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Abstract: Background: Functional Movement Screening (FMS) allows for rapid assessment of an
individual’s physical activity level and timely detection of sports injury risk. However, traditional
functional movement screening often requires on-site assessment by experts, which is time-consuming
and prone to subjective bias. Therefore, the study of automated functional movement screening has
become increasingly important. Methods: In this study, we propose an automated assessment method
for FMS based on the improved Gaussian Mixture Model (GMM). First, the oversampling of minority
samples is conducted, the movement features are manually extracted from the FMS dataset collected
with two Azure Kinect depth sensors, then we train the Gaussian mixture model with different scores
(1 point, 2 points, 3 points) of feature data separately, finally, we conducted FMS assessment by
the Maximum Likelihood estimation. Results: The improved GMM has a higher scoring accuracy
(Improved GMM:0.8) compared to other models (Traditional GMM=0.38, Adaboost.M1=0.7, Naive-
Bayes=0.75), and the scoring results of improved GMM have a high level of agreement with the
expert scoring (kappa=0.67). Conclusions: The results show that the proposed method based on
the improved Gaussian mixture model can effectively perform the FMS assessment task and it is
potentially feasible to use depth cameras for FMS assessment.

Keywords: Injury prevention; FMS; depth camera; Gaussian Mixture Model; machine learning

1. Introduction

Functional imbalances of the body can easily lead to sports injuries in individuals
during exercise. It not only negatively affects an individual’s physical and mental health,
but may also lead to decreased athletic performance, which in turn may also negatively
affect their lives and even lead to fear of exercise. Therefore, it is important to improve the
functional movement. Functional Movement Screening (FMS) is a screening instrument
used to assess an individual’s exercise capacity and potential risk of sports injury. It has been
widely used in the fields of sports training and rehabilitation. For example, Sajjad et al. used
FMS to assess sports performance and musculoskeletal pain in college students [? |;Li et al.
used FMS assessment to reduce knee injuries in table tennis players[2]. On-site evaluation is
the most common method in FMS. The expert observes each subject’'s movement. However,
on-site evaluation is time-consuming and labor intensive, the subjectivity of expert affects
the accuracy of the results.

Researchers have experimented with other functional movement data collection meth-
ods to address these issues. Shuai et al. used seven 9-axis Inertial Measurement Units
(IMU) method to collect joint angle information of functional movements[3]; Vakanski
et al. used the Vicon motion capture system to collect joint angle and joint position in-
formation of functional movements[4]; Wang et al. collect video data of FMS assessment
movements by using two 2D cameras with different viewpoints[5]. Although these devices
have high-precision motion capture capabilities and enable fast and accurate assessments
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by analyzing large amounts of motion data, traditional motion capture systems such as
IMU, Vicon and OptiTrack require invasive operations such as tagging or wearing sensors
on the subject[6-8], which is not only tedious but may also interfere with the subject’s
movements. At the same time, the high price of these devices limits their popularity and
diffusion in fields such as sports medicine and rehabilitation therapy[9]. As the field of
movement quality assessment continues to evolve, some methods of data acquisition using
depth cameras are beginning to emerge. Cuellar et al. used the Kinect V1 depth camera to
collect 3D skeletal data for standing shoulder abduction, leg lift and arm raise[10]. Capecci
et al. used the Kinect V2 depth camera to capture 3D skeletal data and video of healthy
subjects and patients with motor disabilities performing squats, arm extensions, and trunk
rotations[11]. Depth cameras are able to measure the depth information (RGB-D) of each
pixel and use depth information to generate 3D scene models compared with conventional
2D cameras. This makes depth cameras more precise in distance measurement and spatial
analysis, therefore it is more suitable for fields such as human activity recognition and
movement quality assessment. In addition, Depth cameras are also affordable and have the
advantages of being non-invasive, portable, and low-cost[12].

In recent years, with continuing progress and development of artificial intelligence,
some automated FMS measurement methods have emerged. Andreas et al. proposed
a CNN-LSTM model to achieve the classification of functional movements[13]. Duan
et al. used a CNN model to classify the electromyographic (EMG) signals of functional
movements, in which the classification accuracy of squat, stride, and straight lunge squat
was 91%, 89%, and 90%, respectively[14]. The deep learning algorithms can automatically
extract a set of movement features, which can improve the accuracy of activity recognition.
However, it requires a large amount of training data, which is time-consuming, and
the network structure of deep learning models are more complex and less interpretable.
Meanwhile, better results have been achieved in the field of movement quality assessment
by training multiple weak classifiers to form a strong classifier in machine learning methods.
The automated FMS assessment method based on Adaboost.M1 classifier proposed by
Wau et al[15]. FMS assessment can be achieved by training weak classifiers and combine
them into a strong classifier. Bochniewicz et al. used a random forest model to assess
the arm movements of stroke patients by randomly selecting samples to form multiple
classifiers[16]. The classification labels were then predicted by a voting method using a
minority-majority approach. This method requires a smaller amount of data and is based
on the interpretability of a machine learning method with manually extracted features.

In summary, we proposed an automated FMS assessment method based on an im-
proved Gaussian mixture model in this study. First, we performed feature extraction on the
FMS dataset collected with two Azure Kinect depth sensors, then the features with different
scores (1 point, 2 points, 3 points) are trained separately in a Gaussian mixture model. Fi-
nally, FMS assessment can be achieved by performing maximum likelihood estimation. The
results show that the improved Gaussian mixture model has better performance compared
to the traditional Gaussian mixture model. It provides fast and objective evaluation with
real-time feedback. In addition, we further explore the application of datasets acquired
using depth cameras in the field of FMS and validate the feasibility of FMS assessment
based on depth cameras.

2. Materials and Methods
2.1. Manual Features in FMS Assessment

Manual feature extraction is a common approach in machine learning-based move-
ment quality assessment, it transforms raw data into a set of representative features for
machine learning algorithms. Manual feature extraction usually requires the knowledge
and experience of domain experts to select features relevant to the target task, converted
into numerical or discrete variables for training and classification of machine learning algo-
rithms. Manual feature extraction has many advantages. First, because the human-selected
features are highly interpretable, they can provide meaningful references for subsequent
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data analysis. Second, manual feature extraction is controllable and can be adjusted ac-
cording to actual requirements, thus improving movement classification accuracy and
generalization ability[17].

We drew on the functional movement screening methods of Gray Cook, Lee Burton,
and the scoring criteria of our experts to manually extract a set of informative and easily
interpretable features in this study[18-20]. These features contain the key motion char-
acteristics of each FMS, including joint angles and joint spacing, which are critical to the
development of effective machine learning-based FMS assessment models. The skeleton
joint points are shown in Figure 1. We describe in detail the calculation method of the
automatic evaluation metrics for each movement in this section.

In conclusion, manual feature extraction plays a key role of bridging the gap between
domain-specific knowledge and deep learning-based automatic feature extraction, which
can significantly improve the performance and robustness of machine learning-based FMS
assessment.
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Figure 1. The skeleton structure used in our methods.
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Figure 2. Characteristic indicators of different movements in this study. (A) Deep squat; (B) hurdle

step; (C) in-line lunge; (D) shoulder mobility; (E) active straight raise; (F) Trunk stability; (G) Rotary
stability.
2.1.1. Deep squat

The angle between the thigh and the horizontal plane is defined as the angle between
the vector along the left thigh hip joint point to the knee joint point and the horizontal plane
during movement.The thigh angle is calculated as the angle between a vector connecting the
left thigh hip joint and knee joint and a horizontal vector.K(Xy, Yy, Zx ) and H(X},, Y, Z;, )
represent the 3D coordinates of the knee joint and hip joint. « is shown in Figure2(a).

KH = (X — X, Vi — Yi Zs — Z) )

The thigh angle is given by

KH -

& = arccos T )
|KH| ||

_>
where I@ is the left thigh vector (joint 12, joint 13) and & = (1,0,0) is the horizontal
vector.

=

2.1.2. Hurdle step

The raised leg angle is calculated as the angle between a vector connecting the raised
leg hip joint and knee joint and a normal vector.H (X}, Y}, Z;, Jand A(X,, Ys, Z, )represent
the 3D coordinates of the hip joint and ankle joint. « is shown in Figure2(b).

HA = (Xo — Xi, Yo — Y, Zo — Z) ©3)

The raised leg angle is given by

HA -V
a = arccosT 4)
[HA|V|

where Iﬁ\ is the raised leg vector (joint 12, joint 14) and V= (0,1,0) is the vertical vector.
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2.1.3. In-line lunge

The trunk angle is calculated as the angle between a vector connecting the spine chest
joint and pelvis joint and a normal vector. S(X;, Ys, Zs ) andP(Xp, Y}, Z, ) represent the 3D
coordinates of the spine chest joint and pelvis joint. « is shown in Figure2(c).

nﬁ: (Xp_Xs,Yp_Ys,Zp_Zs) (5)
The trunk angle is given by

1%

X = arccos — (6)
ISPV
where S7>7 is the trunk vector (joint 2, joint 0) and V = (0,1,0) is the vertical vector.

2.1.4. Shoulder mobility

The wrist distance is the minimum distance between the left wrist joint and the right
wrist joint. Wy (X, Y}, Z;) and W, (X;, X;, X, )represent the 3D coordinates of the left wrist
joint and the right wrist joint. d is shown in Figure2(d). The wrist distance is given by

4=/ (X = X)2 + (Y = )2+ (Zr — 7)? %

2.1.5. Active straight raise

The raised leg angle is calculated as the angle between a vector connecting the hip
joint and ankle joint and a horizontal vector. H(X}, Y, Z;, JandA(X,, Yy, Z, ) represent the
3D coordinates of the hip joint and ankle joint. & is shown in Figure2(e).The raised leg angle
is given by

a = arccos%i 8)
|HA|h|

2.1.6. Trunk stability

The angle between trunk and thigh is calculated as the angle between a vector con-
necting the spine chest joint and pelvis joint and a vector connecting the hip joint and ankle
joint. & is shown in Figure2(f). The angle between trunk and thigh is given by

& = arccos P—S> : Iﬂ 9)
|PS||HA|

2.1.7. Rotary stability

The distance between the elbow joint and the ipsilateral or contralateral knee joint is
the distance between the moving elbow joint and the moving knee joint.

E/(Xer, Yei, Zer), Ky (Xi1, Yii, Zyy) and Ky (Xgy, Yir, Zir) represent the 3D coordinates of
the left elbow joint, left knee joint and right knee joint. d is shown in Figure2(g). The
distance between the elbow joint and the ipsilateral knee joint is given by

d= \/(Xkl(Xkr) — Xa)® + (Yu(Yir) = Ya)* + (Zua(Zy) — Zar)? (10)

2.2. Improved Gaussian Mixture Model

The Gaussian mixture model(GMM) is composed of k sub-Gaussian distribution
models, which are the hidden variables of the mixture model, and the probability density
function of the Gaussian mixture model is formed by linear summation of these Gaussian
distributions[21,22]. A model is chosen randomly among the k Gaussian models according
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to the probability. The probability distribution of the Gaussian mixture model can be
described as follows:

K

p(x) = 1;1 @iN(x | pi, 07) (11)

whereg;is the coefficient(¢; > 0, YX_;¢; = 1). N(x | p;) is the probability density
function of the Gaussian distribution, and the associated parameters indicate that there are
k Gaussian models, each with 3 parameters, namely the mean y;, the variance o; , and the
generation probability ¢;. The sample data is generated by its Gaussian probability density
function N(x | y;) after model selection.

)2

202

The maximum likelihood function method is used to train the Gaussian mixture model.
The likelihood function can be expressed as follows:

L
L= 1j1p<xl- | 9) (13)

where L is the number of samples in the dataset, x is the data object (i =1,2,3---N) and
p(x) denotes the probability of data sample generation in the Gaussian mixture model. The
mixed model with maximum likelihood is calculated as follows:

N N K
logL— 3" P(x; | ¢) — zlog(z N | goa) 19
| i=1 k=1

i=1

The Gaussian mixture model can not acquire the derivative, the EM algorithm is used
to solve the best parameters of the model according to the maximized likelihood function
in the training phase of the GMM model, the mixture probability ¢y, the mean yj and the
covariance o, until the convergence of the model.

However, the use of a single GMM as a classifier in movement quality assessment has
certain drawbacks. First, it may oversimplify the complexity of motion data and affect the
model performance[23,24]. Second, the sensitivity to noisy data and statistics outliers is a
weak feature of a single Gaussian mixture model, which reduces the model accuracy[25].
Meanwhile, promising results have been achieved in the movement quality assessment
by combining weak classifiers into a strong classifier in the machine learning methods.
Several studies have confirmed the validity of this method. For example, Wu proposed an
automated FMS assessment method based on Adaboost.M1 classifier, which trains different
weak classifiers for the FMS dataset collected by IMU, and then combines these weak
classifiers to form a powerful classifier for FMS[15]. In addition, Bochniewicz evaluated the
arm movements of stroke patients using a random forest model with randomly selected
samples to form multiple classifiers, and then used a minority-majority approach to predict
the classification labels through a voting method[16]. Therefore, we proposed an automated
FMS assessment method based on the idea of combining three Gaussian mixture models
into a strong classifier in this study.

As shown in Fig 2, Firstly, a Gaussian mixture model is trained separately for the
movement features with different scores to obtain the Gaussian mixture model probability
distributions of 1point, 2 points, and 3 points (p1(x), p2(x), p3(x)). Next, the feature data
with unknown scores are modeled using each of the 3 Gaussian mixture models, and
finally maximum likelihood estimation is performed to obtain the evaluation results. We
evaluated the performance of the new classifier by comparing it with three basic classifiers,
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including the traditional Gaussian mixture model[26], Naive Bayes[27] and Adaboost.M1
classifier[15].

| eMM1 R
1 m@ -
Classification
Ly Ly Ly
o GMM2 ol
p2(2) Select Model With
Maximum Likelihood
. GMM3 >
Movement features of Pi(@)

different scores

Figure 3. The structure of improved Gaussian mixture model.

2.3. Statistical Analysis

In this experiment, we contrasted three traditional machine learning methods (GMM,
Naive-Bayes, Adaboost.M1) to evaluate the scoring ability of the improved GMM. Due
to the analysis of experimental results, we used scoring accuracy, confusion matrix and
Kappa statistic to evaluate the performance of our proposed models. For the task of FMS
movement assessment, scoring accuracy can visually reflect the scoring performance of
each model. The confusion matrix can show the difference between the predicted results
and the expert scores, the diagonal element values of the matrix represent the consistency
between the prediction results and the actual measurements, and the non-diagonal element
values of the matrix denote wrong predictions. The kappa coefficient is used to assess the
degree of agreement between the model scoring results and the expert scoring results[28].

P, — P,

k:
1-P

(15)

where P, is defined as the sum of the number of samples correctly in each category divided
by the total number of samples, which is the overall classification accuracy. We assume the
number of correctly samples in each category (a1,4; - - -, am ), and the number of predicted
samples in each category (a1,4z - - - , am). The total number of samples is n, P, is obtained by
dividing the sum of the "product of the actual value and predicted value" for all categories
by the square of the total number of samples.

_ap Xbytay xXby+ -+ ay X by

P,
nxn

(16)

The value of kappa usually lies between 0 and 1. Typically, kappa values of 0.0-0.2 are
considered a slight agreement, 0.2-0.4 a fair agreement, 0.4-0.6 a moderate agreement,
0.6-0.8 a substantial agreement, and > 0.8 an almost perfect agreement.

For the evaluation of the performance on different movements, we also use the F1-
Measure to evaluate the performance of the model, we adopt the micro-averaged F1(miF1),
macro-averaged F1(maF1) and weighted-F1 simultaneously.

3. Results and Discussion

We conduct an experimental study using a dataset acquired by a depth camera to
validate the effectiveness of the proposed improved Gaussian mixture model. First, the
used dataset is introduced. Then, we contrast three classifiers to evaluate the performance
of the improved Gaussian mixture model. (Traditional Gaussian mixture model, Naive-
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Bayes and Adaboost.M1). Finally, we analyze the effect of skeleton data and feature data
on FMS assessment respectively.

3.1. Dataset

This study used the FMS dataset proposed by Xing et al[30]. This dataset is collected
from 2 Azure Kinect depth cameras and covered 45 subjects between the ages of 18 and
59 years. The dataset consists of functional movement data which is divided into left and
right side movements, including deep squat, hurdle step, in-line lunge, shoulder mobility,
active straight raise, trunk stability push-up and rotary stability. In order to improve the
accuracy and stability of the data, the researcher used two depth cameras with different
viewpoints to collect the movement data of the subjects. The dataset contains both skeletal
data and image information.

The Azure Kinect depth sensor has better quality and accuracy of data compared to
depth cameras, such as Kinect V1, Kinect V2, and Real Sense, thus it offers the possibility
of machine learning and other methods for tasks such as human motion recognition and
movement assessment[31-35]. In addition, the dataset not only provides strong support for
the functional movement assessment and rehabilitation training, but also provides technical
support and data sources for the research and applications in the fields of intelligent fitness
and virtual reality.

The 3D skeleton data acquired by the frontal depth camera are used in this experiment.
The score distribution of each movement is shown in Fig.11(a).

120f 1 poirt 2 point 3 point
100 4
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Figure 4. (a) Expert score distribution of FMS movements.(b) Expert score distribution of FMS
movements based on Borderline-SMOTE.

As shown in Fig 4 (a), for example, the number of 2 score is much larger than the
number of 1 and 3 scores in m11, due to the uneven distribution of FMS scores, which
may decrease the performance of some machine learning models. Although the model
has a high overall accuracy rate, 1points and 3points have low accuracy rate. Therefore, in
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order to avoid this situation, the problem of unequal distribution of each movement in the
dataset needs to be addressed. The experiment uses the Borderline SMOTE oversampling
algorithm, which is a variant of SMOTE algorithm[35]. The algorithm synthesizes new
samples using only the minority boundary samples and considers the category information
of the neighbor samples, avoiding the poor classification results caused by the overlapping
phenomenon in the traditional SMOTE algorithm. Borderline-SMOTE method divides the
minority samples into 3 categories (Safe, Danger and Noise), and oversamples only the
minority samples of the Danger category.

After Borderline SMOTE pre-processing, the expert score uniform distribution of FMS
movements is also realized, as shown in Figure 4 (b). However, the distribution of m13 is
still uneven. In order to avoid impacts on the experimental results, m13 is not tested in
the subsequent experiments. The movements in the dataset are divided into the left side
and the right side except for m01, m02 and m11, both sides have the same movement type
and movement repetitions. In order to facilitate the targeted analysis and processing of the
movement data, we only analyze the movements of the left side of the body. In summary,
the movements used for this experiment include m01, m03, m05, m07, m09, m11, m12, m14.

3.2. Evaluation of the Performance on Different Methods

The machine learning model can predict each test action as a score of 1-3. To an-
alyze more detailed results about the scoring performance of the improved GMM, we
further visualize the confusion matrix based on the expert scoring and the automatic scor-
ing. Figure.5 shows the confusion matrix obtained by the Naive Bayes-based method,
Adaboost.M1-based method and improved GMM-based method. In this study, we consider
expert scoring as the gold standard, and we combined the scoring results for each test
action. From Fig.12, we can observe that the misclassified samples are prone to be predicted
as a score close to its true score, 1-point samples are more likely to be wrongly predicted
as 2 points than 3 points, and 3 points samples are more likely to be wrongly predicted
as 2 points than 1 point, among these, the most errors occur when 2 points samples are
predicted as 3 points samples.

1 point 20 1 point 14 8 1 point 162 13 10

2 point 2 point| 35 56 2 point 42

expert score
B
(=3
expert score
expert score

3 point 15 28 3 point 16 32 3 point 4 25

1 point 2 point 3 point 1 point 2 point 3 point 1 point 2 point 3 point
Naive Bayes score Adaboost.M1 score improved GMM score

Figure 5. Confusion matrix for per-level assessment in FMS assessment.

Table 1. Overall comparisons of different methods in FMS assessment.

. Level of
Methods Accuracy maF1 weighted-maF1 Kappa Agreement
Naive Bayes 0.75 0.75 0.71 0.6 Moderate
Adaboost.M1 0.72 0.7 0.71 0.55 Moderate
Traditional
GMM 0.38 0.34 0.35 0.1 Poor
Improved 0.8 0.77 0.79 0.67 Good

GMM
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Table 1 shows the scoring of the Naive-Bayes, Adaboost.M1, improved Gaussian
mixture model (GMM) and traditional GMM. The accuracy of improved GMM is higher
than Naive-Bayes, Adaboost.M1 and traditional GMM, and the improved GMM has the
highest agreement. In general, the FMS assessment based on the improved GMM model
outperformed Naive Bayes and Adaboost.M1. The results indicate that the improved GMM
yields considerable improvement over the traditional GMM.

3.3. Evaluation of the Performance on Different movements

We further investigate the model performance for each FMS test individually, Figure 6
(a) and Figure 6 (b) show the F1-micro-average and F1-macro-average for FMS movements
on different methods. For all three models, we find that improved GMM-based model
has better overall performance compared to Naive Bayes-based model and Adaboost.M1-
based model. Specifically, improved GMM-based model is performing better than other
methods in the four movements (m03, m05, m09, m11), the performance of three methods
is essentially the same in the two movements (m(07, m14).

Improved GMM Mavie Bayes Adaboost M1

08
06 ¢
04

02k

mi1 ml3 mi5 ma7 mog mi1 m2 m14
F1-micro-average

(@)

Improved GMM Mavie Bayes Adaboost M1

08
06 ¢
04

02k

mi1 ml3 mi5 ma7 mog mi1 m2 m14
F1-macro-average

(b)

Figure 6. (a) F1-micro-average of FMS movements.(b) F1-macro-average of FMS movements.

3.4. Comparison of Accuracy before and after Data Balancing

We also compare FMS performance using the original unbalanced feature data (Figure
4 (a)) and balanced feature data after the oversampling pre-processing (Figure 4 (b)) in this
research. As shown in Table 2, the average accuracy of balanced distribution of feature
data is 0.8, while the average accuracy of unbalanced distribution of feature data is only
0.62, which indicates that the balanced features perform better in the FMS assessment. The
scoring accuracy of the balanced movement features is greatly improved compared with
unbalanced movement features. The imbalance will cause the performance of the classifier
to be biased towards the majority samples due to the unbalanced sample size. Using
sampling processing can improve the balance of the training data by increasing the number
of samples, thus effectively avoiding this bias. The balanced features after oversampling
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pre-processing not only reflect the FMS movement quality more comprehensively, but also
the accuracy of the classifier is significantly improved.

Table 2. Improved GMM scoring accuracy before and after data balancing.

Feature data before balance Feature data after balance
ID 1 2 3 1 2 3
m01 0.86 0.48 0.25 0.86 0.63 0.71
m03 0.45 0.49 0.57 0.77 0.37 0.88
mO05 0 0.67 0.29 0.97 0.69 0.68
m07 1 0 0 0.5 0.56 1
m09 0.8 0.74 0.64 0.95 0.8 0.89
mll 0.67 0.69 0 0.85 0.56 0.84
m12 0.8 0.67 0.88 0.94
ml4 0.5 0.83 0.92 0.83
Averge accuracy 0.62 0.8

3.5. Comparison of Performance between Features and Skeleton Data

In the present study, we compare the performance of the manual feature extraction
method and the skeleton data-based method in FMS assessment. As shown in Table 3, the
manual feature extraction method has better performance in FMS assessment. Compared
with the skeleton data-based method, the manual feature extraction method can capture
the key features of the FMS movement more accurately, thus assessing the quality of the
movement more accurately. The manual feature extraction method circumvents the impact
of skeleton data quality differences on action scoring to a certain extent because the skeleton
data are screened and cleaned through bespoke processing. In addition, the manual feature
extraction method has good interpretability, which helps us better understand the FMS
movement quality. Specifically, the manual feature extraction method generally scores each
action with higher accuracy than the skeleton data-based method, for example, the scoring
accuracy of m09 improved from 0.44 to 0.88. The average accuracy of the manual feature
extraction method is 0.8, while the average accuracy of the skeleton data-based method is
only 0.63, indicating that the manual feature extraction method has better performance in
the FMS assessment.

Table 3. Improved GMM scoring accuracy based on skeleton data.

mo01 mO03 mO05 mO07 mO09 mll m12 m1l4 Average accuracy
0.36 0.39 0.68 0.7 0.44 0.73 0.88 0.86 0.63

4. Conclusion

In this study, we propose an automated FMS assessment method based on an improved
Gaussian mixture model using the FMS dataset captured by the Azure Kinect depth camera.
The experimental results show that our method has a high scoring accuracy in this dataset
and a high agreement between the scores and the expert scores compared to the other
methods. Thus, the improved Gaussian mixture model-based method can be applied
to FMS assessment, while there is some potential for functional movement assessment
using depth cameras. This method should be tested on different datasets to improve the
performance of machine learning methods and achieve more accurate prediction results in
future studies.
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The appendix is an optional section that can contain details and data supplemental to
the main text—for example, explanations of experimental details that would disrupt the
flow of the main text but nonetheless remain crucial to understanding and reproducing
the research shown; figures of replicates for experiments of which representative data are
shown in the main text can be added here if brief, or as Supplementary Data. Mathematical
proofs of results not central to the paper can be added as an appendix.

Table A1l. This is a table caption.

Title 1 Title 2 Title 3

Entry 1 Data Data

Entry 2 Data Data
Appendix B

All appendix sections must be cited in the main text. In the appendices, Figures, Tables,
etc. should be labeled, starting with “A”—e.g., Figure A1, Figure A2, etc.
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