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Abstract: This primer provides an overview of the rapidly evolving field of generative artificial 

intelligence, specifically focusing on large language models like ChatGPT (OpenAI) and Bard 

(Google). Large language models have demonstrated unprecedented capabilities in responding to 

natural language prompts. The aim of this primer is to demystify the underlying theory and 

architecture of large language models, providing intuitive explanations for a broader audience. 

Learners seeking to gain insight into the technical underpinnings of large language models must 

sift through rapidly growing and fragmented literature on the topic. This primer brings all the main 

concepts into a single digestible document. Topics covered include text tokenization, vocabulary 

construction, token embedding, context embedding with attention mechanisms, artificial neural 

networks, and objective functions in model training. The primer also explores state-of-the-art 

methods in training large language models to generalize on specific applications and to align with 

human intentions. Finally, an introduction to the concept of prompt engineering highlights the 

importance of effective human-machine interaction through natural language in harnessing the full 

potential of artificial intelligence chatbots. This comprehensive yet accessible primer will benefit 

students and researchers seeking foundational knowledge and a deeper understanding of the inner 

workings of existing and emerging artificial intelligence models. The author hopes that the primer 

will encourage further responsible innovation and informed discussions about these increasingly 

powerful tools. 

Keywords: Generative Artificial Intelligence; large language models; ChatGPT; Bard; transformer 

architecture; prompt engineering 

 

1. Introduction 

Traditional artificial intelligence (AI) methods focused on detecting patterns, making decisions, 

modeling data, and classifying phenomena. Generative Artificial Intelligence (GAI) is an AI variant 

that can generate a variety of human consumable content such as natural language text, images, 

audio, code, and domain specific data. A large language model (LLM) is a special type of GAI that 

can generate natural language text in response to a natural language prompt. The convergence of 

massive amounts of data available on the Internet, ever-increasing computing capacity, and the 

discovery of an efficient language “transformer” architecture in 2017 led to breakthrough GAI 

capabilities in 2022 (Vaswani, et al., 2017). Specifically, ChatGPT, an AI chatbot from OpenAI, 

surprised much of humanity with its impressive capabilities of responding to natural language 

prompts. The invention illustrated that an artificial neural network (ANN), with as many connections 

as human brains has neurons, can generate human language uncannily well. 

Scholars still do not comprehend how a finite and non-adaptive computing system can 

simultaneously capture the complexities of dozens of human languages plus the essence of all that it 

can chat about. This lack of understanding has led to misconceptions about how an LLM does what 

it is doing. A common misconception is that an LLM is simply a more capable autocomplete engine 

like those on smartphones and word processors that predict the next word. The developers at OpenAI 

posit that “somehow,” training the GAI model led it to discover underlying phenomena that 
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represent cognitive processes in the human brain that enable coherent language generation and even 

some amount of reasoning (Wei, et al., 2023). 

We do know that humans use language as a medium for expressing thoughts, ideas, and 

complex concepts. Hence, language proficiency enables humans to convey and receive information, 

formulate arguments, draw inferences from context, understand different perspectives, and solve 

various problems. Therefore, language helps humans acquire knowledge about the world, cultural 

norms, and social conventions. The human ability to reason helps in learning languages by 

understanding grammatical rules, inferring the meaning of unfamiliar words, and adapting that 

knowledge to different situations. GAI tools like ChatGPT give the impression that it can do all the 

above, and that has led to much controversy about what occurs inside its neural networks (Chomsky, 

Roberts, & Watumull, 2023). Research has also reported that LLMs have been developing certain 

“emergent” capabilities that their developers did not expect (Bubeck, et al., 2023). 

The GPT acronym in ChatGPT stands for Generative Pretrained Transformer. The first word 

refers to a method of operation where the AI chatbot autoregressively generates or predicts one word 

at a time to best complete a coherent sentence. The second word refers to the method of developing 

the AI chatbot by pre-training a large language model (LLM) and then fine-tuning it to do domain 

specific tasks like answering questions. The third word refers to the usage of a transformer architecture 

discovered in 2017. ChatGPT became the world’s most viral software service with more than one 

million users registered within the first five days of its launch (Roose, 2022). OpenAI released GPT-4 

on March 14, 2023. Microsoft Corporation partnered with OpenAI to incorporate GPT-4 into its Bing 

search engine (Peters, 2023). Google soon responded by launching a chatbot called Bard. 

Subsequently, there has been an explosion of research and commercial use cases for GAI models (Liu, 

et al., 2023). 

The disruptive potential of LLMs to facilitate both good and malicious deeds have since 

generated extremes of excitement and apprehension (Bubeck, et al., 2023). History has taught us that 

humanity will continue to use innovative technology for both good (e.g., curing diseases), and bad 

(e.g., synthesizing untraceable computer viruses). This trend is likely to continue as developers march 

towards achieving artificial general intelligence (AGI), then artificial super intelligence (ASI), and 

beyond. A continued lack of understanding about how developers build LLMs to do what they do 

currently will further contribute to the fear and suspicion surrounding AI developments. 

The goal of this primer is to help demystify how developers build LLMs like ChatGPT and Bard. 

The primer describes the various underlying theories and provides intuitive explanations about how 

they work. The author provides intuitive explanations of the technical descriptions in text boxes and 

highlights important or technical terminology in underlined font. The objective is to make this primer 

useful to a broad audience, and particularly to students and researchers who want to quickly become 

familiar with the underlying theories before undertaking further studies. 

The organization of the remainder of this document is as follows: Section 3 explains the 

background natural language processing (NLP) methods that make up LLMs such as text 

tokenization, vocabulary construction, token embedding, context embedding with an attention 

mechanism, ANN function approximation, and the objective function in model training. Section 4 

explains the architectural choices that enabled ChatGPT in the context of the background methods. 

Section 5 discusses the state-of-the-art methods of training and fine-tuning the models. Section 6 

concludes this primer on how AI chatbots work. Section 7 offers a glimpse of future developments in 

GAI. 

2. Background Methods 

The public has long used products based on NLP techniques and language learning models. 

Examples include language translation apps, dictation transcription apps, smart speakers, and text 

to speech converters. Such technologies use ANNs as a key enabler. Familiar applications of ANN 

include face recognition in digital albums, biometric-based security systems, and music recognition. 

The architectures of modern LLMs contain common NLP elements that developers discovered over 
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time. Figure 1 illustrates the basic building blocks and the flow of information through an LLM like 

the GPT series. 

 

Figure 1. LLM functional flow. 

The training process repeatedly presents the model with massive amounts of word sequence 

examples so that it can incrementally learn how to predict the next word. The tokenize procedure 

converts the word sequence into symbols that represent a language more efficiently and aids in the 

creation of a fixed internal vocabulary for processing. Token embeddings and position encoding 

convert the fixed vocabulary to vectors of floating-point numbers that a computer can process. The 

attention mechanism produces contextualized vectors that encode the relevance of other tokens in 

the input sequence in establishing context for the sentence. The SoftMax function normalizes the 

contextualized vectors produced by the attention mechanism so that the ANN can discover and learn 

contextual patterns more efficiently. Normalization and residuals prepare the output vectors of the 

ANN for further processing without losing information during the sequential transformations. The 

objective function defines the statistical conditions and constraints for predicting the next token. 

The architecture (Figure 1) operates slightly differently during training than it does during 

inference when predicting the next word. Training presents a word sequence randomly sampled 

from the training corpus and masks the next word while the model makes a prediction to maximize 

its objective function. The training algorithm then computes an error between the predicted and 

correct output to determine how it should incrementally adjust the model parameters to reduce the 

error gradually and continuously. The training algorithm then appends the correct word to the input 

sequence and continues the cycle of predictions and parameter adjustments. The process converges 

when the average error reaches a predetermined level. During inference, a trigger such as a query 

initiates the prediction of words, one at a time. The next subsections describe each of the building 

blocks in Figure 1 in greater detail. 

2.1. Tokenization 

Words have similar parts and other redundancies that algorithms can exploit to increase the 

efficiency of word representation. Tokenization algorithms do so by splitting a sentence into words, 

characters, and subwords called tokens. There are dozens of tokenization methods. Hence, this 

section focuses on the method used by ChatGPT. The goal of a tokenization algorithm is to retain 

frequently used words (e.g., “to,” “the,” “have,” “from”) and split longer or less frequently used 

words into subwords that can share prefixes and suffixes across words. OpenAI reported that on 

average, one token represented 0.7 words (Brown, et al., 2020). 

There is an important distinction between using NLP techniques like tokenization to model 

topics in a corpus of text versus using them to build language models. The goal of the former is to 

distill the abstract topic from a collection of documents whereas the goal of the latter is to build a 

model that understands and generates natural language. Both endeavors use tokenization to help 

enhance the model’s ability to discover phrase patterns and word clusters. However, topic modeling 

uses two additional methods called stemming and lemmatization to create more structured and 

normalized representations of text to improve model performance. Stemming maps different forms 
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of a word to a common base form to reduce the vocabulary size and handle variations of the same 

word. Lemmatization maps a word to a standard form based on its part of speech and meaning. 

Language models capture morphological information implicitly during the pretraining process 

without the need for additional preprocessing steps such as stemming or lemmatization. 

Intuition: The tokenization process increases the efficiency of word representations because a 

model can reuse the same token to reconstruct similar words in a corpus of text. For example, the 

word “civilization” can be tokenized into “civil” plus “ization.” Reusing the second token can 

construct words such as “modernization,” “optimization,” “realization,” “capitalization,” 

“generalization” and hundreds of other words with that suffix. Tokenization also increases the 

efficiency of representing various word forms that represent the part of speech for a language. For 

example, simply adding “s” to a word prefix can convert it to a plural form. Similarly, adding the 

suffix “ly” to a noun like “friend” converts it to an adjective like “friendly” and adding the suffix 

“ize” to a noun like “drama” converts it to a verb like “dramatize.” 

2.2. Vocabulary 

Simply building a vocabulary from all the unique tokens of the training corpus would be 

inefficient because languages consist of hundreds of thousands of unique tokens. The Oxford English 

dictionary alone has more than 600,000 words (Stevenson, 2010). Creating an efficient language 

model requires a much smaller and fixed-size vocabulary. Dozens of methods are available to build 

a vocabulary. GPT-3 uses a method called byte-pair encoding (BPE) to build a fixed size, static 

vocabulary of approximately 50,000 tokens. The method compresses text based on the statistics that 

significantly fewer unique characters make up tokens than words make up sentences. BPE executes 

the following procedures: pre-processing, token frequency distribution (TFD), vocabulary 

initialization, merge iteration, vocabulary finalization, and post-tokenization. 

Pre-processing: lowercase the corpus for search consistency; remove extra spaces; remove non-

alphanumeric characters and normalize text by removing diacritical marks and using consistent 

spelling across language variants. 

Token frequency distribution: convert the corpus to tokens and extract a table of unique tokens 

along with their frequency of occurrence. Hence, the table represents the TFD needed to build the 

vocabulary. 

Vocabulary initialization: build a base vocabulary using 256 bytes from the 8-bit Unicode 

Transformation Format (UTF-8). The first 128 symbols of UTF-8 correspond to the standard English 

ASCII characters. UTF-8 is the dominant encoding on the internet, accounting for approximately 98% 

of all web pages (W3Techs, 2023). Using UTF-8 bytes assures that the symbols in the base vocabulary 

map all unique characters in the TFD. 

Merge iteration: calculate the occurrence frequency of all pairwise combinations of symbols in the 

base vocabulary by counting their paired occurrence across all tokens of the TFD. Hence, multiple 

tokens will contain the same symbol pair. Iteratively assign an unused symbol to the highest 

frequency symbol pair and append it to the base vocabulary. As the merging continues, the algorithm 

begins to assign unique symbols to increasingly longer concatenations of tokens to form n-grams 

where n is the number of characters of merged tokens (Sennrich, Haddow, & Birch, 2015). The 

iteration stops after the vocabulary reaches a predetermined size. 

Vocabulary finalization: the final vocabulary will have symbols representing individual bytes, 

common byte sequences, and multi-byte tokens. The procedure finalizes the vocabulary by adding 

non-linguistic tokens such as [PAD] and [UNK] to accommodate padding and unknown tokens, 

respectively, as well as other special tokens to deal with other situations. 

Post-tokenization: convert the pre-tokenized input corpus by replacing tokens with their 

matching n-grams in the final vocabulary. 

Intuition: Iterative merging grows the initial list of unique symbols by including newly merged 

symbols that appear most often in the TFD. Each iteration counts all possible pairwise combinations 

of the newly merged symbols to add the most frequently used combinations to the growing 
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vocabulary. Figure 2 shows a simple example that begins with a base vocabulary containing byte 

codes that represent each letter of the standard English alphabet “a” through “z.” Each cell in the 

matrix contains the co-occurrence frequency of the symbol pairs in the TFD developed from a 

training corpus. The highest frequency occurrence in this example is the symbol pair representing 

the letters “o” and “f” which is the 2-gram word “of”. The algorithm adds a new symbol 

representing the 2-gram “of” to update the current vocabulary. The algorithm then updates the 

frequency count for the matrix cells associated with the new row and column representing the new 

2-gram. The row and column added after that will yield either 3- or 4-gram words (combinations of 

1-grams and 2-grams or double 2-grams.) That is, some new tokens may be complete 3-gram words 

like “the” and 4-gram suffixes like “ized”. 

The BPE method has the capacity to encode a diverse range of languages and Unicode characters 

by efficiently capturing sub-word structure and distinct meaning across similar words. The method 

can also effectively tokenize out-of-vocabulary words so that the model can infer their meaning. The 

BPE text compression method is also reversible and lossless. The reversible property assures that the 

method can translate the symbolized token sequence back to the natural language of words. Lossless 

in the sense of compression methods means that there is no loss of information during the 

compression that will lead to ambiguity during the decompression. 

 

Figure 2. Building the vocabulary for embedding. 

2.3. Token Embedding 

A token embedding method converts the token symbols to number vectors that a computer can 

use to represent tokens in a computational number space. A desirable feature of token embedding is 

to reflect the position of the token in the vocabulary for lookup. That way, when the decoder outputs 

a probability vector for the predicted token, the maximum value will correspond to the position of 

the predicted token. Therefore, the ideal vector would be a one-hot-encoded (OHE) where all 

positions contain a “0” except for the position of the encoded token where it contains a “1.” Hence, 

the size of the OHE vector is equal to the size of the vocabulary. However, an OHE vector is too 

sparse to carry sufficient syntactic or semantic information about a token and how it relates to other 

tokens in a sequence. Hence, GPT-3 constructed a denser number vector for information processing 

and then converted that to an OHE vector to lookup the predicted token. 

GPT-3 learned the vector embeddings for each token during training. The dimension of the 

number vector is 12,288, which is a hyperparameter that is approximately one-quarter the size of the 

vocabulary. Hyperparameters are settings that the model architects pick because they are not 

learnable during the training process. Each dimension of the embedding vector is a continuous 

floating-point number. An embedding matrix converted the OHE vector of the vocabulary to 

embedded token vectors. Hence, the number of rows in the embedding matrix is equal to the 

vocabulary size. The number of columns in the embedding matrix is equal to the dimension of the 
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embedded token vector. GPT-3 trained a linear neural network to learn the matrix that converts the 

token symbols to number vectors. 

Intuition: After training, tokens with contextual similarity will have embedded vectors that are 

closer to each other in the embedding space and unrelated vectors will be further apart. The large 

dense vector makes the vector space sparce. Therefore, word variations can be noisy without being 

confused with other words because of the large gap between them. This is one case where the 

“curse of dimensionality” became a benefit instead of a problem. The “curse of dimensionality” in 

machine learning refers to the increase in learning difficulty as the number of feature dimensions 

increase relative to the training data size (Géron, 2019). 

2.4. Positional Encoding 

Prior to the transformer architecture, the state-of-the-art NLP methods were recurrent neural 

networks (RNNs) and long short-term memories (LSTMs). RNNs process sequential data by 

maintaining a hidden state that updates with each new input in the sequence. The state serves as a 

memory that captures information from previous inputs. However, this dynamic memory element 

tends to lose information about long-range dependencies in the sequence. That is, after a few hundred 

words, the internal state begins to lose context about the relevance of earlier tokens. LSTMs are a type 

of RNN designed to overcome some of the long-term memory issues of RNNs. The LSTM architecture 

incorporates input, output, and “forget” gates in a more complex cell structure to control the flow of 

information. Those complex structures are not important to understand here except that RNN and 

LSTM architectures natively process sequential data, so word ordering is inherently encoded. 

Architectures that inherently process information sequentially are difficult to parallelize so that 

they can exploit parallel computing methods to achieve higher efficiency and speeds. Conversely, the 

transformer architecture did not use the feedback type connections of RNNs and LSTMs so their 

processing elements could be parallelized. However, in so doing, the transformer architecture lost 

the sense of word ordering. The ordering and dependencies of words are important for language 

understanding. This problem introduced the need for positional encoding. Positional information 

helps the LLM to learn relationships among tokens based on both their absolute and relative positions 

in a sequence. There are dozens of methods to encode token positions. GPT-3 learned how to add 

position encoding to tokens by adapting the parameters of its ANN during training to identify an 

undefined approach that is consistent with the objective function (Brown, et al., 2020). 

Intuition: Position encoding helps the LLM learn to capture and exploit the semantic relationships 

between different tokens in the vocabulary based on their position and separation distance. 

2.5. Attention Mechanism 

Token and position embeddings capture syntactic information such as grammatical form and 

structure. However, those embeddings do not necessarily capture semantic information such as 

contextual meaning and tone based on other tokens in a sequence. Figure 3 provides an example of 

how a single word difference can change the contextual meaning of a sentence. The sentences “The 

dog sat on my couch because it was soft” and “The dog sat on my couch because it was tired” share 

the same words and ordering, except the last word. The last word completely changed the meaning 

of the two sentences. Humans intuitively know that the word “it” in the first sentence refers to 

“couch” because of the context “soft” whereas “tired” in the second sentence refers to “dog” because 

of human intuition that a couch cannot feel tired.  
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Figure 3. Example of how a single word difference can change the context of a sentence. 

The self-attention mechanism learns to capture contextual meaning based on how certain tokens 

in a sequence “attend” to other tokens. The mechanism does so by creating contextualized versions 

of each token by adding portions of the embeddings of other tokens that it needs to express. The 

amount of expression added to a token at a given position is based on a normalized weighted 

distribution of all the tokens in the sequence. 

Figure 4 provides an example in two-dimensional vector space to illustrate the effect that the 

self-attention mechanism has when contextualizing word embeddings. In this example, the 

contextualized token “Machine.a” expresses 70% of the token “Machine” and 30% of the token 

“Learning” whereas the contextualized token “Learning.a” expresses 70% of the token “Learning” 

and 30% of the token “Machine”. Hence, the normalized weight distribution for the first token is (0.7, 

0.3) and that for the second token is (0.3, 0.7). The effect is that the two contextualized token vectors 

move closer to each other in the embedded vector space. 

 

Figure 4. Co-relevance vectors moves closer to each other in the embedding space. 
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Intuition: The attention mechanism shifts co-relevant tokens towards each other in the vector space 

to promote their joint probability of expressing the correct context of the sequence. Tokens that 

have the highest weights will drown out those with lower weights indicating that they do not 

contribute much to contextual meaning, even though they contribute to syntax and grammar. Word 

co-occurrence and closeness in embedded space is reminiscent of two key principles in spatial 

science. One is from Waldo Tobler, also known as the First Law of Geography, that “everything is 

related to everything else, but near things are more related than distant things.” (Tobler, 1970). The 

second principle is from the linguist John Rupert Firth that “You shall know a word by the 

company it keeps,” which is a distributional hypothesis (Widdowson, 2007). Both principles express 

the significance of word proximity in expressing contextual meaning. 

Bahdanau et al. (2014) first introduced the attention mechanism in 2014 to dynamically focus on 

various parts of an input sentence during a translation task (Bahdanau, Cho, & Bengio, 2014). 

However, it was not until the introduction of the transformer architecture in 2017 that the attention 

mechanism gained significant recognition (Vaswani, et al., 2017). The first transformer architecture 

modeled the dependencies between tokens in a sequence without the need to rely on previous state-

of-the-art methods like recurrent neural networks and convolution neural networks. Moreover, the 

transformer parallelized operations to be more computationally efficient and faster by using many 

graphical processing units (GPUs) at once. The transformer architecture has since become the 

foundation for state-of-the-art LLMs like ChatGPT and Bard. 

Figure 5 illustrates the flow of vector transformations from the input token embeddings to the 

contextualized vectors. The model packed the input sequence of token embeddings into a matrix X. 

The attention mechanism then computed co-relevance scores for every unique pair of tokens as the 

dot product of their representation vectors. The representation vectors are three projection vectors of 

the input token embeddings called the query, key, and value vectors. During training, the model 

learned the parameters of a linear network (WQ, WK, WV) to produce the three projection matrices Q, 

K, and V that pack the corresponding projection vectors. Each box in Figure 5 represents an operation 

or a matrix of the dimensions shown. The variable n is the number of tokens in the input sequence, 

and dq, dk, dv are the dimensions of the query, key, and value vectors, respectively. The attention 

mechanism typically downsizes the dimension of the three projection matrices from the original 

dimension of the input matrix X. A later section will discuss the intuition behind the dimension 

change. 

 

Figure 5. Calculating the attention vectors for the input sequence. 
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The dot product, also called the inner product, between two equal length n-dimensional vectors 

Q = [q1, q2, ..., qn] and K = [k1, k2, ..., kn] is a scalar value s where 

𝑠 = [𝑞1 ⋯ 𝑞𝑛] × [
𝑘1
⋮
𝑘𝑛

] = ∑ 𝑞𝑖
𝑛

𝑖=1
× 𝑘𝑖 = ‖𝑄‖ × ‖𝐾‖ × cos⁡(𝜃) (1) 

and || . || is the magnitude operator (Bridgelall, 2022). 

Intuition: In linear algebra, the dot product of two vectors is a measure of their similarity 

(Bridgelall, 2022). That is, vectors that point in the same direction (zero degrees) are similar whereas 

vectors that point in different directions (90-degrees) in multidimensional space are dissimilar. That 

is, when the angle is zero between vectors, cos(0) = 1, and their similarity becomes only the product 

of their magnitudes ‖𝑄‖ × ‖𝐾‖. Conversely, when the angle is 90 degrees between vectors, 

cos(90) = 0, and their similarity is zero, regardless of their individual magnitudes. 

Formally, the attention mechanism computes 

𝒁 = SoftMax(
𝑸𝑲T

𝜆
)𝑽 (2) 

where the scaling factor λ =√𝑑𝑘 in the GPT-3 model (Brown, et al., 2020). That is, co-relevance scores 

form the weights in a weighted sum of value vectors V that produce the contextualized vectors in a 

matrix Z. The matrix multiplication Q × KT directly computes the dot product or co-relevance scores, 

which is a square matrix of dimension n × n. The co-relevance scores are for every pairwise 

combination of query and key token representation vectors in the input sequence. The downstream 

SoftMax function, discussed in the next subsection, normalizes the scores to produce a normalized 

distribution of weights used to produce the weighted sum of value vectors. 

Intuition: The query representation vector of a token embedding corresponds to a “question” about 

how relevant other tokens are in relation to that token. The key representation vector of a token 

embedding corresponds to an “answer” to the query that quantifies the relevance of each key to the 

query. Each value representation vector of a token embedding contains the information that the 

corresponding token in the X matrix represents. 

Figure 6 explains how the matrix multiplication is equivalent to generating an n × n square 

matrix S of co-relevance scores or dot products. As highlighted in the figure, the first entry in row 1, 

column 1 is the dot product between row 1 from the Q matrix and column 1 from the transposed K 

matrix. To generalize, the scalar value in row i, column j of the S matrix is the dot product between 

row i of the Q matrix and column j of the K matrix. 

 

Figure 6. Matrix multiplication is equivalent of the dot product. 

In general, the dot product of token vectors with themselves will tend to have the highest co-

relevance scores, which are located along the diagonal of the S matrix. Non-identical token pairs with 

high co-relevance will have high scores that are located off the main diagonal. Figure 7 illustrates a 

matrix of co-relevance scores for every pairwise combination of input tokens in the matrix X. The 
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light color along the diagonal indicates high co-relevance scores whereas the darker colors indicate 

lower co-relevance scores. 

 

Figure 7. Co-relevance scores are associated with every pairwise combination of tokens in the input 

sequence. 

Some contextualized vectors in the output matrix Z will have strong mixes of co-relevance scores 

whereas others may have no co-relevance mix. 

Intuition: One can view vectors with a high mix of co-relevance scores as carrying signals about 

their relationship with other tokens in the sequence. Conversely, one can view contextualized 

vectors with no co-relevance mix as noise because they are standalone tokens that do not express 

meanings from other tokens. The key intuition is that the overall transformer seeks to maximize the 

signal-to-noise ratio, which in turn maximizes the probability of correctly predicting the next token 

in the sequence. 

2.6. SoftMax Function 

The SoftMax function normalizes the co-relevance scores so that they are all positive and sum to 

unity. The formula is 

𝜎(𝒛)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑖𝑑
𝑗=1

 (3) 

where z is a d-dimensional vector of values z = (z1, ... , zd) and σ(z)i is the weight associated with 

element i in the vector. A problem with the SoftMax function is that it biases the largest weights 

towards the largest elements of the vector, which leaves little room to distribute the remaining 

weights across the smaller elements. For example, Figure 8 plots the SoftMax values for a 5-

dimensional vector (d = 5) for the values at positions one (X1) and five (X5). The example vector is X 

= [1, 1, 1, 1, 2]. 

The SoftMax output or weight distribution is [0.15, 0.15, 0.15, 0.15, 0.40] with no scaling, which 

is with λ = 1. Hence, without scaling down the vector, the weight for element X5 is 2.7 times the 

weight of the other elements whereas the element value is only 2.0 times that of the others. As the 

scaling factor increases beyond 1.0, the distribution of the weights begins to equalize towards a 

uniform distribution with weights equal to 1/d or 1/5 = 0.2 for each element. Therefore, the best scaling 

factor will balance the tradeoff between weight dominance and weight uniformity. In this example, 

the scaling factor of √𝑑 = √5 = 2.24 appears near the knee of the two curves and provides a more 

representative distribution of weights as [0.18, 0.18, 0.18, 0.18, 0.28]. That is, the weight of element X5 

is now 1.6 times instead of 2.7 times the weight of the other elements. 
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Figure 8. SoftMax([1,1,1,1,2]/λ) 

Intuition: The square root of the dimension of a vector is a common choice when scaling down the 

magnitude to improve the stability of matrix multiplications. One can understand this choice by 

considering the longest vector in a unit hypercube, which is the diagonal vector that connects two 

opposite vertices and passes through the center. For a hypercube of positive values with side ρ, the 

magnitude of the diagonal vector is √𝜌2 +⋯+ 𝜌2 = √𝑑𝑘(𝜌
2) = 𝜌√𝑑𝑘. Hence, given a hypercube of 

continuous numbers with side ρ = 1, dividing each vector in the space by √𝑑𝑘 normalizes their 

magnitude to unity. The dot product of a diagonal vector with itself is equal to the square of its 

magnitude. Therefore, the dot product of a magnitude normalized diagonal vector with itself is 

unity. 

2.7. Artificial Neural Networks 

An ANN is a computing model invented in the early 1950’s to approximate a basic function that 

scientists believed the biological neuron of a human brain implements (Walczak, 2019). However, a 

lack of computing capacity at the time of ANN development limited its scaling for general 

computational tasks. More recently, the invention of the graphical processing unit (GPU) that can 

efficiently do matrix operations helped to accelerate the utility of ANNs in NLP applications (Otter, 

Medina, & Kalita, 2020). Gaming platforms initially drove the adoption and proliferation of GPUs, 

and subsequently cryptocurrency mining and blockchain development further accelerated demand. 

The ANN is the most crucial element of an LLM because it helps the overall architecture learn how 

to achieve its objectives through training. Therefore, the subsections that follow describe simple 

ANNs in detail to provide an intuitive understanding of how they work and how they can scale to 

learn more complex functions. 

2.7.1. Basic Architecture 

The basic architecture of an ANN is an input layer of artificial neurons or nodes, one or more 

hidden layers of nodes, and an output layer of nodes. The node loosely mimics a biological neuron 

by calculating a weighted sum of its input signals plus a bias signal. The result of the weighted sum 

passes through a non-linear “activation” function to produce the node’s output. Without a non-linear 

activation function, the ANN reduces to linear operations. The literature refers to the type of ANN 

used to build LLMs as a feed-forward neural network (FFNN). That distinguishes it from other 

architectures like recurrent neural networks (RNNs) that incorporate feedback signals from 

intermediate output layers to earlier layers. 
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Figure 9 shows a small FFNN with one input node taking the value x, and one output node 

producing the value y. There are two inner or hidden layers consisting of two nodes each (2H × 2H) 

with labels Hij. The labels for the weights and biases are wij and bij, respectively. In this example, the 

i and j values represent rows and columns of the ANN structure, respectively. 

 

Figure 9. ANN (2H × 2H) function approximator. 

In general, a larger ANN has multiple inputs and multiple outputs, with each corresponding to 

a different feature in the input and output data. The nodes operate collectively to produce an arbitrary 

function of the input. The literature refers to the collection of weights and biases as parameters of the 

network. The developers of GPT-3 scaled the basic architecture of Figure 1 to 175 billion parameters 

(Brown, et al., 2020). For perspective, the human brain has approximately one hundred billion 

neurons, each with thousands of synapses connecting it to other neurons or cells (Wolfram, 2002). 

This suggests that, at the time of this writing, LLMs are far from having the equivalent number of 

learnable parameters as the human brain, which can learn in real-time using less energy. 

2.7.2. Activation function 

The activation function preserves or diminishes the weighted sum of input signals to a node. 

This non-linear action collectively activates neural pathways to propagate a signal along unique paths 

through the network. From a mathematical perspective, the activation function introduces non-

linearity which enables the network to collectively learn a complex function. Early ANNs used the 

sigmoid function for activation. However, later research found that the sigmoid function led to slow 

training convergence. That is, during network training, an algorithm called backpropagation 

calculates incremental adjustments to the parameters so that the output gradually gets closer to the 

true value. The backpropagation algorithm tracks the output error, which is the difference between 

the current predicted token vector and the correct token vector. If further incremental adjustments to 

the parameters do not result in further error reduction, then the training could be stuck at a local 

minimum rather than a global minimum. Subsequent research found that using a simpler rectified 

linear unit (ReLU) activation function resulted in faster network training and better generalization 

performance (Krizhevsky, Sutskever, & Hinton, 2017). Generalization refers to the predictive 

performance of trained models on data never seen during training. 

Intuition: Without a non-linear activation function, the model will be a linear combination of 

inputs. Hence, the linear model would be reducible to a single-degree polynomial that produces a 

linear output. The non-linear activation function effectively adds higher degrees of freedom to a 

polynomial. Hence, like a Taylor series or Laplace transform, ANNs are universal function 

approximators because of their ability to approximate arbitrary functions as multi-degree 

polynomials (Hornik, Stinchcombe, & White, 1989). 

The sigmoid function is 

Sigmoid(𝑥) =
1

1 + 𝑒−𝑥
 (4) 

 

and the ReLU function is 
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𝜓(𝑥) = max(0, 𝑥). (5) 
The ReLU function implements a deterministic node dropout (zeroing of the output) for 

negative values and an identity function (replicating the input) for positive values. Subsequent 

research found that a Gaussian Error Linear Unit (GELU) can replace deterministic dropout with 

stochastic dropout and then transition to the identity function to yield better convergence (Hendrycks 

& Gimpel, 2016). The GELU function is 

GELU(𝑥) = 𝑥⁡𝑃(𝑿 ≤ 𝑥) (6) 
where P is a probability, and the features of the vector X are N(0, 1) distributed. The notation N(μ, σ) 

refers to a normal distribution with mean μ and variance σ. A disadvantage of the GELU function is 

its computational complexity relative to the ReLU function. However, Hendrycks and Gimpel (2016) 

suggested the following function as a fast approximation (Hendrycks & Gimpel, 2016): 

GELU(𝑥) =
𝑥

2
[1 + tanh [√

2

𝜋
(𝑥 +

39𝜋

2740
𝑥3)]] (7) 

Figure 10 plots the three activation functions for comparison. The ReLU has no signal “leakage” 

to the output for negative input values. Conversely, the Sigmoid and GELU have positive and 

negative output leakage, respectively, for negative input values. Although the ReLU is much simpler 

among the three activation functions, it has a discontinuity at zero when taking the derivative as part 

of the backpropagation algorithm. Therefore, the training algorithm must define the derivative at 

zero as either 0 or 1. 

 

Figure 10. Comparison of ReLU, Sigmoid, and GELU activation functions. 

2.7.3. Multi-Layer ANN 

Scaling an ANN to learn more complex functions like a natural language involves increasing 

both the width and depth of the nodal structure and the degree of connectivity among the nodes. 

One can visualize the width as a vertical arrangement of nodes and the depth as horizontal layers of 

the vertical arrangement. An ANN creates an arbitrary function by learning parameters that produce 

intermediate outputs at each node that then combine to piece-wise approximate a complex function. 

Figure 11 shows how the ReLU function changes by adjusting various weights and bias parameters. 
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Figure 11. ReLU activation functions with various parameters and scaling. 

The sub-functions at the output of the first layer of nodes with ReLU activation cannot leave the 

x-axis. However, adding another inner layer of nodes with ReLU activation adds flexibility to create 

more complex sub-functions that can leave the x-axis. 

The following example of approximating a sine wave offers some insight into how sub-functions 

of the ReLU activation combine to create the output. Figure 12 shows a small ANN within one hidden 

layer consisting of three nodes with ReLU activations. The vector representations for the input 

weights w(i), biases b(i), and output weights w(u),  are 

𝑤(𝑖) = [

𝑤11

𝑤21

𝑤31

] , 𝑏(𝑖) = [

𝑏11
𝑏21
𝑏31

] , 𝑤(𝑢) = [

𝑤12

𝑤22

𝑤32

] (8) 

The vector of values produced from the hidden layer H(1) is 

𝐻(1) = 𝜓(𝑤(𝑖) ∙ 𝑥⁡ + ⁡𝑏(𝑖)) (9) 

where the dot is the dot product operator and ψ is the ReLU activation function. 

 

Figure 12: Neural network with one hidden layer of three nodes with ReLU activation (1H: 3×1). 

The output y is 

𝑦 = 𝑤(𝑢) ∙ 𝐻(1) (10) 
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Putting it all together, the ANN in this scenario implements a function that produces a single 

scalar output y that depends on the weights, biases, and the non-linear activation function where 

𝑦 = [

𝑤12

𝑤22

𝑤32

] ∙ 𝜓 ([

𝑤11

𝑤21

𝑤31

] ∙ 𝑥⁡ +⁡[

𝑏11
𝑏21
𝑏31

]) (11) 

Figure 13a shows how the learned parameters approximated a sine wave y = sin(π·x) within the 

x range of [-1, 1].  

 

Figure 13. ANN (1H: 3×1, ReLU) a) sinusoid estimation, and b) intermediate functions. 

The learned parameters were 

𝑤(𝑖) = [
5.5
6.3
2.0

] , 𝑏(𝑖) = [
−2.8
3.0
2.1

] , 𝑤(𝑢) = [
−0.9
0.7
−1.0

] (12) 

Figure 13b shows the intermediate inputs to the output node y from the three paths through the 

network. 

Intuition: the combination of parameters (weights and biases) scaled and shifted the ReLU function 

so that their final sum produced a nonlinear output that approximates the function. 

The root-mean-square-error (RMSE) for the 1H: 3×1 network with three learned parameters was 

0.37. Increasing the number of inner nodes to six increased the number of learnable parameters to 18 

but the RMSE declined to 0.141, which is a factor of 2.6. Figure 14a shows the function approximation 
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and Figure 14b shows the trend in RMSE decrease with each additional inner node. The observed 

trend was that moving from two to three inner nodes produced the greatest decline in RMSE, but the 

subsequent decline in errors was only asymptotic. 

 

Figure 14. ANN {1H: 6×1, ReLU} a) sinusoid estimation, and b) RMSE trend. 

So, changing the ANN architecture by adding one additional inner layer as shown earlier in 

Figure 9  resulted in a lower RMSE of 0.153. That RMSE was between the value achieved by the five- 

and six-node single layer networks. The two-layer network with two nodes per layer computed the 

following function of 12 parameters: 

𝑦(𝑥) = 𝜓 [[
𝑤12 𝑤32

𝑤22 𝑤42
] 𝜓 [[

𝑤11

𝑤21
] 𝑥 + [

𝑏11
𝑏21

]] + [
𝑏12
𝑏22

]]

𝑇

[
𝑤13

𝑤23
] (13) 

The trained weights were: 

𝑤(𝑖) = [
𝑤11

𝑤21
] = [

1.80
−8.94

] , 𝑏(𝑖) = [
𝑏11
𝑏21

] = [
0.54
5.80

] (14) 

𝑤(1) = [
𝑤12 𝑤32

𝑤22 𝑤42
] = [

−3.03 −0.28
−86.13 −18.34

] (15) 

𝑤(𝑢) = [
𝑤13

𝑤23
] = [

−0.92
0.02

] , 𝑏(𝑢) = [
𝑏12
𝑏22

] = [
4.25
201.84

] (16) 

Intuition: Using more inner layers with fewer nodes increases the flexibility of combining more 

complex piecewise sub-functions of the ReLU activation pathways, resulting in fewer computations 

to learn parameter values. For example, the six-node single layer network had 18 parameters to 

learn but produced a higher RMSE than the four-node two-layer network which had six fewer 

parameters (12) to learn. 

2.7.4. Network Training 
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During training, the network incrementally learns the value of each parameter that best predicts 

the output from a given input. Also, during training the backpropagation algorithm incrementally 

adjusts all the model parameters in a direction that gradually decreases the error with each training 

iteration. A differentiable loss function of the error enables the backpropagation algorithm to 

compute gradients. That is, a derivative of the loss function with respect to a parameter produces a 

gradient that tells the algorithm the direction to adjust that parameter to reduce the error. The 

derivative uses the chain rule of calculus to propagate parameter adjustments backwards from the 

output. The adjustments are incremental to make it easier for the algorithm to find a global minimum 

instead of a local minimum of the loss function. Backpropagation uses a method called stochastic 

gradient descent (SGD) that adds randomness to the process which further prevents the error from 

being stuck in a local minimum. 

The amount of adjustment is a hyperparameter called the learning rate. A training epoch is one 

complete pass through the training data. Training involves multiple epochs to achieve convergence. 

The term convergence in the context of machine learning is the point at which the prediction error or 

loss is within some predetermined value range where further training no longer improves the model. 

The point of convergence is equally applicable to self-supervised and supervised types of machine 

learning. Perplexity is another measure often used to determine when the machine has learned 

sufficiently well to generalize on unseen data. The goal is to minimize perplexity, which indicates 

that the model consistently assigns higher probabilities to the correct predictions. 

2.8. Residual Connections 

Microsoft research found that training and testing errors in deep models tend to plateau with 

each additional layer of the ANN (He, Zhang, Ren, & Sun, 2016). The vanishing gradient problem 

became more pronounced with increasingly deep models. That is, the gradients calculated to adjust 

parameters can become excessively small. For example, when the backpropagation algorithm uses 

the derivative chain rule to multiply a series of values that are less than 1.0, the result can be 

exceedingly small. For instance, a value of 0.1 multiplied only 5 times (once per layer) yields (0.1)5 = 

0.00001. The training slows or even halts when gradients become excessively small because 

parameter updates during backpropagation, which is based on the size of gradients, become 

correspondingly smaller in layers closer to the input. 

Microsoft research found that making a neural network layer fit a residual mapping of the input 

to the output instead of fitting a new learned function helped to address the degradation problem 

(He, Zhang, Ren, & Sun, 2016). Formally, if H(x) is an underlying mapping that enables a layer to 

contribute to generalized learning, then the residual (difference) will be F(x) = H(x) – x. Algebraically, 

the underlying mapping becomes H(x) = F(x) + x. The interpretation here is that a residual is simply 

adding the layer input x back to its output, which is a learned residual function F(x) that contributes 

to the underlying mapping. Hence, when the output is close to the input, the residual (difference) 

will be small. The study hypothesized that if the optimum mapping for one or more layers turned 

out to be the identity (pass through) function, then the network would be more adept at pushing the 

residuals towards zero than it would be at fitting a new identity function at each layer to propagate 

the input signal (He, Zhang, Ren, & Sun, 2016). Practically, the residual connection forms a shortcut 

around one or more layers of the vector mappings. 

Intuition: The residual connection adds back some of the input vector to the output to prevent loss 

of signal propagation. Residual connections help to alleviate the vanishing gradient problem by 

maintaining the flow of signal and gradients through the network layers. That is, if a layer learns 

nothing new, it might produce no signal, which would eliminate signal propagation to the upper 

layers when new training data arrives. Therefore, adding the input signal back to the output 

prevents signal dropout as the network learns to generalize. 

Figure 15 extends the example from Figure 4 to show the residual vector formed from the 

summation of the original vector “Machine” and its attention version “Machine.a” as “Machine.r”. 

Similarly, the figure shows the residual vector formed from the summation of the original vector 
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“Learning” and its attention version “Learning.a” as “Learning.r”. The effect of forming the residual 

was to boost the attention vector magnitudes towards the original vectors. That is, if learning nothing 

new resulted in zero signal propagation, the residual connection shifted the input representation 

slightly without significantly modifying the token representation so that learning can continue 

without degradation. 

 

Figure 15. Residual and standardized residual vectors maintain their relative relationship in the 

embedding space. 

2.9. Layer Normalization 

When training deep networks, in addition to the vanishing gradient problem, the gradients 

calculated to adjust parameters can also explode if they get too large. For example, multiplying the 

number 10 only five times yields 105 = 100,000. Large gradients make the training unstable because 

of parameter oscillations that prevent training convergence. Normalization helps to prevent both 

vanishing and exploding gradients while increasing training speed and reducing bias (Ba, Kiros, & 

Hinton, 2016). GPT-3 uses a method called layer normalization, which standardizes the vectors of all 

inputs from a single training batch before presenting them to the nodes of a layer, and prior to the 

activation function. 

The standardization process first computes the mean and standard deviation across all the 

elements of all vectors in a training batch. The procedure then subtracts the mean from each element 

of all vectors (also called shifting), and then divides by the standard deviation (also called scaling). 

The result is a collection of elements from all the layer vectors that have a distribution with zero mean 

and unit variance. 

Intuition: Standardization keeps the vector sizes comparable so that the output remains stable 

when computing gradients during backpropagation. The SGD algorithm used in backpropagation 

works best with normalized features (Géron, 2019). That is, the size of the weights for the direction 

of adjustment will convey relative importance when the magnitude of all the vectors is comparable. 

Figure 15 shows the effect of standardizing the residual vector “Machine.r” to “Machine.rs” and the 

residual vector “Learning.r” to “Learning.rs”. The standardized vectors maintain their relative 

separation distance, magnitude, and direction relationships in the vector space. 
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2.1. 0Objective Function 

The goal of classical statistical language modeling was to learn the joint probability of word 

sequences. However, that was an intrinsically difficult problem because of the large dimension of 

possibilities. Bengio et al. (2000) addressed this issue by pioneering a technique to train language 

models by predicting the next word in a sequence (Bengio, Ducharme, & Vincent, 2000). 

Mathematically, training tunes the model parameters Θ to maximize a conditional probability P in a 

loss function L1 where  

𝐿1(𝑪) = ∑log𝑃(𝑐𝑖|𝑐𝑖−𝑘, … , 𝑐𝑖−1; 𝜣)

𝑖

 
(17) 

 

and C = {c1, ..., cn} is a set of n tokens in a training batch that make up characters, words, and subwords 

in the sequence (Radford, Narasimhan, Salimans, & Sutskever, 2018). The input context window of 

the model holds a maximum of k training tokens at a time. The training technique is self-supervised 

because it masks the next token in a training sequence prior to its prediction. The SGD algorithm 

backpropagates incremental adjustments to the model parameters so that the error between the 

predicted and correct token gradually declines to some predetermined level (Géron, 2019). Instead of 

training on a single example at a time, the model trains simultaneously on a batch of examples. The 

loss function is the average of the differences between the predictions and the correct tokens. 

Intuition: In traditional supervised training, developers must curate a large amount of output 

labeled data with inputs {x1, ..., xm} and output {y} for each example. Unlike supervised training, the 

self-supervised training data already contains the label, which is the next word in a sentence 

example from the training corpus. That is, self-supervised training is less costly than supervised 

training while being amenable to a massive corpus of training examples from the Internet and other 

digital media to steadily build even larger language models. 

3. LLM Methods 

This section describes the overall architecture of GPT-3 and demonstrates how it uses the various 

NLP techniques discussed in the previous section. Figure 16 provides an overview of the GPT-3 

architecture. The left side of the diagram shows the token flow from their vector embeddings at the 

bottom to their transformation into contextualized vectors and output probabilities at the top. The 

model first transforms an input sequence of tokens in the context window to embedded vectors. The 

model then adds positional encoding so that the decoder has information about their order and 

separation distance in the input sequence. The model then packs the transformed input tokens into a 

matrix X that the decoder uses during training and inference. 
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Figure 16. Overview of the GPT architecture. 

During training, the model learns the parameters of its ANN in the decoder stack to maximize 

the probability of correctly predicting the next token in the input sequence. After training, the model 

has learned the underlying phenomenon that produced all the text corpus used to train it. That is, the 

model learned general knowledge from the training examples to generate responses that are 

consistent with human understanding, within the context of the prompt. 

During inference, the model gives the impression that it understands the syntax, semantics, and 

context of a prompt sufficiently well to produce a sensible and informative response. The inference 

is statistical in nature because once the model decides on a response, it begins to generate natural 

language that conveys the essence of the response, constrained by choosing the next word that is 

consistent with a pre-determined probability setting. That is, downstream developers can set a 

hyperparameter called “temperature” that tells the model what probability level to use when 

predicting the next word in its response. A temperature of zero tells the model to pick the next word 

that is associated with the highest probability whereas a higher setting causes the model to produce 

more “creative” responses by picking lower probability next words. 

Intuition: The language portion of the human brain encapsulates a complex cognitive function that 

grasps the rules of grammar and sentence structure, comprehends the meaning of words and how 

their relationships with other words form meaningful expressions. Humans understand the broader 

context of a sequence of words based on topic, style, and intent. Scientists still do not know how 

that cognitive function of language generation works in either the brain or the LLM. However, the 

LLM learned a version of that complex function and will expectedly learn better approximations of 

it with more parameters. 

Predicting the next word based on probabilities led to limitations of LLMs. For example, if the 

prompting is ambiguous or lacks context, the model can confidently produce inaccurate or 

nonsensical responses called hallucinations that still seem plausible. The subsections that follow 

discuss each part of the architecture in greater detail by referring to the explanations of the 

background methods discussed in the previous section. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 May 2023                   doi:10.20944/preprints202305.0900.v1



 21 

 

3.1. GPT Architecture Overview 

Language understanding requires knowledge about word syntax, word position in a sequence, 

semantics, and overall context. An LLM transforms every word in a sentence to encode those key 

language concepts. The token embedding and position encoding schemes capture mostly the 

syntactic and grammatical structure among words. As discussed previously, the attention 

mechanism captures the semantic and contextual meaning of the input sequence. The middle of 

Figure 16 shows an exploded view of the first decoder in the stack of decoders. The right side of 

Figure 16 shows an exploded view of the attention mechanism described earlier (Figure 5). The first 

decoder layer performs the transformation: 

𝒁0 = 𝑿𝑾e +𝑾p 
(18) 

 

where the matrix X = (x-n, ..., x-1) contains the token symbols x in the context window of size n. GPT-3 

uses n = 2048 (Brown, et al., 2020). The matrix We is the token embedding matrix, and Wp is the 

position encoding matrix. Figure 16 annotates the dimension of each matrix in the superscript 

indicated next to the output of a functional block. The dimension of each token vector is d. GPT-3 

uses d = 12,288 (Brown, et al., 2020). 

The decoders in subsequent layers of the stack of N decoders process the output of the previous 

decoder. The last layer in the decoder stack produces the contextualized token matrix Z. The linear 

network at the output of the decoder stack converts the contextualized token vectors to logit vectors 

in matrix Y where the dimension of each vector is the length of the vocabulary indicated as m. GPT-

3 uses m = 50,257 (Brown, et al., 2020). The SoftMax function normalizes each logit value to a 

probability distribution over the vocabulary. Therefore, the position of the peak value points to the 

position of the predicted next token in the vocabulary if the temperature setting is zero. During 

inference, the decoder predicts tokens in time steps, one token at a time. The decoder adds each 

predicted token to the input context window to build the input sequence and then predicts the next 

token based on the updated objective function. The looping terminates when the input receives a 

special stop token. 

The exploded view of the decoder in the middle of Figure 16 shows that the output of the 

attention mechanism feeds into a residual connection, which then feeds into a layer normalization 

block that standardizes the batch of co-relevance vectors. The FFNN (FFn) at each token position 

independently adjusts the co-relevance vector at that position to further refine its meaning in 

preparation for more self-attention processing in later decoder layers. 

3.2. Multi-headed Attention 

The GPT architecture uses more than one block of attention mechanism per decoder layer. GPT-3 

uses h = 96 attention heads (Brown, et al., 2020). 

Intuition: Each head of an attention block learns to focus on various parts of the input token 

sequence when computing co-relevance scores. The SoftMax function distributes the co-relevance 

scores differently, depending on the levels of dot product mix that each attention head computes 

and on how the FFNN in the previous layer transformed the previous contextualized vectors. With 

multiple attention heads learning different focus areas, the final concatenation of the attention 

vectors will have a richer mix of co-relevance from multiple parts of the input sequence. Figure 17 

shows an example with two attention heads. The first head “Head 1” focused on the co-relevance 

between “it” and “dog” whereas the second head “Head 2” focused on the co-relevance between 

“sat” and “tired”. In this example, the concatenation matrix learned to combine the co-relevancies 

from both heads into single representation combining them. 

The GPT-3 implementation of attention heads maps the Q-K-V representation vectors to a lower 

dimension so that the computational cost for the combined heads would be equivalent to that for a 

single head of the full dimension. GPT-3 reduced the dimension of each head from 12,288 to 12,288/96 
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= 128. A learned linear network converted the concatenation of matrices from all the attention heads 

back to a single contextualized output matrix of the original dimension. 

Intuition: Splitting the computational cost across attention heads leads to a tradeoff between token 

dimension and the number of attention heads. Larger dimension token vectors hold more 

information and improve model performance whereas multiple heads bring more diversity to the 

model. LLM developers are still experimenting to determine the best tradeoff between vector 

embedding dimension and the number of attention heads. 

 

Figure 17. Concatenation of co-relevance from different attention heads. 

3.3. Sparse Attention 

The computation cost to generate co-relevance scores is quadratic in sequence length. However, 

some co-relevance matrices can be sparse where large partitions of it contain zero co-relevance. 

Consequently, techniques emerged to reduce computational cost and memory requirements to 

process sparse co-relevance matrices by focusing computations only on submatrices that have co-

relevance (Child, Gray, Radford, & Sutskever, 2019). The GPT-3 architecture differs slightly from the 

previous version in that the decoder layers alternated between dense and sparse co-relevance matrix 

factorization (Brown, et al., 2020). The factorization technique splits the original co-relevance matrix 

into smaller sub-matrices that have proportionally less non-zero elements. Hence, factorized matrices 

will operate on nearby tokens that have stronger co-relevance. 

Intuition: Factorization takes advantage of matrices with few signal areas by focusing computation 

only on those areas. Operating on smaller sub-matrices that have signal allows the model to scale to 

longer input sequences while maintaining its efficiency in capturing relevant information. The 

tradeoff is that sparse attention matrices may lose some information or signal, resulting in reduced 

expressiveness. Therefore, alternating layers between full and sparse attention results in an 

acceptable compromise between performance and computational cost. 

3.4. Masked Self-Attention 

Self-supervised training requires that the model hide or mask future words in the training 

sequence prior to their prediction. The mask is a square matrix containing “1” on and below the main 

diagonal, and negative infinity above the diagonal. Figure 18 shows an example of the mask matrix. 
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Figure 18. Mask matrix for the attention scores. 

Elementwise multiplication of the mask matrix with the co-relevance score matrix produces 

large negative numbers in the upper diagonal. This way, the SoftMax function converts the large 

negative numbers to near zero so that the model cannot include tokens after the current position of 

prediction. That is, the mask prevents the decoder from computing contextualized value vectors for 

future tokens while still permitting parallelized matrix operations. 

Intuition: During inference, the next token prediction begins with a special start token. The decoder 

autoregressively adds each newly predicted token to the output sequence of predictions. The 

attention mechanism computes an attention score matrix in parallel by using the input sequence 

plus all the tokens in the output sequence, including future tokens. However, the mask produces 

zeros for contextualized vectors beyond the current position of token prediction. That is, the mask 

ensures that at each prediction timestep, weights from the SoftMax that correspond to future 

unpredicted tokens will be zero without compromising the ability to parallelize computations. 

3.5. Decoder Levels 

The GPT-3 architecture uses more than one decoder layer. GPT-3 uses N = 96 layers, which is the 

same as the number of attention heads per layer (Brown, et al., 2020). As illustrated in Figure 16, the 

structure of each decoder in the stack is identical. Hence, the GPT-3 architecture is effectively as wide 

as it is deep in computational elements. As with the number of attention heads, the number of 

decoder layers is a hyperparameter. Too few layers can diminish a model’s capacity for learning 

complex rules but too many layers can increase the risk of overfitting, which spoils the model’s ability 

to generalize. 

Intuition: Each decoder layer makes further adjustments to the contextual representation of tokens 

based on learning something different about how tokens in the sequence influence each other to 

express meaning. The contextualized meanings of current tokens may change as the decoder 

predicts future tokens. Researchers demonstrated that downstream decoder layers gradually 

express global (deeper) dependencies versus local (shallow) dependencies among tokens (Geva, 

Schuster, Berant, & Levy, 2020). The lower layers tend to learn shallow syntactic patterns, whereas 

the downstream (higher) layers tend to learn semantic patterns of global context. Hence, each layer 

can capture various levels of abstraction, learn hierarchical representations from low-level features 

to high-level semantics, and promote modular learning. Multiple layers increase the model’s 

capacity to combine and transform information flowing through the layers in complex ways to 

capture intricate and non-linear relationships among the tokens, including information from distant 

tokens in the input sequence. 

3.6. Feed Forward Neural Network 

Each position of the input context window has an identical but independent and fully connected 

FFNN. Each FFNN of the GPT-3 architecture uses two hidden layers, each with four times the number 

of nodes as there are dimensions of the input vectors. Hence, the GPT-3 architecture has 4 × 12,288 = 
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49,152 nodes in each of the two hidden layers (Brown, et al., 2020). Research found that the FFNN 

accounts for two-thirds of the model parameters (Geva, Schuster, Berant, & Levy, 2020). Using the 

same FFNN at each position simplifies the model architecture and reduces the risk of overfitting. The 

independent FFNN at each position learns to continuously adjust the contextualized vector and 

influences how the linear networks below it learns to produce the Q-K-V projection matrices and the 

linear network to maximize the accuracy of the next token prediction. 

The FFNN at each token position also behaves like a memory element that learns how the 

contextualization of tokens at that position results in the expression of both local and global semantic 

relationships. The memory element learns to capture local information, non-linear interactions, and 

patterns among tokens that appear at that position. The underlying syntactic and semantic rules of a 

language govern the probability that specific words will appear at specific positions, and those 

statistics are language dependent. For example, sentences often begin with subjects ("I," "you," "he," 

"she," "it," "we," "they") or proper nouns such the names of people or places (Manning & Schutze, 

1999). 

Intuition: Having independent FFNN at each position enables efficient parallelized operations that 

can occur independently and simultaneously across multiple independent processors. The linear 

network above the decoder stack computes a joint probability distribution over the vocabulary for 

the contextualized tokens that flow through each position. As exemplified in Bayesian statistics, 

independence is an important property when computing a joint conditional probability 

distribution. 

3.7. Linear Output Layer 

The linear output layer converts each of the final contextualized tokens in the output matrix Z 

to probability distributions Y over the fixed vocabulary. The output matrix for a single training batch 

has the dimensions (sequence length × vocabulary size) = (n × m). Each vector in the output sequence 

contains a set of m logit values representing the probability distribution of that token over the entire 

vocabulary. The logit value in each position of the vector corresponds to the probability that the 

predicted token is the one at that position in the vocabulary. 

The linear layer shares network parameters with the input word embedding network. Sharing 

parameters achieves token lookup consistency and memory savings. The probability distribution for 

the predicted token depends conditionally on the joint probability distribution of the contextualized 

tokens at prior positions. Experiments revealed that the probability distribution for the set of 

predicted tokens follows a power law decay that is characteristic of general language statistics where 

the nth most frequent word occurs with a frequency of 1/n (Wolfram, 2002). Therefore, only a few 

words will rank highest in probability. As discussed earlier, the “temperature” hyperparameter 

determines the token selection based on its next token probability rank. A SoftMax function that 

follows normalizes the logit values to positive numbers that sum to unity, which also directly ranks 

the probabilities. 

During training, the loss function is the difference between the probability vector and the OHE 

vector that represents the correct target token in the vocabulary. The error is simply a difference 

between the OHE vector and the probability distribution for the predicted token. 

Intuition: If one visualizes the sequence of next token predictions as following a trajectory in 

linguistic vector space, then the path’s “signature” could represent distinct information. Just as the 

forces acting on a particle in physical space shapes a trajectory, one can think of the complex 

interactions between tokens and their semantic relationships as “forces” that shape a trajectory in 

linguistic vector space to represent information that could be a unique idea, concept, or memory 

about facts digested from the massive training corpus. 

4. Training Methods 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 May 2023                   doi:10.20944/preprints202305.0900.v1



 25 

 

The next subsections describe the three stages used to train an LLM. The first stage uses a self-

supervised method, the second uses a supervised fine-tuning method, and the third stage uses 

reinforcement learning with human feedback to train a rewards model. 

4.1. Self-Supervised Learning 

Research found that the LLM’s ability to follow human instructions increases as the training data 

and model size increases (Bubeck, et al., 2023). The self-supervised learning of LLMs used a massive 

text corpus from the Internet and other places. Sources included books, Wikipedia, periodicals, and 

high-ranking websites. GPT-3 trained on corpus that collectively contained three hundred billion 

tokens (Brown, et al., 2020). Lambda Labs hypothesized that, based on the model size, GPT-3 trained 

for “a few weeks” on several thousand GPUs in parallel, with the equivalent being 355 years on a 

single state-of-the-art 28 TFLOP GPU in 2020 (Li, 2020). One TFLOP is one trillion floating-point 

operations per second. 

Intuition: The trends reported by OpenAI suggested that performance scales when the model size 

is comparable to the training data size. A common misconception is that the model directly stores 

data by compressing the training tokens. One can understand that this is not the case by calculating 

a token compression rate in tokens per learnable parameter. GPT-3 has 175/300 = 0.6 tokens per 

learnable parameter, which is hardly any compression at all. That is, if one interprets this metric as 

the model using one ANN parameter to carry the information in a little less than one token, then 

one cannot interpret the model to be simply a memory model. In other words, we know that the 

“black box” has many artificial neurons, but we do not understand how they operate collectively to 

implement a cognitive function of language understanding, language generation, and common-

sense knowledge. 

4.2. Fine-Tuning 

Although the pretrained model learned natural language, it does not necessarily have the skills 

to generalize on specific tasks. Common examples of specific tasks are sentiment classification, text 

generation, text summarization, question answering, language translation, and code generation. 

Fine-tuning is a method to “transfer” the knowledge from a pre-trained model by adapting it to a 

specific task or domain. Fine-tuning uses supervised learning based on datasets labeled by humans. 

Such datasets demonstrate desired behavior and responses for various tasks or instructions. The 

dataset C used to train a supervised fine-tuned (SFT) model has token sequences [x1, ..., xm] and the 

desired output labels y. The developers modify the pretrained model by adding another linear layer 

with parameters Wy to the output hlm of the last decoder. Hence, the transformation performed is 

[hlm][Wy]. The model then learns the parameters of Wy by training it with each instance of the entire 

labeled dataset C. After training, the SoftMax produces the probability of a label y given an unseen 

input sequence [x1, ..., xm]. Hence, the SFT learned to maximize the following objective function over 

all instances {[x1, ..., xm], y} in the labeled training dataset C (Radford, Narasimhan, Salimans, & 

Sutskever, 2018): 

𝐿2(𝑪) = ∑ log𝑃(𝑥1, … , 𝑥𝑚; 𝜣)

(𝑥,𝑦)

 
(19) 

 

 

Intuition: Fine-tuning tailors the SFT model to the specific nuances of a given task or domain so 

that it can generalize better on unseen data. Other advantages of fine-tuning are faster convergence 

with fewer labeled datasets from a specific domain. For instance, GPT-1 used 100 epochs for self-

supervised pretraining and 3 epochs for supervised finetuning (Brown, et al., 2020). Supervised 

fine-tuning enables companies to create domain-specific models by using their private or 

proprietary datasets. 
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4.3. Reinforcement Learning 

SFT language models have a limited ability to align with user intentions. Their responses could 

lack helpfulness, contain inaccurate facts, lack interpretability, and include toxic, offensive, or 

harmful content. To address that problem, ChatGPT developers used a reinforcement learning (RL) 

technique to augment the SFT model. The RL method helped the SFT model learn a “policy” to better 

align it with human intentions. The technique first used human feedback to train a separate 

“rewards” model. The reinforcement learning with human feedback (RLHF) method trained the 

rewards model to produce a scalar rewards output based on a series of responses from the SFT model 

to a prompt (Ouyang, et al., 2022). The RLHF technique required human labelers to rank four to nine 

responses from the SFT model to a single prompt. To simplify the ranking task, human labelers 

ranked pairs of responses separately, for all unique combinations of responses, based on their quality 

or appropriateness for a given task or instruction. The prompt and the batch of pairwise ranked 

responses became the training data for the rewards model. Figure 19 illustrates how the trained 

model from RLHF then trains the SFT model for alignment. 

 

Figure 19. Training the SFT model using RLHF. 

The trained rewards model automatically generates a scalar reward to further train the SFT 

model to improve its alignment with preferences of the human trainer. The RL method included the 

reward in the backpropagation during training. In this way, the SFT model developed policies to 

maximize its cumulative reward over time. ChatGPT used a method called proximal policy 

optimization (PPO) to ensure that the model does not overfit to rewards. That is, PPO assured that 

the new policies created did not deviate much from the original learned capabilities of the SFT model 

that enabled it to generalize on unseen data (Ouyang, et al., 2022). 

Broadly, model alignment refers to the ability of AI models to align with user intentions. 

However, “user intentions” can be varied and conflicting. The capabilities of LLMs to blur the 

distinction between human- and AI-generated content has raised concerns about misinformation, 

manipulation, and misuse. Examples include perpetuating stereotypes, discrimination, or offensive 

content, sharing confidential information, generating fake news, propagating computer viruses, and 

teaching perpetrators how to easily harm people while evading discovery (Schaul, Chen, & Tiku, 

2023). 

Intuition: LLMs train on a corpus written by humans from all backgrounds, cultures, persuasions, 

and ideologies. Therefore, LLMs will exhibit bias and produce content that will be toxic to certain 

groups and yet align with the values of other groups. In general, AI developers want models to 

achieve the 3H qualities, which means that they should be harmless, helpful, and honest. However, 

those three qualities can mean different things to different people. Therefore, LLM alignment and 

the development of ethical standards for AI will be an ongoing challenge and are active areas of 

research. 

5. Conclusions 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 May 2023                   doi:10.20944/preprints202305.0900.v1



 27 

 

The proliferation of data on the Internet combined with the exponential growth in computing 

capacity and the discovery of a more capable language model architecture led to a tipping point in 

the performance of AI chatbots. This primer provided a comprehensive and accessible tutorial on 

large language models (LLMs) such as ChatGPT and Google’s Bard. The goal was to demystify their 

underlying theory, architecture, and methods for a broad audience. The primer provided insights 

into key computing elements, architectural choices, and state-of-the-art training methods that have 

enabled these models to achieve groundbreaking performance. Prompt engineering is an emerging 

skill that users will need to achieve effective interaction with a computer through natural language. 

This new way of human-computer interaction has significantly increased the accessibility of 

computers, which will pave the way for an explosion of novel applications across various domains. 

With continued advancements in LLM capability, it is crucial for researchers, developers, and users 

to understand their inner workings. The future discovery of more efficient architectures, the 

development of dedicated neural network microchips, and the emergence of AI models that can train 

even more powerful AI models will lead to ever-scaling advancements. Hence, fostering a broader 

understanding of LLMs will contribute to responsible innovation and informed discussions on their 

potential impact on society, ensuring that humans harness the technology for greater good while 

eliminating unintended negative consequences. 

6. Future Work 

Readers at the time of this writing will remember using a deck of “punch cards” to program 

computers through the 1980s. Since then, low-level computer languages, like assembly language, 

replaced punch cards. Later higher-level programming languages like Basic, C, Java, and Python 

replaced assembly language. The human-machine interface also switched from in-line typing (e.g., 

disk operating system) to a graphical user’s interface (GUI) with application icons. At the time of this 

writing, humanity has entered a new era of human-machine interface where users can use natural 

language to instruct computers. This capability has increased the accessibility of computers to a much 

larger population. 

Continued accessibility enhancement will result in an explosion of new applications across all 

domains. For example, users can do simple tasks like asking for recipes that use a finite set of 

ingredients to more complex tasks such as data mining a biological dataset to discover a cure for a 

disease. However, there are various levels of prompting complexity that can have an enormous effect 

on the quality and helpfulness of the responses from the AI chatbot. The familiar adage “garbage in, 

garbage out” still holds. 

Prompt engineering has emerged as a new skill to appropriately prompt LLMs to produce 

desired results. Good prompts will have four parts: Context setting, specific instructions, 

format/structure, and optional examples. 

• Context setting provides a brief background about the topic or task. This guides the AI into an 

internal state for understanding the context for which it should generate a response. That is, 

LLMs rely on the information provided in the prompt to understand the topic for generating 

meaningful and relevant responses. 

• Specific instructions clearly state the requirements, questions, or tasks without any ambiguity. 

This focuses the LLM to reduce changes of generating irrelevant or off-topic responses. 

• Format/structure tells the LLM the format or sentence structure to produce the response. This 

includes word count, bullet points, and headings of an outline. The AI can also produce output 

in tabular form or indirectly generate graphics in HTML using scalar vector graphics (SVG) that 

a browser can render. 

• Examples providing the LLM with desired outputs helps it better understand the style, format, 

or output sought. The results improve with one or more examples. The literature refers to 

providing zero, one, or more examples as zero-shot, one-shot, or few-shot prompting, 

respectively. 
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Research posited that “chain-of-thought” prompting elicits “reasoning” in LLMs (Wei, et al., 

2023). No doubt, discoveries of new prompting “hacks” will follow. Prompt engineering has emerged 

as a new sought-after skill and dozens of books are already available on the subject. Future work will 

examine approaches towards achieving AGI, which may require innovations that go beyond simply 

continuing to increase the model size and training data. 
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