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Abstract: Biogeochemical models estimate soil organic carbon (SOC) sequestration, 

crop growth, and yield. The DeNitrification and DeComposition (DNDC) model was used 

to simulate soil SOC dynamics and harvested C-biomass in rice-wheat rotation under or-

ganic/inorganic fertilizations with conventional tillage (CT) and reduced tillage (RT). Be-

fore calibration, DNDC under-predicted harvestable grain C-biomass of rice by 29.22% to 

42.14% and over-simulated grain C-biomass of wheat by 55.01% with equal amounts of 

NPK and animal manure applied under CT. However, after calibration by adjusting de-

fault values of soil/crop parameters, DNDC simulated harvestable grain C-biomass of 

both crops very close to observed values (only -2.81% to -6.17% less). DNDC also pre-

dicted effects of nutrient management practices on grain C-biomass of rice/wheat under 

CT/RT using d-index (0.76 to 0.96) and the calculated root mean squared error (RMSE of 

165.36 to 494.18 kg C ha-1). DNDC simulated SOC trends for rice-wheat using measured 

values of several statistical indices. Regression analysis between modeled and observed 

SOC dynamics was significant with R2 ranging from 0.35 to 0.46 (p < 0.01), and intercept 

ranging from 0.30 to 1.34 (p < 0.65). DNDC demonstrated that combined inorganic and 

organic fertilization may result in higher C-biomass and more SOC sequestration in rice-

wheat systems. 

 

Key words: biogeochemical models; DNDC model; inorganic fertilizers; soil organic car-

bon  

1. Introduction 

In Pakistan, the farming community has a single goal which is to harvest maximum 

crop yields in order to feed an increasing population. To achieve this goal, nitrogen ferti-

lizers are intensively applied to increase the crop yields [1], resulting in severe environ-

mental problems [2]. Environmental degradation is associated with serious threats of cli-

mate change and climate variability, because fertilized croplands act as major sources or 

sinks of greenhouse gases (GHGs) such as carbon dioxide (CO2), nitrous oxide (N2O), and 

methane (CH4). Furthermore, agricultural fields are also responsible for key nitrogen (N) 

pollutants such as ammonia (NH3), nitric oxide (NO), and nitrate (NO3-2) that can contam-

inate watersheds adjacent to these crop fields [3]. In addition to N-fertilization, other crop 

production practices such as tillage, irrigation, and crop residue management can signifi-
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cantly influence greenhouse gas (GHG) fluxes and hydrological N losses. For an agricul-

tural system, the net CO2 efflux from soil can be conceptualized as an opposite change in 

soil organic carbon (SOC) where there is a negative change in SOC (-∆SOC). This C frac-

tion is resistant to microbial decomposition and hence could remain in a stable form in the 

soil for a period of time greater than a decade. This C fraction is referred as a potential 

source of atmospheric CO2 at -∆SOC and sink when ∆SOC is positive. The role of SOC as 

a sink or source is controlled by temperature and precipitation [4].  

SOC is a key factor in controlling soil productivity, soil water holding potential, nu-

trient retainability, and is an indicator of land degradation [5]. The improvement in SOC 

is very essential for Pakistani soils, as these soils have intrinsically low levels of organic 

matter (OM). Crop management strategies, which lead a significant increase in SOC, can 

be promoted to offset CO2 efflux from soil. It is worth-mentioning that carbon sequestra-

tion in agricultural lands can play a pivotal role in reducing CO2 emissions, mitigating 

global warming, and improving the soil’s basic characteristics such as biological, physical, 

and chemical properties [6].  

The long-term sustainability in agriculture depends on the ability to adopt appropri-

ate farming strategies that may slow or reverse the detrimental impacts of intensive tillage 

on physical and chemical proprieties of the soil [7]. Furthermore, the decline in crop 

productivity has been linked with losses of soil organic matter, nutrients, soil aggregates, 

and stability of soil particles [8]. Among management practices, sole use of mineral nutri-

ents [9] has been considered the major soil organic carbon (SOC) reducing factor in rainfed 

agriculture, which have resulted in the decline of soil fertility [8] and productivity of ag-

ricultural systems. Intensive tillage and inversion of the soil profile promotes loses of SOC 

via breakdown of crop residues [10]. Animal manure and crop residue management 

[11,12] have been proposed as the most suitable practices to improve soil health by en-

hancing SOC density and infiltration capacity, decreasing soil bulk density, as well as pro-

moting the stability of soil aggregates and SOC [10].  

Agricultural systems have a complex nature as they involve the interaction among 

crops, soil, the atmosphere, and management practices. Understanding these interactions 

is not an easy task, however, dynamic models are effective tools to integrate the compo-

nents and processes of whole systems for easily understanding. These models can also be 

applied to understanding the mechanisms and necessary approaches to predict crop yield, 

as well as contribute to agricultural policy formulation [13]. Several researchers [14–17] 

have published their work to highlight the importance of biogeochemical models in sim-

ulating SOC dynamics in response to different management strategies. These process-

based models include Roth-C, CENTURY, LPJ-DGVM, GEFSOC, AMG, and CEVSA 

which have been used to examine the potential effects of management practices within 

agricultural systems [18]. But these models are only good at predicting soil processes. 

The DeNitrification and DeComposition (DNDC) model is a process-based model 

which has the potential to simulate carbon (C) and nitrogen (N) cycling, including trace 

gas emissions, global warming potential (GWP) of major greenhouse gases (CO2, CH4 and 

N2O), soil carbon sequestration, crop growth, water use efficiency, and N leaching in 

agroecosystems [19]. The DNDC model also has the capability to simulate soils, crop and 

environmental processes, and can integrate a multitude of factors to simulate at both a 

site-scale as well as at a regional level [20–22]. Additionally, the DNDC model can predict 

C/N balance, C sequestration potential of soils, and GWP of GHGs emission at regional or 

national scales [19,23].  

To the best of our knowledge, there is still no study has been conducted to simulate 

SOC dynamics and crop production in response to organic and inorganic fertilization us-

ing both conventional and reduced tillage practices in a rice-wheat system in Pakistan. 

This study was planned with following objectives: (1) to capture trends in harvestable C-

biomass of rice and wheat using the DNDC model under different organo-mineral fertili-

zations and tillage systems, and (2) to model the changes in SOC dynamics under these 

different organo-mineral fertilizations and tillage systems in soils used for rice-wheat pro-

duction.  
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2. Materials and Methods 

2.1. Experimental Description 

A two-year field study was carried out at the agronomic research station of the Uni-

versity of Agriculture in Faisalabad, Pakistan to study the effects of organic and mineral 

fertilization on soil organic carbon sequestration and harvestable C-biomass in a rice-

wheat rotation. Detailed information about the experimental setup, crop managements, 

measurement methods, and soil analysis are available in Shaukat et al. [24]. Tillage sys-

tems during the rice season and the wheat season were the: (1) conventional tillage (CT) 

treatment (two cultivations with a tractor-drawn cultivator along with one rotavator pass 

followed by planking for rice, and three cultivations along with one rotavator pass fol-

lowed by planking for wheat) and the (2) reduced tillage (RT) treatment (one cultivation 

along with one rotavator for both crops). The fertilization management treatments were 

as follows: (1) control (T1); (2) treatment 2 (T2, NPK) which had recommended doses of 

mineral N, P and K applied; (3) treatment 3 (T3) with animal manure (M; 20 Mg ha-1) 

applied at area farmers’ recommended dose; (4) treatment 4 (T4) with 100% of crop resi-

due incorporated that left over from the previous crop(s); (5) treatment 5 (T5; NPKM5/5) 

with 50% NPK and 50% manure (10 Mg ha-1); (6) treatment 6 (T6; NPKS5/5) with 50% NPK 

and 50% crop residue; (7) treatment 7 (T7, 0.25NPKM + 0.5S) which had 25% NPK, 25% 

manure (5 Mg ha-1), and 50% crop residue; (8) treatment 8 (T8, 0.25NPKS + 0.5M) with 25% 

NPK, 25% crop residue, and 50% manure (10 Mg ha-1). 

 

2.2. DNDC Model Setup 

The DNDC model (version 9.5 downloaded February 2022 from 

http://www.dndc.sr.unh.edu/) [25] was calibrated to capture the soil organic carbon dy-

namics as a function of weather, soil, crop growth, and management inputs. DNDC is a 

good tool to simulate C and N cycling in agroecosystems because it has both physio-chem-

ical and biochemical components [25,26]. The conceptual framework and flowchart of the 

DNDC model are summarized in Figure 1.  

There are a number of ecological drivers such as climate, soil, vegetation, and human 

activities which affect the physio-chemical components of agricultural systems (e.g., soil 

climate, crop growth, and decomposition rate). These physio-chemical components 

within DNDC are linked with soil environmental attributes including, soil temperature, 

soil moisture, soil pH, redox potential, and available substrates in the form of ammonium 

ion (NH4+), nitrate ion (NO3-) and dissolved organic carbon. The biochemical components 

of DNDC include nitrification, fermentation, and denitrification which predict N and C 

transformation that are mediated by soil microbes and are governed by the aforemen-

tioned soil environmental factors [27]. These sub-modules in DNDC control the prediction 

of CH4, NH3, N2O, dinitrogen (N2) and CO2 emissions from soil-plant systems to the at-

mosphere. The soil organic carbon patterns are governed by soil environmental variables-

(e.g., soil moisture and temperature). The later variables are linked with ecological drivers 

(e.g., soil characteristics, climate, vegetation and management activities). 
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Figure 1. Conceptual framework of DNDC model and its components [28]. 

 

 

2.2.1. Input Dataset for DNDC  

To gather necessary data to run the DNDC model, a two-year study was executed, 

and measurements on crop growth, harvested C-biomass and soil organic carbon (SOC) 

were made and were applied to calibrate and validate DNDC model. DNDC’s simulations 

were carried out using daily climate data (e.g., maximum temperature (Tmax), minimum 

temperature (Tmin), rainfall, and incident solar energy), edaphic parameters (soil organic 
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C, bulk density, soil texture, clay fraction, pH, field capacity, etc.), as well as agronomic 

management practices employed at the study site. The DNDC model was run to estimate 

SOC dynamics, crop growth processes (e.g., leaf area index), leaf plus stem biomass, and 

harvested grain biomass for each crop.  

 

2.3. DNDC Parameterization  

In terms of crop parameters for the wheat crop, the default values from DNDC’s crop 

library were modified for spring wheat (Table 1). However, crop parameters for rice were 

adjusted with the measurements recorded at the experimental site under the conventional 

tillage (CT) NPKM 5/5 treatment. DNDC was calibrated with this best performing treat-

ment for both wheat and rice.  

 

Table 1. Crop parameters for rice and wheat used in crop library of the DNDC model [25]. 

Parameters 

Rice Wheat 

Default 

value  

Modified 

value  

Default  

value  

Modified 

value  

Max. grain production  8443.95 4602 7800 5492.34 

Grain fraction  0.41 0.31 0.4 0.40 

Leaf fraction 0.23 0.30 0.22 0.27 

Stem fraction 0.24 0.31 0.22 0.27 

C/N ratio for grain 45.0 45.0 50.0 37.0 

C/N ratio for leaf 85.0 65.0 80.0 66.0 

C/N ratio for stem 85.0 65.0 80.0 69.0 

C/N ratio for root 85.0 30.0 80.0 39.0 

N fixation index  1.05 1.19 1.0 1.39 

Water requirement  508 430 300 300 

Optimum temperature (°C) 25.0 25.0 22.0 18.0 

Total Degree Days (°C-days) 2000 2300 1500 1500 

 

 

A spin-up period of 10 years was established in DNDC prior to the main experi-

mental study in order to stabilize the partitioning of the carbon (C) and nitrogen (N) pools, 

which was used for previously reported studies [22,29]. First, the DNDC model was run 

with measured soil parameters (e.g., SOC, clay fraction, pH, bulk density, field capacity, 

and wilting point) and crop parameters (e.g., biomass and its fraction, total degree days) 

under each treatment. The calibration of DNDC was done under the conventional tillage 

(CT) NPKM 5/5 treatment by changing the values of biomass C/N ratio, total degree days 

(°C-days), N fixation index (plant N / N from soil), water demand (g H2O / g DM), and 

optimum temperature (°C; Table 2).  

 

Table 2: Soil parameters tested in DNDC for the current study. 
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Value unit  

Soil parameter  Initial setup Modified setup 

Land-use type Upland crop field Rice paddy field 

Soil texture Silt loam Silt loam 

Soil organic carbon 0.03 0.003 

Bulk density 1.04 cm-3 1.51 cm-3 

Soil pH  8.23 7.1 

Field capacity 0.4 0.43 

Wilting point 0.2 0.17 

Clay fraction 0.14 0.42 

Hydrological conductivity 0.0259 mh-1 0.0259 

Drainage efficiency (0-1) 1 0.85 

   
    

 

2.4 Model Evaluation Indices  

Six statistical indices including mean percent difference (MPD), root mean square 

error (RMSE), normalized RMSE (nRMSE), mean absolute error (MAE), index of agree-

ment (d), and modelling efficiency (ME) were used for both model calibration and evalu-

ation as well as during model validation. The significance of each index has been docu-

mented by Yang et al. 2014 [30] and Li et al. 1997 [20]. Each index assesses only an aspect 

of the performance of the model. Applying each of the six indices would be useful to 

quantify the performances of model simulations. The six statistical indices were computed 

by using the following equations:  

MPD =  [∑ [
|Oi − Pi|

Oi
]

n

i=1

× 100] /n                                                                                        (1) 

RMSE =  √
∑  n

i=1 (Pi −Oi)2

n
                                                                                                           (2)    

nRMSE =  
RMSE

O̅|
 × 100                                                                                                          (3) 

MAE =  
1

 n
× ∑  |Oi − Pi|                                                                                                     (4)n

i=1                         

d = 1 −
∑  (Pi − Oi )2n

i=1

∑ ( n
i=1 |Pi −O̅|+ |Oi  − O̅|)2                                                                                                   (5) 

ME = 1 −
∑  (Pi− Oi)2n

i=1

∑  (n
i=1 Oi− O̅)2                                                                                                               (6) 

where Pi is predicted value, Oi is observed value, n is number of observed values, and Oi̅ 

is the mean of observed values. 

3. Results 

3.1. Model Calibration  
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Before calibration, DNDC performance was tested simulating harvested C-biomass 

of rice and wheat under the conventional tillage (CT) NPKM5/5 treatment with default 

values of soil and crop parameters. Under this treatment, DNDC predicted the harvesta-

ble straw C-biomass of wheat with percent difference (PD) of -3.31% (3144.8 kg ha-1 against 

3043.75 kg ha-1 which was observed). However, DNDC over-simulated the harvestable 

grain C-biomass of wheat with PD of -55.01%. In case of rice, DNDC under predicted both 

straw and grain yields (e.g., PD ranged from 29.22 to 42.14; Table 3). The DNDC model 

was calibrated using a parameters adjustment approach. After calibration, DNDC simu-

lated the harvestable straw and grain C-biomasses of wheat closely compared to observed 

values where PD ranged from -2.81% to -6.17 %. Similarly, DNDC also closely predicted 

the above-ground biomass of rice where percent different ranged from -6.03 to 19.44% 

(Table 3).  

 

Table 3: Simulated harvestable C-biomass of rice and wheat before and after DNDC’s calibration with percent 

difference (PD, %) between observed and modeled. 

Crop 
 

Leaf + stem C-biomass (kg ha-1)  Grain C-biomass (kg ha-1) 

Observed  Modeled % Difference  Observed Modeled % Difference 

Before calibration 

Wheat 3043.75 3144.8 -3.31 
 

2220.37 3441.84 -55.01 

Rice 4012.29 2321.47 42.14 
 

1894.51 1340.76 29.22 

After calibration 

Wheat 3043.75 3129.43 -2.81 
 

2220.37 2357.55 -6.17 

Rice 4012.29 3232.17 19.44 
 

1894.51 2008.76 -6.03 
  

DNDC captured the periodic changes in leaf expansion in term of leaf area index 

(LAI) for both wheat and rice during both years of the experiment. The calibrated treat-

ment’s predicted and observed values of LAI were very close over the growth period of 

wheat (Figure 2). Similarly, DNDC also predicted LAI of rice very close to the observed 

values of LAI over two growing seasons using the calibrated treatment (Figure 3). 
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Figure 2: Trends in predicted and observed LAI during the (a) first and the (b) second 

growing seasons of wheat under the calibrated treatment using conventional tillage 

(NPKM 5/5). 
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Figure 3: Trends in predicted and observed LAI during the (a) first and the (b) second 

growing seasons of rice under the calibrated treatment using conventional tillage (NPKM 

5/5).  

 

3.2. Model Evaluation   

After calibration, the DNDC model was further evaluated with data collected during 

the first year of the experiment from the remaining nutrient management treatments un-

der both the conventional tillage and the reduced tillage systems. During the evaluation 

process, the DNDC model simulated the harvestable grain C-biomass of rice with reason-

able agreement since the d-index varied between 0.85 to 0.86, and the calculated root mean 
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squared error (RMSE) ranged from 374.98 to 380.69 kg C ha-1. The mean percent different 

(MPD) and normalized RMSE (nRMSE) were at -2.62% to -16.99% and 25.39% to 25.87%, 

respectively. The values of the mean error (ME) were very low, ranging from -0.01 to 0.09 

(Table 4). Regarding the straw C-biomass of rice, DNDC’s predictions were in agreement 

with the field measurements since calculated RMSE ranged from 769.83 to 966.22 kg C ha-

1 and d-index at 0.69 to 0.73, MPD and nRMSE were at -17.83 to -28.90% and 26.67 to 

31.42% respectively (Table 4).  

 

Table 4: Statistical evaluation of DNDC’s performance simulating harvestable grain and straw-C biomass of rice 

and wheat under conventional and reduced tillage. 

 

Treatment Observed Simulated n MPD  aRMSE nRMSE  aMAE d ME 

Rice grain C-biomass (kg ha-1)        

CT 1449.01 1451.82 7 -2.62 6.74 25.87 2.82 0.85 -0.01 

RT 1498.97 1316.18 8 -16.99 380.69 25.39 -182.94 0.86 0.09 

Wheat grain C-biomass (kg ha-1)         

CT 1601.49 1950.29 7 26.11 510.39 31.87 348.79 0.76 -0.08 

RT 1626.25 1995.99 8 27.49 499.98 30.75 369.74 0.77 -0.05 

Rice leaf and stem C-biomass (kg ha-1)       

CT 2886.03 2402.23 7 -17.83 769.83 26.67 -481.80 0.73 -0.73 

RT 3074.85 2277.92 8 -28.90 966.22 31.42 -786.95 0.69 -1.86 

Whet leaf and stem C-biomass (kg ha-1)       

CT 2215.08 2764.16 7 27.16 657.44 29.68 549.08 0.74 -0.39 

RT 2212.02 2856.31 8 33.32 747.15 33.77 644.28 0.65 -0.86 

a The units of both mean average error (MAE) and root mean squared error (RMSE) for C-

harvest biomass and soil organic carbon (SOC) are kg ha-1 and g kg-1 of soil, respectively. 

The units of mean percent difference (MPD) and normalized RMSE (nRMSE) are percent-

age (%), while n is the number of observations for both conventional tillage (CT) and re-

duced tillage (RT). 

 

DNDC adequately simulated the grain C-biomass of wheat since the d-index varied 

from 0.76 to 0.77, and the calculated root mean squared error (RMSE) ranged from 499.98 

to 510.39 kg C ha-1. Mean percent difference (MPD) and normalized RMSE (nRMSE) were 

26.11% to 27.49% and 30.75% to 31.87% respectively. The mean error (ME) values were 

very low, ranging from -0.05 to -0.08 (Table 4). For straw C-biomass of wheat, DNDC es-

timates were in agreement with observed values since the calculated RMSE ranged from 

657.44 to 747.15 kg C ha-1, the d-index was 0.65 to 0.74, and MPD and nRMSE ranged from 

27.16% to 33.32% and 29.16% to 33.32% respectively (Table 4).  

     

3.3. Validation of DNDC  

It is necessary that a calibrated and evaluated model must be validated with an inde-

pendent dataset to assess the accuracy in a model’s predictions by using adjusted model 

parameters during the calibration process. Therefore, the DNDC model was further vali-

dated with second year data for all treatments. Results show that DNDC predicted the 
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harvestable grain C-biomass of rice well since the d-index varied from 0.76 to 0.84, calcu-

lated RMSE ranged from 360.62 to 494.18 kg C ha-1, and MPD and nRMSE were -20.62% 

to -31.05% and 22.96% to 31.26% respectively (Table 5).  

 

Table 5: Statistical indices for validation of DNDC’s performance to simulate grain and 

straw C-biomass for rice and wheat as well as soil organic carbon content under both con-

ventional and reduced tillage. 

`Treatment Observed Simulated n MPD  RMSEa nRMSE  MAEa d ME 

Rice grain C-biomass (kg ha-1)        

CT 1570.25 1278.45 8 -20.44 360.62 22.96 -292.25 0.84 0.16 

RT 1581.05 1147.63 8 -31.05 494.18 31.26 -433.42 0.76 -0.70 

Wheat grain C-biomass (kg ha-1)        

CT 2016.43 1910.41 8 -3.59 242.33 12.02 -106.02 0.92 0.75 

RT 1953.35 1893.17 8 -2.88 165.36 8.47 -60.18 0.96 0.87 

Rice leaf and stem C-biomass (kg ha-1)      

CT 3175.92 2544.10 8 -20.82 849.65 26.75 -631.83 0.69 -0.93 

RT 3331.56 2326.76 8 -32.79 1144.48 34.35 -1004.9 0.63 -2.76 

Wheat leaf and stem C-biomass (kg ha-1)  
      

CT 2975.76 3011.2 8 2.21 230.85 7.76 35.43 0.95 0.85 

RT 2988.75 2961.30 8 -1.71 212.14 7.09 -27.45 0.96 0.86 

Soil organic carbon (g kg-1 soil)       

CT 6.25 6.59 8 5.77 0.68 10.94 0.34 0.87 0.42 

RT 6.51 6.83 8 4.82 1.06 16.26 0.31 0.70 -0.75 

a The units for both mean average error (MAE) and root mean squared error (RMSE) for 

C-harvest biomass and soil organic carbon are kg ha-1 and g kg-1 of soil, respectively. The 

unit for both mean percent difference (MPD) and normalized RMSE (nRMSE) is percent-

age (%), while n is the number observations for both conventional tillage (CT) and reduced 

tillage (RT). 

 

In terms of the harvestable straw C-biomass of rice, the DNDC model simulations 

were in agreement as the calculated RMSE varied from 849.65 to 1144.48 kg C ha-1 and the 

d-index ranged at 0.63 to 0.69, while MPD and nRMSE were -20.82% to -32.79% and 

26.75% to 34.35%, respectively (Table 5). The DNDC model also modeled the harvestable 

grain C-biomass of wheat well since the d-index varied from 0.92 to 0.96, the calculated 

RMSE ranged from 165.36 to 242.33 kg C ha-1, and MPD and nRMSE were at -2.88% to -

3.99% and 8.47% to 12.02% respectively. The ME value was considerably high, which 

ranged from 0.75 to 0.87 (Table 5). Furthermore, the modeled straw C-biomass was in 

agreement with observed values as the calculated RMSE ranged from 212.14 to 230.85 kg 

C ha-1 and the d-index was 0.95 to 0.96, while -1.71% < MPD < 2.21%, and 7.09% < nRMSE 

< 7.76% (Table 5).  

The simulated SOC contents were comparable to measured values, as indicated by 

several statistical indices (-0.75 < ME < 0.42; 0.68 g kg−1 < RMSE < 1.06 g kg−1; 0.70 < d < 0.87; 

10.94% < nRMSE < 16.26%; 4.82% < MPD < 5.77%; and 0.31 < MAE < 0.34 (Table 5). The 
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regression analysis between modeled and observed SOC was also significant with R2 

ranged from 0.35 to 0.46 (p < 0.01). Meanwhile, the intercept ranged from 0.30 to 1.34 (p < 

0.65) with slopes ranging from -0.59 to 1.48 (p < 0.05; Figure 4).   

 

  
 

Figure 4: Comparison of simulated versus measured soil organic carbon at (a) 0–15 and 

(b) 15–30 cm soil depths. Each point represents the soil organic carbon (SOC) from a treat-

ment ± standard deviation. Solid line indicates the 1:1 line that could be expected for a 

perfect fit. Solid circles above and below this 1:1 line are over- and under-simulated SOC, 

respectively  

 

4. Discussion 

Understanding the carbon (C) cycle in soils is essential in order to identify the most 

appropriate management strategy that would optimize this cycle in both space and time. 
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The DNDC model adopted in this study has been independently applied by several re-

searchers to estimate C sequestration, crop yield, and greenhouse gas emissions [27,31,32]. 

For instance, Qiu et al. 2005 [31] assessed soil organic carbon (SOC) storage in China, 

where DNDC predicted the SOC dynamics with good correlation with observed values 

(e.g., r = 0.975). Similarly, Han et al. 2014 [32] applied the modified DNDC model by im-

bedding a new mulching module to estimate corn yield, where the differences between 

predicted and observed yields ranged from -55 to 3170 kg ha-1. In our study, simulation 

results were in good agreement to observed values with an R2 = 0.86, p < 0.01, mean error 

(ME) = 0.75 for film mulching, and R2 = 0.80, p < 0.01, ME = 0.63 for the control used in our 

experiment. 

According to Tang et al. 2012, soil C sequestration is directly influenced by C-inputs 

in the form of crop residues or amendments [33]. In our experiment, changes in SOC de-

clined under the no fertilization treatment. Similar declines in SOC contents with the con-

trol treatment were also predicted by the DNDC model. So, DNDC predicted values of 

SOC ranging from 2.80 to 2.90 g kg-1 compared to experimental measurements, which 

ranged from 2.67 to 3.15 g kg-1 for the control treatment under both tillage methods at a 

soil depth of 0 to 15 cm.  

We anticipated that an increase in SOC from combined application of inorganic and 

organic amendments could be linked with higher soil moisture contents. Previously it was 

documented that SOC increased by increasing soil water contents through precipitation 

[34–37]. Therefore in our study, DNDC experienced no water stress under the conven-

tional tillage using the 50% NPK and 50% animal manure treatment based on trends in 

LAI for both wheat and rice (Figure 2 and 3). Similar results were also reported by Lem-

baid et al. 2022 [5]. These researchers noticed that DNDC predicted an increase in SOC 

sequestration rate by 12 and 21 kg C hectare−1 year−1 with an increase in precipitation of 

10% and 20%, respectively. In this study, the modeled SOC has a maximum value 6.10 g 

kg-1 under the reduced tillage 0.25NPKS + 0.5M treatment followed by the 0.25NPKM + 

0.5S treatment. The combine use of inorganic and organic amendments (organo-mineral 

fertilizations) could supply high amount of N to stimulate soil microbial activity. There-

fore, organo-mineral fertilizations enhanced root biomass and root exudates, leading to 

more SOC sequestration [32]. 

In our study, NPK-alone and organic amendments-alone did not improve SOC se-

questration. DNDC also captured similar impacts of these treatments on SOC sequestra-

tion. Kuzyakov et al. 2010 [38] and Fontaine et al. 2003 [39] reported that combined use of 

mineral NPK and animal manure induced a priming effect on soil microbes resulting in 

release of more nutrients, and then eventually higher harvestable C-biomass and SOC se-

questration in the soils. By improving the soil fertility status after organo-mineral fertili-

zations, other factors, including soil temperature, moisture holding capacity, aggregation 

formation, etc. may be influenced, which can lead to higher crop production and SOC 

sequestration relative to organic amendments-alone and NPK-alone. Darwish et al. 1995 

[40] observed that organic matter influenced crop growth and yield either directly by ap-

plying nutrients or indirectly by changing soil physical characteristics including aggre-

gates stability and porosity.     

The simulation of crop growth is in agreement with observed values, which is crucial 

in order to accurately predict the carbon biogeochemistry cycle. If DNDC does not simu-

late the crop growth process in agreement with experimental measurements, then there 

are chances for error in assessing the potential impact of management practices on SOC. 

But the findings of this current study show that DNDC predicted the growth processes of 

both rice and wheat in good agreement with experimental measurements. We could not 

find any discrepancy in DNDC’s prediction for grain harvestable C-biomass of wheat and 

rice as well as SOC contents under all treatments. However, DNDC over-simulated the 

SOC contents at 0 to 15 cm soil depths and under-simulated SOC in the 15 to 30 cm soil 

layer. 

5. Conclusions 
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The DNDC model simulated the harvestable grain and straw C-biomass compared 

to experimental field measurements for both wheat and rice in Faisalabad, Pakistan. 

DNDC simulated harvestable grain C-biomass for both wheat and rice with only slight 

underestimation (-2.81% to -6.17%) compared to observed values. DNDC results also sug-

gest that organo-mineral fertilizations may be beneficial to encourage higher crop produc-

tion along with improved soil health and enhanced soil organic carbon sequestration. In 

this study, DNDC adequately modeled soil organic carbon trends for rice-wheat rotation 

via verification using several statistical indices. Performance of the DNDC model should 

be improved to predict soil organic carbon dynamics in deeper soil layers by validating it 

under a variety of long-term experiments. 
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