Pre prints.org

Article Not peer-reviewed version

Analysis of ML Algorithm for Geriatric
Fall Detection Due to the Effects of
Various User Characteristics

Purab Nandi * , KR Anupama, Himanish Agarwal , Kishan Patel , Vedant Bang , Manan Bharat ,
Madhen Vyas Guru

Posted Date: 12 May 2023
doi: 10.20944/preprints202305.0917v1

Keywords: Machine learning; Geriartic fall detection; Dataset; K Nearest Neighbours; Naive Bayes; Logistic
Regression; Random Forest; Support Vector Machine

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/2939629
https://sciprofiles.com/profile/2956376
https://sciprofiles.com/profile/2986121

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 do0i:10.20944/preprints202305.0917.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Analysis of ML Algorithm for Geriatric Fall Detection
Due to the Effects of Various User Characteristics

Purab Nandi *4,*, K R Anupama 2>** Himanish Agarwal 3>** Kishan Patel #*# Vedant Bang 54
Manan Bharat %4 and Madhen Vyas Guru 7#

1 Department of EEE; anupkr@goa.bits-pilani.ac.in; f20200308@goa.bits-pilani.ac.in;

h20210109@goa.bits-pilani.ac.in; f20190455@goa.bits-pilani.ac.in; f20190302@goa.bits-pilani.ac.in
Correspondence: p20200056@goa.bits-pilani.ac.in

t BITS Pilani, K K Birla, Goa Campus, Goa 403726, India.

I These authors contributed equally to this work.

Abstract: Falls are extremely damaging to the elderly. The number of elderly who have experienced
falls has increased over the years, several of the elderly stay alone or in in badly maintained elderly
homes. This makes a low-cost fall detection system a necessity. There has been huge improvements
in terms of IoT systems, ML algorithms. Varied data sets have been collected across the world for fall
detection. These data sets have a very little in common among them, in terms of user demographics,
sensors used, the ADL and Fall activities Hence in this paper we present a data set that has wide
user demographics, we used various sensors — such as accelerometer, gyroscope, magnetometer and
hear rate. We used wrist worn sensors to collect data. In this paper we present a detailed analysis
of the data set we collected using common ML algorithms such as — Naive Bayes (NB), K Nearest
Neighbor (KNN), Logistic Regression (LR), Random Forest (RF) and Support Vector Machines (SVM).
We analyzed the performance of these algorithms for variations in accuracy with respect to age,
gender, height, weight and health issues and we have identified outliers by analyzing each incorrect
prediction. This paper provides the complete details of the data collection methodology, The methods
used for analysis and presents the results of analysis in complete detail.

Keywords: machine learning; geriartic fall detection; dataset; K nearest neighbours; naive bayes;
logistic regression; random forest; support vector machine

1. Introduction

According to WHO statistics [1], people are living longer, and the current population is expected
to live well into their sixties. Current statistics (1st October 2022) state the following.

1. The speed of aging is increasing;

2. In the year 2020, people aged more than sixty years outnumbered young kids under the age of
five;

3. By 2050 the population of geriatrics is expected to double from 12% to 22%. People over 60
are expected to be around 2.1 billion, and the number of people above 80 is expected to reach
426 million.

4. Two-thirds of the aging population is expected to be in the low- and middle-income range.

The process of aging causes a decrease in physical and mental capacity, other than biological
variations, that are a natural part of aging comes retirement and relocation. The elderly are generally
considered frail and dependent and hence are shunned. Many of them are forced to live in a low-income
retirement home. The changes in their health, financial and social conditions expose them to health
risks; especially they become more prone to accidents, including falls.

United Nations has declared 2021 to 2030 as the “UN Decade of healthy aging” and are supporting
the use of technology that can improve the quality of life of the elderly.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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With recent advances in healthcare systems, specifically with the integration of Internet of Things
(IoT) and medical applications, there has been a huge boost in research in medical sensors and machine
learning algorithms.

Machine learning and Deep Learning are widely investigated topics in the case of geriatric fall
detection to train the ML /DL algorithms, a large amount of data related to fall and non-fall activities
is required. Several public datasets for fall are available. The public datasets vary in terms of (a)
Sensors used (b) the number of volunteers (c) demographics such as age, gender, and existing health
conditions (d) activities performed (e) data gathering techniques. Several researchers [2] have brought
out the difficulty of comparing datasets. Therefore, it is also difficult to conclude why certain ML/DL
algorithms perform better when compared to others. Most public datasets do not provide the details
of data collection. The datasets used for fall detection have a set of daily activities (ADLs) and a set of
fall data. Public datasets do not always list the ADL activities, the type of falls, how many times these
activities were performed and how long each activity lasted.

Two types of sensing methods are associated with fall detection (a) wearable (b) environmental
sensors. The classification is based on the placement of the sensor. The sensors can be placed on the
body of the elderly or maybe placed in the environment around them. Body worn sensors usually are
accelerometers, gyroscopes, and biometric sensors. Environmental sensors include image, vibration,
and audio sensors.

There are several public datasets such as Mobi Fall, K Fall, SiS Fall, and SmartFall, that use
body worn sensors that primarily use accelerometer-based sensors. This paper concentrates on data
collection using wearable sensors specifically IMU (Inertial Measurement Unit) sensors, gyroscopes,
magnetometers. Even with body-worn sensors, there is a considerable variation in the data collected.
This is due to the positioning of the sensor on the body. The sensors maybe placed on the torso, thigh,
or waist. Based on the placement of the sensors, the data collected, and the performance of the ML
algorithms vary.

Raw sensor data is not directly fed to the ML algorithms; sensor data is processed to extract the
relevant features; in the case of wearable sensors, these are usually statistical parameters — such as
average, mean, maximum, minimum, standard deviation, kurtosis, skew, etc. Public datasets only
have the extracted features available. Some of them have only raw accelerometer values; each public
dataset produces different accuracies when ML algorithms are applied. This makes it difficult to
recommend a single ML algorithm for fall detection. Also, the accuracy of the ML algorithm cannot
be coordinated with the data points as no information regarding the volunteers and their individual
characteristics are available. Therefore, while using public datasets the following question remains to
be answered (A) What is the reason for varying accuracies in ML algorithms (B) Are the volunteered
demographics related to varying accuracies, and if so, how? (C) How much data is required to train
the algorithms to obtain good accuracies especially since DL algorithms require a large amount of data
to converge (D) Can different datasets be used for training and testing and how will the accuracies of
the ML algorithms will be affected (E) What will be the actual accuracy obtained when the system is
used on the actual target users (i.e.) the elderly. The volunteers cannot be drawn from the geriatric
populations due to the health risk involved.

The primary aim of our research work is to build an end device that will be a part of a larger IoT
system. The end device will not only collect data but also execute the ML /DL algorithms to detect falls
and alert healthcare professionals. The ML algorithms are run on the end device to eliminate network
latency and connectivity-related issues. Only long-term health monitoring and analysis will be done
on the cloud. The architecture of the proposed system is shown in Figure 1.
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Figure 1. Architectural model of wearable fall detection system.

Such a system would have end devices built around powerful SoCs. The SoC we are using is
Snapdragon Qualcomm 820c [3]. The 820c chip has been developed specifically for wearable and IoT
applications.In IoT this is termed as Dew Computing.

This device needs to be trained with a large dataset so that we can run compressed ML/DL
algorithms on it. The need for compressed algorithms is because running a full-scale algorithm will
require a large amount of memory that is not available on SoCs [4]. shows the high latency incurred
when running ML algorithms on SoCs. In order to train the system, we started with data collection,
cleaning and analysis. This paper elaborates on the process we have used for data collection, cleaning,
feature extraction and analysis of the data collected. Various ML algorithms were run on the data
collected and analysis was done on various factors and their impact on the ML models. Some of the
features considered were (a) Separate test and train data (b) age (c) gender (d) physical condition
such as height, weight, and any pore-existing health condition. This paper provides the result of the
analysis and also addresses the issue of data collection and the impact of characteristics of the data
collected on the performance of the ML algorithms.

2. Background of Work

“Inadvertently coming to rest on the ground, floor, or other lower levels, excluding intentional
change in position to rest in furniture, wall or objects”, is defined as a fall by WHO [1]. Falls can be
detected using multiple mechanisms and methods. This section gives a brief review of the research
done in terms of data collection and analysis done for fall detection in the elderly.

2.1. Sensors

The sensors that are used for fall detection can be classified into two categories (a) ambient sensors
(b) wearable. The classification is based on the position of the sensor with respect to the user.

2.1.1. Ambient Sensors

Image, Audio and Vibration sensors are the major sensors are the major sensors that fall under this
category. Fall detection using vibration sensors [5] is detailed. [6] describes a fall detection system that
uses sound sensors. Vibration sensors are usually piezo-electric based and pick up vibrations caused
by the fall of a person. The issue with using ambient sensors to detect vibration or audio samples is the
large amount of noise present that requires pre-processing of signals using appropriate filters. If the
fall detection system is part of the IoT system, then the complexity of the end device will be extremely
high. Also, there is a possibility that soft falls may go undetected. Image Sensors [7] analyse images
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captured efvery few seconds to find if any person has fallen, in most cases multiple camera frames will
be required. Multiple cameras can be placed in a single room and falls can be detected. Using multiple
cameras in every room where the elderly live, is not feasible; especially considering that most elderly
live on a restricted income.

All these sensors; vibration, acoustic and image are placed in and around the area where the
elderly live and hence, they are termed ambient sensors.

2.1.2. Wearable Sensors

Wearable sensors are primarily IMU sensors such as accelerometers, gyroscopes and
magnetometers. In some research work [8], GPS has also been used, while in the case of some,
biometric parameters such as heart rates, SpO, and skin temperature, etc were used.

In many cases, smartphones that already have an IMU sensor or smartwatches equipped with IMU
sensors are used. GPS or biometric-based sensors in these devices are generally used for validations.

IMU sensors are made up of three different sensors (a) Accelerometers (b) Gyroscopes (c)
Magnetometers.

The accelerometers will experience sudden changes in value during a fall. Based on the position
of the sensors, in some cases wrist-worn, thigh-worn or torso worn; The amount of acceleration along
the 3 axes will vary. The gyroscope measures the angular velocity along with the 3 axes. The integral
gives the angle of the person with respect to the ground. The third part of the IMU sensor, that is
the magnetometer provides the orientation with respect to the Earth’s magnetic field. In case of falls,
there will be a significant change in all these parameters. In some cases, heart rate sensors and skin
temperature sensors are used as they may supplement the IMU data. Heart rate may increase in case of
a fall, so may the skin temperature. Wearable sensors are preferred over ambient sensors since they can
move with the elderly also now IMU sensors are an integral part of smartphones and smartwatches
which makes them an ideal choice; they are already available and will cost lesser even if a new system
was to be built around them.

2.2. Data-Sets

Generally, to train and test the ML /DL algorithms large amount of data is required. There are
multiple datasets available online, but they vary in terms of the type of sensors, manufacturer of
the sensors, demographics of the train and test volunteers, the types of ADLs and Falls monitor,
Sampling rate, duration of the data collected, number of volunteers and hence the number of data
samples. The format of the data may be in terms of simple digital data from sensors, acoustic signals,
or images. In the case of some datasets, raw data is available and in the case of some datasets, the
features extracted are available. The feature extraction technique may also differ. Different datasets
give different accuracies with different ML algorithms. Very little information is provided on why there
are variations in accuracies. Does variation in gender, age, height, weight, and previous health issues
affect accuracy is something that has not been analysed. Even when we run the ML /DL algorithms it
is very difficult to analyse the ac curacies as very little information is provided about the volunteers
due to privacy issues. A table analysing various public datasets collected over the last few years is
provided in Table 1.
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Table 1. An analysis of various public datasets collected over the past few years.

Ref Year Datasetused  Sensor used Sensor Methodology  Performance
placement parameter and
details
[9] 2011 UCI dataset 3-Axes Chest, thigh Comparison Accuracy of
accelerometer, of ML classification =
2-axis algorithms for  99.8% with two
gyroscope fall detection nodes(one on
using single waist and one
node and two  on knee). Naive
nodes Bayes gaves
the worst result,
others gave
comparable
[10] 2012 Generated Accelerometer Smartphones = Comparison Support vector
from carried along of SVM, machines and
experiments with the user SMLR, regularized
Naive Bayes, logistic
decision trees, regression were
kNN, and able to identify
regularized a fall with 98%
logistic accuracy  and
regression for  classify the
fall detection  type of fall
(trips, left lateral,
slips, right
lateral) with 99%
accuracy. Naive
Bayes reported
least accuracy
[11] 2014 Generated Accelerometer 6 different Comparison k-NN classifier
from gyroscopeand positions on of k-NN, and LSM gave
experiments magnetometers the body classifier, LSM, above 99%
SVM,BDM, for sensitivity,
DTW and specificity, and
ANN accuracy
algorithms
[12] 2014 Generated Accelerometer Smartphones  Accelerometer Provides
from carried along data from statistical
experiments with theuser ~ wearable information
Sensors to regarding
generate the fall risk
alarms probability for a
for falls, subject
combined
with context
recognition
using
sensors in

an apartment,
for inferring
regular
ADLs, using
Bayesian
networks
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Ref Year Datasetused  Sensor used Sensor Methodology  Performance
placement parameter and
details
[13] 2015 Publicly Accelerometer, Smartphone Comparison Naive  Bayes
available gyroscope of Naive classifier
activity Bayes performs
recognition classifier, reasonably
dataset decision trees, well for a large
random dataset, with
forests, 79%  accuracy,
classifiers and it is fastest
based on in terms of
ensemble building
learning the model
(random taking only
committee), 5.76 seconds
and lazy Random forests
learning (IBk) are better in
algorithms terms of both
for  activity accuracy and
detection model building
carried along time, with 96.3%
with the user accuracy and
14.65 seconds
model building
time. k-Means
clustering
performs
poorly with 60%
classification
accuracy  and
582 seconds
model building
time
[14] 2016  Generated 3-Axis Not specified Comparison Decision  tree
from Accelerometer of decision ensemble was
experiments tree, decision able to detect
tree ensemble, soft falls at more
kNN, neural than 0.9 AUC
networks,
MLP
algorithms
for soft fall
detection
[15] 2016 MobiFall Accelerometer, User’s trouser Comparison k-NN,  ANN,
dataset gyroscope pocket of Naive SVM had
Bayes, the best
LSM, ANN, accuracy—results
SVM, kNN for kNN:
algorithms for ~ Accuracy =
fall detection 87.5% Sensitivity
= 90.70%
Specificity =
83.78%
[16,17] 2016 Generated 3-Axis Smartwatch Threshold-based Accuracy =
from Accelerometer analysis of 96.01%

experiments

acceleration
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Table 1. Cont.

Ref Year Datasetused  Sensor used Sensor Methodology  Performance
placement parameter and
details

[17] 2016 Generated 3-Axis Different parts  Bayesian Better accuracy
from Accelerometer  of the body framework with improved
experiments for  feature classification

selection, than
Naive-Bayes, = Naive-Bayes
C4.5 and C4.5

[18] 2017 Generated Accelerometer  Smart - Vest Kalman filter With Kalman
from gyroscope for noise filter Accuracy
experiments reduction, = 95.67%,

sliding Sensitivity =
window, 99.0% Specificity
and  Bayes =95.0%
network

classifier for

fall detection

[19] 2017 Generated 3-Axis Smartphone Combination ~ Energy saving =
from Accelerometer of 62% compared
experiments threshold-based with(ML only)

and ML-based techniques
algorithms—K-St&ensitivity =77%
Naive Bayes, (thresholding
J48 only), 82%
(ML only),
86%  (hybrid)
Specificity
= 99.8%
(thresholding
only), 98%
(ML only),
99.5% (hybrid)
Accuracy
= 88.4%
(thresholding
only), 90% (ML
only), 92.75%
(hybrid)

[20] 2017 Generated 3-Axis Waist Combination  Using a
from Accelerometer of knowledge
experiments threshold-based based algorithm:

and Sensitivity

knowledge-based= 99.79%

approach Specificity =

based on SVM  98.74% Precision

to detectafall = 99.05%

event Accuracy =
99.33%

[21] 2017 MobiFall 3-Axis Not specified =~ Comparison Multilevel fuzzy
dataset Accelerometer of multilevel min-max neural

fuzzy minmax
neural

network gave
best results:

network, Sensitivity
MLP, KNN, = 97.29%
SVM, PCA for  Specificity =
fall detection 98.70%
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Ref Year Datasetused  Sensor used Sensor Methodology  Performance
placement parameter and
details
[22] 2017 FARSEEING 3-Axis 5 locations  Sensor Sensitivity
dataset Accelerometer on the upper orientation = 99.2%
body, neck, calibration (experimental

chest, waist, algorithm to dataset)) 100%
right side, and  resolve issues (real-world fall
left side arising out of dataset)

misplaced

sensor

locations and

misaligned

sensor

orientations,

HMM

classifiers

[23,24] 2017 Generated 3-Axis Chest LWT based Accuracy=100%
from Accelerometer frequency Sensitivity =
experiments domain 100% Specificity

analysis and =100%
SVM-based

time domain
analysis

of RMS of
acceleration

[25] 2017 Generated 3-Axis Waist Back Accuracy =
from accelerometer, propagation 98.2% Precision
experiments 3-axis neural = 98.3%
gyroscope network Sensitivity=
(BPNN) for 95.1%
fall detection  Specificity=

99.4%

[26] 2017 Generated Accelerometer, Wrist Ensemble Overall accuracy
from radar, depth subspace of ensemble
experiments camera discriminant, classifier was

linear the highest, after

discriminant, fusion of radar,

kNN, SVM accelerometer,
and camera =
91.3%. This is an
improvement of
11.2% compared
to  radar-only
and 16.9%
compared  to
accelerometer-only

results
[27] 2017  Public 3-Axis Not specified =~ CNN-based Accuracy =
datasets accelerometer analysis on 92.3%
time series
accelerometer
data
converted

to images
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Table 1. Cont.

Ref Year Datasetused  Sensor used Sensor Methodology  Performance
placement parameter and
details
[28] 2017 Generated Accelerometer, Right, left, SVM, decision Highest
from gyroscope, and front tree, kNN, accuracy =
experiments proximity pockets discriminant ~ 99% for SVM
sensor  and analysis
compass
[29] 2010 Generated 3-Axis Chest, thigh Naive-Bayes,  Naive-Bayes
from accelerometer SVM, OneR, gave best results
experiments C4.5 (J48), Accuracy =
neural 100%
networks
[30] 2017 Generated Accelerometer Notapplicable ENN+ kNN  For ENN+ kNN:
from (MobiAct (where ENN  Sensitivity
experiments dataset) was applied = 95.52%
to remove Specificity =
outliers), 97.07% Precision
ANN, SVM, =91.83%
and J48
[31] 2018 Generated Triaxial Waist Decision tree Accuracy =
from gyroscope 99.52% Precision
experiments =99.3% Recall =
99.5%
[32] 2018 Cogent 3D Chest, waist Event-ML, Better precision
dataset, accelerometer, classification and F-scores
SisFall dataset 3D gyroscope- and regression with Event-ML
Cogent tree (CART), than FOSW and
dataset kNN, logistic = FNSW-based
Accelerometer, regression, approaches
gyroscope SVM
(SisFall)
dataset
[33] 2018 SisFall dataset, 3-Axis Chest/thigh, = SVM, kNN, Accuracy and
generated accelerometer  waist Naive- Bayes, sensitivity  of
from decision tree SVM were the
experiments highest (97.6%
and 98.3%,
respectively) for
both datasets.
[34] 2018 UMA Accelerometer, Wrist, waist, kNN, Without risk
Datasheet gyroscope, chest, ankle Naive-Bayes, categorization:
magnetometer SVM, ANN, 81% for decision
decision tree tree With risk
categorization:
85% for decision
tree
[35] 2018 SisFall dataset 3-Axis Not specified ~ RNN Highest
original and accelerometer accuracy
manually reported for
labelled fall  detection:
83.68% (before
manual
labelling),
98.33%  (after
manual

labelling)
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Ref Year Datasetused  Sensor used Sensor Methodology  Performance
placement parameter and
details

[36] 2018 Generated Accelerometer, Near the waist kNN Accuracy =
from gyroscope, 99.4%
experiments magnetometer

[37] 2018 Generated 3-Axis Waist Decision tree Accuracy =
from accelerometer 91.67% Precision
Experiments =93.75%

[38] 2018 SiSFall dataset 3-Axis Waist RNN with  Highest

accelerometer LSTM accuracy after
hyperparameter
Optimization
(97.16%)

[39] 2018 Generated Depth camera, Waist CNN Accuracy of fall
from accelerometer detection = 100%
experiments

[40] 2018 Generated Accelerometer, Hip SVM, random  Without
from gyroscope, forest sensor  fusion:
experiments magnetometer Accelerometer

[41] 2019 Public Accelerometer, Chest, thigh ANN, kNN, Extraction
datasets gyroscope QSVM, of new

ensemble features  from

bagged tree acceleration and

(EBT) angular velocity
improved the
accuracy of all
4 classifiers.
Accuracy of
EBT was highest
(97.7%)

[42] 2019 SisFall dataset Accelerometer, Waist kNN, SVM, Accuracy for fall

gyroscope random forest detection was
the highest for
kNN  (99.8%).
Accuracy  for
recognizing fall
activities was
the highest for
random forest
(96.82%)

[43] 2019 Public Accelerometer Not specified =~ CNN-based Highest
datasets models accuracy

for  feature reported =
extraction 99.86%

[44] 2020 SiSfall dataset Two  triaxle Wrist The XGBoost Overall accuracy
accelrometers was using XGBoost =
and gyroscope implemented  94.6%

on spyder
software
with a 75-25

train-test split
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Table 1. Cont.

Ref Year Datasetused  Sensor used Sensor Methodology  Performance
placement parameter and
details
[45] 2020 SiSFall dataset Accelerometer Carrying Features were  Accuracies
and smartphone extracted Random Forest
Gyroscope on hand or fromrawdata = 99.7% ANN
Sensors pockets and person’s = 99.2% SVM =
inbuilt with correlation 98.5% Boosted
Smartphone was decision tree =
implemented, 99.9%.
on the features
RF,ANN,
SVM and
Boosted
decision
tree was
implemented
[46] 2020 Generated All IMU  Wrist Mean and Accuracy on
from sensors and median was mean and
experimentation heart-rate calculated median
sensor from Raw ANN = 85.69%
dataset and KNN = 94.3%
ANN, KNN, XGB=285.3%NV
XGB, NB = 66% Random
and Random Forest =99.7%
Forest
[47] 2021 Combination IMU Based Wrist, waist SVM,KNN SVM (wrist
of sensor on pelvis and ANN was placement) =
experimentally ~wristwatch implemented  91.3%  (waist
Generated and placement) =
and publicly smartphones 98% KNN (Wrist
available placement) =
datset 99% (waist
placement)
= 99.8%
ANN (Wrist
placement) =
95.25%  (Waist
placement) =
92.96%
[48] 2021 UR Fall, Accelerometer, MOBIFALL Feature UR Fall dataset
MOBIFALL, magnetometer, = trouser, extraction was = 99%(RF) UP
UP Fall gyroscope, pocket  Up performed Fall dataset
ECG sensor Fall = wrist, on the raw = 99%(LR)
ankle Ur Fall dataset and MOBIFALL
= pelvis basic ML dataset =
methods like  99%(for nearly
RESVM,KNN, all mentioned
LR,BB and algorithm)
DT were

implemented
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Table 1. Cont.

Ref Year Datasetused  Sensor used Sensor Methodology  Performance
placement parameter and
details
[49] 2022 Generated Accelerometer  Wrist Data Combined
from and gyroscope augmentation  sensor accuracy
experiments sensor to solve the KNN = 74.70%
imbalance RF = 75.64%
of data set, SVM = 73.74%
classification =~ BiLSTM =
was done 97.35%
by BiLSTM
model
[50] 2022 Generated Image based, Camerabased Multiple Overall accuracy
from External images were of 95% was
experiments placement captured of obtained
the subject’s
skeletal
orientation,
Standard
deviation was
calculated
and fed into
KNN  based
classifier
[51] 2022 SisFall, IMU  based Wrist and Multiple Overall accuracy
DalLiaC, sensors Waist algorithms obtained by the
UMAFall and placement were run like classifier was
Epilepsy ANN, SVM, 925%
Decision
Trees, Naive
Bayes and
Deep learning
based

3. Data Collection Methodology

There are multiple datasets available as described in the background section. There are multiple
issues with the datasets:

e Very few public datasets available that have readings from multiple sensors. Most public datasets
only have the linear acceleration data.

¢ Very few datasets available that have wide diversity in terms of age, gender, height, weight and
health issues

. Even in datasets where there is diversity, no information is available on the ratio of gender, age,
height or weight

*  The number of volunteers are usually less. In most cases less than 20.

e  Thelist of ADLs and falls are not completely provided

¢ The details of how long each activities lasted is not available.

*  The data collection methodology is not described

e The details of the sensors used is not provided, hence using multiple datasets becomes a major
issue as they cannot be fused together.

Though attempts have been made to compare datasets, not more than three or four [2] datasets are
compared and only certain statistical parameters are analysed. Besides all these comparisons are done
based only on accelerometer data. Due to these existing issues, we have collected our own data, this
section gives the details of the volunteers diversity, the sensors and the data collection methodology.
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We also provide the details of the features extracted that are to be used by the various ML algorithms.
The datasets are available at "https://shamanx86.github.io/fall_detection_data/".

3.1. Volunteers statistics

e No of volunteers: 41

e Agerange: 18-50

e Number of female volunteers: 14.
e Weight: 50 Kg - 120 Kg.

e  Height: 4ft 11 inches — 6ft 4 inches.

Existing Health issues: High blood pressure, Diabetes, Hypertension Claustrophobia, there were
some volunteers who were prone to panic attacks, sinusitis, sinus tachycardia, thyroid, malnutrition,
hypochondria, extreme anxiety, low blood pressure, prostate, and early sign of arthritis. The data was
collected using a Samsung Galaxy Watch (Series 5) worn by all users on their left wrist. Samsung
Galaxy (Series 5) was released in August 2020.

The dimensions of the watch are as follows: 44.4 X 42.3 X 9.8 mm. The watch weighs about 33.5
grams, the processor is a dual-core 1.18 GHz Cortex A55 and the GPU on the watch is Mali-G68.The
sensors available on the watch are: Accelerometer, Gyroscope, Magnetometer and Heart-Rate. The
Heart-Rate sensor is extremely accurate and comparable to medical grade sensor [52]. IMU sensors are
already pre-calibrated for wrist-worn positions and are extremely accurate. Each volunteer was asked
to wear the watch on the left wrist while performing the following ADL and Fall activity:

3.1.1. ADL

Walking Slowly (2 min)

Walking Quickly (2 mins)

Jogging (2 min)

Jogging (2 min)

Climbing up slowly (2 mins)

Climbing down slowly (2 mins)

Climbing up normal (2 mins)

Climbing down normal (2 mins)

Slowly sitting on a chair (nil)

Rapidly sitting down on a chair (na(not applicable))
Nearly Sitting on the chair getting up (na)
Swinging Hands (2 mins)

Lying on the bed (2 min)

Lying on the back and getting up slowly (na)

Lying on the back and getting up quickly (na)
Transition from sideways to one’s back while lying down (na)

O RPN PN

T N e S =y Y
ISANRSLIN N A el e

3.1.2. Fall

Forward fall landing on the knees (30 secs on the ground)

Right fall (30 secs on the ground)

Left fall (30 secs on the ground)

Forward fall (30 secs on the ground)

Seated on the bed and falling on the ground (30 secs on the ground)
Forward fall body weight on the hand (30 secs on the ground)
Backward fall from seated position (30 secs on the ground)
Grabbing while falling (30 secs on the ground)

XN AE PN
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Table 2. Summary of the volunteer statistics.

Srno. Parameter Values and Nos

1 Gender Male =27
Female = 14

2 Age-range 20-30 years = 29
30-40 years = 6
>40 years = 6

3 Weight-range 50 Kg - 65 Kg = 21

65 Kg -80Kg = 16
80 Kg - 100 Kg = 3
100Kg-120Kg =1

4 Height Range 5ft — 5ft 5in = 23
5ft 5in - 6ft = 16
>6ft =2
5 Health Issues No. of subjects with health issues = 17

No. of subjects without health issues = 24

Health Conditions of subjects:

Sinus Tachycardia, High Blood Pressure, Overweight,
Folic acid allergy, Obese, Thyroid, Hypochondria, extreme
anxiety Low Blood Pressure, Prostrate, Sinusitis and
Genetic Diabetes

The data was collected by asking the volunteers to perform the falls within an anechoic chamber.
As the anechoic chamber is padded with a thick sponge, during the falls, the volunteers landed on the
soft material, and hence they were not injured. As a result, all falls ended up being soft falls. Using
41 volunteers about 1.9 million data points were collected. The features were then extracted from the
data. The features were statistical in nature. The statistical parameters derived were mean, standard
deviation, variance, minimum, maximum, skew and kurtosis. After feature extraction, we had 100,208
data points that were used for training and testing.

4. Experimental methodology

In order to analyse the data we collected, for efficiency in fall detection, we used five common
ML algorithms. (a) Naive Bayes [53] (b) KNN [54] (c) Logistic regression [55] (d) Random Forest [56]
(e)SVM(Suppport vector machine) [57]. To understand the variations in accuracies we used various
combinations of the user demographics. This was done to understand the effect of user parameters
such as gender, age, height, weight and health issues on the accuracies. We also analysed which of the
ADLs and Falls were incorrectly detected with respect to the user parameters. We used a combination
of user demographics to understand the behaviour of the algorithm and why there were variations
in Accuracies, Sensitivity, Specificity and False Negative rates. We used a combination of varying
user parameters for training and testing. For example, to understand the effect of gender on the test
accuracies we first ran the ML algorithms separately for male volunteers using their data for both
training and testing. We repeated the same for the female volunteers. Then we used the data of the
female volunteers for training and the male volunteers for testing and vice-versa. Many of the existing
public datasets which are used for training the ML algorithms have similar user demographics. In
most cases the volunteers are male and in the age between 20 and 30 years with no known health issues.
The actual users of the end product will be people above 60 years, both male and female with several
pre-existing health conditions. Under these circumstances, whether the fall prediction algorithms will
work accurately needs to be analysed. Hence in this paper, we have tried to analyse the behaviour
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of the algorithms with varying user demographics. The combinations that we used for testing and
training are given in Table 3.

Table 3. Train and Test Combinations.

Srno. User Demographics Range Train Test
1 Age <30 <30 (70% <30 (30% test)
30-40 Train) 30 -40
40-50 <30 40 - 50
<30 30-40
30-40 40 - 50
30-40 40 -50
40-50
2 Gender Male Female Female
Female Male Male
Male Female
Female Male
3 Health Issues With Without Without
Without With With
With Without
Without With
4 Height <5.5ft <5.5ft <5.5ft
>5.5ft >5.5ft >5.5ft
<5.5ft <5.5ft
>5.5ft >5.5ft
5 Weight 50-65 50-65 50-65
65-80 65-80 65-80
80-120 80-120 80-120
50-65 65-80
50-65 80-120
65-80 50-65
65-80 80-120
80-120 50-65
80-120 65-80

We ran the algorithms with and without the data from heart rate sensors to understand the effects
of biometric parameters during falls. In the next section, we give the complete results and the analytics.

We also analysed the behaviour of the algorithms with respect to the ideal “k” value in the case of
KNN and found out that it was equal to 9 where we achieved the maximum accuracies, also it was
“Minkowski” distance metrics that gave us the highest accuracies at lower “k” values. In the case of
Random Forest, we had to find the optimal number of decision trees which yielded the best results
which in our case was 170. The results remained the same for with, as well as without heart rate, in the
case of Random Forest with 170 decision trees.

5. Results and Discussion

5.1. Overall Performance Analysis for various ML algorithms with varying data sizes

We initially analysed the effect of varying data sizes on the performance of ML algorithms before
analysing the effect of user demographics on the performance of the algorithms. As mentioned in
earlier sections we have used the common ML models (a) Naive Bayes (b) KNN (c) Logistic Regression
(d) SVM (e) Random Forest.

The accuracy, specificity and sensitivity of various algorithms with (a) 41 users (b) 35 users (c) 30
users (d) 25 users (e) 20 users and (f) 10 users is shown in Figures 2-7.
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Figure 7. Sensitivity vs number of users (with heart rate).
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The best results among all the algorithms were obtained when heart rate was included, as can be
seen in Figures 2 and 5. The best result was obtained for 30 users for all algorithms, except for random
forest (where the best result was obtained at 10 users), with heart rate the peak accuracy was 98.5%
obtained by SVM and 96.5% without heart rate again in SVM. For all user combinations, with and
without heart rate the sensitivities were higher than the specificity. This is as per the requirement for
Fall detection. Since we are dealing with geriatrics a false positive is better than a false negative. The
main activities that were incorrectly detected were those of User-1 as the subject had an erratic heart
rate due to a medical condition known as Sinus Tachycardia. In the case of other users, very few ADL
or Fall activities failed since we had selected the 10, 20, 25, 30 and 35 users randomly out of the total 41
users. Wherever user 1 was not selected we had better results. When heart rate was ignored several of
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the ADL activities which were related to “lying on the bed” or “getting up slowly/quickly from the
bed” were incorrectly detected as falls depending purely on the IMU sensor’s values. Also “backward
falls and falls from the bed” were incorrectly detected as ADL activities for several users. When heart
rate was ignored more of User — 1 activities were incorrectly detected especially since several of the
ADLs were construed as false positives. This included “lying on the bed”, “lying on the back and
getting up slowly/quickly” and “transitioning sideways to one’s back while lying down”. This caused
a drop in accuracy from 99% to 98%. Especially due to a drop in specificity values from 0.99 to 0.98. It
can be concluded from the results that when we use the heart rate of a volunteer with severe health
conditions the accuracies obtained are better especially since there will not be a huge spike in heart
rate while performing Fall activities as against performing ADL activities. The sensitivity was higher
by almost 1.5% when heart rate was used and the specificity was high when heart rate was ignored.

Tables 4 and 5 show the accuracy, sensitivity and specificity for the various age groups “under
30”7, “30-40” and “40-50” for individual algorithms with and without heart rate. As usual, Naive Bayes
gives the lowest accuracy and SVM gives the highest accuracy. When training and testing were done
with the same age group, it can be observed from the table that the impact of accuracy is not much.
The accuracies have dropped in the case of all the algorithms as the size of the dataset would have
been reduced as we only considered volunteers under the age of 30. While the accuracies of SVM with
the whole dataset went up to 98.5%, here the highest accuracy again being produced by SVM is 95.10%
for the age group of >30, in the case of 30-40 it drops to 87.50% as the number of volunteers in this age
group was lesser. At 40-50 it was higher at 90.91%. In the case of 40-50, Random Forest and Logistic
Regression gave the highest accuracies at 93.18%. Random Forest’s Decision trees work equally well
with large as well as smaller data sets. When the simulations were run with volunteers being under 30,
heart rate had a huge impact for the higher age range which is 40-50 with Random Forest giving an
accuracy of 99.31%. But in the case of 30-40, the IMU sensors had the higher impact. Since in most
scenarios in practical life, volunteers would be in the age group of below 30 and users will be in the
range of 50 and above; The impact of heart-rate is very significant. When we analysed which of the
users were causing a fall in accuracy, they were primarily users in the age range of 30-40 but though
they were physically fit, they had pre-existing health conditions and were on medications. Primarily
user 30 with the pre-existing prostate condition and user 35 with a pre-existing diabetic condition.

Tables 6 and 7 show the accuracy, sensitivity and specificity of the male and female participants
for individual ML algorithms with and without heart rate. From the table, it can be seen that we
get better accuracies with heart rate in the case of male but in the case of female the accuracies fall
with heart rate. In case of females, the accuracies seems to increase or drop erratically because the
number of female were only little more than 1/3rd of the entire set of volunteers. When trained with
the Male data set and tested with the Female, we got better results both in case of With and Without
heart rate, because the training was done with a larger population than the number of test subjects.
This shows that the size of the data set has a huge impact while the gender does not have a large
impact in accuracy. So its very important to train the models with large datasets with the gender being
insignificant. The train set must be larger than the test set.

Table 4. Analysis of the impact of age on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM  KNN LR NV  RF SVM  KNN LR NV  RF SVM  KNN LR NV  RF
<30 <30 9460 9215 9264 8676 9215 93.38 8951 9318 91.80 9124 97.06 9836 91.67 79.27 94.03
<30 30-40 9250 90.00 89.38 87.50 90.63 92.37 8934 90.60 89.66 90.76 92.86 92.11 86.05 81.82 90.24
<30  40-50 96.53 9514 9583 93.75 9931 9596 9320 9592 9394 9897 9778 100 9565 93.33 100
30-40 30-40 8542 8125 8333 7292 8750 8421 7857 8378 8571 84.62 90.00 100  81.82 55 100
30-40 40-50 90.28 89.58 90.97 88.89 9583 91.84 8649 91.92 9762 9412 8696 100 88.89 76.67 100

40-50 40-50 93.18 88.64 93.18 84.09 9091 90.32 84.85 93.10 92.00 92.86 100 100 93.33 73.68 87.50
* With Heartrate
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Table 5. Analysis of the impact of age on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM  KNN LR NV  RF SVM  KNN LR NV  RF SVM  KNN LR NV  RF
<30 <30 9510 91.67 93.14 8725 9216 92.81 89.44 9323 9328 90.07 100 96.77 9296 7882 96.83
<30 3040 9250 90.52 89.38 87.50 90.63 92.37 90.08 90.60 89.66 89.43 92.86 9231 86.05 81.82 94.60
<30 40-50 95.83 95.14 9514 9444 9931 9592 9320 9495 96.81 9897 9565 100 9556 90 100
30-40 30-40 8750 8125 79.17 7292 8750 86.49 7857 8286 8571 84.62 9091 100  69.23 55 100
30-40 40-50 90.97 88.89 90.28 88.19 9375 91.09 8571 91.84 9877 9223 9070 100  86.96 74.60 97.56

40-50 40-50 9091 86.36 93.18 84.09 93.18 90 8235 9310 88.89 93.10 9286 100 9333 7647 93.33
* Without Heartrate

Table 6. Analysis of the impact of gender on accuracies.

Train  Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM  KNN LR NV  RF SVM  KNN LR NV  RF SVM  KNN LR NV  RF
Female Female 93.07 86.14 8812 84.16 93.07 9692 9219 9516 94.83 9552 86.11 75.68 7692 69.77 8824
Male Male 9333 9282 9590 89.23 9282 9313 90.00 9470 91.34 91.79 93.75 100.00 98.41 8529 95.08
Male  Female 9435 9048 9435 89.58 93.45 9437 8840 9476 89.21 93.16 9429 9651 9346 90.53 94.12

Female Male 91.82 9259 9290 91.05 93.83 90.58 91.20 9347 9329 9279 9503 96.15 91.67 86.57 96.32
*With heart rate gender

Table 7. Analysis of the impact of gender on accuracies.

Train  Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV  RF SVM KNN LR NV  RF
Female Female 95.04 89.10 89.10 85.14 93.06 9846 93.84 9523 9491 9552 88.88 80.55 7894 7142 8823
Male Male 9230 9282 9538 8871 92.82 93.02 9057 9465 9126 9242 9090 9824 96.87 84.05 93.65
Male  Female 93.75 9226 94.05 8929 9256 9394 9125 9474 89.17 9234 93.33 9479 9259 89.58 93.07

Female Male 9244 9228 9244 9043 9414 9083 90.81 93.03 9343 9320 96.56 96.11 91.13 84.68 96.35
*Without heart rate gender

Tables 8 and 9 show the accuracy, sensitivity and specificity for subjects with pre-existing health
conditions and subjects who did not have any health conditions were used as participants. Table 8
shows the result with heart rate whereas Table 9 shows the result without heart rate.

Of the 41 volunteers, 12 of them had pre-existing health conditions that varied from high blood
pressure, diabetes, claustrophobia, vertigo, sinus trachardia, prostate and obesity, etc. To study the
effect of health conditions on the prediction we ran the algorithm separately for the volunteers with
health issues and without health issues. Performance of the algorithms was better when heart rate was
associated with people who did not have any pre-existing health issues. When we tried training the
algorithm using people with health issues and testing them with volunteers who did not have any
health issues and vice-versa, the heart rate had no such impact in the first case however in the second
case there was a slight improvement in accuracies as can be seen in Tables 8 and 9.

Based on this we can come to a conclusion that the presence of health issues does affect the
accuracy of fall detection and since erratic heart rate is usually associated with health issues, there
is more possibility of errors when heart rate is used as one of the features to detect falls. This will
prove to be a major hurdle as we move forward in our research since there are very few elderly who
do not have any pre-existing health conditions, in fact in our 40-50 age group only one volunteer had
no health issue or was not under any form of medication.
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Table 8. Analysis of the impact of Pre-existing health on accuracies.

Train  Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF
Without Without 96.11 93.33 93.89 9222 9556 9580 93.33 94.12 9554 95.00 96.72 93.33 9344 86.76 96.67
With ~ With 91.38 83.62 90.52 8448 91.38 93.75 8280 93.67 8690 91.67 86.11 86.96 8378 78.13 90.63
With Without 95.00 91.50 94.17 90.83 94.00 9512 89.21 95.06 91.17 9417 9474 98.06 9231 90.06 93.62

Without With 9427 9219 92.71 89.06 9453 9432 91.85 9254 91.80 93.04 94.17 9298 93.10 83.59 98.20
*With heart-rate health issues

Table 9. Analysis of the impact of Pre existing health on accuracies.

Train  Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF
Without Without 93.33 9222 93.89 9444 96.11 93.33 91.13 94.87 95.69 9580 93.33 94.64 9206 9219 96.72
With  With 90.52 8534 8879 83.62 9224 93.67 83.87 9241 8675 9176 8378 9130 81.08 7576 93.55
With ~ Without 96.50 92.00 9450 90.00 93.83 97.73 90.18 9576 90.67 94.38 94.09 9691 9196 8846 92.67

Without With 9349 9245 9271 88.80 93.75 9425 9219 9254 91.44 9265 91.87 93.04 93.10 8346 96.43
*Without heart rate health issues

Tables 10 and 11 show the accuracy, sensitivity and specificity for the subjects having height below
5ft 5in and subjects having height above 5ft 5in for data with and without heart rate respectively. The
behaviour of the model would definitely be impacted by the height of the person as the amount of
change in IMU values would be dependent on the person’s height. For a person whose height is above
5ft 5in, which is also the average height of a person of Indian origin, there is no effect of heart rate on
the accuracy and the accuracy is completely dependent on the values derived from the IMU sensors.
For people who are lesser than 5ft 5in the accuracy drops when heart rate is used. Even otherwise
accuracies for people of height more than 5ft 5in are slightly higher than the volunteers whose height is
lesser than 5ft 5in. With progression in age, the skeletal structure of a person may change introducing
conditions such as hunchbacks which may cause a reduction in height, and hence the accuracies will
be affected. When we trained using volunteers of height greater than 5{t5in and tested with volunteers
with height less than 5ft 5in, there was a definite drop in accuracy both with and without heart rate.
Whereas when we trained with people of height less than 5ft5in and tested using volunteers of height
greater than 5ft5in, in the case of some of the ML models, there was a slight increase in accuracy with
and without heart rate. This shows that the IMU sensors produce drastically different values that
varies with the height of the person. Though we are extracting statistical parameters, the height of the
person has a huge impact on the accuracy of the model. Hence, if we use volunteers who are young
and in good physical condition and having an above average height to train the ML models and use it
on elderly who will have pre-existing health issues, weakening of the muscular structure and reduced
height, several of the ADLs may be misinterpreted as falls because the drop in accuracy here is due
to the drop in specificity rather than sensitivity. This might be acceptable because in the case of the
elderly, it is better to err on the side of caution.

Table 10. Analysis of the impact of varying heights on accuracies.

Train  Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF
<55 <55 92.77 9157 9157 89.76 9157 93.69 90.60 92.79 91.82 90.60 90.91 93.88 89.09 8571 93.88
>55 >55 93.85 90.77 9154 86.15 93.08 97.56 89.36 9747 9146 9326 8750 9444 8235 77.08 92.68
>55 <55 9312 90.40 9293 90.76 91.85 93.19 87.77 9251 89.92 90.27 9294 9852 9394 9290 96.03

<55 >55 9491 9282 94.68 89.81 93.75 9493 91.05 9522 9236 9394 9485 9748 9353 84.72 93.33
*With heart rate height
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Table 11. Analysis of the impact of varying heights on accuracies.

Train  Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF
<55 <55 9518 9398 92.17 90.36 91.57 9720 93.04 93.64 92.66 90.60 91.53 96.08 89.29 8596 93.88
>55 >55 94.62 90.77 90.00 83.85 93.08 96.47 89.36 9620 89.16 9326 91.11 94.44 8039 7447 92.68
>55 <55 9293 90.40 93.12 9040 9330 9273 88.14 9253 90.28 91.69 93.41 97.12 9451 90.68 97.42

<55 >55 95.14 93.06 94.68 89.35 93.98 9495 91.35 9522 9201 9426 9556 97.50 93.53 84.03 93.38
*Without heart-rate height

Tables 12 and 13 show the accuracy, sensitivity and specificity for the subjects having weight
in the range of 50-65 kgs, subjects having weight in the range of 65 to 80, subjects having weight in
the range of 80 to 120 Kgs with and without heart rates respectively. The impact of the weight of the
subject on accuracies is very high, with accuracies for lower weight range i.e 50-65 Kgs and accuracy
drops with an increase in weight. Also, the impact of heart rate on accuracy is visible only in the
weight ranges of 80-120 kgs. As the weight of the person will have an impact on the heart rate as
he/she performs stressful activities. Again cross-testing and training have the least impact on the
weight ranges of 50-65 Kgs. When trained on the weight range of 50-65 Kgs and tested against ranges
65-80 and 80-120, the accuracies are not severely affected. But training with other weight ranges affects
the accuracy as can be seen in the table. The drop in the accuracies in the weight range 65-80 is mainly
due to the drop in specificity rather than sensitivity. When the weight is in the range of 50-65 which
is usually below the Indian average or 80-120 which is above the Indian average, most of the ADL
activities are detected correctly except in the case of Naive Bayes where the sensitivity is better than
specificity, but NB is more of a threshold based algorithm and its accuracies are generally very low.
Again the elderly are prone to be frail with their weight being less than the average. Hence, we can get
better accuracies irrespective of the age group used for training and testing.

Table 12. Analysis of the impact of varying weight on accuracies.

Train  Test Accuracy (%) Sensitivity (%) Specificity (%)
SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

50-65 50-65 96.35 94.89 94.89 89.78 93.43 94.68 93.62 9457 9518 9255 100.00 97.67 9556 81.48 95.35
65-80  65-80  91.67 8796 88.89 84.26 9259 9375 8750 9589 91.89 9494 8571 90.00 7429 67.65 86.21
80-120 80-120 94.12 9020 90.20 90.20 92.16 92.11 91.67 91.67 96.88 91.89 100.00 86.67 86.67 78.95 92.86
50-65  65-80  93.89 9417 9278 91.39 93.61 93.60 9294 9421 92.65 9222 9455 97.14 89.83 8870 97.09
50-65 80-120 89.29 9048 86.90 86.90 88.69 91.23 89.34 8879 9091 89.74 8519 9348 82.69 7931 86.27
65-80  50-65 9474 91.01 93.64 9145 9342 9545 8925 9450 92.88 93.35 9324 9587 91.84 8844 93.57
65-80 80-120 94.64 89.29 91.07 88.69 9048 9478 8730 93.69 91.15 90.00 9434 9524 8596 83.64 91.67
80-120 50-65  88.60 87.06 92.54 90.57 92.76 8841 8530 9327 9223 9144 89.06 9266 90.97 87.07 96.12

80-120  65-80 91.94 88.06 9250 90.00 93.06 9237 86.08 9277 9250 91.19 90.99 9425 91.89 85.00 97.98
*With heart rate on weight
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Table 13. Analysis of the impact of varying weight on accuracies.

Train  Test Accuracy (%) Sensitivity (%) Specificity (%)
SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

50-65 50-65 94.89 95.62 94.89 89.78 93.43 93.62 94.62 9556 9518 9255 97.67 9773 93.62 8148 95.35
65-80  65-80 9259 87.04 91.67 83.33 9259 9494 8571 96.05 90.67 9494 8621 9412 8125 66.67 86.21
80-120 80-120 90.20 8824 9216 90.20 92.16 8947 87.18 9429 96.88 91.89 9231 91.67 8750 7895 92.86
50-65  65-80  94.44 9444 93.06 91.11 93.06 9472 9297 9461 91.60 91.19 93.86 98.08 89.92 90.00 97.98
50-65 80-120 9048 9048 89.29 8750 89.29 9211 90.00 90.52 89.57 89.83 87.04 91.67 86.54 83.02 88.00
65-80  50-65 9518 9211 9430 9145 93.64 96.08 90.61 9484 9344 9393 9333 96.03 93.15 87.42 93.01
65-80 80-120 9345 89.29 89.88 87.50 90.48 9391 8730 91.30 89.57 90.00 92.45 9524 86.79 83.02 91.67
80-120 50-65 9035 87.72 9254 8947 9254 91.67 86.05 9441 9211 9141 8750 9286 88.82 8421 95.38

80-120  65-80 9194 86.11 9250 89.44 9222 9237 84.17 9277 91.74 90.46 9099 92.68 91.89 8475 96.94
*Without heart rate on weight

6. Conclusion

Though there a multiple data sets available, and we have used them in our previous works,
we were unable to interpret the reasons for the rise or fall in accuracy. Hence we collected our own
data and analyzed it. In this paper, we have attempted to analyze the effect of various characteristics
such as age, height, weight, gender and health issues on the accuracy of the various well-known ML
algorithms. In geriatric fall detection, it is a given that the test volunteers and the actual users will
belong to different categories. While the test subjects are usually in the age range of 20-35 in most
data sets, we stretched the age range between 20-50, but the actual users would be the elderly or the
super elderly. While we did have some users who had serious existing health conditions and were on
medication and we did find a fall in accuracy when we trained using healthy volunteers and tested
the accuracy for volunteers with health issues. The loss in accuracy was primarily due to a drop in
specificity hence some of the ADLs were being incorrectly interpreted. In some cases, the use of heart
rate helped improve the accuracy in some cases the impact of heart rate caused a drop in accuracy. But
we still recommend the use of heart rate as one of the parameters as any changes in heart rate in the
elderly supported by the data from IMU sensors may be indicative of a fall.

The problem with multiple datasets is also that the demographics of the users tend to change with
countries. In countries with a good health infrastructure and where healthy living is promoted, the
ageing process is more graceful. The average height and weight also vary across countries. In India,
healthy living and exercising are new concepts, overindulgence is a norm here; hence most elderly
India suffer from various health conditions, and very few of them have access to good healthcare
services due to the cost. Falls may times go undetected, repeated falls in the elderly are also very
common in India. We need data sets that represent the Indian demographics. We have attempted to
create such a database and we have analyzed the database in detail for various user parameters such
as age, gender, health issues, height and weight.

The number of features we have is 100,208 after feature extraction, we also plan to add certain
parameters such as height and weight that have a huge impact on the accuracy as part of the features.
We were also able to identify certain users who were outliers, this could be used to clean the data
set further, we have currently retained the outliers as there may be final users who may have similar
characteristics.

We plan to run the ML algorithms on the end device built around Qualcomm Snapdragon 820c. This
means features have to be pruned and the ML algorithms compressed so that the latency in obtaining
the prediction will be much lesser than the sampling rate and timely alerts can be issued.
Understanding the impact of features and user characteristics is the first step to pruning of features
which is what we have attempted in this paper. We collected data that is specific to the local user
demographics, extracted relevant features and analysed the performance of the ML algorithms on the
collected data.
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A perfect data set would be one where the demographics are uniform and similar to the end user
demographics. While some public data sets have attempted to use the elderly to do a limited number
of ADLs, they have not been able to show a significant improvement in accuracy. Hence, we have to
proceed with skewed data sets. The application of ranking and pruning of features gains importance,
this is the next step in our work. This is required as we plan to use Dew computing IoT model.
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