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Abstract: Falls are extremely damaging to the elderly. The number of elderly who have experienced
falls has increased over the years, several of the elderly stay alone or in in badly maintained elderly
homes. This makes a low-cost fall detection system a necessity. There has been huge improvements
in terms of IoT systems, ML algorithms. Varied data sets have been collected across the world for fall
detection. These data sets have a very little in common among them, in terms of user demographics,
sensors used, the ADL and Fall activities Hence in this paper we present a data set that has wide
user demographics, we used various sensors – such as accelerometer, gyroscope, magnetometer and
hear rate. We used wrist worn sensors to collect data. In this paper we present a detailed analysis
of the data set we collected using common ML algorithms such as – Naïve Bayes (NB), K Nearest
Neighbor (KNN), Logistic Regression (LR), Random Forest (RF) and Support Vector Machines (SVM).
We analyzed the performance of these algorithms for variations in accuracy with respect to age,
gender, height, weight and health issues and we have identified outliers by analyzing each incorrect
prediction. This paper provides the complete details of the data collection methodology, The methods
used for analysis and presents the results of analysis in complete detail.

Keywords: machine learning; geriartic fall detection; dataset; K nearest neighbours; naive bayes;
logistic regression; random forest; support vector machine

1. Introduction

According to WHO statistics [1], people are living longer, and the current population is expected
to live well into their sixties. Current statistics (1st October 2022) state the following.

1. The speed of aging is increasing;
2. In the year 2020, people aged more than sixty years outnumbered young kids under the age of

five;
3. By 2050 the population of geriatrics is expected to double from 12% to 22%. People over 60

are expected to be around 2.1 billion, and the number of people above 80 is expected to reach
426 million.

4. Two-thirds of the aging population is expected to be in the low- and middle-income range.

The process of aging causes a decrease in physical and mental capacity, other than biological
variations, that are a natural part of aging comes retirement and relocation. The elderly are generally
considered frail and dependent and hence are shunned. Many of them are forced to live in a low-income
retirement home. The changes in their health, financial and social conditions expose them to health
risks; especially they become more prone to accidents, including falls.

United Nations has declared 2021 to 2030 as the “UN Decade of healthy aging” and are supporting
the use of technology that can improve the quality of life of the elderly.
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With recent advances in healthcare systems, specifically with the integration of Internet of Things
(IoT) and medical applications, there has been a huge boost in research in medical sensors and machine
learning algorithms.

Machine learning and Deep Learning are widely investigated topics in the case of geriatric fall
detection to train the ML/DL algorithms, a large amount of data related to fall and non-fall activities
is required. Several public datasets for fall are available. The public datasets vary in terms of (a)
Sensors used (b) the number of volunteers (c) demographics such as age, gender, and existing health
conditions (d) activities performed (e) data gathering techniques. Several researchers [2] have brought
out the difficulty of comparing datasets. Therefore, it is also difficult to conclude why certain ML/DL
algorithms perform better when compared to others. Most public datasets do not provide the details
of data collection. The datasets used for fall detection have a set of daily activities (ADLs) and a set of
fall data. Public datasets do not always list the ADL activities, the type of falls, how many times these
activities were performed and how long each activity lasted.

Two types of sensing methods are associated with fall detection (a) wearable (b) environmental
sensors. The classification is based on the placement of the sensor. The sensors can be placed on the
body of the elderly or maybe placed in the environment around them. Body worn sensors usually are
accelerometers, gyroscopes, and biometric sensors. Environmental sensors include image, vibration,
and audio sensors.

There are several public datasets such as Mobi Fall, K Fall, SiS Fall, and SmartFall, that use
body worn sensors that primarily use accelerometer-based sensors. This paper concentrates on data
collection using wearable sensors specifically IMU (Inertial Measurement Unit) sensors, gyroscopes,
magnetometers. Even with body-worn sensors, there is a considerable variation in the data collected.
This is due to the positioning of the sensor on the body. The sensors maybe placed on the torso, thigh,
or waist. Based on the placement of the sensors, the data collected, and the performance of the ML
algorithms vary.

Raw sensor data is not directly fed to the ML algorithms; sensor data is processed to extract the
relevant features; in the case of wearable sensors, these are usually statistical parameters – such as
average, mean, maximum, minimum, standard deviation, kurtosis, skew, etc. Public datasets only
have the extracted features available. Some of them have only raw accelerometer values; each public
dataset produces different accuracies when ML algorithms are applied. This makes it difficult to
recommend a single ML algorithm for fall detection. Also, the accuracy of the ML algorithm cannot
be coordinated with the data points as no information regarding the volunteers and their individual
characteristics are available. Therefore, while using public datasets the following question remains to
be answered (A) What is the reason for varying accuracies in ML algorithms (B) Are the volunteered
demographics related to varying accuracies, and if so, how? (C) How much data is required to train
the algorithms to obtain good accuracies especially since DL algorithms require a large amount of data
to converge (D) Can different datasets be used for training and testing and how will the accuracies of
the ML algorithms will be affected (E) What will be the actual accuracy obtained when the system is
used on the actual target users (i.e.) the elderly. The volunteers cannot be drawn from the geriatric
populations due to the health risk involved.

The primary aim of our research work is to build an end device that will be a part of a larger IoT
system. The end device will not only collect data but also execute the ML/DL algorithms to detect falls
and alert healthcare professionals. The ML algorithms are run on the end device to eliminate network
latency and connectivity-related issues. Only long-term health monitoring and analysis will be done
on the cloud. The architecture of the proposed system is shown in Figure 1.
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Figure 1. Architectural model of wearable fall detection system.

Such a system would have end devices built around powerful SoCs. The SoC we are using is
Snapdragon Qualcomm 820c [3]. The 820c chip has been developed specifically for wearable and IoT
applications.In IoT this is termed as Dew Computing.

This device needs to be trained with a large dataset so that we can run compressed ML/DL
algorithms on it. The need for compressed algorithms is because running a full-scale algorithm will
require a large amount of memory that is not available on SoCs [4]. shows the high latency incurred
when running ML algorithms on SoCs. In order to train the system, we started with data collection,
cleaning and analysis. This paper elaborates on the process we have used for data collection, cleaning,
feature extraction and analysis of the data collected. Various ML algorithms were run on the data
collected and analysis was done on various factors and their impact on the ML models. Some of the
features considered were (a) Separate test and train data (b) age (c) gender (d) physical condition
such as height, weight, and any pore-existing health condition. This paper provides the result of the
analysis and also addresses the issue of data collection and the impact of characteristics of the data
collected on the performance of the ML algorithms.

2. Background of Work

“Inadvertently coming to rest on the ground, floor, or other lower levels, excluding intentional
change in position to rest in furniture, wall or objects”, is defined as a fall by WHO [1]. Falls can be
detected using multiple mechanisms and methods. This section gives a brief review of the research
done in terms of data collection and analysis done for fall detection in the elderly.

2.1. Sensors

The sensors that are used for fall detection can be classified into two categories (a) ambient sensors
(b) wearable. The classification is based on the position of the sensor with respect to the user.

2.1.1. Ambient Sensors

Image, Audio and Vibration sensors are the major sensors are the major sensors that fall under this
category. Fall detection using vibration sensors [5] is detailed. [6] describes a fall detection system that
uses sound sensors. Vibration sensors are usually piezo-electric based and pick up vibrations caused
by the fall of a person. The issue with using ambient sensors to detect vibration or audio samples is the
large amount of noise present that requires pre-processing of signals using appropriate filters. If the
fall detection system is part of the IoT system, then the complexity of the end device will be extremely
high. Also, there is a possibility that soft falls may go undetected. Image Sensors [7] analyse images
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captured efvery few seconds to find if any person has fallen, in most cases multiple camera frames will
be required. Multiple cameras can be placed in a single room and falls can be detected. Using multiple
cameras in every room where the elderly live, is not feasible; especially considering that most elderly
live on a restricted income.

All these sensors; vibration, acoustic and image are placed in and around the area where the
elderly live and hence, they are termed ambient sensors.

2.1.2. Wearable Sensors

Wearable sensors are primarily IMU sensors such as accelerometers, gyroscopes and
magnetometers. In some research work [8], GPS has also been used, while in the case of some,
biometric parameters such as heart rates, SpO2 and skin temperature, etc were used.

In many cases, smartphones that already have an IMU sensor or smartwatches equipped with IMU
sensors are used. GPS or biometric-based sensors in these devices are generally used for validations.

IMU sensors are made up of three different sensors (a) Accelerometers (b) Gyroscopes (c)
Magnetometers.

The accelerometers will experience sudden changes in value during a fall. Based on the position
of the sensors, in some cases wrist-worn, thigh-worn or torso worn; The amount of acceleration along
the 3 axes will vary. The gyroscope measures the angular velocity along with the 3 axes. The integral
gives the angle of the person with respect to the ground. The third part of the IMU sensor, that is
the magnetometer provides the orientation with respect to the Earth’s magnetic field. In case of falls,
there will be a significant change in all these parameters. In some cases, heart rate sensors and skin
temperature sensors are used as they may supplement the IMU data. Heart rate may increase in case of
a fall, so may the skin temperature. Wearable sensors are preferred over ambient sensors since they can
move with the elderly also now IMU sensors are an integral part of smartphones and smartwatches
which makes them an ideal choice; they are already available and will cost lesser even if a new system
was to be built around them.

2.2. Data-Sets

Generally, to train and test the ML/DL algorithms large amount of data is required. There are
multiple datasets available online, but they vary in terms of the type of sensors, manufacturer of
the sensors, demographics of the train and test volunteers, the types of ADLs and Falls monitor,
Sampling rate, duration of the data collected, number of volunteers and hence the number of data
samples. The format of the data may be in terms of simple digital data from sensors, acoustic signals,
or images. In the case of some datasets, raw data is available and in the case of some datasets, the
features extracted are available. The feature extraction technique may also differ. Different datasets
give different accuracies with different ML algorithms. Very little information is provided on why there
are variations in accuracies. Does variation in gender, age, height, weight, and previous health issues
affect accuracy is something that has not been analysed. Even when we run the ML/DL algorithms it
is very difficult to analyse the ac curacies as very little information is provided about the volunteers
due to privacy issues. A table analysing various public datasets collected over the last few years is
provided in Table 1.
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Table 1. An analysis of various public datasets collected over the past few years.

Ref Year Dataset used Sensor used Sensor
placement

Methodology Performance
parameter and
details

[9] 2011 UCI dataset 3-Axes
accelerometer,
2-axis
gyroscope

Chest, thigh Comparison
of ML
algorithms for
fall detection
using single
node and two
nodes

Accuracy of
classification =
99.8% with two
nodes(one on
waist and one
on knee). Naïve
Bayes gaves
the worst result,
others gave
comparable

[10] 2012 Generated
from
experiments

Accelerometer Smartphones
carried along
with the user

Comparison
of SVM,
SMLR,
Naive Bayes,
decision trees,
kNN, and
regularized
logistic
regression for
fall detection

Support vector
machines and
regularized
logistic
regression were
able to identify
a fall with 98%
accuracy and
classify the
type of fall
(trips, left lateral,
slips, right
lateral) with 99%
accuracy. Naïve
Bayes reported
least accuracy

[11] 2014 Generated
from
experiments

Accelerometer
gyroscope and
magnetometers

6 different
positions on
the body

Comparison
of k-NN,
classifier, LSM,
SVM,BDM,
DTW and
ANN
algorithms

k-NN classifier
and LSM gave
above 99%
for sensitivity,
specificity, and
accuracy

[12] 2014 Generated
from
experiments

Accelerometer Smartphones
carried along
with the user

Accelerometer
data from
wearable
sensors to
generate
alarms
for falls,
combined
with context
recognition
using
sensors in
an apartment,
for inferring
regular
ADLs, using
Bayesian
networks

Provides
statistical
information
regarding
the fall risk
probability for a
subject
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Table 1. Cont.

Ref Year Dataset used Sensor used Sensor
placement

Methodology Performance
parameter and
details

[13] 2015 Publicly
available
activity
recognition
dataset

Accelerometer,
gyroscope

Smartphone Comparison
of Naive
Bayes
classifier,
decision trees,
random
forests,
classifiers
based on
ensemble
learning
(random
committee),
and lazy
learning (IBk)
algorithms
for activity
detection
carried along
with the user

Naive Bayes
classifier
performs
reasonably
well for a large
dataset, with
79% accuracy,
and it is fastest
in terms of
building
the model
taking only
5.76 seconds
Random forests
are better in
terms of both
accuracy and
model building
time, with 96.3%
accuracy and
14.65 seconds
model building
time. k-Means
clustering
performs
poorly with 60%
classification
accuracy and
582 seconds
model building
time

[14] 2016 Generated
from
experiments

3-Axis
Accelerometer

Not specified Comparison
of decision
tree, decision
tree ensemble,
kNN, neural
networks,
MLP
algorithms
for soft fall
detection

Decision tree
ensemble was
able to detect
soft falls at more
than 0.9 AUC

[15] 2016 MobiFall
dataset

Accelerometer,
gyroscope

User’s trouser
pocket

Comparison
of Naive
Bayes,
LSM, ANN,
SVM, kNN
algorithms for
fall detection

k-NN, ANN,
SVM had
the best
accuracy—results
for kNN:
Accuracy =
87.5% Sensitivity
= 90.70%
Specificity =
83.78%

[16,17] 2016 Generated
from
experiments

3-Axis
Accelerometer

Smartwatch Threshold-based
analysis of
acceleration

Accuracy =
96.01%
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Table 1. Cont.

Ref Year Dataset used Sensor used Sensor
placement

Methodology Performance
parameter and
details

[17] 2016 Generated
from
experiments

3-Axis
Accelerometer

Different parts
of the body

Bayesian
framework
for feature
selection,
Naive-Bayes,
C4.5

Better accuracy
with improved
classification
than
Naive-Bayes
and C4.5

[18] 2017 Generated
from
experiments

Accelerometer
gyroscope

Smart - Vest Kalman filter
for noise
reduction,
sliding
window,
and Bayes
network
classifier for
fall detection

With Kalman
filter Accuracy
= 95.67%,
Sensitivity =
99.0% Specificity
= 95.0%

[19] 2017 Generated
from
experiments

3-Axis
Accelerometer

Smartphone Combination
of
threshold-based
and ML-based
algorithms—K-Star,
Naive Bayes,
J48

Energy saving =
62% compared
with(ML only)
techniques
Sensitivity =77%
(thresholding
only), 82%
(ML only),
86% (hybrid)
Specificity
= 99.8%
(thresholding
only), 98%
(ML only),
99.5% (hybrid)
Accuracy
= 88.4%
(thresholding
only), 90% (ML
only), 92.75%
(hybrid)

[20] 2017 Generated
from
experiments

3-Axis
Accelerometer

Waist Combination
of
threshold-based
and
knowledge-based
approach
based on SVM
to detect a fall
event

Using a
knowledge
based algorithm:
Sensitivity
= 99.79%
Specificity =
98.74% Precision
= 99.05%
Accuracy =
99.33%

[21] 2017 MobiFall
dataset

3-Axis
Accelerometer

Not specified Comparison
of multilevel
fuzzy minmax
neural
network,
MLP, KNN,
SVM, PCA for
fall detection

Multilevel fuzzy
min-max neural
network gave
best results:
Sensitivity
= 97.29%
Specificity =
98.70%
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Table 1. Cont.

Ref Year Dataset used Sensor used Sensor
placement

Methodology Performance
parameter and
details

[22] 2017 FARSEEING
dataset

3-Axis
Accelerometer

5 locations
on the upper
body, neck,
chest, waist,
right side, and
left side

Sensor
orientation
calibration
algorithm to
resolve issues
arising out of
misplaced
sensor
locations and
misaligned
sensor
orientations,
HMM
classifiers

Sensitivity
= 99.2%
(experimental
dataset), 100%
(real-world fall
dataset)

[23,24] 2017 Generated
from
experiments

3-Axis
Accelerometer

Chest LWT based
frequency
domain
analysis and
SVM-based
time domain
analysis
of RMS of
acceleration

Accuracy = 100%
Sensitivity =
100% Specificity
= 100%

[25] 2017 Generated
from
experiments

3-Axis
accelerometer,
3-axis
gyroscope

Waist Back
propagation
neural
network
(BPNN) for
fall detection

Accuracy =
98.2% Precision
= 98.3%
Sensitivity=
95.1%
Specificity=
99.4%

[26] 2017 Generated
from
experiments

Accelerometer,
radar, depth
camera

Wrist Ensemble
subspace
discriminant,
linear
discriminant,
kNN, SVM

Overall accuracy
of ensemble
classifier was
the highest, after
fusion of radar,
accelerometer,
and camera =
91.3%. This is an
improvement of
11.2% compared
to radar-only
and 16.9%
compared to
accelerometer-only
results

[27] 2017 Public
datasets

3-Axis
accelerometer

Not specified CNN-based
analysis on
time series
accelerometer
data
converted
to images

Accuracy =
92.3%
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Table 1. Cont.

Ref Year Dataset used Sensor used Sensor
placement

Methodology Performance
parameter and
details

[28] 2017 Generated
from
experiments

Accelerometer,
gyroscope,
proximity
sensor and
compass

Right, left,
and front
pockets

SVM, decision
tree, kNN,
discriminant
analysis

Highest
accuracy =
99% for SVM

[29] 2010 Generated
from
experiments

3-Axis
accelerometer

Chest, thigh Naive-Bayes,
SVM, OneR,
C4.5 (J48),
neural
networks

Naive-Bayes
gave best results
Accuracy =
100%

[30] 2017 Generated
from
experiments

Accelerometer
(MobiAct
dataset)

Not applicable ENN+ kNN
(where ENN
was applied
to remove
outliers),
ANN, SVM,
and J48

For ENN+ kNN:
Sensitivity
= 95.52%
Specificity =
97.07% Precision
= 91.83%

[31] 2018 Generated
from
experiments

Triaxial
gyroscope

Waist Decision tree Accuracy =
99.52% Precision
= 99.3% Recall =
99.5%

[32] 2018 Cogent
dataset,
SisFall dataset

3D
accelerometer ,
3D gyroscope-
Cogent
dataset
Accelerometer,
gyroscope
(SisFall)
dataset

Chest, waist Event-ML,
classification
and regression
tree (CART),
kNN, logistic
regression,
SVM

Better precision
and F-scores
with Event-ML
than FOSW and
FNSW-based
approaches

[33] 2018 SisFall dataset,
generated
from
experiments

3-Axis
accelerometer

Chest/thigh,
waist

SVM, kNN,
Naïve- Bayes,
decision tree

Accuracy and
sensitivity of
SVM were the
highest (97.6%
and 98.3%,
respectively) for
both datasets.

[34] 2018 UMA
Datasheet

Accelerometer,
gyroscope,
magnetometer

Wrist, waist,
chest, ankle

kNN,
Naive-Bayes,
SVM, ANN,
decision tree

Without risk
categorization:
81% for decision
tree With risk
categorization:
85% for decision
tree

[35] 2018 SisFall dataset
original and
manually
labelled

3-Axis
accelerometer

Not specified RNN Highest
accuracy
reported for
fall detection:
83.68% (before
manual
labelling),
98.33% (after
manual
labelling)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 May 2023                   doi:10.20944/preprints202305.0917.v1

https://doi.org/10.20944/preprints202305.0917.v1


10 of 26

Table 1. Cont.

Ref Year Dataset used Sensor used Sensor
placement

Methodology Performance
parameter and
details

[36] 2018 Generated
from
experiments

Accelerometer,
gyroscope,
magnetometer

Near the waist kNN Accuracy =
99.4%

[37] 2018 Generated
from
Experiments

3-Axis
accelerometer

Waist Decision tree Accuracy =
91.67% Precision
= 93.75%

[38] 2018 SiSFall dataset 3-Axis
accelerometer

Waist RNN with
LSTM

Highest
accuracy after
hyperparameter
Optimization
(97.16%)

[39] 2018 Generated
from
experiments

Depth camera,
accelerometer

Waist CNN Accuracy of fall
detection = 100%

[40] 2018 Generated
from
experiments

Accelerometer,
gyroscope,
magnetometer

Hip SVM, random
forest

Without
sensor fusion:
Accelerometer

[41] 2019 Public
datasets

Accelerometer,
gyroscope

Chest, thigh ANN, kNN,
QSVM,
ensemble
bagged tree
(EBT)

Extraction
of new
features from
acceleration and
angular velocity
improved the
accuracy of all
4 classifiers.
Accuracy of
EBT was highest
(97.7%)

[42] 2019 SisFall dataset Accelerometer,
gyroscope

Waist kNN, SVM,
random forest

Accuracy for fall
detection was
the highest for
kNN (99.8%).
Accuracy for
recognizing fall
activities was
the highest for
random forest
(96.82%)

[43] 2019 Public
datasets

Accelerometer Not specified CNN-based
models
for feature
extraction

Highest
accuracy
reported =
99.86%

[44] 2020 SiSfall dataset Two triaxle
accelrometers
and gyroscope

Wrist The XGBoost
was
implemented
on spyder
software
with a 75-25
train-test split

Overall accuracy
using XGBoost =
94.6%
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Table 1. Cont.

Ref Year Dataset used Sensor used Sensor
placement

Methodology Performance
parameter and
details

[45] 2020 SiSFall dataset Accelerometer
and
Gyroscope
sensors
inbuilt with
Smartphone

Carrying
smartphone
on hand or
pockets

Features were
extracted
from raw data
and person’s
correlation
was
implemented,
on the features
RF,ANN,
SVM and
Boosted
decision
tree was
implemented

Accuracies
Random Forest
= 99.7% ANN
= 99.2% SVM =
98.5% Boosted
decision tree =
99.9%.

[46] 2020 Generated
from
experimentation

All IMU
sensors and
heart-rate
sensor

Wrist Mean and
median was
calculated
from Raw
dataset and
ANN, KNN,
XGB, NB
and Random
Forest

Accuracy on
mean and
median
ANN = 85.69%
KNN = 94.3%
XGB = 85.3% NV
= 66% Random
Forest = 99.7%

[47] 2021 Combination
of
experimentally
Generated
and publicly
available
datset

IMU Based
sensor on
wristwatch
and
smartphones

Wrist, waist
pelvis

SVM,KNN
and ANN was
implemented

SVM (wrist
placement) =
91.3% (waist
placement) =
98% KNN (Wrist
placement) =
99% (waist
placement)
= 99.8%
ANN (Wrist
placement) =
95.25% (Waist
placement) =
92.96%

[48] 2021 UR Fall,
MOBIFALL,
UP Fall

Accelerometer,
magnetometer,
gyroscope,
ECG sensor

MOBIFALL
= trouser,
pocket Up
Fall = wrist,
ankle Ur Fall
= pelvis

Feature
extraction was
performed
on the raw
dataset and
basic ML
methods like
RF,SVM,KNN,
LR,BB and
DT were
implemented

UR Fall dataset
= 99%(RF) UP
Fall dataset
= 99%(LR)
MOBIFALL
dataset =
99%(for nearly
all mentioned
algorithm)
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Table 1. Cont.

Ref Year Dataset used Sensor used Sensor
placement

Methodology Performance
parameter and
details

[49] 2022 Generated
from
experiments

Accelerometer
and gyroscope
sensor

Wrist Data
augmentation
to solve the
imbalance
of data set,
classification
was done
by BiLSTM
model

Combined
sensor accuracy
KNN = 74.70%
RF = 75.64%
SVM = 73.74%
BiLSTM =
97.35%

[50] 2022 Generated
from
experiments

Image based,
External
placement

Camera based Multiple
images were
captured of
the subject’s
skeletal
orientation,
Standard
deviation was
calculated
and fed into
KNN based
classifier

Overall accuracy
of 95% was
obtained

[51] 2022 SisFall,
DaLiaC,
UMAFall and
Epilepsy

IMU based
sensors

Wrist and
Waist
placement

Multiple
algorithms
were run like
ANN, SVM,
Decision
Trees, Naïve
Bayes and
Deep learning
based

Overall accuracy
obtained by the
classifier was
92.5%

3. Data Collection Methodology

There are multiple datasets available as described in the background section. There are multiple
issues with the datasets:

• Very few public datasets available that have readings from multiple sensors. Most public datasets
only have the linear acceleration data.

• Very few datasets available that have wide diversity in terms of age, gender, height, weight and
health issues

• Even in datasets where there is diversity, no information is available on the ratio of gender, age,
height or weight

• The number of volunteers are usually less. In most cases less than 20.
• The list of ADLs and falls are not completely provided
• The details of how long each activities lasted is not available.
• The data collection methodology is not described
• The details of the sensors used is not provided, hence using multiple datasets becomes a major

issue as they cannot be fused together.

Though attempts have been made to compare datasets, not more than three or four [2] datasets are
compared and only certain statistical parameters are analysed. Besides all these comparisons are done
based only on accelerometer data. Due to these existing issues, we have collected our own data, this
section gives the details of the volunteers diversity, the sensors and the data collection methodology.
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We also provide the details of the features extracted that are to be used by the various ML algorithms.
The datasets are available at "https://shamanx86.github.io/fall_detection_data/".

3.1. Volunteers statistics

• No of volunteers: 41
• Age range: 18-50
• Number of female volunteers: 14.
• Weight: 50 Kg – 120 Kg.
• Height: 4ft 11 inches – 6ft 4 inches.

Existing Health issues: High blood pressure, Diabetes, Hypertension Claustrophobia, there were
some volunteers who were prone to panic attacks, sinusitis, sinus tachycardia, thyroid, malnutrition,
hypochondria, extreme anxiety, low blood pressure, prostate, and early sign of arthritis. The data was
collected using a Samsung Galaxy Watch (Series 5) worn by all users on their left wrist. Samsung
Galaxy (Series 5) was released in August 2020.

The dimensions of the watch are as follows: 44.4 X 42.3 X 9.8 mm. The watch weighs about 33.5
grams, the processor is a dual-core 1.18 GHz Cortex A55 and the GPU on the watch is Mali-G68.The
sensors available on the watch are: Accelerometer, Gyroscope, Magnetometer and Heart-Rate. The
Heart-Rate sensor is extremely accurate and comparable to medical grade sensor [52]. IMU sensors are
already pre-calibrated for wrist-worn positions and are extremely accurate. Each volunteer was asked
to wear the watch on the left wrist while performing the following ADL and Fall activity:

3.1.1. ADL

1. Walking Slowly (2 min)
2. Walking Quickly (2 mins)
3. Jogging (2 min)
4. Jogging (2 min)
5. Climbing up slowly (2 mins)
6. Climbing down slowly (2 mins)
7. Climbing up normal (2 mins)
8. Climbing down normal (2 mins)
9. Slowly sitting on a chair (nil)

10. Rapidly sitting down on a chair (na(not applicable))
11. Nearly Sitting on the chair getting up (na)
12. Swinging Hands (2 mins)
13. Lying on the bed (2 min)
14. Lying on the back and getting up slowly (na)
15. Lying on the back and getting up quickly (na)
16. Transition from sideways to one’s back while lying down (na)

3.1.2. Fall

1. Forward fall landing on the knees (30 secs on the ground)
2. Right fall (30 secs on the ground)
3. Left fall (30 secs on the ground)
4. Forward fall (30 secs on the ground)
5. Seated on the bed and falling on the ground (30 secs on the ground)
6. Forward fall body weight on the hand (30 secs on the ground)
7. Backward fall from seated position (30 secs on the ground)
8. Grabbing while falling (30 secs on the ground)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 May 2023                   doi:10.20944/preprints202305.0917.v1

https://shamanx86.github.io/fall_detection_data/
https://doi.org/10.20944/preprints202305.0917.v1


14 of 26

Table 2. Summary of the volunteer statistics.

Sr no. Parameter Values and Nos

1 Gender Male = 27
Female = 14

2 Age-range 20-30 years = 29
30-40 years = 6
>40 years = 6

3 Weight-range 50 Kg – 65 Kg = 21
65 Kg – 80 Kg = 16
80 Kg – 100 Kg = 3
100 Kg – 120 Kg = 1

4 Height Range 5ft – 5ft 5in = 23
5ft 5in – 6ft = 16
>6ft = 2

5 Health Issues No. of subjects with health issues = 17
No. of subjects without health issues = 24
Health Conditions of subjects:
Sinus Tachycardia, High Blood Pressure, Overweight,
Folic acid allergy, Obese, Thyroid, Hypochondria, extreme
anxiety Low Blood Pressure, Prostrate, Sinusitis and
Genetic Diabetes

The data was collected by asking the volunteers to perform the falls within an anechoic chamber.
As the anechoic chamber is padded with a thick sponge, during the falls, the volunteers landed on the
soft material, and hence they were not injured. As a result, all falls ended up being soft falls. Using
41 volunteers about 1.9 million data points were collected. The features were then extracted from the
data. The features were statistical in nature. The statistical parameters derived were mean, standard
deviation, variance, minimum, maximum, skew and kurtosis. After feature extraction, we had 100,208
data points that were used for training and testing.

4. Experimental methodology

In order to analyse the data we collected, for efficiency in fall detection, we used five common
ML algorithms. (a) Naïve Bayes [53] (b) KNN [54] (c) Logistic regression [55] (d) Random Forest [56]
(e)SVM(Suppport vector machine) [57]. To understand the variations in accuracies we used various
combinations of the user demographics. This was done to understand the effect of user parameters
such as gender, age, height, weight and health issues on the accuracies. We also analysed which of the
ADLs and Falls were incorrectly detected with respect to the user parameters. We used a combination
of user demographics to understand the behaviour of the algorithm and why there were variations
in Accuracies, Sensitivity, Specificity and False Negative rates. We used a combination of varying
user parameters for training and testing. For example, to understand the effect of gender on the test
accuracies we first ran the ML algorithms separately for male volunteers using their data for both
training and testing. We repeated the same for the female volunteers. Then we used the data of the
female volunteers for training and the male volunteers for testing and vice-versa. Many of the existing
public datasets which are used for training the ML algorithms have similar user demographics. In
most cases the volunteers are male and in the age between 20 and 30 years with no known health issues.
The actual users of the end product will be people above 60 years, both male and female with several
pre-existing health conditions. Under these circumstances, whether the fall prediction algorithms will
work accurately needs to be analysed. Hence in this paper, we have tried to analyse the behaviour
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of the algorithms with varying user demographics. The combinations that we used for testing and
training are given in Table 3.

Table 3. Train and Test Combinations.

Sr no. User Demographics Range Train Test

1 Age <30
30-40
40-50

<30 (70%
Train)
<30
<30
30-40
30-40
40-50

<30 (30% test)
30 -40
40 - 50
30 - 40
40 - 50
40 - 50

2 Gender Male
Female

Female
Male
Male
Female

Female
Male
Female
Male

3 Health Issues With
Without

Without
With
With
Without

Without
With
Without
With

4 Height <5.5ft
>5.5ft

<5.5ft
>5.5ft
<5.5ft
>5.5ft

<5.5ft
>5.5ft
<5.5ft
>5.5ft

5 Weight 50-65
65-80
80-120

50-65
65-80
80-120
50-65
50-65
65-80
65-80
80-120
80-120

50-65
65-80
80-120
65-80
80-120
50-65
80-120
50-65
65-80

We ran the algorithms with and without the data from heart rate sensors to understand the effects
of biometric parameters during falls. In the next section, we give the complete results and the analytics.

We also analysed the behaviour of the algorithms with respect to the ideal “k” value in the case of
KNN and found out that it was equal to 9 where we achieved the maximum accuracies, also it was
“Minkowski” distance metrics that gave us the highest accuracies at lower “k” values. In the case of
Random Forest, we had to find the optimal number of decision trees which yielded the best results
which in our case was 170. The results remained the same for with, as well as without heart rate, in the
case of Random Forest with 170 decision trees.

5. Results and Discussion

5.1. Overall Performance Analysis for various ML algorithms with varying data sizes

We initially analysed the effect of varying data sizes on the performance of ML algorithms before
analysing the effect of user demographics on the performance of the algorithms. As mentioned in
earlier sections we have used the common ML models (a) Naïve Bayes (b) KNN (c) Logistic Regression
(d) SVM (e) Random Forest.

The accuracy, specificity and sensitivity of various algorithms with (a) 41 users (b) 35 users (c) 30
users (d) 25 users (e) 20 users and (f) 10 users is shown in Figures 2–7.
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Figure 2. Accuracy vs number of users (without heart rate).

Figure 3. Specificity vs number of users (without heart rate).

Figure 4. Sensitivity vs number of users (without heart rate).
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Figure 5. Accuracy vs number of users (with heart rate).

Figure 6. Specificity vs number of users (with heart rate).

Figure 7. Sensitivity vs number of users (with heart rate).

The best results among all the algorithms were obtained when heart rate was included, as can be
seen in Figures 2 and 5. The best result was obtained for 30 users for all algorithms, except for random
forest (where the best result was obtained at 10 users), with heart rate the peak accuracy was 98.5%
obtained by SVM and 96.5% without heart rate again in SVM. For all user combinations, with and
without heart rate the sensitivities were higher than the specificity. This is as per the requirement for
Fall detection. Since we are dealing with geriatrics a false positive is better than a false negative. The
main activities that were incorrectly detected were those of User-1 as the subject had an erratic heart
rate due to a medical condition known as Sinus Tachycardia. In the case of other users, very few ADL
or Fall activities failed since we had selected the 10, 20, 25, 30 and 35 users randomly out of the total 41
users. Wherever user 1 was not selected we had better results. When heart rate was ignored several of

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 May 2023                   doi:10.20944/preprints202305.0917.v1

https://doi.org/10.20944/preprints202305.0917.v1


18 of 26

the ADL activities which were related to “lying on the bed” or “getting up slowly/quickly from the
bed” were incorrectly detected as falls depending purely on the IMU sensor’s values. Also “backward
falls and falls from the bed” were incorrectly detected as ADL activities for several users. When heart
rate was ignored more of User – 1 activities were incorrectly detected especially since several of the
ADLs were construed as false positives. This included “lying on the bed”, “lying on the back and
getting up slowly/quickly” and “transitioning sideways to one’s back while lying down”. This caused
a drop in accuracy from 99% to 98%. Especially due to a drop in specificity values from 0.99 to 0.98. It
can be concluded from the results that when we use the heart rate of a volunteer with severe health
conditions the accuracies obtained are better especially since there will not be a huge spike in heart
rate while performing Fall activities as against performing ADL activities. The sensitivity was higher
by almost 1.5% when heart rate was used and the specificity was high when heart rate was ignored.

Tables 4 and 5 show the accuracy, sensitivity and specificity for the various age groups “under
30”, “30-40” and “40-50” for individual algorithms with and without heart rate. As usual, Naïve Bayes
gives the lowest accuracy and SVM gives the highest accuracy. When training and testing were done
with the same age group, it can be observed from the table that the impact of accuracy is not much.
The accuracies have dropped in the case of all the algorithms as the size of the dataset would have
been reduced as we only considered volunteers under the age of 30. While the accuracies of SVM with
the whole dataset went up to 98.5%, here the highest accuracy again being produced by SVM is 95.10%
for the age group of >30, in the case of 30-40 it drops to 87.50% as the number of volunteers in this age
group was lesser. At 40-50 it was higher at 90.91%. In the case of 40-50, Random Forest and Logistic
Regression gave the highest accuracies at 93.18%. Random Forest’s Decision trees work equally well
with large as well as smaller data sets. When the simulations were run with volunteers being under 30,
heart rate had a huge impact for the higher age range which is 40-50 with Random Forest giving an
accuracy of 99.31%. But in the case of 30-40, the IMU sensors had the higher impact. Since in most
scenarios in practical life, volunteers would be in the age group of below 30 and users will be in the
range of 50 and above; The impact of heart-rate is very significant. When we analysed which of the
users were causing a fall in accuracy, they were primarily users in the age range of 30-40 but though
they were physically fit, they had pre-existing health conditions and were on medications. Primarily
user 30 with the pre-existing prostate condition and user 35 with a pre-existing diabetic condition.

Tables 6 and 7 show the accuracy, sensitivity and specificity of the male and female participants
for individual ML algorithms with and without heart rate. From the table, it can be seen that we
get better accuracies with heart rate in the case of male but in the case of female the accuracies fall
with heart rate. In case of females, the accuracies seems to increase or drop erratically because the
number of female were only little more than 1/3rd of the entire set of volunteers. When trained with
the Male data set and tested with the Female, we got better results both in case of With and Without
heart rate, because the training was done with a larger population than the number of test subjects.
This shows that the size of the data set has a huge impact while the gender does not have a large
impact in accuracy. So its very important to train the models with large datasets with the gender being
insignificant. The train set must be larger than the test set.

Table 4. Analysis of the impact of age on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

< 30 < 30 94.60 92.15 92.64 86.76 92.15 93.38 89.51 93.18 91.80 91.24 97.06 98.36 91.67 79.27 94.03

< 30 30-40 92.50 90.00 89.38 87.50 90.63 92.37 89.34 90.60 89.66 90.76 92.86 92.11 86.05 81.82 90.24

< 30 40-50 96.53 95.14 95.83 93.75 99.31 95.96 93.20 95.92 93.94 98.97 97.78 100 95.65 93.33 100

30-40 30-40 85.42 81.25 83.33 72.92 87.50 84.21 78.57 83.78 85.71 84.62 90.00 100 81.82 55 100

30-40 40-50 90.28 89.58 90.97 88.89 95.83 91.84 86.49 91.92 97.62 94.12 86.96 100 88.89 76.67 100

40-50 40-50 93.18 88.64 93.18 84.09 90.91 90.32 84.85 93.10 92.00 92.86 100 100 93.33 73.68 87.50

* With Heartrate
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Table 5. Analysis of the impact of age on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

< 30 < 30 95.10 91.67 93.14 87.25 92.16 92.81 89.44 93.23 93.28 90.07 100 96.77 92.96 78.82 96.83

< 30 30-40 92.50 90.52 89.38 87.50 90.63 92.37 90.08 90.60 89.66 89.43 92.86 92.31 86.05 81.82 94.60

< 30 40-50 95.83 95.14 95.14 94.44 99.31 95.92 93.20 94.95 96.81 98.97 95.65 100 95.56 90 100

30-40 30-40 87.50 81.25 79.17 72.92 87.50 86.49 78.57 82.86 85.71 84.62 90.91 100 69.23 55 100

30-40 40-50 90.97 88.89 90.28 88.19 93.75 91.09 85.71 91.84 98.77 92.23 90.70 100 86.96 74.60 97.56

40-50 40-50 90.91 86.36 93.18 84.09 93.18 90 82.35 93.10 88.89 93.10 92.86 100 93.33 76.47 93.33

* Without Heartrate

Table 6. Analysis of the impact of gender on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

Female Female 93.07 86.14 88.12 84.16 93.07 96.92 92.19 95.16 94.83 95.52 86.11 75.68 76.92 69.77 88.24

Male Male 93.33 92.82 95.90 89.23 92.82 93.13 90.00 94.70 91.34 91.79 93.75 100.00 98.41 85.29 95.08

Male Female 94.35 90.48 94.35 89.58 93.45 94.37 88.40 94.76 89.21 93.16 94.29 96.51 93.46 90.53 94.12

Female Male 91.82 92.59 92.90 91.05 93.83 90.58 91.20 93.47 93.29 92.79 95.03 96.15 91.67 86.57 96.32

*With heart rate gender

Table 7. Analysis of the impact of gender on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

Female Female 95.04 89.10 89.10 85.14 93.06 98.46 93.84 95.23 94.91 95.52 88.88 80.55 78.94 71.42 88.23

Male Male 92.30 92.82 95.38 88.71 92.82 93.02 90.57 94.65 91.26 92.42 90.90 98.24 96.87 84.05 93.65

Male Female 93.75 92.26 94.05 89.29 92.56 93.94 91.25 94.74 89.17 92.34 93.33 94.79 92.59 89.58 93.07

Female Male 92.44 92.28 92.44 90.43 94.14 90.83 90.81 93.03 93.43 93.20 96.56 96.11 91.13 84.68 96.35

*Without heart rate gender

Tables 8 and 9 show the accuracy, sensitivity and specificity for subjects with pre-existing health
conditions and subjects who did not have any health conditions were used as participants. Table 8
shows the result with heart rate whereas Table 9 shows the result without heart rate.

Of the 41 volunteers, 12 of them had pre-existing health conditions that varied from high blood
pressure, diabetes, claustrophobia, vertigo, sinus trachardia, prostate and obesity, etc. To study the
effect of health conditions on the prediction we ran the algorithm separately for the volunteers with
health issues and without health issues. Performance of the algorithms was better when heart rate was
associated with people who did not have any pre-existing health issues. When we tried training the
algorithm using people with health issues and testing them with volunteers who did not have any
health issues and vice-versa, the heart rate had no such impact in the first case however in the second
case there was a slight improvement in accuracies as can be seen in Tables 8 and 9.

Based on this we can come to a conclusion that the presence of health issues does affect the
accuracy of fall detection and since erratic heart rate is usually associated with health issues, there
is more possibility of errors when heart rate is used as one of the features to detect falls. This will
prove to be a major hurdle as we move forward in our research since there are very few elderly who
do not have any pre-existing health conditions, in fact in our 40-50 age group only one volunteer had
no health issue or was not under any form of medication.
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Table 8. Analysis of the impact of Pre-existing health on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

Without Without 96.11 93.33 93.89 92.22 95.56 95.80 93.33 94.12 95.54 95.00 96.72 93.33 93.44 86.76 96.67

With With 91.38 83.62 90.52 84.48 91.38 93.75 82.80 93.67 86.90 91.67 86.11 86.96 83.78 78.13 90.63

With Without 95.00 91.50 94.17 90.83 94.00 95.12 89.21 95.06 91.17 94.17 94.74 98.06 92.31 90.06 93.62

Without With 94.27 92.19 92.71 89.06 94.53 94.32 91.85 92.54 91.80 93.04 94.17 92.98 93.10 83.59 98.20

*With heart-rate health issues

Table 9. Analysis of the impact of Pre existing health on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

Without Without 93.33 92.22 93.89 94.44 96.11 93.33 91.13 94.87 95.69 95.80 93.33 94.64 92.06 92.19 96.72

With With 90.52 85.34 88.79 83.62 92.24 93.67 83.87 92.41 86.75 91.76 83.78 91.30 81.08 75.76 93.55

With Without 96.50 92.00 94.50 90.00 93.83 97.73 90.18 95.76 90.67 94.38 94.09 96.91 91.96 88.46 92.67

Without With 93.49 92.45 92.71 88.80 93.75 94.25 92.19 92.54 91.44 92.65 91.87 93.04 93.10 83.46 96.43

*Without heart rate health issues

Tables 10 and 11 show the accuracy, sensitivity and specificity for the subjects having height below
5ft 5in and subjects having height above 5ft 5in for data with and without heart rate respectively. The
behaviour of the model would definitely be impacted by the height of the person as the amount of
change in IMU values would be dependent on the person’s height. For a person whose height is above
5ft 5in, which is also the average height of a person of Indian origin, there is no effect of heart rate on
the accuracy and the accuracy is completely dependent on the values derived from the IMU sensors.
For people who are lesser than 5ft 5in the accuracy drops when heart rate is used. Even otherwise
accuracies for people of height more than 5ft 5in are slightly higher than the volunteers whose height is
lesser than 5ft 5in. With progression in age, the skeletal structure of a person may change introducing
conditions such as hunchbacks which may cause a reduction in height, and hence the accuracies will
be affected. When we trained using volunteers of height greater than 5ft5in and tested with volunteers
with height less than 5ft 5in, there was a definite drop in accuracy both with and without heart rate.
Whereas when we trained with people of height less than 5ft5in and tested using volunteers of height
greater than 5ft5in, in the case of some of the ML models, there was a slight increase in accuracy with
and without heart rate. This shows that the IMU sensors produce drastically different values that
varies with the height of the person. Though we are extracting statistical parameters, the height of the
person has a huge impact on the accuracy of the model. Hence, if we use volunteers who are young
and in good physical condition and having an above average height to train the ML models and use it
on elderly who will have pre-existing health issues, weakening of the muscular structure and reduced
height, several of the ADLs may be misinterpreted as falls because the drop in accuracy here is due
to the drop in specificity rather than sensitivity. This might be acceptable because in the case of the
elderly, it is better to err on the side of caution.

Table 10. Analysis of the impact of varying heights on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

< 5.5 < 5.5 92.77 91.57 91.57 89.76 91.57 93.69 90.60 92.79 91.82 90.60 90.91 93.88 89.09 85.71 93.88

> 5.5 > 5.5 93.85 90.77 91.54 86.15 93.08 97.56 89.36 97.47 91.46 93.26 87.50 94.44 82.35 77.08 92.68

> 5.5 < 5.5 93.12 90.40 92.93 90.76 91.85 93.19 87.77 92.51 89.92 90.27 92.94 98.52 93.94 92.90 96.03

< 5.5 > 5.5 94.91 92.82 94.68 89.81 93.75 94.93 91.05 95.22 92.36 93.94 94.85 97.48 93.53 84.72 93.33

*With heart rate height
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Table 11. Analysis of the impact of varying heights on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

< 5.5 < 5.5 95.18 93.98 92.17 90.36 91.57 97.20 93.04 93.64 92.66 90.60 91.53 96.08 89.29 85.96 93.88

> 5.5 > 5.5 94.62 90.77 90.00 83.85 93.08 96.47 89.36 96.20 89.16 93.26 91.11 94.44 80.39 74.47 92.68

> 5.5 < 5.5 92.93 90.40 93.12 90.40 93.30 92.73 88.14 92.53 90.28 91.69 93.41 97.12 94.51 90.68 97.42

< 5.5 > 5.5 95.14 93.06 94.68 89.35 93.98 94.95 91.35 95.22 92.01 94.26 95.56 97.50 93.53 84.03 93.38

*Without heart-rate height

Tables 12 and 13 show the accuracy, sensitivity and specificity for the subjects having weight
in the range of 50-65 kgs, subjects having weight in the range of 65 to 80, subjects having weight in
the range of 80 to 120 Kgs with and without heart rates respectively. The impact of the weight of the
subject on accuracies is very high, with accuracies for lower weight range i.e 50-65 Kgs and accuracy
drops with an increase in weight. Also, the impact of heart rate on accuracy is visible only in the
weight ranges of 80-120 kgs. As the weight of the person will have an impact on the heart rate as
he/she performs stressful activities. Again cross-testing and training have the least impact on the
weight ranges of 50-65 Kgs. When trained on the weight range of 50-65 Kgs and tested against ranges
65-80 and 80-120, the accuracies are not severely affected. But training with other weight ranges affects
the accuracy as can be seen in the table. The drop in the accuracies in the weight range 65-80 is mainly
due to the drop in specificity rather than sensitivity. When the weight is in the range of 50-65 which
is usually below the Indian average or 80-120 which is above the Indian average, most of the ADL
activities are detected correctly except in the case of Naïve Bayes where the sensitivity is better than
specificity, but NB is more of a threshold based algorithm and its accuracies are generally very low.
Again the elderly are prone to be frail with their weight being less than the average. Hence, we can get
better accuracies irrespective of the age group used for training and testing.

Table 12. Analysis of the impact of varying weight on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

50-65 50-65 96.35 94.89 94.89 89.78 93.43 94.68 93.62 94.57 95.18 92.55 100.00 97.67 95.56 81.48 95.35

65-80 65-80 91.67 87.96 88.89 84.26 92.59 93.75 87.50 95.89 91.89 94.94 85.71 90.00 74.29 67.65 86.21

80-120 80-120 94.12 90.20 90.20 90.20 92.16 92.11 91.67 91.67 96.88 91.89 100.00 86.67 86.67 78.95 92.86

50-65 65-80 93.89 94.17 92.78 91.39 93.61 93.60 92.94 94.21 92.65 92.22 94.55 97.14 89.83 88.70 97.09

50-65 80-120 89.29 90.48 86.90 86.90 88.69 91.23 89.34 88.79 90.91 89.74 85.19 93.48 82.69 79.31 86.27

65-80 50-65 94.74 91.01 93.64 91.45 93.42 95.45 89.25 94.50 92.88 93.35 93.24 95.87 91.84 88.44 93.57

65-80 80-120 94.64 89.29 91.07 88.69 90.48 94.78 87.30 93.69 91.15 90.00 94.34 95.24 85.96 83.64 91.67

80-120 50-65 88.60 87.06 92.54 90.57 92.76 88.41 85.30 93.27 92.23 91.44 89.06 92.66 90.97 87.07 96.12

80-120 65-80 91.94 88.06 92.50 90.00 93.06 92.37 86.08 92.77 92.50 91.19 90.99 94.25 91.89 85.00 97.98

*With heart rate on weight
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Table 13. Analysis of the impact of varying weight on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

50-65 50-65 94.89 95.62 94.89 89.78 93.43 93.62 94.62 95.56 95.18 92.55 97.67 97.73 93.62 81.48 95.35

65-80 65-80 92.59 87.04 91.67 83.33 92.59 94.94 85.71 96.05 90.67 94.94 86.21 94.12 81.25 66.67 86.21

80-120 80-120 90.20 88.24 92.16 90.20 92.16 89.47 87.18 94.29 96.88 91.89 92.31 91.67 87.50 78.95 92.86

50-65 65-80 94.44 94.44 93.06 91.11 93.06 94.72 92.97 94.61 91.60 91.19 93.86 98.08 89.92 90.00 97.98

50-65 80-120 90.48 90.48 89.29 87.50 89.29 92.11 90.00 90.52 89.57 89.83 87.04 91.67 86.54 83.02 88.00

65-80 50-65 95.18 92.11 94.30 91.45 93.64 96.08 90.61 94.84 93.44 93.93 93.33 96.03 93.15 87.42 93.01

65-80 80-120 93.45 89.29 89.88 87.50 90.48 93.91 87.30 91.30 89.57 90.00 92.45 95.24 86.79 83.02 91.67

80-120 50-65 90.35 87.72 92.54 89.47 92.54 91.67 86.05 94.41 92.11 91.41 87.50 92.86 88.82 84.21 95.38

80-120 65-80 91.94 86.11 92.50 89.44 92.22 92.37 84.17 92.77 91.74 90.46 90.99 92.68 91.89 84.75 96.94

*Without heart rate on weight

6. Conclusion

Though there a multiple data sets available, and we have used them in our previous works,
we were unable to interpret the reasons for the rise or fall in accuracy. Hence we collected our own
data and analyzed it. In this paper, we have attempted to analyze the effect of various characteristics
such as age, height, weight, gender and health issues on the accuracy of the various well-known ML
algorithms. In geriatric fall detection, it is a given that the test volunteers and the actual users will
belong to different categories. While the test subjects are usually in the age range of 20-35 in most
data sets, we stretched the age range between 20-50, but the actual users would be the elderly or the
super elderly. While we did have some users who had serious existing health conditions and were on
medication and we did find a fall in accuracy when we trained using healthy volunteers and tested
the accuracy for volunteers with health issues. The loss in accuracy was primarily due to a drop in
specificity hence some of the ADLs were being incorrectly interpreted. In some cases, the use of heart
rate helped improve the accuracy in some cases the impact of heart rate caused a drop in accuracy. But
we still recommend the use of heart rate as one of the parameters as any changes in heart rate in the
elderly supported by the data from IMU sensors may be indicative of a fall.
The problem with multiple datasets is also that the demographics of the users tend to change with
countries. In countries with a good health infrastructure and where healthy living is promoted, the
ageing process is more graceful. The average height and weight also vary across countries. In India,
healthy living and exercising are new concepts, overindulgence is a norm here; hence most elderly
India suffer from various health conditions, and very few of them have access to good healthcare
services due to the cost. Falls may times go undetected, repeated falls in the elderly are also very
common in India. We need data sets that represent the Indian demographics. We have attempted to
create such a database and we have analyzed the database in detail for various user parameters such
as age, gender, health issues, height and weight.
The number of features we have is 100,208 after feature extraction, we also plan to add certain
parameters such as height and weight that have a huge impact on the accuracy as part of the features.
We were also able to identify certain users who were outliers, this could be used to clean the data
set further, we have currently retained the outliers as there may be final users who may have similar
characteristics.
We plan to run the ML algorithms on the end device built around Qualcomm Snapdragon 820c. This
means features have to be pruned and the ML algorithms compressed so that the latency in obtaining
the prediction will be much lesser than the sampling rate and timely alerts can be issued.
Understanding the impact of features and user characteristics is the first step to pruning of features
which is what we have attempted in this paper. We collected data that is specific to the local user
demographics, extracted relevant features and analysed the performance of the ML algorithms on the
collected data.
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A perfect data set would be one where the demographics are uniform and similar to the end user
demographics. While some public data sets have attempted to use the elderly to do a limited number
of ADLs, they have not been able to show a significant improvement in accuracy. Hence, we have to
proceed with skewed data sets. The application of ranking and pruning of features gains importance,
this is the next step in our work. This is required as we plan to use Dew computing IoT model.
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using smartwatches for healthcare applications. Biomedical Signal Processing and Control 2022, 71, 103242.

doi:https://doi.org/10.1016/j.bspc.2021.103242.

50. Mansoor, M.; Amin, R.; Mustafa, Z.; Sengan, S.; Aldabbas, H.; Alharbi, M.T. A machine learning approach

for non-invasive fall detection using Kinect. Multimedia Tools and Applications 2022, 81, 15491–15519.

doi:10.1007/s11042-022-12113-w.

51. Karar, M.E.; Shehata, H.I.; Reyad, O. A Survey of IoT-Based Fall Detection for Aiding Elderly Care: Sensors,

Methods, Challenges and Future Trends. Applied Sciences 2022, 12. doi:10.3390/app12073276.

52. New Galaxy Watch 5 Smartwatch | Specs | Samsung UK — samsung.com. https://www.samsung.com/

uk/watches/galaxy-watch/galaxy-watch5-44mm-sapphire-bt-sm-r910nzbaeua/. [Accessed 31-Mar-2023].

53. Vembandasamy, K.; Sasipriya, R.; Deepa, E. Heart diseases detection using Naive Bayes. IJISET - Int. J.

Innov. Sci. Eng. Tech 2015, 2.

54. Alpaydin, E. Voting over Multiple Condensed Nearest Neighbors. Artificial Intelligence Review 1997,

11, 115–132. doi:10.1023/A:1006563312922.

55. Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd edn. Wiley-Interscience; Wiley-Interscience:

Hoboken, NJ, 2000.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 May 2023                   doi:10.20944/preprints202305.0917.v1

https://doi.org/https://doi.org/10.1016/j.procs.2018.10.189
https://doi.org/https://doi.org/10.1016/j.procs.2018.04.110
https://doi.org/10.1109/TETC.2020.3027454
https://doi.org/10.1109/ICCA.2018.8444326
https://doi.org/10.1109/KSE.2018.8573328
https://doi.org/10.1109/ACCESS.2019.2906693
https://doi.org/10.1109/JSEN.2019.2898891
https://doi.org/10.3390/s19071644
https://doi.org/10.17159/2309-8988/2020/v36a2
https://doi.org/https://doi.org/10.1016/j.ins.2020.05.070
https://doi.org/10.1109/ICOIN48656.2020.9016479
https://doi.org/10.3390/s21155134
https://doi.org/10.1109/ACCESS.2021.3056441
https://doi.org/https://doi.org/10.1016/j.bspc.2021.103242
https://doi.org/10.1007/s11042-022-12113-w
https://doi.org/10.3390/app12073276
https://www.samsung.com/uk/watches/galaxy-watch/galaxy-watch5-44mm-sapphire-bt-sm-r910nzbaeua/
https://www.samsung.com/uk/watches/galaxy-watch/galaxy-watch5-44mm-sapphire-bt-sm-r910nzbaeua/
https://doi.org/10.1023/A:1006563312922
https://doi.org/10.20944/preprints202305.0917.v1


26 of 26

56. Breiman, L. Classification and Regression Trees (1st ed.); Routledge., 1984. doi:10.1201/9781315139470.

57. Liu, S.H.; Cheng, W.C. Fall detection with the support vector machine during scripted and continuous

unscripted activities. Sensors (Basel) 2012, 12, 12301–12316.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 May 2023                   doi:10.20944/preprints202305.0917.v1

https://doi.org/10.1201/9781315139470
https://doi.org/10.20944/preprints202305.0917.v1

	Introduction
	Background of Work
	Sensors
	Ambient Sensors
	Wearable Sensors

	Data-Sets

	Data Collection Methodology
	Volunteers statistics
	ADL
	Fall


	Experimental methodology
	Results and Discussion
	Overall Performance Analysis for various ML algorithms with varying data sizes

	Conclusion
	References

