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Abstract: Background: Functional Movement Screening (FMS) allows for rapid assessment of an 1

individual’s physical activity level and timely detection of sports injury risk. However, traditional 2

functional movement screening often requires on-site assessment by experts, which is time-consuming 3

and prone to subjective bias. Therefore, the study of automated functional movement screening has 4

become increasingly important. Methods: In this study, we propose an automated assessment method 5

for FMS based on the improved Gaussian Mixture Model (GMM). First, the oversampling of minority 6

samples is conducted, the movement features are manually extracted from the FMS dataset collected 7

with two Azure Kinect depth sensors, then we train the Gaussian mixture model with different scores 8

(1 point, 2 points, 3 points) of feature data separately, finally, we conducted FMS assessment by 9

the Maximum Likelihood estimation. Results: The improved GMM has a higher scoring accuracy 10

(Improved GMM:0.8) compared to other models (Traditional GMM=0.38, Adaboost.M1=0.7, Naïve- 11

Bayes=0.75), and the scoring results of improved GMM have a high level of agreement with the 12

expert scoring (kappa=0.67). Conclusions: The results show that the proposed method based on 13

the improved Gaussian mixture model can effectively perform the FMS assessment task and it is 14

potentially feasible to use depth cameras for FMS assessment. 15

Keywords: Injury prevention; FMS; depth camera; Gaussian Mixture Model; machine learning 16

1. Introduction 17

Functional imbalances of the body can easily lead to sports injuries in individuals 18

during exercise. It not only negatively affects an individual’s physical and mental health, 19

but may also lead to decreased athletic performance, which in turn may also negatively 20

affect their lives and even lead to fear of exercise. Therefore, it is important to improve the 21

functional movement. Functional Movement Screening (FMS) is a screening instrument 22

used to assess an individual’s exercise capacity and potential risk of sports injury. It has been 23

widely used in the fields of sports training and rehabilitation. For example, Sajjad et al. used 24

FMS to assess sports performance and musculoskeletal pain in college students [? ];Li et al. 25

used FMS assessment to reduce knee injuries in table tennis players[2]. On-site evaluation is 26

the most common method in FMS. The expert observes each subject’s movement. However, 27

on-site evaluation is time-consuming and labor intensive, the subjectivity of expert affects 28

the accuracy of the results. 29

Researchers have experimented with other functional movement data collection meth- 30

ods to address these issues. Shuai et al. used seven 9-axis Inertial Measurement Units 31

(IMU) method to collect joint angle information of functional movements[3]; Vakanski 32

et al. used the Vicon motion capture system to collect joint angle and joint position in- 33

formation of functional movements[4]; Wang et al. collect video data of FMS assessment 34

movements by using two 2D cameras with different viewpoints[5]. Although these devices 35

have high-precision motion capture capabilities and enable fast and accurate assessments 36
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by analyzing large amounts of motion data, traditional motion capture systems such as 37

IMU, Vicon and OptiTrack require invasive operations such as tagging or wearing sensors 38

on the subject[6–8], which is not only tedious but may also interfere with the subject’s 39

movements. At the same time, the high price of these devices limits their popularity and 40

diffusion in fields such as sports medicine and rehabilitation therapy[9]. As the field of 41

movement quality assessment continues to evolve, some methods of data acquisition using 42

depth cameras are beginning to emerge. Cuellar et al. used the Kinect V1 depth camera to 43

collect 3D skeletal data for standing shoulder abduction, leg lift and arm raise[10]. Capecci 44

et al. used the Kinect V2 depth camera to capture 3D skeletal data and video of healthy 45

subjects and patients with motor disabilities performing squats, arm extensions, and trunk 46

rotations[11]. Depth cameras are able to measure the depth information (RGB-D) of each 47

pixel and use depth information to generate 3D scene models compared with conventional 48

2D cameras. This makes depth cameras more precise in distance measurement and spatial 49

analysis, therefore it is more suitable for fields such as human activity recognition and 50

movement quality assessment. In addition, Depth cameras are also affordable and have the 51

advantages of being non-invasive, portable, and low-cost[12]. 52

In recent years, with continuing progress and development of artificial intelligence, 53

some automated FMS measurement methods have emerged. Andreas et al. proposed 54

a CNN-LSTM model to achieve the classification of functional movements[13]. Duan 55

et al. used a CNN model to classify the electromyographic (EMG) signals of functional 56

movements, in which the classification accuracy of squat, stride, and straight lunge squat 57

was 91%, 89%, and 90%, respectively[14]. The deep learning algorithms can automatically 58

extract a set of movement features, which can improve the accuracy of activity recognition. 59

However, it requires a large amount of training data, which is time-consuming, and 60

the network structure of deep learning models are more complex and less interpretable. 61

Meanwhile, better results have been achieved in the field of movement quality assessment 62

by training multiple weak classifiers to form a strong classifier in machine learning methods. 63

The automated FMS assessment method based on Adaboost.M1 classifier proposed by 64

Wu et al[15]. FMS assessment can be achieved by training weak classifiers and combine 65

them into a strong classifier. Bochniewicz et al. used a random forest model to assess 66

the arm movements of stroke patients by randomly selecting samples to form multiple 67

classifiers[16]. The classification labels were then predicted by a voting method using a 68

minority-majority approach. This method requires a smaller amount of data and is based 69

on the interpretability of a machine learning method with manually extracted features. 70

In summary, we proposed an automated FMS assessment method based on an im- 71

proved Gaussian mixture model in this study. First, we performed feature extraction on the 72

FMS dataset collected with two Azure Kinect depth sensors, then the features with different 73

scores (1 point, 2 points, 3 points) are trained separately in a Gaussian mixture model. Fi- 74

nally, FMS assessment can be achieved by performing maximum likelihood estimation. The 75

results show that the improved Gaussian mixture model has better performance compared 76

to the traditional Gaussian mixture model. It provides fast and objective evaluation with 77

real-time feedback. In addition, we further explore the application of datasets acquired 78

using depth cameras in the field of FMS and validate the feasibility of FMS assessment 79

based on depth cameras. 80

2. Materials and Methods 81

2.1. Manual Features in FMS Assessment 82

Manual feature extraction is a common approach in machine learning-based move- 83

ment quality assessment, it transforms raw data into a set of representative features for 84

machine learning algorithms. Manual feature extraction usually requires the knowledge 85

and experience of domain experts to select features relevant to the target task, converted 86

into numerical or discrete variables for training and classification of machine learning algo- 87

rithms. Manual feature extraction has many advantages. First, because the human-selected 88

features are highly interpretable, they can provide meaningful references for subsequent 89
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data analysis. Second, manual feature extraction is controllable and can be adjusted ac- 90

cording to actual requirements, thus improving movement classification accuracy and 91

generalization ability[17]. 92

We drew on the functional movement screening methods of Gray Cook, Lee Burton, 93

and the scoring criteria of our experts to manually extract a set of informative and easily 94

interpretable features in this study[18–20]. These features contain the key motion char- 95

acteristics of each FMS, including joint angles and joint spacing, which are critical to the 96

development of effective machine learning-based FMS assessment models. The skeleton 97

joint points are shown in Figure 1. We describe in detail the calculation method of the 98

automatic evaluation metrics for each movement in this section. 99

In conclusion, manual feature extraction plays a key role of bridging the gap between 100

domain-specific knowledge and deep learning-based automatic feature extraction, which 101

can significantly improve the performance and robustness of machine learning-based FMS 102

assessment. 103

Figure 1. The skeleton structure used in our methods.

(a) (b) (c)
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(d) (e)

(f)

(g)

Figure 2. Characteristic indicators of different movements in this study. (A) Deep squat; (B) hurdle
step; (C) in-line lunge; (D) shoulder mobility; (E) active straight raise; (F) Trunk stability; (G) Rotary
stability.

2.1.1. Deep squat 104

The angle between the thigh and the horizontal plane is defined as the angle between 105

the vector along the left thigh hip joint point to the knee joint point and the horizontal plane 106

during movement.The thigh angle is calculated as the angle between a vector connecting the 107

left thigh hip joint and knee joint and a horizontal vector.K(Xk, Yk, Zk ) and H(Xh, Yh, Zh ) 108

represent the 3D coordinates of the knee joint and hip joint. α is shown in Figure2(a). 109

−→
KH = (Xk − Xh, Yk − Yh, Zk − Zh) (1)

The thigh angle is given by 110

α = arccos
−→
KH · h⃗

|−→KH||⃗h|
(2)

where
−→
KH is the left thigh vector (joint 12, joint 13) and

−→
h = (1, 0, 0) is the horizontal 111

vector. 112

2.1.2. Hurdle step 113

The raised leg angle is calculated as the angle between a vector connecting the raised 114

leg hip joint and knee joint and a normal vector.H(Xh, Yh, Zh )andA(Xa, Ya, Za )represent 115

the 3D coordinates of the hip joint and ankle joint. α is shown in Figure2(b). 116

−→
HA = (Xa − Xh, Ya − Yh, Za − Zh) (3)

The raised leg angle is given by 117

α = arccos
−→
HA · V⃗

|−→HA||V⃗|
(4)

where
−→
HA is the raised leg vector (joint 12, joint 14) and V⃗ = (0, 1, 0) is the vertical vector. 118
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2.1.3. In-line lunge 119

The trunk angle is calculated as the angle between a vector connecting the spine chest 120

joint and pelvis joint and a normal vector. S(Xs, Ys, Zs ) andP(Xp, Yp, Zp ) represent the 3D 121

coordinates of the spine chest joint and pelvis joint. α is shown in Figure2(c). 122

−→
SP =

(
Xp − Xs, Yp − Ys, Zp − Zs

)
(5)

The trunk angle is given by 123

α = arccos
−→
SP · V⃗

|−→SP||V⃗|
(6)

where
−→
SP is the trunk vector (joint 2, joint 0) and V⃗ = (0, 1, 0) is the vertical vector. 124

2.1.4. Shoulder mobility 125

The wrist distance is the minimum distance between the left wrist joint and the right 126

wrist joint. Wl(Xl , Yl , Zl) and Wr(Xr, Xr, Xr)represent the 3D coordinates of the left wrist 127

joint and the right wrist joint. d is shown in Figure2(d). The wrist distance is given by 128

d =

√
(Xr − Xl)

2 + (Yr − Yl)
2 + (Zr − Zl)

2 (7)

2.1.5. Active straight raise 129

The raised leg angle is calculated as the angle between a vector connecting the hip 130

joint and ankle joint and a horizontal vector. H(Xh, Yh, Zh )andA(Xa, Ya, Za ) represent the 131

3D coordinates of the hip joint and ankle joint. α is shown in Figure2(e).The raised leg angle 132

is given by 133

α = arccos
−→
HA · h⃗

|−→HA||⃗h|
(8)

2.1.6. Trunk stability 134

The angle between trunk and thigh is calculated as the angle between a vector con- 135

necting the spine chest joint and pelvis joint and a vector connecting the hip joint and ankle 136

joint. α is shown in Figure2(f). The angle between trunk and thigh is given by 137

α = arccos
−→
PS · −→HA

|−→PS||−→HA|
(9)

2.1.7. Rotary stability 138

The distance between the elbow joint and the ipsilateral or contralateral knee joint is 139

the distance between the moving elbow joint and the moving knee joint. 140

El(Xel , Yel , Zel), Kl(Xkl , Ykl , Zkl) and Kr(Xkr, Ykr, Zkr) represent the 3D coordinates of 141

the left elbow joint, left knee joint and right knee joint. d is shown in Figure2(g). The 142

distance between the elbow joint and the ipsilateral knee joint is given by 143

d =

√
(Xkl(Xkr)− Xel)

2 + (Ykl(Ykr)− Yel)
2 + (Zkl(Zkr)− Zel)

2 (10)

2.2. Improved Gaussian Mixture Model 144

The Gaussian mixture model(GMM) is composed of k sub-Gaussian distribution 145

models, which are the hidden variables of the mixture model, and the probability density 146

function of the Gaussian mixture model is formed by linear summation of these Gaussian 147

distributions[21,22]. A model is chosen randomly among the k Gaussian models according 148
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to the probability. The probability distribution of the Gaussian mixture model can be 149

described as follows: 150

p(x) =
K

∑
K=1

φi N(x | µi, σi) (11)

whereφiis the coefficient(φi ⩾ 0, ∑K
K=1 φi = 1). N(x | µi) is the probability density 151

function of the Gaussian distribution, and the associated parameters indicate that there are 152

k Gaussian models, each with 3 parameters, namely the mean µi, the variance σi , and the 153

generation probability φi. The sample data is generated by its Gaussian probability density 154

function N(x | µi) after model selection. 155

N(x | µi, σi) =
1

σi
√

2π
exp

(
− (x − µi)

2

2σ2
i

)
(12)

The maximum likelihood function method is used to train the Gaussian mixture model. 156

The likelihood function can be expressed as follows: 157

L =
L

∏
i=1

p(xi | φ) (13)

where L is the number of samples in the dataset, x is the data object (i = 1, 2, 3 · · ·N) and 158

p(x) denotes the probability of data sample generation in the Gaussian mixture model. The 159

mixed model with maximum likelihood is calculated as follows: 160

log L =
N

∑
i=1

P(xi | φ) =
N

∑
i=1

log

(
K

∑
k=1

αi N(x | φi)

)
(14)

The Gaussian mixture model can not acquire the derivative, the EM algorithm is used 161

to solve the best parameters of the model according to the maximized likelihood function 162

in the training phase of the GMM model, the mixture probability φk, the mean µk and the 163

covariance σi, until the convergence of the model. 164

However, the use of a single GMM as a classifier in movement quality assessment has 165

certain drawbacks. First, it may oversimplify the complexity of motion data and affect the 166

model performance[23,24]. Second, the sensitivity to noisy data and statistics outliers is a 167

weak feature of a single Gaussian mixture model, which reduces the model accuracy[25]. 168

Meanwhile, promising results have been achieved in the movement quality assessment 169

by combining weak classifiers into a strong classifier in the machine learning methods. 170

Several studies have confirmed the validity of this method. For example, Wu proposed an 171

automated FMS assessment method based on Adaboost.M1 classifier, which trains different 172

weak classifiers for the FMS dataset collected by IMU, and then combines these weak 173

classifiers to form a powerful classifier for FMS[15]. In addition, Bochniewicz evaluated the 174

arm movements of stroke patients using a random forest model with randomly selected 175

samples to form multiple classifiers, and then used a minority-majority approach to predict 176

the classification labels through a voting method[16]. Therefore, we proposed an automated 177

FMS assessment method based on the idea of combining three Gaussian mixture models 178

into a strong classifier in this study. 179

As shown in Fig 2, Firstly, a Gaussian mixture model is trained separately for the 180

movement features with different scores to obtain the Gaussian mixture model probability 181

distributions of 1point, 2 points, and 3 points (p1(x), p2(x), p3(x)). Next, the feature data 182

with unknown scores are modeled using each of the 3 Gaussian mixture models, and 183

finally maximum likelihood estimation is performed to obtain the evaluation results. We 184

evaluated the performance of the new classifier by comparing it with three basic classifiers, 185
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including the traditional Gaussian mixture model[26], Naïve Bayes[27] and Adaboost.M1 186

classifier[15]. 187

Figure 3. The structure of improved Gaussian mixture model.

2.3. Statistical Analysis 188

In this experiment, we contrasted three traditional machine learning methods (GMM, 189

Naïve-Bayes, Adaboost.M1) to evaluate the scoring ability of the improved GMM. Due 190

to the analysis of experimental results, we used scoring accuracy, confusion matrix and 191

Kappa statistic to evaluate the performance of our proposed models. For the task of FMS 192

movement assessment, scoring accuracy can visually reflect the scoring performance of 193

each model. The confusion matrix can show the difference between the predicted results 194

and the expert scores, the diagonal element values of the matrix represent the consistency 195

between the prediction results and the actual measurements, and the non-diagonal element 196

values of the matrix denote wrong predictions. The kappa coefficient is used to assess the 197

degree of agreement between the model scoring results and the expert scoring results[28]. 198

k =
Po − Pe

1 − Pe
(15)

where Po is defined as the sum of the number of samples correctly in each category divided 199

by the total number of samples, which is the overall classification accuracy. We assume the 200

number of correctly samples in each category (a1, a2 · · · , am), and the number of predicted 201

samples in each category (a1, a2 · · · , am). The total number of samples is n, Pe is obtained by 202

dividing the sum of the "product of the actual value and predicted value" for all categories 203

by the square of the total number of samples. 204

Pe =
a1 × b1 + a2 × b2 + · · ·+ am × bm

n × n
(16)

The value of kappa usually lies between 0 and 1. Typically, kappa values of 0.0–0.2 are 205

considered a slight agreement, 0.2–0.4 a fair agreement, 0.4–0.6 a moderate agreement, 206

0.6–0.8 a substantial agreement, and > 0.8 an almost perfect agreement. 207

For the evaluation of the performance on different movements, we also use the F1- 208

Measure to evaluate the performance of the model, we adopt the micro-averaged F1(miF1), 209

macro-averaged F1(maF1) and weighted-F1 simultaneously. 210

3. Results and Discussion 211

We conduct an experimental study using a dataset acquired by a depth camera to 212

validate the effectiveness of the proposed improved Gaussian mixture model. First, the 213

used dataset is introduced. Then, we contrast three classifiers to evaluate the performance 214

of the improved Gaussian mixture model. (Traditional Gaussian mixture model, Naïve- 215
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Bayes and Adaboost.M1). Finally, we analyze the effect of skeleton data and feature data 216

on FMS assessment respectively. 217

3.1. Dataset 218

This study used the FMS dataset proposed by Xing et al[30]. This dataset is collected 219

from 2 Azure Kinect depth cameras and covered 45 subjects between the ages of 18 and 220

59 years. The dataset consists of functional movement data which is divided into left and 221

right side movements, including deep squat, hurdle step, in-line lunge, shoulder mobility, 222

active straight raise, trunk stability push-up and rotary stability. In order to improve the 223

accuracy and stability of the data, the researcher used two depth cameras with different 224

viewpoints to collect the movement data of the subjects. The dataset contains both skeletal 225

data and image information. 226

The Azure Kinect depth sensor has better quality and accuracy of data compared to 227

depth cameras, such as Kinect V1, Kinect V2, and Real Sense, thus it offers the possibility 228

of machine learning and other methods for tasks such as human motion recognition and 229

movement assessment[31–35]. In addition, the dataset not only provides strong support for 230

the functional movement assessment and rehabilitation training, but also provides technical 231

support and data sources for the research and applications in the fields of intelligent fitness 232

and virtual reality. 233

The 3D skeleton data acquired by the frontal depth camera are used in this experiment. 234

The score distribution of each movement is shown in Fig.11(a). 235

(a)

(b)

Figure 4. (a) Expert score distribution of FMS movements.(b) Expert score distribution of FMS
movements based on Borderline-SMOTE.

As shown in Fig 4 (a), for example, the number of 2 score is much larger than the 236

number of 1 and 3 scores in m11, due to the uneven distribution of FMS scores, which 237

may decrease the performance of some machine learning models. Although the model 238

has a high overall accuracy rate, 1points and 3points have low accuracy rate. Therefore, in 239
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order to avoid this situation, the problem of unequal distribution of each movement in the 240

dataset needs to be addressed. The experiment uses the Borderline SMOTE oversampling 241

algorithm, which is a variant of SMOTE algorithm[35]. The algorithm synthesizes new 242

samples using only the minority boundary samples and considers the category information 243

of the neighbor samples, avoiding the poor classification results caused by the overlapping 244

phenomenon in the traditional SMOTE algorithm. Borderline-SMOTE method divides the 245

minority samples into 3 categories (Safe, Danger and Noise), and oversamples only the 246

minority samples of the Danger category. 247

After Borderline SMOTE pre-processing, the expert score uniform distribution of FMS 248

movements is also realized, as shown in Figure 4 (b). However, the distribution of m13 is 249

still uneven. In order to avoid impacts on the experimental results, m13 is not tested in 250

the subsequent experiments. The movements in the dataset are divided into the left side 251

and the right side except for m01, m02 and m11, both sides have the same movement type 252

and movement repetitions. In order to facilitate the targeted analysis and processing of the 253

movement data, we only analyze the movements of the left side of the body. In summary, 254

the movements used for this experiment include m01, m03, m05, m07, m09, m11, m12, m14. 255

3.2. Evaluation of the Performance on Different Methods 256

The machine learning model can predict each test action as a score of 1-3. To an- 257

alyze more detailed results about the scoring performance of the improved GMM, we 258

further visualize the confusion matrix based on the expert scoring and the automatic scor- 259

ing. Figure.5 shows the confusion matrix obtained by the Naïve Bayes-based method, 260

Adaboost.M1-based method and improved GMM-based method. In this study, we consider 261

expert scoring as the gold standard, and we combined the scoring results for each test 262

action. From Fig.12, we can observe that the misclassified samples are prone to be predicted 263

as a score close to its true score, 1-point samples are more likely to be wrongly predicted 264

as 2 points than 3 points, and 3 points samples are more likely to be wrongly predicted 265

as 2 points than 1 point, among these, the most errors occur when 2 points samples are 266

predicted as 3 points samples. 267

Figure 5. Confusion matrix for per-level assessment in FMS assessment.

Table 1. Overall comparisons of different methods in FMS assessment.

Methods Accuracy maF1 weighted-maF1 Kappa Level of
Agreement

Naïve Bayes 0.75 0.75 0.71 0.6 Moderate

Adaboost.M1 0.72 0.7 0.71 0.55 Moderate

Traditional
GMM 0.38 0.34 0.35 0.1 Poor

Improved
GMM 0.8 0.77 0.79 0.67 Good
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Table 1 shows the scoring of the Naive-Bayes, Adaboost.M1, improved Gaussian 268

mixture model (GMM) and traditional GMM. The accuracy of improved GMM is higher 269

than Naïve-Bayes, Adaboost.M1 and traditional GMM, and the improved GMM has the 270

highest agreement. In general, the FMS assessment based on the improved GMM model 271

outperformed Naïve Bayes and Adaboost.M1. The results indicate that the improved GMM 272

yields considerable improvement over the traditional GMM. 273

3.3. Evaluation of the Performance on Different movements 274

We further investigate the model performance for each FMS test individually, Figure 6 275

(a) and Figure 6 (b) show the F1-micro-average and F1-macro-average for FMS movements 276

on different methods. For all three models, we find that improved GMM-based model 277

has better overall performance compared to Naïve Bayes-based model and Adaboost.M1- 278

based model. Specifically, improved GMM-based model is performing better than other 279

methods in the four movements (m03, m05, m09, m11), the performance of three methods 280

is essentially the same in the two movements (m07, m14). 281

(a)

(b)

Figure 6. (a) F1-micro-average of FMS movements.(b) F1-macro-average of FMS movements.

3.4. Comparison of Accuracy before and after Data Balancing 282

We also compare FMS performance using the original unbalanced feature data (Figure 283

4 (a)) and balanced feature data after the oversampling pre-processing (Figure 4 (b)) in this 284

research. As shown in Table 2, the average accuracy of balanced distribution of feature 285

data is 0.8, while the average accuracy of unbalanced distribution of feature data is only 286

0.62, which indicates that the balanced features perform better in the FMS assessment. The 287

scoring accuracy of the balanced movement features is greatly improved compared with 288

unbalanced movement features. The imbalance will cause the performance of the classifier 289

to be biased towards the majority samples due to the unbalanced sample size. Using 290

sampling processing can improve the balance of the training data by increasing the number 291

of samples, thus effectively avoiding this bias. The balanced features after oversampling 292
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pre-processing not only reflect the FMS movement quality more comprehensively, but also 293

the accuracy of the classifier is significantly improved. 294

Table 2. Improved GMM scoring accuracy before and after data balancing.

Feature data before balance Feature data after balance

ID 1 2 3 1 2 3

m01 0.86 0.48 0.25 0.86 0.63 0.71

m03 0.45 0.49 0.57 0.77 0.37 0.88

m05 0 0.67 0.29 0.97 0.69 0.68

m07 1 0 0 0.5 0.56 1

m09 0.8 0.74 0.64 0.95 0.8 0.89

m11 0.67 0.69 0 0.85 0.56 0.84

m12 0.8 0.67 0.88 0.94

m14 0.5 0.83 0.92 0.83

Averge accuracy 0.62 0.8

3.5. Comparison of Performance between Features and Skeleton Data 295

In the present study, we compare the performance of the manual feature extraction 296

method and the skeleton data-based method in FMS assessment. As shown in Table 3, the 297

manual feature extraction method has better performance in FMS assessment. Compared 298

with the skeleton data-based method, the manual feature extraction method can capture 299

the key features of the FMS movement more accurately, thus assessing the quality of the 300

movement more accurately. The manual feature extraction method circumvents the impact 301

of skeleton data quality differences on action scoring to a certain extent because the skeleton 302

data are screened and cleaned through bespoke processing. In addition, the manual feature 303

extraction method has good interpretability, which helps us better understand the FMS 304

movement quality. Specifically, the manual feature extraction method generally scores each 305

action with higher accuracy than the skeleton data-based method, for example, the scoring 306

accuracy of m09 improved from 0.44 to 0.88. The average accuracy of the manual feature 307

extraction method is 0.8, while the average accuracy of the skeleton data-based method is 308

only 0.63, indicating that the manual feature extraction method has better performance in 309

the FMS assessment. 310

Table 3. Improved GMM scoring accuracy based on skeleton data.

m01 m03 m05 m07 m09 m11 m12 m14 Average accuracy

0.36 0.39 0.68 0.7 0.44 0.73 0.88 0.86 0.63

4. Conclusion 311

In this study, we propose an automated FMS assessment method based on an improved 312

Gaussian mixture model using the FMS dataset captured by the Azure Kinect depth camera. 313

The experimental results show that our method has a high scoring accuracy in this dataset 314

and a high agreement between the scores and the expert scores compared to the other 315

methods. Thus, the improved Gaussian mixture model-based method can be applied 316

to FMS assessment, while there is some potential for functional movement assessment 317

using depth cameras. This method should be tested on different datasets to improve the 318

performance of machine learning methods and achieve more accurate prediction results in 319

future studies. 320
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Appendix A.1 374

The appendix is an optional section that can contain details and data supplemental to 375

the main text—for example, explanations of experimental details that would disrupt the 376

flow of the main text but nonetheless remain crucial to understanding and reproducing 377

the research shown; figures of replicates for experiments of which representative data are 378

shown in the main text can be added here if brief, or as Supplementary Data. Mathematical 379

proofs of results not central to the paper can be added as an appendix. 380

Table A1. This is a table caption.

Title 1 Title 2 Title 3

Entry 1 Data Data
Entry 2 Data Data
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All appendix sections must be cited in the main text. In the appendices, Figures, Tables, 382

etc. should be labeled, starting with “A”—e.g., Figure A1, Figure A2, etc. 383
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