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Simple Summary: The human olfactory dysfunction following COVID-19 and other acute 

respiratory viruses is now accepted as a hallmark symptom in affected patients. Recent studies have 

pointed out the relationship between COVID-19 and altered or loss of smell in infected patients.  

This mini review provides an overview of the role of SARS-CoV-2 and the other respiratory viruses 

in the development the human olfactory pathophysiology. Based on the recent investigations, it is 

crucial to decipher the molecular mechanisms underlying the olfactory dysfunction for the discovery 

of new drugs to restore the altered or loss of smell due to SARS-CoV-2 infection in human. 

 

Abstract: The novel coronavirus disease 2019 (COVID-19) known as severe acute respiratory syn-

drome - coronavirus 2 (SARS-CoV-2) has emerged in China in 2019, and caused an outbreak of un-

usual viral pneumonia. The olfactory dysfunction following the infection of different variants of 

SARS-CoV-2 is now accepted as a hallmark symptom in patients. Recent studies have pointed out 

the relationship between COVID-19 and altered or loss of smell in infected patients. This mini review 

provides an overview of the role of SARS-CoV-2 and the other acute respiratory viruses in the de-

velopment the human olfactory pathophysiology. We highlight the importance of deciphering the 

molecular mechanisms underlying the olfactory dysfunction caused by SARS-CoV-2 to help design 

new drugs to restore the altered or loss of smell in affected patients.  

Keywords: Respiratory viruses; Anosmia; Olfaction Disorders; loss of smell; COVID-19. 

 

1. Introduction 

In December 2019, a novel coronavirus designated as SARS-CoV-2 (severe acute respiratory 

syndrome - coronavirus 2) emerged in the city of Wuhan, China, and caused an outbreak of 

unusual viral pneumonia. Being highly transmissible, this novel coronavirus disease, also 

known as coronavirus disease 2019 (COVID-19), has spread fast all over the world [1, 2]. The 

new emerging virus has overwhelmingly surpassed SARS and MERS in terms of both the 

number of infected people and the spatial range of epidemic areas [3]. On 11 March 2020, 

the WHO officially characterized the global COVID-19 outbreak as a pandemic [4]. As of 12 

April 2023, 763 million confirmed cases and 6,8 million deaths have been reported globally 

[5]. SARS-CoV-2 is transmitted to humans through buccal and nasal cavities mainly through 
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respiratory droplets from sneezes or coughs of infected people and spread to those nearby 

[6]. A key factor in the transmissibility of COVID-19 is the active virus replication in upper 

respiratory tract tissues and therefore its massive excretion [7]. Regarding symptoms 

reported in patients with COVID-19 infection the most common are fever, dry cough, 

shortness of breath (dyspnoea), myalgia, malaise, chills, confusion, headache, sore throat, 

rhinorrhea, chest pain, diarrhea, conjunctival congestion, nasal congestion, sputum 

production,  hemoptysis, runny nose, fatigue and sneezing  [8-11]. Several studies have 

reported olfactory dysfunction and hypogeusia in COVID-19 patients [12, 13]. Interestingly, 

a clustering clinical data have shown that neurological symptoms like persistent headache 

was noticed in 50% of patients who suffered from olfactory dysfunction after months of 

recovery from SARS-CoV-2 infection suggesting in part a strongly link between the 

pathophysiological substrate of both cognition and olfaction related disorders [14].  A 

recent study has documented the effect of the use of personal protective equipment, 

especially by healthcare workers in preventing the spread of COVID-19. Their findings 

demonstrated that wearing a face mask significantly improves the daily health issues related 

to the disease symptoms and the working performance of those workers who have adhered 

to safety guideline rules [15]. Humans have developed five senses, traditionally vision, 

hearing, smell, taste and touch, to gather information from their surroundings and to benefit 

from where they live. Even though several factors, such as ageing, drug, and respiratory 

pathogens, are shown to lead to neurological invasiveness, different variants of SARS-CoV-

2 have  been considered a leading cause of anosmia in humans [14, 16-18] . The respiratory 

coronavirus transmission throughout the nasal cavity and its consequence in impairing 

odorant detection have gained attention recently [19-21]. The first step of molecular 

detection occurs when a chemical odorant is recognized by one or several olfactory receptors 

(ORs) in the olfactory sensory neurons (OSN). The process of this odour recognition takes 

place in the nasal cavity before reaching the upper part of the human brain [22-24]. The 

importance of sensing and tasting is often shed in light only when a subject is facing 

difficulties in discriminating odours via food intake or the environment [25]. As smell is 

somehow not vital daily for humans and its loss may not be directly life-threatening, the loss 

of functional olfactory responses, in the long term, could be accounted for the poor quality 

of life, at worst, lead to death [14, 26]. Since the beginning of this pandemic, a lot of reports 

have shown the issues of olfactory disorders in patients affected by COVID-19 [16-19]. This 

review mainly focuses on the loss of smell and particularly on understanding the molecular 

signaling underlying the olfactory pathophysiology in human patients from COVID-19 

infection and the importance of using such mechanisms to find potential targets to overcome 

the loss of smell. 

2. Methods 

The present study synthesizes the current knowledge regarding the relationship of the 

respiratory viral pathogenesis of the olfactory system and the mechanisms underlying the 

loss of smell in patients infected by respiratory viruses in general and COVID-19 in 

particular in the last three years. A deep search has been performed using mostly the 

database PubMed, PMC and ScienceDirect to parse both original and review articles that 
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have tackled the animals and human respiratory viruses having a negative impact on the 

olfactory system functionality. For our search, we used the combination of the following 

keywords: respiratory virus, coronavirus, rhinovirus, influenza viruses, parainfluenza 

viruses, respiratory syncytial virus (RSV), coxsackievirus, adenoviruses, poliovirus, 

enteroviruses (EVs), herpesviruses, anosmia, olfactory epithelium, human, mouse, hamster, 

loss of smell or olfactory dysfunction were considered in this review. Only the papers that 

have met the keyword criteria listed above were considered in this work. 

3. Olfactory receptor and odorant detection 

Odorant perception is fundamental for survival in most animals. In humans, the sense of 

smell is important to appreciate our environment. Therefore, a functional olfactory system 

detects and discriminates among diverse chemical stimuli. Odours are important for 

behaviours such as feeding, mating, and avoiding dangerous smells, such as smoke, leaking 

propane gas, and spoiled food [25, 27, 28]. Processes of learning and memory are associated 

with these behaviours. This leads to a strong belief that the loss of olfactory function is 

indirectly related to human life-threatening [29, 30] . The sense of smell, which is 

fundamental for their survival, is developed in most animals. Mostly, two different olfactory 

systems have been developed in mammals such as rodents: the main olfactory epithelium 

(MOE or OE), also called olfactory mucosa, connected to the main olfactory bulb , and the 

accessory system called vomeronasal organ (VNO) connected to the accessory olfactory bulb 

[22, 31-34]. Here, the VNO will not be discussed. The configuration of the olfactory 

epithelium (OE) presents unique cytological characteristics as it contains different cell types 

such as the ciliated olfactory receptor neurons (ORNs), the sustentacular supporting cells, 

and the cells of Bowman’s glands (Fig. 1). The ORNs reside in the intermediate layer of the 

olfactory mucosa while the sustentacular cells and sensory cilia are located in the apical layer 

where the dendrites of olfactory neurons are extended [35, 36]. 

 

Figure 1: Functional anatomy and structure of the human olfactory system 

(a) The human olfactory system contains multiple organs, including the olfactory 

epithelium (OE), the olfactory tract (OT). Odorants enter the nasal cavity (NC) and access 

the OE during inhalation, by being pumped through the sasal conchae. (b) Sensory 

neurons of the OE project to the olfactory bulb (OB) (taken and modified from 
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https://sites.google.com/a/edmail.edcc.edu/savannatest/literature-research/pheromones-

and-neurocircuits) (Accessed on November 18, 2022). 

 

A deep understanding of the molecular signaling of the smelling recognition is 

required to understand the basis of the olfactory system and, consequently, the loss of 

olfactory function. In the last decade, pioneers have developed and studied the physiology 

of the olfactory system based on molecular biology, biochemistry, anatomy, and 

bioinformatics [23, 25]. At first glance, getting insight into the molecular mechanisms of 

the perception of odours has emerged from several disciplines such as chemistry, biology 

and professional odour detectors [23, 25]. 

In the human genome, around 857 olfactory receptors (OR) genes were identified, but 60% 

of them are pseudogenes. This high prevalence may be due to internal deletions during 

evolution, leaving around 390 putative functional ORs while around 465 are pseudogenes 

[23, 37-39]. Although 1300 OR genes have been identified in the mouse genome, only 20% 

of these genes are pseudogenes [40, 41]. This difference between humans and mice in the 

amount and percentage of functional OR genes may originate from the fact that olfaction 

is more solicited in rodents than in higher primates during evolution. The ORs of mammals 

are part of the superfamily of GPCRs [42]. They are considered one of the most critical 

groups in number and are known as rhodopsin-like owing to their structural similarity to 

rhodopsin. GPCRs in family A share many features, such as an Asp-Arg-Try sequence 

(DRY motif) in the second intracellular loop and a disulfide bridge from the two cysteines 

in the first (EC1) and second (EC2) extracellular [42]. In fact, olfaction is the perception of 

a combination of a myriad of odorant molecules. Odorants are generally known as small 

components (less than 400 Da) and are mostly hydrophobic volatile molecules. They are 

commonly aliphatic or aromatic molecules, with various functional groups including 

aldehydes, alcohols, carboxylic acids, ketones and esters [43]. Odorants can be cyclic, linear, 

or branched. The detection occurs when the odorants penetrate into the nasal cavity and 

reach the olfactory mucosa. The odorants then interact with specific OR in the olfactory 

mucosa.  Once an OR is activated by an odorant, a nervous influx is sent to the cortex via 

the olfactory bulb. In addition, while acting as agonists for certain ORs, odorant stimuli 

can act as antagonists for other ORs [44, 45], by preventing the activation of the receptors. 

This could be a plausible argument to explain why certain odours can be masked within 

some mixtures of odorants [46]. Surprisingly, the perception of an odour can also depend 

on its concentration. The olfactory response is efficient when odorant concentration is at a 

moderate level. Instead of activating, the high concentration of odorant inhibits the OR 

functionality. The OR functional response adaptation strongly depends on the 

concentration of odorant and has been a subject of debate in the sensing field [47-50]. 

Readers interested in the mammalian olfactory epithelium and the perception of odour 

coding are invited to view an excellent review by Kurian and colleagues published in 2020 

[51]. 

4. Viral infection causing loss of smell 
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The fact that the olfactory receptor neurons (ORNs) are found in the nasal cavity and 

expressed in the olfactory epithelium (OE) makes them directly exposed to all kinds of 

air-bound and air-way pathogens that make the ORNs vulnerable. Whether the cause is 

physiological or pathological, the lifespan of ORNs is relatively short of few weeks in the 

OE. Moreover, the stem cell reprogramming ensures the continuous regeneration of new 

ORNs from OE basal cells in response to inflammation and OE severe damage mediated 

by neural injury [52-54]. Several airway pathogens, such as viruses, are causing damage 

to OE through particularly the sustentacular cells, triggering anosmia in mammals [55, 56] 

[36, 57, 58]. Many respiratory tract infections due to viruses like rhinovirus, influenza 

viruses, parainfluenza viruses, respiratory syncytial virus (RSV), coxsackievirus, 

adenoviruses, poliovirus, enteroviruses (EVs), and herpesviruses, have been involved in 

the development of olfactory disorders such as partial or total loss of smell. Doty and 

others have termed this pathology as virus-induced olfactory dysfunction as post-viral 

olfactory disorder (PVOD) [59-62]. Chronic viral infection destroys the many cells within 

the apical layer of the OE that could lead to ORNs functional impairment in the nose. 

Interestingly, the OE basal cells can constantly replace damaged ORNs to new olfactory 

neurons allowing patients to recover functional olfactory response [53, 54]. In the 

following sections, the most common viral infection of the upper respiratory tract leading 

to olfactory dysfunction in animal models and humans will be discussed. 

5. Viruses impacting respiratory system 

The respiratory system is exposed to the environment and is in permanent contact 

with air-way pathogens like viruses. Cytomegalovirus (CMV) belonging to the 

Herpesviridae family and, also called Human Herpes Virus 5 (HHV-5), is shown to impact 

mice’s olfactory system. The mouse neonatal exhibited an impaired olfactory function 

following a placental CMV infection. The virus preferentially impacts the sensing system 

before it deteriorates the hearing system in mice [63]. Moreover, the infection of the 

hippocampus and the olfactory bulb by CMV triggers a sensorineural handicap that can 

induce brain malformations at the late stages of gestation [64]. A recent investigation in 

humans, has identified 18 viruses in patients with post-viral olfactory dysfunction. 

Particularly, rhinovirus (RV) and coronavirus (CoV OC43) were more predominant 

suggesting that they are major causative agents of PVOD [65].  The Sendai virus (SeV), the 

murine counterpart of Parainfluenza virus, has been shown to directly infect the mouse 

brain via the olfactory neurons [66]. Another investigation demonstrated that SeV infection 

led to impairing mouse olfaction. Interestingly, the virus persists in OE and OB tissues for 

over two months, and reduces the regenerative power and the functionality of  the ORNs 

[67]. The seasonal changes play a key role in influenza and parainfluenza type 3 infections 

to induce olfactory loss. This dysfunction occurs most frequently in winter and spring [68]. 

Preventing the influenza A virus from reaching and infecting the upper brain is crucial for 

maintaining the process of detecting odours. Mori et al. have shown that  ORNs 

undergoing apoptosis after infection may be a preferential mechanism to provide 

protective effects against invasion of the neurovirulent virus from the peripheral to the 

CNS [69, 70]. In mice infected with influenza virus, Bcl-2, bax, and iNOS may play a key 
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role in apoptosis regulation of ORNs [71]. A recent complementary investigation 

demonstrated that the homologous vaccination significantly decreased the H5N1 virus 

replication in the olfactory mucosa, compared to prophylactic oseltamivir and thus 

hindered subsequent virus spread to the CNS [72]. Another recent study using 

transcriptomic analysis demonstrated that olfactory signaling is among the altered 

pathways in patients suffering from RSV infection. This finding further supports previous 

work that described RSV as a causative agent of post-viral olfactory dysfunction. 

Interestingly, the authors highlighted that this molecular signaling could be a promising 

future route to investigate drug targets against RSV infection [29, 60]. 

6. Mechanisms of SARS-CoV-2 mediating the loss of smell 

The post-COVID and the long-term-COVID have both tremendously triggered a lot 

of complications in different human systems. The loss or reduction of smell, among other 

complications of the nervous system, is an  associated symptom for patients affected by 

different variants of COVID-19 including omicron variant (Table 1) [73-79]. Moreover, 

studies reported that the prevalence of olfactory dysfunction differs greatly between 

populations and approaches [77, 80, 81].  The relationship between the loss of smell and 

the SARS-CoV-2 infection remains an enigma which could partly explain why the fight 

against this disorder is difficult. In the emergency context of the pandemic, many COVID-

19 vaccines are authorized to help protect and eliminate the virus. Unfortunately, at least, 

two COVID-19 vaccines have been reported to cause the loss of smell one day after the 

administration. Also, it remains unclear what drive the occurrence of olfactory 

dysfunctions as the cases are relatively rare, although the development of a post-vaccine 

inflammatory reaction in the olfactory neuroepithelium is pointed to play a role in this 

process [82, 83]. Therefore, this adds more complexity to compare the molecular signaling 

of the loss of smell driven by COVID-19 infected patients and individuals benefiting from 

COVID-19 vaccines and later contracting the disease. The COVID-19 pathology and the 

cellular mechanism by which the olfactory dysfunction occurs, remain unclear and is still 

under intensive investigation [18, 84]. Earlier in the pandemic, reports hypothesized that 

five potential mechanisms were considered to get insights into the olfactory dysfunction 

in  COVID-19 patients : (1) obstruction/congestion and rhinorrhea of the nasal airway, (2) 

damage and loss of ORNs, (3) Olfactory center damage in the brain, (4) damage of the 

olfactory supporting cells in the OE, and (5) Inflammation-related olfactory epithelium 

dysfunction [80, 81]. Butowt et al, have recently reviewed that at least the following 

hypotheses (1)-(3) turned out to be implausible, for explaining the olfactory dysfunction in 

patients [85]. Here, we will particularly review the mechanisms related to the second and 

the fourth scenarios according the available findings. Healthy sensory cilia of ORNs in the 

olfactory epithelium are crucial in perceiving odorant molecules before sending the 

information to the olfactory bulbs and then to the upper parts of the brain [52]. It has been 

reported in humans that the SARS-CoV-2 may inderectly affects the olfactory cilia, 

hindering the smelling system's efficacy [86]. Reports suggested that ORNs lack to express 

the entry proteins of SARS-CoV-2 in the OE. The virus seems to establish a first contact in 

human nasal epithelia by binding its spike S protein to specific cells in the OE [87]. These 

reports are confirmed by study based on in-silico data, predicting the that mature ORNs 
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do not express the virus entry protein, the angiotensin-converting enzyme 2 (ACE2), and 

therefore are not likely to be infected by SARS-CoV-2 [88]. Furthermore, supporting data 

by Bryche et al., showed that SARS-CoV-2 was not detected in the ORNs of golden Siryan 

hamsters [89]. However, in few cases, authors suggested that SARS-CoV-2 could infect 

ORNs in hamsters [90]. Based on the fact that COVID-19-related loss of smell disappeared 

within 1-2 weeks, while the regeneration of dead ORNs needs more than 2 weeks, many 

data tend to conclude that COVID-19-related olfactory dysfunction (OD) is not directly 

associated with the impairment of the ORNs [13, 80, 81, 87, 91]. Consequently, studying 

the entry proteins expression within the cells in the OE will help to understand the 

sensitivity of the OE to SARS-CoV-2 infection-related to the high prevalence of ODs in 

patients. Many groups are now interested to the organization of the sustentacular cells in 

the OE and thought that they might play central role in leading to OD. A high level of 

expression of ACE2 and the transmembrane serine protease 2 (TMPRSS2) is particularly 

found on the sustentacular cells suggesting a path to the neurotropism of SARS-CoV-2 in 

the OE. The ACE2 and TMPRSS2 are respectively known as the SARS-CoV-2 receptor and 

the SARS-CoV-2 cell entry-priming protease. ACE2 is found mainly on different parts of 

the sustentacular cells both in human and mouse. The ACE2 and TMPRSS2 genes tend to 

be co-regulated [81, 92-96]. Different approaches using tissues, cells and organ systems in 

human, golden Syrian hamster, and hACE2 transgenic mouse have been employed to 

study the pathological impact of the SARS-CoV-2. Here, we discussed findings related 

particularly to the OE in inducing ODs in human. The spike protein (S protein) of SARS-

CoV-2 mediates the passage of the virus into the host cell by fusing the viral and host cell 

membranes. In fact,  via his spike S, SARS-CoV-2 employs the ACE2 as host functional 

receptor and TMPRSS2 as the cellular priming protease facilitating viral uptake, both 

signaling being confirmed by Single-cell RNA sequencing (scRNA-seq) datasets from the 

Human Cell Atlas consortium [97-99]. Another study showed that SARS-CoV-2 

Nucleocapsid protein (NP), was observed in human OE through the neuronal marker Tuj1, 

9 hours post infection. This data further supported the enrichment of ACE2 in human 

olfactory sustentacular cells [93, 100]. Earlier in the pandemic, the golden Syrian hamster 

was used as a model to document the pathology of SARS-CoV-2 in the OE post infection. 

Reports showed that the sustentacular cells are rapidly infected by SARS-CoV-2. This viral 

neurtropism is associated with a massive recruitment of immune cells in the OE and 

lamina propria, which could drive the disorganization of the OE structure [89]. This study 

is consistent with high level of TNFα observed in OE samples from COVID-19 suffering 

patients [101]. Furthermore, the inflammation induced by SARS-CoV-2 infected 

supporting cells may play an important role in the onset and persistence of loss of smell in 

patients. This SARS-CoV-2-associated inflammation status was confirmed by analyzing 

the expression of selected targets in the olfactory bulb using RNA-seq and RT-qPCR tools. 

Interestingly, this study showed that the proinflammatory markers Cxcl10, Il-1β, Ccl5 and 

Irf7 overexpression continued up to 14 dpi, when animals had recovered from 

ageusia/anosmia (77). These findings are in line with a very recent study showing the 

implication of immune cell infiltration and altered gene expression in OE in driving 

persistent smell loss in a subset of patients with SARS-CoV-2. Moreover, this study 
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particularly, demonstrates that T cell–mediated inflammation lasts longer in the  OE after 

the acute SARS-CoV-2 infection has been eliminated from the tissue, suggesting a 

mechanistic insights into the long-term post–COVID-19 smell loss (78). The OE 

disorganization is followed by a drastic deterioration of the cilia layer of the ORNs that 

leads to the impairment of the olfactory capacity of the animal [89]. Investigations in 

humans and hamsters using respectively, Transmission Electron Microscopy (TEM) 

studies and Scanning Electron Microscopy (SEM) analysis showed various levels of cilia 

height that undergo regeneration in the course of patient recovery, including smell 

restoration. Data using the golden Syrian hamster showed that the regenerated cilia in the 

epithelium is accompanied by a decreased expression of FOXJ1+ highlighting the 

importance of this marker in the respiratory ciliogenesis. This later finding by Schreiner et 

al., could in part shed light on the inquiry of how could we regenerate cilia during patient 

recovery, although a lot needs to be done in the roadmap of treating loss of smell related 

to nasal cilia deterioration by SARS-CoV-2 (75, 76) (Table 1 ; Fig. 2).  

Table 1: Summary of the mechanisms of SARS-CoV-2-induced olfactory dysfunction 

 

Effect of SARS-CoV-2 infection on cells in the OE  References 

• The virus targets the sustentacular and 

Bowman gland cells by binding to their ACE2 

and TMPRSS2 proteins. 

• Exponential growth of the virus leading to the 

destruction of these supporting cells. 

• Significant reduced thickness of the mucus 

layer could be related to the Bowman’s glands 

deterioration which are the precursor of the 

mucus. 

• Healthy mucus is crucial for odor detection as it 

enables odorants to diffuse to olfactory 

receptors. 

• Retraction of OSN cilia, although the mature 

OSN are free of SARS-CoV-2 viral load. 

• SARS-CoV-2 alterates throughout the 

supporting cells not only the structure of 

mucus but also the OSN cilia which contribute 

to the olfactory dysfunction (Fig. 2) 

 

 

 

[102] 

[103] 

 

[88] 

 

[104] 

 

 

 

[105] 

[106] 

 

[89] 

 

[107] 

• Sustentacular cells and Bowman gland cells 

supply additional glucose to the cilia that is 

necessary for the ORN to respond to odorants. 

• Supporting cells infected by SARS-CoV-2 affect 

[108] 

[109] 

 

[110] 
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the expression of the GLUT1/GLUT3 that 

interrupt the glucose trafficking to the cilia of 

the ORN in the mucus. 

• SARS-CoV-2 uses the internal glucose as a fuel 

to maximize its replication thus preventing the 

cilia to undergo odorant-inducd reponse of the 

ORN. 

• Loss of glucose normally supplied by 

sustentacular cells and Bowman gland cells 

• SARS-CoV-2 exhibits supporting cells damage 

that consequently trigger the interruption of the 

supply of additional glucose to the cilia of the 

ORN via GLUT1/GLUT3. 

[110] 

[85] 

 

 

[111] 

 

 

[112] 

 

 

 

               

Figure 2: Summary of how SARS-CoV-2 infected support cells induce damage to the 

mucus and cilia that prevent the olfactory receptor neurons to bind to their odorant 

molecules. 

 

According to the literature, different variants of SARS-CoV-2 do not directly target 

particularly the ORNs in the OE, instead they are found in majority expressed in the 

sustentacular cells [36]. Recent study by Seehusen et al, showed that K18-hACE2 

transgenic mouse expressing the human ACE2 is highly sensitive to at least five variants 

of SARS-CoV-2 that infected not only the supportive cells in OE and the respiratory 

epithelium but invaded the CNS of the animal five days post infection. Interestingly, the 

expression of hACE2 seems to convey higher binding affinity when compared to the wild-

type mouse [113]. Using this transgenic mouse reveals to be a serious option for therapy 

development against loss of smell as these animals exhibited low mortality when treated 

with COVID-19 convalescent antisera [113, 114].  

It is now accepted that ACE2 is not the only obligate entry for SARS-CoV-2 as it has been 

suggested that molecules including PIKfyve or neuropilin-1 (NRP-1) may participate in 

SARS-CoV-2 entry [115-117]. Like ACE2, NRP-1 is highly expressed in the respiratory and 

olfactory epithelium which further support the infectivity and entry of SARS-CoV-2 in the 
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human OE. NRP-1 is not only found in supportive cells but is expressed in nearly every 

cell type in the nasal passages including the ORN, therefore giving SARS-CoV-2 a route to 

access those cells and impair the olfactory response. Interestingly, Daly et al., 

demonstrated that the selective inhibition of the S1-NRP-1 interaction reduces SARS-CoV-

2 infection [117-119].  

Taken together, the highly expression of ACE2, TMPRSS2 and NRP-1 in supportive and 

other olfactory cells and their impact in olfactory neurophysiology maintenance and in the 

development of human olfactory pathophysiology supports them as potential targets for 

signaling-based therapeutics of anosmia. Finally, for further insight into the molecular 

signaling and treatments in COVID-19 patients with impaired smelling, readers are invited 

to explore the following reviews. They have explored many different potential therapeutic 

agents against olfactory and gustatory dysfunctions [73]. 

7. Conclusion and perspective 

Our literature review further confirms the previous extended investigations showing that 

loss of smell and taste are among the key associated symptoms with most COVID-19 

variants, including the omicron variant which causes runny nose, headache, fatigue, 

sneezing, and sore throat [11]. The last three years have been an important rush towards 

deciphering the underlying mechanisms the SARS-CoV-2 deploys to impair the olfaction 

in infected patients. Still few works have addressed the molecular signaling mediated by 

SARS-CoV-2-induced loss of smell in human patients. This work pointed the urge and 

necessity of finding an adequate therapeutic solution against the COVID-19 pathogen in 

general and the loss of smell affecting patients in particular. In addition, the mechanisms 

of taste dysfunction due to COVID-19 infection is not discussed in this review. But it would 

be interesting to decipher the possible pathogenesis between ageusia and anosmia in 

COVID-19 patients in the future.  
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