, ~Φ∗N−k, the
evolution is unambiguous, unlike the global description of the manifold in Section 6, where
we had to choose between four solutions of two quadratic equations for the point {α1, α2, β}
in de Sitter space dS2.

We are still left with a choice of one of the two mirror solutions or, in the general case,
the coefficients of their linear superposition in the Wilson loop.

Such linear superposition will still solve the loop equation (7a), as this equation is
linear in loop space.

Section Mirror solution and inequality for the Wilson loop
There is an obvious problem with the solution we have found. The loop equation for

~P(θ) is complex, and so is the solution, particularly the vorticity in (19). Since the equation
for ~P is nonlinear, we cannot take a real part of ~P.
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The negative imaginary part of the circulation in momentum space may lead to
violation of inequality |Ψ[C]| ≤ 1. The following restriction must be imposed to preserve
this inequality ∮

d~C(θ) · Im ~P(θ) ≥ 0; (103)

Such restriction on a fractal curve ~P(θ) would contradict its assumed universality. If
this curve is related to C(θ), it would be involved in variations when the loop C is varied
in the loop equation.

Here is a resolution of this paradox that we have found.
In the previous Sections, we described two mirror solutions, originating in (72) and

evolving by an SDE (90a).
For any particular loop, we have to choose the solution with the positive imaginary

part of the circulation

Ψ[C] =
〈

exp
(

ıΓ
ν

)
Θ(Im Γ)

〉
+ {Γ⇔ Γ̃}; (104a)

Γ =
∮

d~C(θ) · ~P(θ); (104b)

Γ̃ =
∮

d~C(θ) · ~P∗(2π − θ); (104c)

The averaging 〈. . . 〉 corresponds to averaging over the stochastic process or, equivalently,
over the stochastic time τ.

At any moment of stochastic time, the inequality restricts the loop C, but not the
momentum loop ~P: for some loops C, the circulation Γ has a positive imaginary part; for
other loops, the reflected circulation Γ̃ does.

This choice is like selecting a decaying wave function for the bound state in the
Schrödinger equation for a quantum potential problem.

The theta functions in this solution represent certain boundary conditions for the loop
functional in the areas (if they exist) where Im Γ = 0 or Im Γ̃ = 0.

One could imagine a situation where both circulations have negative imaginary parts;
the Wilson loop will be zero in these regions of parameter space.

We leave investigating these boundary conditions for a future complete mathematical
theory. This exploratory paper has different goals.

Section Vorticity Distribution and Energy Dissipation
The simplest quantity to compute in our theory is the local vorticity distribution.
As we shall see, it determines the energy dissipation rate.
The local vorticity for our decaying solution of the loop equation

~ω =
−ı~F(θ)× ∆~F(~θ)

2(t + t0)
; (105)

Here θ is an arbitrary point at the loop, which makes this expression a random variable.
Note that viscosity is canceled here, as it should be by dimensional counting (vorticity

has the dimension of 1/t).
In our random walk representation, the complex vorticity operator

~ωk =
−ı~Gk

2(t + t0)
; (106)

~Gk = ~Fk × ~Fk+1; (107)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 June 2023                   doi:10.20944/preprints202305.0955.v4

https://doi.org/10.20944/preprints202305.0955.v4


18 of 30

The time derivative of energy density in our theory is

E′(t) = − νκ

4(t0 + t)2 ; (108)

κ =
1
N

N−1

∑
0

Re
(
−~G2

k

)
; (109)

Solving this equation with boundary value E(t = ∞) = 0 we relate t0 to mean initial energy

〈E(t)〉 = ν〈κ〉
4(t0 + t)

; (110)

t0 =
ν〈κ〉

4〈E0〉
(111)

The probability distribution of κ and its mean value 〈κ〉 can be computed using our
random walk. For the anomalous dissipation, we need the mean enstrophy to diverge
[2,18] so that viscosity is compensated in the extreme turbulent limit.

〈κ〉 = ∞ (112)

As we shall see later, in Section 11, this happens in our numerical simulations.
The microscopic picture of this infinite enstrophy differs from the singular vortex line.
In the Euler theory, divergence came from the singularity of the classical field. How-

ever, in our dual theory, it comes from the large fluctuation of the fractal curve in momentum
space.

We can now write down our result for the Wilson loop in decaying Turbulence as a
functional of the contour C. Let us start with a three-dimensional case

Ψ[C]t→∞ →
〈

exp

(
−ı
∮

dθ~C(θ) · ~F′(θ)√
2ν(t + t0)

)
Θ(Γ)

〉
F

+ reflected; (113)

The finite steps approximation we considered above〈
exp

(
−

ı
∮

dθ~C(θ) · ~F′(θ)√
2ν(t + t0)

)〉
=

lim
N→∞

〈
exp

− ı
2

∑N−1
k=0

(
~Ck+1 + ~Ck

)
·~qk

2
√

2ν(t + t0)

〉; (114)

~Ck = ~C
(

2πkπ

N

)
; (115)

For the simplest circular loop in an xy plane, we have

~C(~θ) = R{cos θ, sin θ, 0}; (116)
~Ck + ~Ck+1

2
= R cos

( π

N

){
cos
(

π(2k + 1)
N

)
, sin

(
π(2k + 1)

N

)
, 0
}

(117)

We observe that even at the large time t � t0 when the asymptotic fractal curve is
already in place, there is a region of parameters

R ∼
√

νt (118)
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0 r

Figure 1. Backtracking wires corresponding to vorticity correlation function.

where the Wilson loop is a nontrivial universal function of a single variable

Ψ[C]→ ψ

(
R√
2νt

)
(119)

We can compute our prediction for this function by numerically simulating the SDE
for our vectors ~Fk and wait for the results with physical or numerical experiments in
conventional three-dimensional decaying Turbulence.

10. Correlation Functions

The simplest observable quantities we can extract from the loop functional are the
vorticity correlation functions [2], corresponding to the loop C backtracking between two
points in space~r1 = 0,~r2 =~r, see Fig.1. The vorticity operators are inserted at these two
points.

The correlation function reduces to a random walk with a complex weight〈
~ω(~0)⊗ ~ω(~r)

〉
=

1
4(t + t0)2〈

∑
n,m

~Fm × ~Fm+1 ⊗ ~Fn × ~Fn+1

N2 exp

 ı~r ·
(
~Sn,m − ~Sm,n

)
2
√

ν(t + t0)

〉+ reflected; (120)

~Sm,n =
∑n

m ~Fk
(n−m mod N)

; (121)

In Fourier space, this reduces to the restricted random walk:〈
~ω⊗ ~ω(~k)

〉
=

1
4(t + t0)2〈

∑
n,m

~Fm × ~Fm+1 ⊗ ~Fn × ~Fn+1

N2 δd

(
~k +

~Sn,m − ~Sm,n

2
√

ν(t + t0)

)〉
+ reflected; (122)

Presumably, the vorticity vectors ~Fm × ~Fm+1 as well as the vectors ~Sm,n are distributed
by some power laws in our random walk on a fixed manifold; this would lead to scaling
laws with some fractal dimensions.

The numerical simulation of this correlation function would require significant com-
puter resources.

Still, these resources are much more modest than those for full d dimensional simula-
tions of the Navier-Stokes equation.

In our theory, the dimension of space enters as the number of components of the
one-dimensional fluctuating field ~F(θ) rather than the number of variables~r ∈ Rd in the
fluctuating velocity field ~v(~r).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 June 2023                   doi:10.20944/preprints202305.0955.v4

https://doi.org/10.20944/preprints202305.0955.v4


20 of 30

Also, note that our quantum problem of the complex random walk naturally fits
quantum computer architecture. Thus, in the future, when large quantum computers
would become available for researchers, we can expect a real breakthrough in numerical
simulations of the loop equation.

11. Open Loop Computations

We wrote a Mathematica R©program [34] generating our random walk, starting with a
random complex vector ~F0 and using random orthogonal SO(3) matrix Ok at every step. If
there is more than one real solution for β, we have chosen the shortest step in Euclidean
metric |~q|2 = 1 + 2β2, i.e., the one with minimal |β|.

We have chosen the simplest circular coordinate loop C in (116) and imposed the
inequality (103) on the last step.

For 1000 steps, it takes a few seconds on a laptop to compute the whole path. We
generate a parallel table of 100000 paths, each with 1000 steps, with various random initial
vectors ~F0 with a random set of rotation matrices for each step.

The path’s closure requires a numerical solution of the SDE (90a), which we plan
to implement later on a supercomputer. This open path simulation only covers the big
space of the direct product of rotation matrices at every step; the true turbulent fixed point
corresponds to the projection of this space onto the closure conditions. We cannot do it at
the global level, only at the level of the SDE described in the previous Section.

Thus, this open-path simulation cannot be used for predictions of fractal dimensions
in the scaling laws; this has to wait until the SDE simulation is performed at the supercom-
puter.

With these comments in mind, let us analyze the open curves’ fractal properties,
discarding the closure conditions.

The simplest quantity to compute is a fractal dimension d f of this random walk,
defined as

1
d f

= lim
N→∞

d log
∣∣∣~FN − ~F0

∣∣∣
d log N

(123)

The ordinary Brownian motion (linear random walk) has d f = 2, but our random walk is

very different, mainly because the Euclidean distance of an elementary step
∣∣∣~Fk+1 − ~Fk

∣∣∣ in
De Sitter space is unlimited from above (though it is limited by 1 from below).

Here is the plot of log
∣∣∣~FN − ~F0

∣∣∣ vs log N (Fig. 2).
The statistical data for parameters

Estimate Standard Error t-Statistic P-Value
1 −2.33876 0.0241623 −96.7941 4.3388931215906555̀*∧-42
ξ 0.976443 0.00457433 213.461 2.1004008453460444̀*∧-53

(124)

This data is compatible with d f = 1.02412± 0.005.

The distribution of the Euclidean length of each step
∣∣∣~Fk+1 − ~Fk

∣∣∣ (Fig. 3).
The statistical table for the parameters of this fit

Estimate Standard Error t-Statistic P-Value
1 13.0661 0.00203512 6420.3 0.
log(step) −2.00076 0.000737843 −2711.64 0.

(125)

The mean is finite, 〈step〉 = 1.07056, but the variance of the step is divergent.
Such a low decay of the step distribution undermines the concept of a finite fractal

dimension as defined in (123). The linear fit is inadequate for such large statistics.
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Out[ ]=
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data

fit

Figure 2. Logarithm of Euclidean distance for our random walk in six-dimensional space Re ~F, Im ~F
as a function of a logarithm of the number of steps. The linear fit corresponds to fractal dimension
d f = 1.02412± 0.005

Out[ ]=

2.6 2.7 2.8 2.9 3.0
log(step)
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log(NumAbove)
13.0661 -2.00076 log(step)

data

fit

Figure 3. The logarithmic plot of the CDF for the Euclidean length s of each step of our complex
random walk. The tail of the CDF decays as s−2., indicating the probability distribution with power
tail in PDF ∝ s−3.
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Out[ ]=
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data
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Figure 4. Fitting the random walk distance as a power of number N of steps times a power of log N.

With large statistics, one can reach a perfect fit by adding the next correction to the
linear log-log law

log
∣∣∣~FN − ~F0

∣∣∣ ≈ a + b log N + c log log N (126)

The fit at larger interval of N becomes perfect, with a very different coefficient b in front of
log N:

Estimate Standard Error t-Statistic P-Value
1 11.4051 0.067611 168.688 1.201777144099837̀*∧-128
ξ 4.85103 0.0218164 222.357 4.3433787030416533̀*∧-141
log(ξ) −20.5553 0.109809 −187.192 2.4775697694919745̀*∧-133

(127)

This data fit is shown at 4.
Our random walk with unbounded step size differs from an ordinary fractal curve.

The fractal dimension does not properly describe this random object as the distance grows
by a more complex law than a pure power of the number of steps.

Another interesting distribution is the enstrophy density κ in (108).
The CDF is shown in Fig.5. The tail is compatible with κ−0.936266 decay, corresponding

to the κ−1.936266 decay of the PDF. The mean value and all higher moments diverge, leading
to anomalous dissipation.

The statistical table for the parameters of this fit

Estimate Standard Error t-Statistic P-Value
1 17.1851 0.00330287 5203.09 0.
log(κ) −0.936266 0.000320989 −2916.81 0.

(128)

The computation of the Wilson loop and related correlation functions of vorticity
needs an ensemble of closed fractal loops with various sets of random matrices.

The closure condition for the loop would require some computational effort because
the probability of the random curve with fractal dimension d f ∼ 1. returning to an initial
point goes to zero with the increased number of steps.

An alternative approach of starting with a large closed loop ~Fk;~FN = ~F0 and random-
izing it point by point while preserving its closure.

This approach would replace an SDE (90a) with a Monte-Carlo process in a closed
polygon space. Each step would correspond to a small rotation of some randomly chosen
link~qk of the polygon and compensating shift of the initial position ~F0

The zeroth approximation to this shift would be our solution in Appendix of the
linearized equations. Then, a couple of Newton iterations will finalize this shift to provide
the closure condition.
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data
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Figure 5. The logarithmic plot of the CDF for the κ density. The tail of the CDF decays as κ−0.936266,
compatible with the κ−1.936266 power tail for PDF. The mean value of enstrophy and all higher
moments diverge.

These extra layers of computational complexity would require a supercomputer, which
we plan to do later.

12. Discussion

We have presented an exact solution of the Navier-Stokes loop equations for the
Wilson loop in decaying Turbulence as a functional of the shape and size of the loop in
arbitrary dimension d > 2.

The solution expresses the probability distribution for the Wilson loop at any given mo-
ment of the time t in terms of a nonlinear SDE in auxiliary time τ. The loop is approximated
as a polygon with N → ∞ sides.

Compared to the original Navier-Stokes equation, this is the reduction of d⇒ 1 of the
dimension of space. This SDE is straightforward to simulate by a Monte Carlo method.

The equivalence of a strong coupling phase of the fluctuating vector field to quantum
geometry is a well-known phenomenon in gauge theory (the ADS/CFT duality).

In our case, this is a much simpler quantum geometry: a fractal curve in complex
space.

An expert in the traditional approach to Turbulence may wonder why the solutions of
the Loop equation have anything in common with the statistical distribution of the velocity
field in a decaying turbulent flow.

Such questions were asked and answered in the gauge theories, including QCD[6,8–10]
where the loop equations were derived first [4,5].

The solution of the loop equation with finite area derivative, satisfying Bianchi con-
straint, belongs to the so-called Stokes-type functionals [4], the same as the Wilson loop for
Gauge theory and fluid dynamics.

Extra complications in the gauge theory, which are fortunately absent in fluid dynam-
ics, are the short-distance singularities related to the infinite number of fluctuating degrees
of freedom in quantum field theory.

As we discussed in detail in [2,4,5], any Stokes-type functional Ψ[C] satisfying bound-
ary condition at shrunk loop Ψ[0] = 1, and solving the loop equation can be iterated in the
nonlinear term in the Navier-Stokes equations (which applies at large viscosity).

The resulting expansion in inverse powers of viscosity (weak Turbulence) exactly
coincides with the ordinary perturbation expansion of the Navier-Stokes equations for
the velocity field, averaged over the distribution of initial data or boundary conditions at
infinity.

We have demonstrated in [1,2] (and also here, in Section 3) how the velocity distribu-
tion for the random uniform vorticity in the fluid was reproduced by a singular momentum
loop ~P(θ).

The solution for ~P(θ) in this special fixed point of the loop equation was random
complex and had slowly decreasing Fourier coefficients, leading to a discontinuity sign(θ−
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θ′) in a pair correlation function (38). The corresponding Wilson loop was equal to the
Stokes-type functional (30).

Our general Anzatz (14) satisfies the loop equation and boundary condition at Ψ[C =
0] = 1. It has a finite area derivative, which obeys the Bianchi constraint, making it a
Stokes-type functional.

The exact solution for ~P(θ) in decaying Turbulence which we have found in this paper,
leads to the Stokes functional Ψ[C] satisfying the boundary value Ψ[0] = 1 at the shrunk
loop.

Therefore, it represents a statistical distribution in a turbulent Navier-Stokes flow, a
degenerate fixed point of the Hopf equation for velocity circulation. It sums up all the
Wylde diagrams in the limit of vanishing random forces plus nonperturbative effects,
which are missed in the Wylde functional integral. Whether this exact solution is realized
in Nature remains to be seen.

It is infinitely more complex than the randomly rotated fluid, as our curve ~P(θ) has a
discontinuity at every θ, corresponding to a distributed random vorticity.

This solution is described by a fractal curve in complex d dimensional space, a limit of
a random walk with nonlinear algebraic relations between the previous position ~Fk and the
next one ~Fk+1. These relations are degenerate: each step~qk = ~Fk+1 − ~Fk is characterized by

an arbitrary element Ôk ∈
(

O(d)/
O(d− 3)

)
and an arbitrary element ~wk ∈

(
Sd−3/

Z2

)
.

This step also depends upon the previous position ~Fk, making this process a Markov chain.
The periodicity condition ~FN = ~F0 provides a nonlinear equation for an initial position

~F0 as a function of the above free parameters Ôk, ~wk.
This periodicity condition presents a hard problem, particularly in the limit N → ∞,

when the probability of our random walk returning to the initial point afterN steps rapidly
diminishes with N.

We found a way around this problem by finding an exact periodic solution to the
momentum loop equations (51). This analytical solution for arbitrary N can serve as initial
data for the SDE, which preserves the periodicity. In Appendix , we constructed this SDE
for d = 3, leaving the generalizations to mathematicians.

This SDE describes the Brownian motion of the rotation matrices Ôk ∈ SO(3) in our
canonical representation (62) of the solution to the discrete loop equations (51). Each matrix
moves independently, while the remaining parameters {α1, α2, β}move around de Sitter
space dS2 to satisfy the loop equation (51).

The closure condition further restricts the set of N infinitesimal rotations δ~qk = δ~θk×~qk:
there are three linear relations between N vector parameters δ~θk of these rotations. We
found the projection matrix required to project the whole array of vector rotations δ~θk onto
the quotient space, satisfying the closure condition.

After this projection, we obtain the motion in the quotient space, where the closure
condition is satisfied at every step.

Presumably, this SDE uniformly covers our fixed manifold T3(N) for arbitrary N. The
limit N → ∞ presents a computational challenge, and we are planning to address this
challenge in the next publication using a supercomputer.

We simulated the open random walk (without the closure condition) in three dimen-
sions and studied its statistical properties. The distribution of lengths of steps in Euclidean
six-dimensional space Re ~F, Im ~F has a long tail PDF ∝ x−2.

The fractal dimension is not well defined for a random walk with such an intermittent
step size, unbounded from above. The linear log-log fit as in (123) yields d f ≈ 1.20, but this
fit is imperfect with our large statistics.

As for the distribution of an enstrophy density, it has a power tail x−1.9 correspond-
ing to an infinite mean value and all higher moments. This infinity is how anomalous
dissipation manifests in our solution.
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Out[ ]=
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data
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Figure 6. Fitting noisy data for 1/(t− 0.5) (red dots) by a power law bt−n. The best fit is a dashed
blue line, corresponding to {b → 1.87992, n → 1.42962}. This simple example shows how wrong
laws can be "derived" by fitting noisy data.

These numerical simulations must be repeated on a supercomputer with better statis-
tics and more steps. There are many things to do next with this conjectured solution to the
decaying turbulence problem; the first is to look for unnoticed inconsistencies.

One important step is yet to be made: the MC simulation of the SDE (90a). Let us
assume that the qualitative properties and fractal dimensions we have found for the open
fractal curves will stay the same or at least close.

As a first test of this hypothesis, let us compare it with various experimental data and
those from DNS [35].

There is no agreement between these data, they vary in Reynolds number, and they
have other differences related to the experimental setup. No value n for the decay power
t−n would fit all that data. However, a consensus seems to be around n ≈ 1.2− 1.4, which
means faster decay than we have.

We are skeptical about these data. As we recently learned [36], there is a regime change
at large Reynolds numbers; the numbers achievable in modern DNS may belong to such a
transitional regime.

Besides, fitting powers is not a reliable method of deriving physical laws.
For example, we took a formula 1/(t− 0.5), added random noise between (−0.1, 0.1)

and fitted this data to bt−n. The best fit produced some fake power n ≈ 1.43 and some fake
coefficient b ≈ 1.88 in front (see Fig.6)

Instead, one should compare a hypothetical theory with a null hypothesis by estimat-
ing the log-likelihood of both fits. In case the new theory is more likely as an explanation of
the data, you may temporarily accept it until a better theory or better data will appear.

A good history lesson is fitting the power n in Newton’s gravity law to explain the
astronomic data for the Mercury perihelion before the General Relativity theory. A small
correction to n = 1 "explained" the data, but this was useless without a theory.

Presumably, our fixed point corresponds to a true infinite Reynolds limit, as it is
completely universal and does not depend on the Reynolds scales.

If you assume no hidden scales are left, our E ∝ ν/t law follows from dimensional
analysis. Observed or simulated data with n > 1 all have the powers of some other
dimensional parameters related to the Reynolds number. They rely on (multifractal versions
of) K41 spectra and other intermediate turbulent phenomena.

We have an anomalous dissipation rate: the mean value of the vorticity square diverges,
compensating for the viscosity factor in the energy decay in extreme turbulent limit.

This mechanism of anomalous dissipation differs from the one we studied in the
Kelvinon [2,18]. In those fixed points, the viscosity canceled in the dissipation rate due to
the singular vorticity configurations with the thin vortex line resolved as a core of a Burgers
vortex.
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Here, in the dual theory of fractal momentum loop, the large fluctuations of this
momentum loop would lead to the divergent expectation value of the enstrophy.

Our solution is universal, rotational, and translational invariant. It has the expected
properties of extreme isotropic Turbulence. Is it THE solution? Time will tell.
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Appendix Linearized Loop Equations in 3D

Let us solve in 3D the linear set of recurrent equations derived in Section 8.
Only two independent real parameters exist in Im ~µk. In the canonical form (62) in 3D

the two parameters were shifts of coordinates α1, α2 with third coordinate β related to them
by α2

1 + α2
2 = 1 + β2.

We resolve this ambiguity by using the pseudo-inverse 2× 2 matrix. Here are the
original complex equations.

Im ~µk · ~Uk = ıBk; (A129a)

Bk = (Re ~µk) · ~Uk + ~Vk ·
(
~λ +

k−1

∑
0
~µl ×~ql

)
; (A129b)

~Uk = Gk~qk × ~Fk; (A129c)
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The solution of these three equations in [32] has the form

Im ~µk = Re (~γkBk) (A130a)

~γk = {ı, 1} · Q̂k (A130b)

Q̂k = (V̂k · V̂†
k )
−1 · V̂k (A130c)

V̂k = {Re ~Uk, Im ~Uk} (A130d)

where the inverse 2× 2 matrix X̂−1 is understood as pseudo-inverse (dropping the null
space part).

The complex number Bk is linearly related to Re ~µk, the known previous vectors ~µl<k
and unknown~λ, which yields recurrent relations, which we are going to study below.

After solving these equations, the variation of the closure equation

N−1

∑
l=0

~µl ×~ql = 0 (A131)

provides a linear set of six equations for Re~λ, Im~λ, relating these two vectors to all the
rotation vectors Re µk.

Let us now proceed by assuming the following linear set of real vector relations (with
some real 3× 3 matrices M̂kl , P̂k, Q̂k to be determined ):

Im ~µk =
k

∑
l=0

M̂kl ·Re ~µl + P̂k ·Re~λ + Q̂k · Im~λ; (A132)

Let us compare it with the above relations (A130a), (A129b):

Im ~µk = Re
(
~γk ⊗ ~Uk ·Re ~µk

)
+ Re

(
~γk ⊗

(
Σk + ~Vk ·~λ

))
; (A133)

Σk =
k−1

∑
l=0

~ql × ~Vk · (Re ~µl + ıIm ~µl) (A134)

Comparing the terms, we obtain a set of recurrent equations for M̂, P̂, Q̂

M̂kk = Re
(
~γk ⊗ ~Uk

)
; (A135a)

M̂k>l = Re
(
~γk ⊗ ~Vk · q̂l

)
+

k−1

∑
n=l

Im
(
~γk ⊗ q̂n · ~Vk

)
· M̂nl ; (A135b)

P̂k = Re
(
~γk ⊗ ~Vk

)
+

k−1

∑
l=0

Im
(
~γk ⊗ ~Vk · q̂l

)
· P̂l ; (A135c)

Q̂k = −Im
(
~γk ⊗ ~Vk

)
+

k−1

∑
l=0

Im
(
~γk ⊗ ~Vk · q̂l

)
· Q̂l ; (A135d)

where the dual tensor X̂ to the vector ~X is defined as

X̂αβ ≡ eαβγXγ; (A136)
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The last two equations can be combined into one complex recurrent equation for
Γ̂k = P̂k − ıQ̂k

Im ~µk =
k

∑
l=0

M̂kl ·Re ~µl + Re
(

Γ̂k ·~λ
)

; (A137)

Γ̂k = ~γk ⊗ ~Vk +
k−1

∑
l=0

Im
(
~γk ⊗ ~Vk · q̂l

)
· Γ̂∗l ; (A138)

Finally, the closure equation becomes

N−1

∑
k=0

(
−ıq̂k ·Re ~µk +

k

∑
l=0

q̂k · M̂kl ·Re ~µl + q̂k · P̂k ·Re~λ + q̂k · Q̂k · Im~λ

)
= 0; (A139a)

This is a complex vector equation for two real vectors Re~λ, Im~λ

P̂ ·Re~λ + Q̂ · Im~λ = ~R; (A140a)

P̂ =
N−1

∑
k=0

q̂k · P̂k; (A140b)

Q̂ =
N−1

∑
k=0

q̂k · Q̂k; (A140c)

~R =
N−1

∑
n=0

(
ıq̂n ·Re ~µn −

n

∑
l=0

q̂n · M̂nl ·Re ~µl

)
(A140d)

The solution is expressed in terms of a block matrix

Ĥ =

{
Re P̂ Re Q̂
Im P̂ Im Q̂

}
(A141)

{
Re~λ
Im~λ

}
= Ĥ−1 ·

{
Re ~R
Im ~R

}
(A142)

There is a following complication [32]. The matrix Ĥ viewed as 6× 6 dimensional real
matrix has a null space of three real 6-dimensional eigenvectors. These eigenvectors can be
combined in complex 3d vectors ψ1, ψ2, ψ3 corresponding to the block structure of Ĥ

Ĥ ·
{

Re ~ψi
Im ~ψi

}
= 0, i = 1, 2, 3; (A143)

Therefore, the complex 3D vector~λ is defined modulo superposition of these three
complex eigenvectors.

A particular solution for~λ can be obtained using the pseudo-inverse.
In addition, there are three constraints on the angular variables Re ~µk. These con-

straints have the following form [32]

∑
k

~Θik ·Re ~µk = 0; i = 1, 2, 3; (A144)

~Θik = Re
(
~ψ∗i Ŵk

)
; (A145)

The coefficients ~Θik of these constraints are nonlinear functions of the current positions
~F0, . . .~FN−1. These constraints lead to projections of the SDE to the quotient space, as we
derive in the section 9.
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Here are the results for~λ, Im ~µk in terms of rotation parameters Re ~µk (with Î being
3× 3 unit matrix)

~λ =
N−1

∑
l=0

Λ̂l ·Re ~µl ; (A146)

Λ̂l =
{

Î ı Î
}
· Ĥ−1 ·

{
Re R̂l
Im R̂l

}
; (A147)

R̂l = ıq̂l −
N−1

∑
n=l

q̂n · M̂nl ; (A148)

Im ~µk =
N−1

∑
l=0

Ŝkl ·Re ~µl ; (A149)

Ŝkl = M̂klθ(k− l + 1/2) + Re
(
Γ̂k · Λ̂l

)
; (A150)
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