Pre prints.org

Review Not peer-reviewed version

Unraveling the Mysteries of Al Chatbots

*

Raj Bridgelall

Posted Date: 12 May 2023
doi: 10.20944/preprints202305.0900.v1

Keywords: Generative Artificial Intelligence; Large Language Models; ChatGPT; Bard; Transformer
Architecture; Prompt Engineering

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Review

Unraveling the Mysteries of AI Chatbots

Raj Bridgelall

Transportation, Logistics & Finance, College of Business, North Dakota State University, PO Box 6050, Fargo
ND 58108-6050; raj@bridgelall.com

Abstract: This primer provides an overview of the rapidly evolving field of generative artificial
intelligence, specifically focusing on large language models like ChatGPT (OpenAl) and Bard
(Google). Large language models have demonstrated unprecedented capabilities in responding to
natural language prompts. The aim of this primer is to demystify the underlying theory and
architecture of large language models, providing intuitive explanations for a broader audience.
Learners seeking to gain insight into the technical underpinnings of large language models must
sift through rapidly growing and fragmented literature on the topic. This primer brings all the main
concepts into a single digestible document. Topics covered include text tokenization, vocabulary
construction, token embedding, context embedding with attention mechanisms, artificial neural
networks, and objective functions in model training. The primer also explores state-of-the-art
methods in training large language models to generalize on specific applications and to align with
human intentions. Finally, an introduction to the concept of prompt engineering highlights the
importance of effective human-machine interaction through natural language in harnessing the full
potential of artificial intelligence chatbots. This comprehensive yet accessible primer will benefit
students and researchers seeking foundational knowledge and a deeper understanding of the inner
workings of existing and emerging artificial intelligence models. The author hopes that the primer
will encourage further responsible innovation and informed discussions about these increasingly
powerful tools.

Keywords: Generative Artificial Intelligence; large language models; ChatGPT; Bard; transformer
architecture; prompt engineering

1. Introduction

Traditional artificial intelligence (AI) methods focused on detecting patterns, making decisions,
modeling data, and classifying phenomena. Generative Artificial Intelligence (GAI) is an Al variant
that can generate a variety of human consumable content such as natural language text, images,
audio, code, and domain specific data. A large language model (LLM) is a special type of GAI that
can generate natural language text in response to a natural language prompt. The convergence of
massive amounts of data available on the Internet, ever-increasing computing capacity, and the
discovery of an efficient language “transformer” architecture in 2017 led to breakthrough GAI
capabilities in 2022 (Vaswani, et al.,, 2017). Specifically, ChatGPT, an Al chatbot from OpenAl,
surprised much of humanity with its impressive capabilities of responding to natural language
prompts. The invention illustrated that an artificial neural network (ANN), with as many connections
as human brains has neurons, can generate human language uncannily well.

Scholars still do not comprehend how a finite and non-adaptive computing system can
simultaneously capture the complexities of dozens of human languages plus the essence of all that it
can chat about. This lack of understanding has led to misconceptions about how an LLM does what
it is doing. A common misconception is that an LLM is simply a more capable autocomplete engine
like those on smartphones and word processors that predict the next word. The developers at OpenAl
posit that “somehow,” training the GAI model led it to discover underlying phenomena that

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

represent cognitive processes in the human brain that enable coherent language generation and even
some amount of reasoning (Wei, et al., 2023).

We do know that humans use language as a medium for expressing thoughts, ideas, and
complex concepts. Hence, language proficiency enables humans to convey and receive information,
formulate arguments, draw inferences from context, understand different perspectives, and solve
various problems. Therefore, language helps humans acquire knowledge about the world, cultural
norms, and social conventions. The human ability to reason helps in learning languages by
understanding grammatical rules, inferring the meaning of unfamiliar words, and adapting that
knowledge to different situations. GAI tools like ChatGPT give the impression that it can do all the
above, and that has led to much controversy about what occurs inside its neural networks (Chomsky,
Roberts, & Watumull, 2023). Research has also reported that LLMs have been developing certain
“emergent” capabilities that their developers did not expect (Bubeck, et al., 2023).

The GPT acronym in ChatGPT stands for Generative Pretrained Transformer. The first word
refers to a method of operation where the Al chatbot autoregressively generates or predicts one word
at a time to best complete a coherent sentence. The second word refers to the method of developing
the Al chatbot by pre-training a large language model (LLM) and then fine-tuning it to do domain
specific tasks like answering questions. The third word refers to the usage of a transformer architecture
discovered in 2017. ChatGPT became the world’s most viral software service with more than one
million users registered within the first five days of its launch (Roose, 2022). OpenAl released GPT-4
on March 14, 2023. Microsoft Corporation partnered with OpenAl to incorporate GPT-4 into its Bing
search engine (Peters, 2023). Google soon responded by launching a chatbot called Bard.
Subsequently, there has been an explosion of research and commercial use cases for GAI models (Liu,
et al., 2023).

The disruptive potential of LLMs to facilitate both good and malicious deeds have since
generated extremes of excitement and apprehension (Bubeck, et al., 2023). History has taught us that
humanity will continue to use innovative technology for both good (e.g., curing diseases), and bad
(e.g., synthesizing untraceable computer viruses). This trend is likely to continue as developers march
towards achieving artificial general intelligence (AGI), then artificial super intelligence (ASI), and
beyond. A continued lack of understanding about how developers build LLMs to do what they do
currently will further contribute to the fear and suspicion surrounding Al developments.

The goal of this primer is to help demystify how developers build LLMs like ChatGPT and Bard.
The primer describes the various underlying theories and provides intuitive explanations about how
they work. The author provides intuitive explanations of the technical descriptions in text boxes and
highlights important or technical terminology in underlined font. The objective is to make this primer
useful to a broad audience, and particularly to students and researchers who want to quickly become
familiar with the underlying theories before undertaking further studies.

The organization of the remainder of this document is as follows: Section 3 explains the
background natural language processing (NLP) methods that make up LLMs such as text
tokenization, vocabulary construction, token embedding, context embedding with an attention
mechanism, ANN function approximation, and the objective function in model training. Section 4
explains the architectural choices that enabled ChatGPT in the context of the background methods.
Section 5 discusses the state-of-the-art methods of training and fine-tuning the models. Section 6
concludes this primer on how Al chatbots work. Section 7 offers a glimpse of future developments in
GAL

2. Background Methods

The public has long used products based on NLP techniques and language learning models.
Examples include language translation apps, dictation transcription apps, smart speakers, and text
to speech converters. Such technologies use ANNs as a key enabler. Familiar applications of ANN
include face recognition in digital albums, biometric-based security systems, and music recognition.
The architectures of modern LLMs contain common NLP elements that developers discovered over

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

time. Figure 1 illustrates the basic building blocks and the flow of information through an LLM like

the GPT series.
Predicted
Word S s
Objective . . Artificial [] SoftMax
Function | Residuals K3 Normalization K= Neural Nets [¥| Function

1

Word . Create Token Position Attention
Sequence :D Tokenize ::) Vocabulary j'> Embeddings :> Encoding :> Mechanism

i

Initial
Prompt

Figure 1. LLM functional flow.

The training process repeatedly presents the model with massive amounts of word sequence
examples so that it can incrementally learn how to predict the next word. The tokenize procedure
converts the word sequence into symbols that represent a language more efficiently and aids in the
creation of a fixed internal vocabulary for processing. Token embeddings and position encoding
convert the fixed vocabulary to vectors of floating-point numbers that a computer can process. The
attention mechanism produces contextualized vectors that encode the relevance of other tokens in
the input sequence in establishing context for the sentence. The SoftMax function normalizes the
contextualized vectors produced by the attention mechanism so that the ANN can discover and learn
contextual patterns more efficiently. Normalization and residuals prepare the output vectors of the
ANN for further processing without losing information during the sequential transformations. The
objective function defines the statistical conditions and constraints for predicting the next token.

The architecture (Figure 1) operates slightly differently during training than it does during
inference when predicting the next word. Training presents a word sequence randomly sampled
from the training corpus and masks the next word while the model makes a prediction to maximize
its objective function. The training algorithm then computes an error between the predicted and
correct output to determine how it should incrementally adjust the model parameters to reduce the
error gradually and continuously. The training algorithm then appends the correct word to the input
sequence and continues the cycle of predictions and parameter adjustments. The process converges
when the average error reaches a predetermined level. During inference, a trigger such as a query
initiates the prediction of words, one at a time. The next subsections describe each of the building
blocks in Figure 1 in greater detail.

2.1. Tokenization

Words have similar parts and other redundancies that algorithms can exploit to increase the
efficiency of word representation. Tokenization algorithms do so by splitting a sentence into words,
characters, and subwords called tokens. There are dozens of tokenization methods. Hence, this
section focuses on the method used by ChatGPT. The goal of a tokenization algorithm is to retain
frequently used words (e.g., “to,” “the,” “have,” “from”) and split longer or less frequently used
words into subwords that can share prefixes and suffixes across words. OpenAl reported that on
average, one token represented 0.7 words (Brown, et al., 2020).

There is an important distinction between using NLP techniques like tokenization to model
topics in a corpus of text versus using them to build language models. The goal of the former is to
distill the abstract topic from a collection of documents whereas the goal of the latter is to build a
model that understands and generates natural language. Both endeavors use tokenization to help
enhance the model’s ability to discover phrase patterns and word clusters. However, topic modeling
uses two additional methods called stemming and lemmatization to create more structured and
normalized representations of text to improve model performance. Stemming maps different forms

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

of a word to a common base form to reduce the vocabulary size and handle variations of the same
word. Lemmatization maps a word to a standard form based on its part of speech and meaning.
Language models capture morphological information implicitly during the pretraining process
without the need for additional preprocessing steps such as stemming or lemmatization.

Intuition: The tokenization process increases the efficiency of word representations because a
model can reuse the same token to reconstruct similar words in a corpus of text. For example, the
word “civilization” can be tokenized into “civil” plus “ization.” Reusing the second token can
construct words such as “modernization,” “optimization,” “realization,” “capitalization,”
“generalization” and hundreds of other words with that suffix. Tokenization also increases the

i i

efficiency of representing various word forms that represent the part of speech for a language. For
example, simply adding “s” to a word prefix can convert it to a plural form. Similarly, adding the
suffix “ly” to a noun like “friend” converts it to an adjective like “friendly” and adding the suffix

“ize” to a noun like “drama” converts it to a verb like “dramatize.”

2.2. Vocabulary

Simply building a vocabulary from all the unique tokens of the training corpus would be
inefficient because languages consist of hundreds of thousands of unique tokens. The Oxford English
dictionary alone has more than 600,000 words (Stevenson, 2010). Creating an efficient language
model requires a much smaller and fixed-size vocabulary. Dozens of methods are available to build
a vocabulary. GPT-3 uses a method called byte-pair encoding (BPE) to build a fixed size, static
vocabulary of approximately 50,000 tokens. The method compresses text based on the statistics that
significantly fewer unique characters make up tokens than words make up sentences. BPE executes
the following procedures: pre-processing, token frequency distribution (TFD), vocabulary
initialization, merge iteration, vocabulary finalization, and post-tokenization.

Pre-processing: lowercase the corpus for search consistency; remove extra spaces; remove non-
alphanumeric characters and normalize text by removing diacritical marks and using consistent
spelling across language variants.

Token frequency distribution: convert the corpus to tokens and extract a table of unique tokens
along with their frequency of occurrence. Hence, the table represents the TFD needed to build the
vocabulary.

Vocabulary initialization: build a base vocabulary using 256 bytes from the 8-bit Unicode
Transformation Format (UTF-8). The first 128 symbols of UTE-8 correspond to the standard English
ASCII characters. UTF-8 is the dominant encoding on the internet, accounting for approximately 98%
of all web pages (W3Techs, 2023). Using UTF-8 bytes assures that the symbols in the base vocabulary
map all unique characters in the TFD.

Merge iteration: calculate the occurrence frequency of all pairwise combinations of symbols in the
base vocabulary by counting their paired occurrence across all tokens of the TFD. Hence, multiple
tokens will contain the same symbol pair. Iteratively assign an unused symbol to the highest
frequency symbol pair and append it to the base vocabulary. As the merging continues, the algorithm
begins to assign unique symbols to increasingly longer concatenations of tokens to form n-grams
where 7 is the number of characters of merged tokens (Sennrich, Haddow, & Birch, 2015). The
iteration stops after the vocabulary reaches a predetermined size.

Vocabulary finalization: the final vocabulary will have symbols representing individual bytes,
common byte sequences, and multi-byte tokens. The procedure finalizes the vocabulary by adding
non-linguistic tokens such as [PAD] and [UNK] to accommodate padding and unknown tokens,
respectively, as well as other special tokens to deal with other situations.

Post-tokenization: convert the pre-tokenized input corpus by replacing tokens with their
matching n-grams in the final vocabulary.

Intuition: Iterative merging grows the initial list of unique symbols by including newly merged
symbols that appear most often in the TFD. Each iteration counts all possible pairwise combinations
of the newly merged symbols to add the most frequently used combinations to the growing

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

vocabulary. Figure 2 shows a simple example that begins with a base vocabulary containing byte
codes that represent each letter of the standard English alphabet “a” through “z.” Each cell in the
matrix contains the co-occurrence frequency of the symbol pairs in the TFD developed from a
training corpus. The highest frequency occurrence in this example is the symbol pair representing
the letters “0” and “f” which is the 2-gram word “of”. The algorithm adds a new symbol
representing the 2-gram “of” to update the current vocabulary. The algorithm then updates the
frequency count for the matrix cells associated with the new row and column representing the new
2-gram. The row and column added after that will yield either 3- or 4-gram words (combinations of
1-grams and 2-grams or double 2-grams.) That is, some new tokens may be complete 3-gram words
like “the” and 4-gram suffixes like “ized”.

The BPE method has the capacity to encode a diverse range of languages and Unicode characters
by efficiently capturing sub-word structure and distinct meaning across similar words. The method
can also effectively tokenize out-of-vocabulary words so that the model can infer their meaning. The
BPE text compression method is also reversible and lossless. The reversible property assures that the
method can translate the symbolized token sequence back to the natural language of words. Lossless
in the sense of compression methods means that there is no loss of information during the
compression that will lead to ambiguity during the decompression.

B
fl,l 2 fl,n Fy e
b f’;’,l 2 f’;’,n B e

- j;?,l j;?,E .ﬁ?,n F nn+

N

Fn—,l Frr—,? Fn—,u Fir—,n—

Figure 2. Building the vocabulary for embedding.

2.3. Token Embedding

A token embedding method converts the token symbols to number vectors that a computer can
use to represent tokens in a computational number space. A desirable feature of token embedding is
to reflect the position of the token in the vocabulary for lookup. That way, when the decoder outputs
a probability vector for the predicted token, the maximum value will correspond to the position of
the predicted token. Therefore, the ideal vector would be a one-hot-encoded (OHE) where all
positions contain a “0” except for the position of the encoded token where it contains a “1.” Hence,
the size of the OHE vector is equal to the size of the vocabulary. However, an OHE vector is too
sparse to carry sufficient syntactic or semantic information about a token and how it relates to other
tokens in a sequence. Hence, GPT-3 constructed a denser number vector for information processing
and then converted that to an OHE vector to lookup the predicted token.

GPT-3 learned the vector embeddings for each token during training. The dimension of the
number vector is 12,288, which is a hyperparameter that is approximately one-quarter the size of the
vocabulary. Hyperparameters are settings that the model architects pick because they are not
learnable during the training process. Each dimension of the embedding vector is a continuous
floating-point number. An embedding matrix converted the OHE vector of the vocabulary to
embedded token vectors. Hence, the number of rows in the embedding matrix is equal to the
vocabulary size. The number of columns in the embedding matrix is equal to the dimension of the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

embedded token vector. GPT-3 trained a linear neural network to learn the matrix that converts the
token symbols to number vectors.

Intuition: After training, tokens with contextual similarity will have embedded vectors that are
closer to each other in the embedding space and unrelated vectors will be further apart. The large
dense vector makes the vector space sparce. Therefore, word variations can be noisy without being
confused with other words because of the large gap between them. This is one case where the
“curse of dimensionality” became a benefit instead of a problem. The “curse of dimensionality” in
machine learning refers to the increase in learning difficulty as the number of feature dimensions
increase relative to the training data size (Géron, 2019).

2.4. Positional Encoding

Prior to the transformer architecture, the state-of-the-art NLP methods were recurrent neural
networks (RNNs) and long short-term memories (LSTMs). RNNs process sequential data by
maintaining a hidden state that updates with each new input in the sequence. The state serves as a

memory that captures information from previous inputs. However, this dynamic memory element
tends to lose information about long-range dependencies in the sequence. That is, after a few hundred
words, the internal state begins to lose context about the relevance of earlier tokens. LSTMs are a type
of RNN designed to overcome some of the long-term memory issues of RNNs. The LSTM architecture
incorporates input, output, and “forget” gates in a more complex cell structure to control the flow of
information. Those complex structures are not important to understand here except that RNN and
LSTM architectures natively process sequential data, so word ordering is inherently encoded.

Architectures that inherently process information sequentially are difficult to parallelize so that
they can exploit parallel computing methods to achieve higher efficiency and speeds. Conversely, the
transformer architecture did not use the feedback type connections of RNNs and LSTMs so their
processing elements could be parallelized. However, in so doing, the transformer architecture lost
the sense of word ordering. The ordering and dependencies of words are important for language
understanding. This problem introduced the need for positional encoding. Positional information
helps the LLM to learn relationships among tokens based on both their absolute and relative positions
in a sequence. There are dozens of methods to encode token positions. GPT-3 learned how to add
position encoding to tokens by adapting the parameters of its ANN during training to identify an
undefined approach that is consistent with the objective function (Brown, et al., 2020).

Intuition: Position encoding helps the LLM learn to capture and exploit the semantic relationships
between different tokens in the vocabulary based on their position and separation distance.

2.5. Attention Mechanism

Token and position embeddings capture syntactic information such as grammatical form and
structure. However, those embeddings do not necessarily capture semantic information such as
contextual meaning and tone based on other tokens in a sequence. Figure 3 provides an example of
how a single word difference can change the contextual meaning of a sentence. The sentences “The
dog sat on my couch because it was soft” and “The dog sat on my couch because it was tired” share
the same words and ordering, except the last word. The last word completely changed the meaning
of the two sentences. Humans intuitively know that the word “it” in the first sentence refers to
“couch” because of the context “soft” whereas “tired” in the second sentence refers to “dog” because
of human intuition that a couch cannot feel tired.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

7

The The

dog

sat sat

on on

my my

couch
because

was was

soft tired

Figure 3. Example of how a single word difference can change the context of a sentence.

The self-attention mechanism learns to capture contextual meaning based on how certain tokens
in a sequence “attend” to other tokens. The mechanism does so by creating contextualized versions
of each token by adding portions of the embeddings of other tokens that it needs to express. The
amount of expression added to a token at a given position is based on a normalized weighted
distribution of all the tokens in the sequence.

Figure 4 provides an example in two-dimensional vector space to illustrate the effect that the

self-attention mechanism has when contextualizing word embeddings. In this example, the
contextualized token “Machine.a” expresses 70% of the token “Machine” and 30% of the token
“Learning” whereas the contextualized token “Learning.a” expresses 70% of the token “Learning”
and 30% of the token “Machine”. Hence, the normalized weight distribution for the first token is (0.7,
0.3) and that for the second token is (0.3, 0.7). The effect is that the two contextualized token vectors
move closer to each other in the embedded vector space.

4
Learning
(2.3) \‘.
2
< .
Machine.a — Lgaé‘lllilgq .a
(-0.8. -1.5) (0.8, L.5)
0
-4 -2 ’ 0 2 4

Machine
(-2.-2)
-4

Figure 4. Co-relevance vectors moves closer to each other in the embedding space.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

Intuition: The attention mechanism shifts co-relevant tokens towards each other in the vector space
to promote their joint probability of expressing the correct context of the sequence. Tokens that
have the highest weights will drown out those with lower weights indicating that they do not
contribute much to contextual meaning, even though they contribute to syntax and grammar. Word
co-occurrence and closeness in embedded space is reminiscent of two key principles in spatial
science. One is from Waldo Tobler, also known as the First Law of Geography, that “everything is
related to everything else, but near things are more related than distant things.” (Tobler, 1970). The
second principle is from the linguist John Rupert Firth that “You shall know a word by the
company it keeps,” which is a distributional hypothesis (Widdowson, 2007). Both principles express
the significance of word proximity in expressing contextual meaning.

Bahdanau et al. (2014) first introduced the attention mechanism in 2014 to dynamically focus on
various parts of an input sentence during a translation task (Bahdanau, Cho, & Bengio, 2014).
However, it was not until the introduction of the transformer architecture in 2017 that the attention
mechanism gained significant recognition (Vaswani, et al., 2017). The first transformer architecture
modeled the dependencies between tokens in a sequence without the need to rely on previous state-
of-the-art methods like recurrent neural networks and convolution neural networks. Moreover, the
transformer parallelized operations to be more computationally efficient and faster by using many

graphical processing units (GPUs) at once. The transformer architecture has since become the
foundation for state-of-the-art LLMs like ChatGPT and Bard.

Figure 5 illustrates the flow of vector transformations from the input token embeddings to the
contextualized vectors. The model packed the input sequence of token embeddings into a matrix X.
The attention mechanism then computed co-relevance scores for every unique pair of tokens as the

dot product of their representation vectors. The representation vectors are three projection vectors of
the input token embeddings called the query, key, and value vectors. During training, the model
learned the parameters of a linear network (W<, WX, WV) to produce the three projection matrices Q,
K, and V that pack the corresponding projection vectors. Each box in Figure 5 represents an operation

or a matrix of the dimensions shown. The variable # is the number of tokens in the input sequence,
and dy, di, dv are the dimensions of the query, key, and value vectors, respectively. The attention
mechanism typically downsizes the dimension of the three projection matrices from the original
dimension of the input matrix X. A later section will discuss the intuition behind the dimension

change.
Attention -
Mechanism 0 [nxd] [nxd]T=[nxn]
Query
nxd, 71 SCOTEeS
z 2
E X ﬁ nxXn
; Token Linear 7 K =
y & Projection
Z - K
g Position __,_:) Nertwork :> & ~-
a . Secale
g | Embeddings nxd)
= (W2, WE,) k /v,
% nx dmodel
= SoftMeax
I n
Vv A
Value Y : :> Attention
nxd, [nxn][nxd]=[nxd] nxd,

Figure 5. Calculating the attention vectors for the input sequence.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

The dot product, also called the inner product, between two equal length n-dimensional vectors
Q=1[q9y g2 ...,qn] and K = [ky, ko, ..., k] is a scalar value s where

kl n
s=[a - qn]x[s]=z, 4 % ky = 11Q1l X I1K1| x cos (6) (1)
kn =1

and || . |1 is the magnitude operator (Bridgelall, 2022).

Intuition: In linear algebra, the dot product of two vectors is a measure of their similarity
(Bridgelall, 2022). That is, vectors that point in the same direction (zero degrees) are similar whereas
vectors that point in different directions (90-degrees) in multidimensional space are dissimilar. That
is, when the angle is zero between vectors, cos(0) = 1, and their similarity becomes only the product
of their magnitudes [[Q]| X ||K||. Conversely, when the angle is 90 degrees between vectors,

cos(90) = 0, and their similarity is zero, regardless of their individual magnitudes.

Formally, the attention mechanism computes

T
Z = SoftMax (Qf)V 2)

where the scaling factor A =\/d_k in the GPT-3 model (Brown, et al., 2020). That is, co-relevance scores
form the weights in a weighted sum of value vectors V that produce the contextualized vectors in a
matrix Z. The matrix multiplication Q x KT directly computes the dot product or co-relevance scores,
which is a square matrix of dimension 7n x n. The co-relevance scores are for every pairwise
combination of query and key token representation vectors in the input sequence. The downstream
SoftMax function, discussed in the next subsection, normalizes the scores to produce a normalized
distribution of weights used to produce the weighted sum of value vectors.

Intuition: The query representation vector of a token embedding corresponds to a “question” about
how relevant other tokens are in relation to that token. The key representation vector of a token
embedding corresponds to an “answer” to the query that quantifies the relevance of each key to the

query. Each value representation vector of a token embedding contains the information that the

corresponding token in the X matrix represents.

Figure 6 explains how the matrix multiplication is equivalent to generating an n x n square
matrix S of co-relevance scores or dot products. As highlighted in the figure, the first entry in row 1,
column 1 is the dot product between row 1 from the Q matrix and column 1 from the transposed K
matrix. To generalize, the scalar value in row i, column j of the S matrix is the dot product between
row i of the Q matrix and column j of the K matrix.

q11|912 4did kg | Fay ki S11 | 512 S1n
421|922 924 fag | Faz fna 521 | S22 S2n
0" X LU — s
]

Figure 6. Matrix multiplication is equivalent of the dot product.

In general, the dot product of token vectors with themselves will tend to have the highest co-
relevance scores, which are located along the diagonal of the S matrix. Non-identical token pairs with
high co-relevance will have high scores that are located off the main diagonal. Figure 7 illustrates a
matrix of co-relevance scores for every pairwise combination of input tokens in the matrix X. The

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

10

light color along the diagonal indicates high co-relevance scores whereas the darker colors indicate
lower co-relevance scores.

X,
xl by 11
Xa Sy
Xp Sn2 Syn

Figure 7. Co-relevance scores are associated with every pairwise combination of tokens in the input
sequence.

Some contextualized vectors in the output matrix Z will have strong mixes of co-relevance scores
whereas others may have no co-relevance mix.

Intuition: One can view vectors with a high mix of co-relevance scores as carrying signals about
their relationship with other tokens in the sequence. Conversely, one can view contextualized
vectors with no co-relevance mix as noise because they are standalone tokens that do not express
meanings from other tokens. The key intuition is that the overall transformer seeks to maximize the
signal-to-noise ratio, which in turn maximizes the probability of correctly predicting the next token
in the sequence.

2.6. SoftMax Function

The SoftMax function normalizes the co-relevance scores so that they are all positive and sum to

unity. The formula is
e’
o(2); = S on A3)

Jj=1
where z is a d-dimensional vector of values z = (z1, ..., zd) and o(z)i is the weight associated with
element i in the vector. A problem with the SoftMax function is that it biases the largest weights
towards the largest elements of the vector, which leaves little room to distribute the remaining
weights across the smaller elements. For example, Figure 8 plots the SoftMax values for a 5-
dimensional vector (d = 5) for the values at positions one (X1) and five (X5). The example vector is X
=[1,1,1,1,2].

The SoftMax output or weight distribution is [0.15, 0.15, 0.15, 0.15, 0.40] with no scaling, which
is with A =1. Hence, without scaling down the vector, the weight for element X5 is 2.7 times the
weight of the other elements whereas the element value is only 2.0 times that of the others. As the
scaling factor increases beyond 1.0, the distribution of the weights begins to equalize towards a
uniform distribution with weights equal to 1/d or 1/5=0.2 for each element. Therefore, the best scaling
factor will balance the tradeoff between weight dominance and weight uniformity. In this example,
the scaling factor of vVd = V5 = 2.24 appears near the knee of the two curves and provides a more
representative distribution of weights as [0.18, 0.18, 0.18, 0.18, 0.28]. That is, the weight of element X5
is now 1.6 times instead of 2.7 times the weight of the other elements.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

11

0.45
0.40
0.35

X5
0.30

0.25 K

0.20

SoftMax

X1
0.15

0.10
0 V5 5 10 15 20 25 30 35

Scale Factor (A)

Figure 8. SoftMax([1,1,1,1,2]/A)

Intuition: The square root of the dimension of a vector is a common choice when scaling down the
magnitude to improve the stability of matrix multiplications. One can understand this choice by
considering the longest vector in a unit hypercube, which is the diagonal vector that connects two
opposite vertices and passes through the center. For a hypercube of positive values with side p, the
magnitude of the diagonal vector is \/pZ + - + p2 = \/d,(p2) = p,/d. Hence, given a hypercube of
continuous numbers with side p = 1, dividing each vector in the space by ,/d, normalizes their
magnitude to unity. The dot product of a diagonal vector with itself is equal to the square of its
magnitude. Therefore, the dot product of a magnitude normalized diagonal vector with itself is

unity.

2.7. Artificial Neural Networks

An ANN is a computing model invented in the early 1950’s to approximate a basic function that
scientists believed the biological neuron of a human brain implements (Walczak, 2019). However, a
lack of computing capacity at the time of ANN development limited its scaling for general
computational tasks. More recently, the invention of the graphical processing unit (GPU) that can
efficiently do matrix operations helped to accelerate the utility of ANNSs in NLP applications (Otter,
Medina, & Kalita, 2020). Gaming platforms initially drove the adoption and proliferation of GPUs,
and subsequently cryptocurrency mining and blockchain development further accelerated demand.
The ANN is the most crucial element of an LLM because it helps the overall architecture learn how
to achieve its objectives through training. Therefore, the subsections that follow describe simple
ANNSs in detail to provide an intuitive understanding of how they work and how they can scale to
learn more complex functions.

2.7.1. Basic Architecture

The basic architecture of an ANN is an input layer of artificial neurons or nodes, one or more
hidden layers of nodes, and an output layer of nodes. The node loosely mimics a biological neuron
by calculating a weighted sum of its input signals plus a bias signal. The result of the weighted sum
passes through a non-linear “activation” function to produce the node’s output. Without a non-linear
activation function, the ANN reduces to linear operations. The literature refers to the type of ANN
used to build LLMs as a feed-forward neural network (FFNN). That distinguishes it from other
architectures like recurrent neural networks (RNNs) that incorporate feedback signals from
intermediate output layers to earlier layers.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

12

Figure 9 shows a small FFNN with one input node taking the value x, and one output node
producing the value y. There are two inner or hidden layers consisting of two nodes each (2H x 2H)
with labels Hi. The labels for the weights and biases are wij and b, respectively. In this example, the
i and j values represent rows and columns of the ANN structure, respectively.

Wy

Wiz
w
wi; b 22 b ,
x—-»X 1 2 y

Wip
Wag W3

L)

by b
Figure 9. ANN (2H x 2H) function approximator.

In general, a larger ANN has multiple inputs and multiple outputs, with each corresponding to
a different feature in the input and output data. The nodes operate collectively to produce an arbitrary
function of the input. The literature refers to the collection of weights and biases as parameters of the
network. The developers of GPT-3 scaled the basic architecture of Figure 1 to 175 billion parameters
(Brown, et al.,, 2020). For perspective, the human brain has approximately one hundred billion
neurons, each with thousands of synapses connecting it to other neurons or cells (Wolfram, 2002).
This suggests that, at the time of this writing, LLMs are far from having the equivalent number of
learnable parameters as the human brain, which can learn in real-time using less energy.

2.7.2. Activation function

The activation function preserves or diminishes the weighted sum of input signals to a node.
This non-linear action collectively activates neural pathways to propagate a signal along unique paths
through the network. From a mathematical perspective, the activation function introduces non-
linearity which enables the network to collectively learn a complex function. Early ANNs used the
sigmoid function for activation. However, later research found that the sigmoid function led to slow
training convergence. That is, during network training, an algorithm called backpropagation
calculates incremental adjustments to the parameters so that the output gradually gets closer to the
true value. The backpropagation algorithm tracks the output error, which is the difference between

the current predicted token vector and the correct token vector. If further incremental adjustments to
the parameters do not result in further error reduction, then the training could be stuck at a local
minimum rather than a global minimum. Subsequent research found that using a simpler rectified

linear unit (ReLU) activation function resulted in faster network training and better generalization
performance (Krizhevsky, Sutskever, & Hinton, 2017). Generalization refers to the predictive
performance of trained models on data never seen during training.

Intuition: Without a non-linear activation function, the model will be a linear combination of
inputs. Hence, the linear model would be reducible to a single-degree polynomial that produces a
linear output. The non-linear activation function effectively adds higher degrees of freedom to a
polynomial. Hence, like a Taylor series or Laplace transform, ANNSs are universal function
approximators because of their ability to approximate arbitrary functions as multi-degree
polynomials (Hornik, Stinchcombe, & White, 1989).

The sigmoid function is

Sigmoid(x) = 4)

1+e™>

and the ReLU function is

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

13

Y (x) = max(0, x). (5)

The ReLU function implements a deterministic node dropout (zeroing of the output) for

negative values and an identity function (replicating the input) for positive values. Subsequent

research found that a Gaussian Error Linear Unit (GELU) can replace deterministic dropout with
stochastic dropout and then transition to the identity function to yield better convergence (Hendrycks
& Gimpel, 2016). The GELU function is

GELU(x) =x P(X < x) (6)
where P is a probability, and the features of the vector X are N(0, 1) distributed. The notation N(u, o)
refers to a normal distribution with mean y and variance 0. A disadvantage of the GELU function is

its computational complexity relative to the ReLU function. However, Hendrycks and Gimpel (2016)
suggested the following function as a fast approximation (Hendrycks & Gimpel, 2016):

GELU(x) 11 + tanh 2(+ 39T 3)
X) =~ an —\ X X
2 7* T 2740 0
Figure 10 plots the three activation functions for comparison. The ReLU has no signal “leakage”
to the output for negative input values. Conversely, the Sigmoid and GELU have positive and
negative output leakage, respectively, for negative input values. Although the ReLU is much simpler
among the three activation functions, it has a discontinuity at zero when taking the derivative as part
of the backpropagation algorithm. Therefore, the training algorithm must define the derivative at
zero as either 0 or 1.

d

e ReLU b
e Sigmoid 5
ok = GELU ; A
t |
Yoo : --------------------- -
1 i 1
=2 0 2
X

Figure 10. Comparison of ReLU, Sigmoid, and GELU activation functions.

2.7.3. Multi-Layer ANN

Scaling an ANN to learn more complex functions like a natural language involves increasing
both the width and depth of the nodal structure and the degree of connectivity among the nodes.
One can visualize the width as a vertical arrangement of nodes and the depth as horizontal layers of
the vertical arrangement. An ANN creates an arbitrary function by learning parameters that produce
intermediate outputs at each node that then combine to piece-wise approximate a complex function.
Figure 11 shows how the ReLU function changes by adjusting various weights and bias parameters.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

14

.w(w =1.b= b.S) ------ > !

wiw=-1,b= 0)
/ :

y 0 o ; r Y
: -
: ”
A
’15 RN
” P -lxp(w=-1,b=0.5)
s :
-1 ” ! T
P]]
-1 - 0.5 0 0.5 1
X

Figure 11. ReLU activation functions with various parameters and scaling.

The sub-functions at the output of the first layer of nodes with ReLU activation cannot leave the
x-axis. However, adding another inner layer of nodes with ReLU activation adds flexibility to create
more complex sub-functions that can leave the x-axis.

The following example of approximating a sine wave offers some insight into how sub-functions
of the ReLU activation combine to create the output. Figure 12 shows a small ANN within one hidden
layer consisting of three nodes with ReLU activations. The vector representations for the input
weights w®, biases b, and output weights w®), are

W11 b14 W12
w® = |wy | p® = [bu], w® = [wy, (8)
W31 bz, W3»
The vector of values produced from the hidden layer H® is
HD = ypw® - x + p®) (9)

where the dot is the dot product operator and ¢ is the ReLU activation function.

by
Wiy Wy
Path 1
Path 2
X . Wy Wy y
’0 *
0. .0
* b »* Path 3
Wi 21 Wiy
» .0
0” K
0. ’00
by

Figure 12: Neural network with one hidden layer of three nodes with ReLU activation (1H: 3x1).

The output y is
y = w@ . g@ (10)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

15

Putting it all together, the ANN in this scenario implements a function that produces a single
scalar output y that depends on the weights, biases, and the non-linear activation function where

Wi2 W11 by4
y = |Wa|- Y| |W21]|-x + |by (11)
W33 W31 b3

Figure 13a shows how the learned parameters approximated a sine wave y = sin(m-x) within the
x range of [-1, 1].

a) :

1 F‘[mct]_on EEEEEEEN

Estimate
1H:3x1,RelLU

-1 - 0.5 0 0.5 1
X
b) 10 . 5 ,
Path 2
sk
Path 1
y 0--_ T e T Tl
- i
i -
i Path3 ~ e e
-5 1] 1
-1 - 0.5 0 0.5 1

Figure 13. ANN (1H: 3x1, ReLU) a) sinusoid estimation, and b) intermediate functions.

The learned parameters were

' 5.5 ' —2.8 -0.9
wh =163, bO=[30][w®=]07 (12)
2.0 2.1 —-1.0
Figure 13b shows the intermediate inputs to the output node y from the three paths through the

network.

Intuition: the combination of parameters (weights and biases) scaled and shifted the ReLU function
so that their final sum produced a nonlinear output that approximates the function.

The root-mean-square-error (RMSE) for the 1H: 3x1 network with three learned parameters was
0.37. Increasing the number of inner nodes to six increased the number of learnable parameters to 18
but the RMSE declined to 0.141, which is a factor of 2.6. Figure 14a shows the function approximation

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

16

and Figure 14b shows the trend in RMSE decrease with each additional inner node. The observed
trend was that moving from two to three inner nodes produced the greatest decline in RMSE, but the
subsequent decline in errors was only asymptotic.

a)

I I0 I

F‘[mct]_on EEEEEEEN

Estimate
1H: 6<1,ReLU

-1 - 0.5 0 0.5 1
x
b) 2 T T
1.5 T
RMSE 1 .
0.5 T
0 1 1 1
2 3 4 5 6

Nodes in One Hidden Layer
Figure 14. ANN {1H: 6x1, ReLU} a) sinusoid estimation, and b) RMSE trend.

So, changing the ANN architecture by adding one additional inner layer as shown earlier in
Figure 9 resulted in a lower RMSE of 0.153. That RMSE was between the value achieved by the five-
and six-node single layer networks. The two-layer network with two nodes per layer computed the
following function of 12 parameters:

_ Wiz Wiy W11 b11 b12 W13 (13)
yx) =1 [[sz W42] 2 [[W21 b21” [bzz [W23
The trained weights were:
; w 1.80 ; b 0.54
@ = [W11] = O = 11] _ (14)
w [W21] [—8.94]’b b,1] ~ 15.80
w w —3.03 —0.28
W = [F1z2 32] (15)
w [sz W42] [86. 1?;) —18.34
@ _ [Wi3 0.92] ;) _ 12] _[425 16
W W23] [0.02] b by, [201.84 10)

Intuition: Using more inner layers with fewer nodes increases the flexibility of combining more
complex piecewise sub-functions of the ReLU activation pathways, resulting in fewer computations
to learn parameter values. For example, the six-node single layer network had 18 parameters to
learn but produced a higher RMSE than the four-node two-layer network which had six fewer
parameters (12) to learn.

2.7.4. Network Training

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

17

During training, the network incrementally learns the value of each parameter that best predicts
the output from a given input. Also, during training the backpropagation algorithm incrementally
adjusts all the model parameters in a direction that gradually decreases the error with each training
iteration. A differentiable loss function of the error enables the backpropagation algorithm to
compute gradients. That is, a derivative of the loss function with respect to a parameter produces a
gradient that tells the algorithm the direction to adjust that parameter to reduce the error. The
derivative uses the chain rule of calculus to propagate parameter adjustments backwards from the
output. The adjustments are incremental to make it easier for the algorithm to find a global minimum
instead of a local minimum of the loss function. Backpropagation uses a method called stochastic
gradient descent (SGD) that adds randomness to the process which further prevents the error from

being stuck in a local minimum.

The amount of adjustment is a hyperparameter called the learning rate. A training epoch is one
complete pass through the training data. Training involves multiple epochs to achieve convergence.
The term convergence in the context of machine learning is the point at which the prediction error or
loss is within some predetermined value range where further training no longer improves the model.
The point of convergence is equally applicable to self-supervised and supervised types of machine
learning. Perplexity is another measure often used to determine when the machine has learned
sufficiently well to generalize on unseen data. The goal is to minimize perplexity, which indicates
that the model consistently assigns higher probabilities to the correct predictions.

2.8. Residual Connections

Microsoft research found that training and testing errors in deep models tend to plateau with
each additional layer of the ANN (He, Zhang, Ren, & Sun, 2016). The vanishing gradient problem
became more pronounced with increasingly deep models. That is, the gradients calculated to adjust
parameters can become excessively small. For example, when the backpropagation algorithm uses

the derivative chain rule to multiply a series of values that are less than 1.0, the result can be
exceedingly small. For instance, a value of 0.1 multiplied only 5 times (once per layer) yields (0.1)5 =
0.00001. The training slows or even halts when gradients become excessively small because
parameter updates during backpropagation, which is based on the size of gradients, become
correspondingly smaller in layers closer to the input.

Microsoft research found that making a neural network layer fit a residual mapping of the input
to the output instead of fitting a new learned function helped to address the degradation problem
(He, Zhang, Ren, & Sun, 2016). Formally, if H(x) is an underlying mapping that enables a layer to
contribute to generalized learning, then the residual (difference) will be F(x) = H(x) — x. Algebraically,
the underlying mapping becomes H(x) = F(x) + x. The interpretation here is that a residual is simply
adding the layer input x back to its output, which is a learned residual function F(x) that contributes
to the underlying mapping. Hence, when the output is close to the input, the residual (difference)
will be small. The study hypothesized that if the optimum mapping for one or more layers turned
out to be the identity (pass through) function, then the network would be more adept at pushing the
residuals towards zero than it would be at fitting a new identity function at each layer to propagate
the input signal (He, Zhang, Ren, & Sun, 2016). Practically, the residual connection forms a shortcut
around one or more layers of the vector mappings.

Intuition: The residual connection adds back some of the input vector to the output to prevent loss
of signal propagation. Residual connections help to alleviate the vanishing gradient problem by
maintaining the flow of signal and gradients through the network layers. That is, if a layer learns
nothing new, it might produce no signal, which would eliminate signal propagation to the upper
layers when new training data arrives. Therefore, adding the input signal back to the output
prevents signal dropout as the network learns to generalize.

Figure 15 extends the example from Figure 4 to show the residual vector formed from the
summation of the original vector “Machine” and its attention version “Machine.a” as “Machine.r”.
Similarly, the figure shows the residual vector formed from the summation of the original vector

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

18

“Learning” and its attention version “Learning.a” as “Learning.r”. The effect of forming the residual
was to boost the attention vector magnitudes towards the original vectors. That is, if learning nothing
new resulted in zero signal propagation, the residual connection shifted the input representation
slightly without significantly modifying the token representation so that learning can continue
without degradation.

6
Learning.r

(2.8,4.5) \.
4

Learning
@— .-

. (2.3)
Learning.rs

2
(0.62, 1.08) \t,._________ Learning.a

Machine.a (0.8,1.5)
-0.8.-1.5
() 0
6 A 2 x 0 2 4 6
. Machine.rs
-2 (-0.89, -0.81)
/ "
Machine.r -4
(-2.8,-2.5) Machine
(-2.-2)
-6

Figure 15. Residual and standardized residual vectors maintain their relative relationship in the
embedding space.

2.9. Layer Normalization

When training deep networks, in addition to the vanishing gradient problem, the gradients
calculated to adjust parameters can also explode if they get too large. For example, multiplying the
number 10 only five times yields 105 = 100,000. Large gradients make the training unstable because
of parameter oscillations that prevent training convergence. Normalization helps to prevent both
vanishing and exploding gradients while increasing training speed and reducing bias (Ba, Kiros, &
Hinton, 2016). GPT-3 uses a method called layer normalization, which standardizes the vectors of all
inputs from a single training batch before presenting them to the nodes of a layer, and prior to the
activation function.

The standardization process first computes the mean and standard deviation across all the
elements of all vectors in a training batch. The procedure then subtracts the mean from each element
of all vectors (also called shifting), and then divides by the standard deviation (also called scaling).
The result is a collection of elements from all the layer vectors that have a distribution with zero mean
and unit variance.

Intuition: Standardization keeps the vector sizes comparable so that the output remains stable
when computing gradients during backpropagation. The SGD algorithm used in backpropagation
works best with normalized features (Géron, 2019). That is, the size of the weights for the direction
of adjustment will convey relative importance when the magnitude of all the vectors is comparable.
Figure 15 shows the effect of standardizing the residual vector “Machine.r” to “Machine.rs” and the
residual vector “Learning.r” to “Learning.rs”. The standardized vectors maintain their relative
separation distance, magnitude, and direction relationships in the vector space.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

19

2.1. 00bjective Function

The goal of classical statistical language modeling was to learn the joint probability of word
sequences. However, that was an intrinsically difficult problem because of the large dimension of
possibilities. Bengio et al. (2000) addressed this issue by pioneering a technique to train language
models by predicting the next word in a sequence (Bengio, Ducharme, & Vincent, 2000).
Mathematically, training tunes the model parameters © to maximize a conditional probability P in a
loss function L1 where

(a7)
L(€) =) 1ogP(cilci s, 113 0)
i

and C={cy, ..., cu} is a set of n tokens in a training batch that make up characters, words, and subwords
in the sequence (Radford, Narasimhan, Salimans, & Sutskever, 2018). The input context window of
the model holds a maximum of k training tokens at a time. The training technique is self-supervised
because it masks the next token in a training sequence prior to its prediction. The SGD algorithm
backpropagates incremental adjustments to the model parameters so that the error between the
predicted and correct token gradually declines to some predetermined level (Géron, 2019). Instead of
training on a single example at a time, the model trains simultaneously on a batch of examples. The
loss function is the average of the differences between the predictions and the correct tokens.

Intuition: In traditional supervised training, developers must curate a large amount of output
labeled data with inputs {xi, ..., x} and output {y} for each example. Unlike supervised training, the
self-supervised training data already contains the label, which is the next word in a sentence
example from the training corpus. That is, self-supervised training is less costly than supervised
training while being amenable to a massive corpus of training examples from the Internet and other
digital media to steadily build even larger language models.

3. LLM Methods

This section describes the overall architecture of GPT-3 and demonstrates how it uses the various
NLP techniques discussed in the previous section. Figure 16 provides an overview of the GPT-3
architecture. The left side of the diagram shows the token flow from their vector embeddings at the
bottom to their transformation into contextualized vectors and output probabilities at the top. The
model first transforms an input sequence of tokens in the context window to embedded vectors. The
model then adds positional encoding so that the decoder has information about their order and
separation distance in the input sequence. The model then packs the transformed input tokens into a
matrix X that the decoder uses during training and inference.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

20
C=Cromen | [z 7=
| Output Probabilities | 4 ,t
T M = duoca Layer Norm | |
| SoftMax | 4 Linear
[¥rm) T m=dows r\‘ Concat
Linear
(logits) @o@
VAL Head 7 d,
2] = 1.t _
3
Decoder . 4 £
. ° g
Stack H " :;
13
Multi-head 2 2
X Self-Attention § :_:j
Input Word [:i E
Embeddings E =
Packed into a . = =
Token Matrix X ',‘% =
A _
Positional Wan X= (X, o %) Linear | |Linear | [Linear
Encoding | N/ o W
» A= Amosl y
| Embedded Token Vectors | T T
* n tokens

| Context Window Tokens Sequence |<—

)
Figure 16. Overview of the GPT architecture.

During training, the model learns the parameters of its ANN in the decoder stack to maximize
the probability of correctly predicting the next token in the input sequence. After training, the model
has learned the underlying phenomenon that produced all the text corpus used to train it. That is, the
model learned general knowledge from the training examples to generate responses that are
consistent with human understanding, within the context of the prompt.

During inference, the model gives the impression that it understands the syntax, semantics, and
context of a prompt sufficiently well to produce a sensible and informative response. The inference
is statistical in nature because once the model decides on a response, it begins to generate natural
language that conveys the essence of the response, constrained by choosing the next word that is
consistent with a pre-determined probability setting. That is, downstream developers can set a
hyperparameter called “temperature” that tells the model what probability level to use when
predicting the next word in its response. A temperature of zero tells the model to pick the next word
that is associated with the highest probability whereas a higher setting causes the model to produce
more “creative” responses by picking lower probability next words.

Intuition: The language portion of the human brain encapsulates a complex cognitive function that
grasps the rules of grammar and sentence structure, comprehends the meaning of words and how
their relationships with other words form meaningful expressions. Humans understand the broader
context of a sequence of words based on topic, style, and intent. Scientists still do not know how
that cognitive function of language generation works in either the brain or the LLM. However, the
LLM learned a version of that complex function and will expectedly learn better approximations of
it with more parameters.

Predicting the next word based on probabilities led to limitations of LLMs. For example, if the
prompting is ambiguous or lacks context, the model can confidently produce inaccurate or
nonsensical responses called hallucinations that still seem plausible. The subsections that follow
discuss each part of the architecture in greater detail by referring to the explanations of the
background methods discussed in the previous section.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

21

3.1. GPT Architecture Overview

Language understanding requires knowledge about word syntax, word position in a sequence,
semantics, and overall context. An LLM transforms every word in a sentence to encode those key
language concepts. The token embedding and position encoding schemes capture mostly the
syntactic and grammatical structure among words. As discussed previously, the attention
mechanism captures the semantic and contextual meaning of the input sequence. The middle of
Figure 16 shows an exploded view of the first decoder in the stack of decoders. The right side of
Figure 16 shows an exploded view of the attention mechanism described earlier (Figure 5). The first
decoder layer performs the transformation:

(18)
Zy=XW.+W,

where the matrix X = (x, ..., x-1) contains the token symbols x in the context window of size n. GPT-3
uses n = 2048 (Brown, et al., 2020). The matrix W. is the token embedding matrix, and W is the
position encoding matrix. Figure 16 annotates the dimension of each matrix in the superscript
indicated next to the output of a functional block. The dimension of each token vector is d. GPT-3
uses d = 12,288 (Brown, et al., 2020).

The decoders in subsequent layers of the stack of N decoders process the output of the previous
decoder. The last layer in the decoder stack produces the contextualized token matrix Z. The linear
network at the output of the decoder stack converts the contextualized token vectors to logit vectors
in matrix Y where the dimension of each vector is the length of the vocabulary indicated as m. GPT-
3 uses m = 50,257 (Brown, et al., 2020). The SoftMax function normalizes each logit value to a
probability distribution over the vocabulary. Therefore, the position of the peak value points to the

position of the predicted next token in the vocabulary if the temperature setting is zero. During

inference, the decoder predicts tokens in time steps, one token at a time. The decoder adds each

predicted token to the input context window to build the input sequence and then predicts the next
token based on the updated objective function. The looping terminates when the input receives a
special stop token.

The exploded view of the decoder in the middle of Figure 16 shows that the output of the
attention mechanism feeds into a residual connection, which then feeds into a layer normalization
block that standardizes the batch of co-relevance vectors. The FENN (FF.) at each token position

independently adjusts the co-relevance vector at that position to further refine its meaning in
preparation for more self-attention processing in later decoder layers.

3.2. Multi-headed Attention

The GPT architecture uses more than one block of attention mechanism per decoder layer. GPT-3
uses h = 96 attention heads (Brown, et al., 2020).

Intuition: Each head of an attention block learns to focus on various parts of the input token
sequence when computing co-relevance scores. The SoftMax function distributes the co-relevance
scores differently, depending on the levels of dot product mix that each attention head computes
and on how the FENN in the previous layer transformed the previous contextualized vectors. With
multiple attention heads learning different focus areas, the final concatenation of the attention
vectors will have a richer mix of co-relevance from multiple parts of the input sequence. Figure 17
shows an example with two attention heads. The first head “Head 1” focused on the co-relevance
between “it” and “dog” whereas the second head “Head 2” focused on the co-relevance between
“sat” and “tired”. In this example, the concatenation matrix learned to combine the co-relevancies

from both heads into single representation combining them.

The GPT-3 implementation of attention heads maps the Q-K-V representation vectors to a lower
dimension so that the computational cost for the combined heads would be equivalent to that for a
single head of the full dimension. GPT-3 reduced the dimension of each head from 12,288 to 12,288/96

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

22

=128. A learned linear network converted the concatenation of matrices from all the attention heads
back to a single contextualized output matrix of the original dimension.

Intuition: Splitting the computational cost across attention heads leads to a tradeoff between token
dimension and the number of attention heads. Larger dimension token vectors hold more
information and improve model performance whereas multiple heads bring more diversity to the
model. LLM developers are still experimenting to determine the best tradeoff between vector
embedding dimension and the number of attention heads.

Head 1 Head 2 Concatenation

The The The

dog dog

sat sat

on on on

my my my

couch couch couch

because because because

was was

Figure 17. Concatenation of co-relevance from different attention heads.

3.3. Sparse Attention

The computation cost to generate co-relevance scores is quadratic in sequence length. However,
some co-relevance matrices can be sparse where large partitions of it contain zero co-relevance.
Consequently, techniques emerged to reduce computational cost and memory requirements to
process sparse co-relevance matrices by focusing computations only on submatrices that have co-
relevance (Child, Gray, Radford, & Sutskever, 2019). The GPT-3 architecture differs slightly from the
previous version in that the decoder layers alternated between dense and sparse co-relevance matrix
factorization (Brown, et al., 2020). The factorization technique splits the original co-relevance matrix
into smaller sub-matrices that have proportionally less non-zero elements. Hence, factorized matrices
will operate on nearby tokens that have stronger co-relevance.

Intuition: Factorization takes advantage of matrices with few signal areas by focusing computation
only on those areas. Operating on smaller sub-matrices that have signal allows the model to scale to
longer input sequences while maintaining its efficiency in capturing relevant information. The
tradeoff is that sparse attention matrices may lose some information or signal, resulting in reduced
expressiveness. Therefore, alternating layers between full and sparse attention results in an
acceptable compromise between performance and computational cost.

3.4. Masked Self-Attention

Self-supervised training requires that the model hide or mask future words in the training
sequence prior to their prediction. The mask is a square matrix containing “1” on and below the main
diagonal, and negative infinity above the diagonal. Figure 18 shows an example of the mask matrix.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

23

X,
X1 -oO]-00]-00
X, -o|-o

- o0

X,

Figure 18. Mask matrix for the attention scores.

Elementwise multiplication of the mask matrix with the co-relevance score matrix produces
large negative numbers in the upper diagonal. This way, the SoftMax function converts the large
negative numbers to near zero so that the model cannot include tokens after the current position of

prediction. That is, the mask prevents the decoder from computing contextualized value vectors for
future tokens while still permitting parallelized matrix operations.

Intuition: During inference, the next token prediction begins with a special start token. The decoder
autoregressively adds each newly predicted token to the output sequence of predictions. The
attention mechanism computes an attention score matrix in parallel by using the input sequence
plus all the tokens in the output sequence, including future tokens. However, the mask produces
zeros for contextualized vectors beyond the current position of token prediction. That is, the mask
ensures that at each prediction timestep, weights from the SoftMax that correspond to future
unpredicted tokens will be zero without compromising the ability to parallelize computations.

3.5. Decoder Levels

The GPT-3 architecture uses more than one decoder layer. GPT-3 uses N = 96 layers, which is the
same as the number of attention heads per layer (Brown, et al., 2020). As illustrated in Figure 16, the
structure of each decoder in the stack is identical. Hence, the GPT-3 architecture is effectively as wide
as it is deep in computational elements. As with the number of attention heads, the number of
decoder layers is a hyperparameter. Too few layers can diminish a model’s capacity for learning
complex rules but too many layers can increase the risk of overfitting, which spoils the model’s ability
to generalize.

Intuition: Each decoder layer makes further adjustments to the contextual representation of tokens
based on learning something different about how tokens in the sequence influence each other to
express meaning. The contextualized meanings of current tokens may change as the decoder
predicts future tokens. Researchers demonstrated that downstream decoder layers gradually
express global (deeper) dependencies versus local (shallow) dependencies among tokens (Geva,
Schuster, Berant, & Levy, 2020). The lower layers tend to learn shallow syntactic patterns, whereas
the downstream (higher) layers tend to learn semantic patterns of global context. Hence, each layer
can capture various levels of abstraction, learn hierarchical representations from low-level features
to high-level semantics, and promote modular learning. Multiple layers increase the model’s
capacity to combine and transform information flowing through the layers in complex ways to
capture intricate and non-linear relationships among the tokens, including information from distant
tokens in the input sequence.

3.6. Feed Forward Neural Network

Each position of the input context window has an identical but independent and fully connected
FFNN. Each FFNN of the GPT-3 architecture uses two hidden layers, each with four times the number
of nodes as there are dimensions of the input vectors. Hence, the GPT-3 architecture has 4 x 12,288 =

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

24

49,152 nodes in each of the two hidden layers (Brown, et al., 2020). Research found that the FFNN
accounts for two-thirds of the model parameters (Geva, Schuster, Berant, & Levy, 2020). Using the
same FFNN at each position simplifies the model architecture and reduces the risk of overfitting. The
independent FFNN at each position learns to continuously adjust the contextualized vector and
influences how the linear networks below it learns to produce the Q-K-V projection matrices and the
linear network to maximize the accuracy of the next token prediction.

The FFNN at each token position also behaves like a memory element that learns how the
contextualization of tokens at that position results in the expression of both local and global semantic
relationships. The memory element learns to capture local information, non-linear interactions, and
patterns among tokens that appear at that position. The underlying syntactic and semantic rules of a
language govern the probability that specific words will appear at specific positions, and those
you," "he,"
"she," "it," "we," "they") or proper nouns such the names of people or places (Manning & Schutze,
1999).

"o

statistics are language dependent. For example, sentences often begin with subjects ("I,

Intuition: Having independent FENN at each position enables efficient parallelized operations that
can occur independently and simultaneously across multiple independent processors. The linear
network above the decoder stack computes a joint probability distribution over the vocabulary for
the contextualized tokens that flow through each position. As exemplified in Bayesian statistics,
independence is an important property when computing a joint conditional probability
distribution.

3.7. Linear Output Layer

The linear output layer converts each of the final contextualized tokens in the output matrix Z
to probability distributions Y over the fixed vocabulary. The output matrix for a single training batch
has the dimensions (sequence length x vocabulary size) = (n x m). Each vector in the output sequence
contains a set of m logit values representing the probability distribution of that token over the entire
vocabulary. The logit value in each position of the vector corresponds to the probability that the
predicted token is the one at that position in the vocabulary.

The linear layer shares network parameters with the input word embedding network. Sharing
parameters achieves token lookup consistency and memory savings. The probability distribution for
the predicted token depends conditionally on the joint probability distribution of the contextualized
tokens at prior positions. Experiments revealed that the probability distribution for the set of
predicted tokens follows a power law decay that is characteristic of general language statistics where
the nt most frequent word occurs with a frequency of 1/n (Wolfram, 2002). Therefore, only a few
words will rank highest in probability. As discussed earlier, the “temperature” hyperparameter
determines the token selection based on its next token probability rank. A SoftMax function that
follows normalizes the logit values to positive numbers that sum to unity, which also directly ranks
the probabilities.

During training, the loss function is the difference between the probability vector and the OHE
vector that represents the correct target token in the vocabulary. The error is simply a difference
between the OHE vector and the probability distribution for the predicted token.

Intuition: If one visualizes the sequence of next token predictions as following a trajectory in
linguistic vector space, then the path’s “signature” could represent distinct information. Just as the
forces acting on a particle in physical space shapes a trajectory, one can think of the complex
interactions between tokens and their semantic relationships as “forces” that shape a trajectory in
linguistic vector space to represent information that could be a unique idea, concept, or memory
about facts digested from the massive training corpus.

4. Training Methods

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

25

The next subsections describe the three stages used to train an LLM. The first stage uses a self-
supervised method, the second uses a supervised fine-tuning method, and the third stage uses
reinforcement learning with human feedback to train a rewards model.

4.1. Self-Supervised Learning

Research found that the LLM’s ability to follow human instructions increases as the training data
and model size increases (Bubeck, et al., 2023). The self-supervised learning of LLMs used a massive
text corpus from the Internet and other places. Sources included books, Wikipedia, periodicals, and
high-ranking websites. GPT-3 trained on corpus that collectively contained three hundred billion
tokens (Brown, et al., 2020). Lambda Labs hypothesized that, based on the model size, GPT-3 trained
for “a few weeks” on several thousand GPUs in parallel, with the equivalent being 355 years on a
single state-of-the-art 28 TFLOP GPU in 2020 (Li, 2020). One TFLOP is one trillion floating-point
operations per second.

Intuition: The trends reported by OpenAl suggested that performance scales when the model size
is comparable to the training data size. A common misconception is that the model directly stores
data by compressing the training tokens. One can understand that this is not the case by calculating
a token compression rate in tokens per learnable parameter. GPT-3 has 175/300 = 0.6 tokens per
learnable parameter, which is hardly any compression at all. That is, if one interprets this metric as
the model using one ANN parameter to carry the information in a little less than one token, then
one cannot interpret the model to be simply a memory model. In other words, we know that the
“black box” has many artificial neurons, but we do not understand how they operate collectively to
implement a cognitive function of language understanding, language generation, and common-
sense knowledge.

4.2. Fine-Tuning

Although the pretrained model learned natural language, it does not necessarily have the skills
to generalize on specific tasks. Common examples of specific tasks are sentiment classification, text
generation, text summarization, question answering, language translation, and code generation.
Fine-tuning is a method to “transfer” the knowledge from a pre-trained model by adapting it to a
specific task or domain. Fine-tuning uses supervised learning based on datasets labeled by humans.
Such datasets demonstrate desired behavior and responses for various tasks or instructions. The
dataset C used to train a supervised fine-tuned (SFT) model has token sequences [x, ..., x] and the
desired output labels y. The developers modify the pretrained model by adding another linear layer
with parameters Wy to the output h'n of the last decoder. Hence, the transformation performed is
[Am][Wy]. The model then learns the parameters of Wy by training it with each instance of the entire
labeled dataset C. After training, the SoftMax produces the probability of a label y given an unseen
input sequence [x, ..., x]. Hence, the SFT learned to maximize the following objective function over
all instances {[x7, ..., x"], y} in the labeled training dataset C (Radford, Narasimhan, Salimans, &
Sutskever, 2018):

L,(C) = Z log P(x%, ...,x™; @) (19)

)

Intuition: Fine-tuning tailors the SFT model to the specific nuances of a given task or domain so
that it can generalize better on unseen data. Other advantages of fine-tuning are faster convergence
with fewer labeled datasets from a specific domain. For instance, GPT-1 used 100 epochs for self-
supervised pretraining and 3 epochs for supervised finetuning (Brown, et al., 2020). Supervised
fine-tuning enables companies to create domain-specific models by using their private or
proprietary datasets.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

26

4.3. Reinforcement Learning

SFT language models have a limited ability to align with user intentions. Their responses could
lack helpfulness, contain inaccurate facts, lack interpretability, and include toxic, offensive, or
harmful content. To address that problem, ChatGPT developers used a reinforcement learning (RL)
technique to augment the SFT model. The RL method helped the SFT model learn a “policy” to better
align it with human intentions. The technique first used human feedback to train a separate
“rewards” model. The reinforcement learning with human feedback (RLHF) method trained the
rewards model to produce a scalar rewards output based on a series of responses from the SFT model
to a prompt (Ouyang, et al., 2022). The RLHF technique required human labelers to rank four to nine
responses from the SFT model to a single prompt. To simplify the ranking task, human labelers
ranked pairs of responses separately, for all unique combinations of responses, based on their quality
or appropriateness for a given task or instruction. The prompt and the batch of pairwise ranked
responses became the training data for the rewards model. Figure 19 illustrates how the trained
model from RLHF then trains the SFT model for alignment.

[

Prompt
Dataset

g SFT
Model

Figure 19. Training the SFT model using RLHEF.

= E
& 5

Responses
Reward

-
-

The trained rewards model automatically generates a scalar reward to further train the SFT
model to improve its alignment with preferences of the human trainer. The RL method included the
reward in the backpropagation during training. In this way, the SFT model developed policies to
maximize its cumulative reward over time. ChatGPT used a method called proximal policy
optimization (PPO) to ensure that the model does not overfit to rewards. That is, PPO assured that
the new policies created did not deviate much from the original learned capabilities of the SFT model
that enabled it to generalize on unseen data (Ouyang, et al., 2022).

Broadly, model alignment refers to the ability of Al models to align with user intentions.
However, “user intentions” can be varied and conflicting. The capabilities of LLMs to blur the
distinction between human- and Al-generated content has raised concerns about misinformation,
manipulation, and misuse. Examples include perpetuating stereotypes, discrimination, or offensive
content, sharing confidential information, generating fake news, propagating computer viruses, and
teaching perpetrators how to easily harm people while evading discovery (Schaul, Chen, & Tiku,
2023).

Intuition: LLMs train on a corpus written by humans from all backgrounds, cultures, persuasions,
and ideologies. Therefore, LLMs will exhibit bias and produce content that will be toxic to certain
groups and yet align with the values of other groups. In general, Al developers want models to
achieve the 3H qualities, which means that they should be harmless, helpful, and honest. However,
those three qualities can mean different things to different people. Therefore, LLM alignment and
the development of ethical standards for Al will be an ongoing challenge and are active areas of
research.

5. Conclusions

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

27

The proliferation of data on the Internet combined with the exponential growth in computing
capacity and the discovery of a more capable language model architecture led to a tipping point in
the performance of Al chatbots. This primer provided a comprehensive and accessible tutorial on
large language models (LLMs) such as ChatGPT and Google’s Bard. The goal was to demystify their
underlying theory, architecture, and methods for a broad audience. The primer provided insights
into key computing elements, architectural choices, and state-of-the-art training methods that have
enabled these models to achieve groundbreaking performance. Prompt engineering is an emerging
skill that users will need to achieve effective interaction with a computer through natural language.
This new way of human-computer interaction has significantly increased the accessibility of
computers, which will pave the way for an explosion of novel applications across various domains.
With continued advancements in LLM capability, it is crucial for researchers, developers, and users
to understand their inner workings. The future discovery of more efficient architectures, the
development of dedicated neural network microchips, and the emergence of Al models that can train
even more powerful AI models will lead to ever-scaling advancements. Hence, fostering a broader
understanding of LLMs will contribute to responsible innovation and informed discussions on their
potential impact on society, ensuring that humans harness the technology for greater good while
eliminating unintended negative consequences.

6. Future Work

Readers at the time of this writing will remember using a deck of “punch cards” to program
computers through the 1980s. Since then, low-level computer languages, like assembly language,
replaced punch cards. Later higher-level programming languages like Basic, C, Java, and Python
replaced assembly language. The human-machine interface also switched from in-line typing (e.g.,
disk operating system) to a graphical user’s interface (GUI) with application icons. At the time of this
writing, humanity has entered a new era of human-machine interface where users can use natural
language to instruct computers. This capability has increased the accessibility of computers to a much
larger population.

Continued accessibility enhancement will result in an explosion of new applications across all
domains. For example, users can do simple tasks like asking for recipes that use a finite set of
ingredients to more complex tasks such as data mining a biological dataset to discover a cure for a
disease. However, there are various levels of prompting complexity that can have an enormous effect
on the quality and helpfulness of the responses from the Al chatbot. The familiar adage “garbage in,
garbage out” still holds.

Prompt engineering has emerged as a new skill to appropriately prompt LLMs to produce
desired results. Good prompts will have four parts: Context setting, specific instructions,
format/structure, and optional examples.

o Context setting provides a brief background about the topic or task. This guides the Al into an
internal state for understanding the context for which it should generate a response. That is,
LLMs rely on the information provided in the prompt to understand the topic for generating
meaningful and relevant responses.

e Specific instructions clearly state the requirements, questions, or tasks without any ambiguity.
This focuses the LLM to reduce changes of generating irrelevant or off-topic responses.

e Format/structure tells the LLM the format or sentence structure to produce the response. This
includes word count, bullet points, and headings of an outline. The Al can also produce output
in tabular form or indirectly generate graphics in HTML using scalar vector graphics (SVG) that
a browser can render.

e Examples providing the LLM with desired outputs helps it better understand the style, format,
or output sought. The results improve with one or more examples. The literature refers to
providing zero, one, or more examples as zero-shot, one-shot, or few-shot prompting,
respectively.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

28

Research posited that “chain-of-thought” prompting elicits “reasoning” in LLMs (Wei, et al,,
2023). No doubt, discoveries of new prompting “hacks” will follow. Prompt engineering has emerged
as a new sought-after skill and dozens of books are already available on the subject. Future work will
examine approaches towards achieving AGI, which may require innovations that go beyond simply
continuing to increase the model size and training data.

Declarations: The author has no conflicts of interest to declare. The author created all the figures in this primer.
The author did not use Al tools to generate any portion of this document. Human peers suggested edits to the
original manuscript, for which the author is grateful.

Acronyms

AGQGI: artificial general INtellIGENCEccciuiuiiiiiiiiiiiiii b 6
AT artificial INtEIIIZENCEc.cuiviiiiiiiiiicc e 5
ANN: artificial NeUral NEtWOTKcoviiiiicii s 5
ASI: artificial super iNtelliIGENCecoviiiiiiiiiiii e 6
BPE: byte-pair @NCOAING........cccivuiiiiiiiiiiiiiiiii s 8
FFNN: feed-forward neural NEtWOTKccccoiiiiiiiiiiii e 17
GALI generative artificial intelligeNnCe.........ccccooviiiiiiiiiiiiiiiii 5
GELU: gaussian error INear UNit..........ococeiiiiiiiiiiiiiiic s 18
GPT: generative pretrained transfOrmeT ..o 5
GPU: graphical processing unit

GUIL graphical USer’s INtEIface...........ocviuiiiiiiiiiiiiiiii b
LLM: large language MOdel..........cccouiiiiiiiiiiiiii s 5
LSTMs: long short-term MemMOTIEScciiiiiiiiiiiiiiiccc s 10
NLP: natural language PrOCESSING.........cccciiiiiiiiiiiiiiiiiii bbb 6
OHE: 0Nne-hot-eNCOAEM.........comiiiiiiiiiccc et 9
ReLU: rectified HNEAT UNItcccuiiiiiiiiiiiiii s 18
RL: reinforcement 1€arning...........ccouviiiiiiiiiiiiiiiic s 35
RLHE: reinforcement learning with human feedbackcccccooiiiiiii, 35
RMSE: 1OOt-TNEaN-SQUATE-EITOTcovriririucueietete s escsss sttt a bbb sa b a bbb s a ettt s 23
RNNSs: recurrent NeUral NEtWOIKSccuiuiiiiiiiiiiiiiccicet e 10

SFT: supervised fine-tuned.............

SGD: stochastic gradient descent
TFD: token frequency distribUtion ..o

TFLOP: trillion floating-point operations per second.....
UTF-8: unicode transformation format (8-Dit).........ccereruruecirerireiriereniriiieieirictteeneereee ettt ese e e seseenes

References

Ba, J. L, Kiros, J. R, & Hinton, G. E. (2016). Layer normalization. arXiv:1607.06450v1 [stat.ML].
doi:10.48550/arXiv.1607.06450

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate.
3rd International Conference on Learning Representations (ICLR 2015). San Diego, CA, USA: arXiv:1409.0473v7.
doi:10.48550/arXiv.1409.0473

Bengio, Y., Ducharme, R., & Vincent, P. (2000). A Neural Probabilistic Language Model. In T. K. Leen, T. G.
Dietterich, & V. Tresp (Ed.), Advances in Neural Information Processing Systems 13 (NIPS 2000). The MIT Press.
Retrieved from https://mitpress.mit.edu/9780262526517/advances-in-neural-information-processing-
systems-13/

Bridgelall, R. (2022). Tutorial On Support Vector Machines. Research Square. doi:10.21203/rs.3.rs-1200362/v2

Brown, T. B.,, Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... Amodei, D. (2020). Language Models
are Few-Shot Learners. arXiv:2005.14165v4 [cs.CL]. doi:10.48550/arXiv.2005.14165

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., . . . Zhang, Y. (2023). Sparks of
Artificial General Intelligence: Early experiments with GPT-4. arXiv:2303.12712v4 [cs.CL].
doi:10.48550/arXiv.2303.12712

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

29

Child, R., Gray, S., Radford, A., & Sutskever, I. (2019). Generating long sequences with sparse transformers.
arXiv:1904.10509v1 [cs.LG]. doi:10.48550/arXiv.1904.10509

Chomsky, N., Roberts, I., & Watumull, J. (2023, March 8). Noam Chomsky: The False Promise of ChatGPT. The
New York Times. Retrieved from https://www.nytimes.com/2023/03/08/opinion/noam-chomsky-chatgpt-
ai.html

Géron, A. (2019). Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems (2nd ed.). Sebastopol, California: O'Reilly Media.

Geva, M., Schuster, R., Berant, J., & Levy, O. (2020). Transformer feed-forward layers are key-value memories.
arXiv:2012.14913v2 [cs.CL]. d0i:10.48550/arXiv.2012.14913

He, K., Zhang, X, Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (pp. 770-778). Las Vegas, NV, USA: IEEE.
doi:10.1109/CVPR.2016.90

Hendrycks, D., & Gimpel, K. (2016). Gaussian Error Linear Units (GELUs). arXiv:1606.08415v4 [cs.LG].
doi:10.48550/arXiv.1606.08415

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators.
Neural networks, 2(5), 359-366. d0i:10.1016/0893-6080(89)90020-8

Krizhevsky, A., Sutskever, 1., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural
networks. Communications of the ACM, 60(6), 84-90. d0i:10.1145/3065386

Li, C. (2020, June 3). OpenAl's GPT-3 Language Model: A Technical Overview. Retrieved from Lambda:
https://lambdalabs.com/blog/demystifying-gpt-3

Liu, Y., Han, T., Ma, S., Zhang, J., Yang, Y., Tian, J,, . . . Ge, B. (2023). Summary of ChatGPT/GPT-4 research and
perspective towards the future of large language models. arXiv:2304.01852v2 [cs.CL].
do0i:10.48550/arXiv.2304.01852

Manning, C., & Schutze, H. (1999). Foundations of Statistical Natural Language Processing. Cambridge,
Massachusetts, USA: MIT Press.

Otter, D. W., Medina,]. R., & Kalita, J. K. (2020). A survey of the usages of deep learning for natural language
processing. IEEE transactions on neural networks and learning systems, 32(2), 604-624.
doi:10.1109/TNNLS.2020.2979670

Ouyang, L., Wu,], Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., . . . Lowe, R. (2022). Training language
models to follow instructions with human feedback. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, & A. Oh (Ed.), Advances in Neural Information Processing Systems 35 (NeurIPS 2022). 35, pp. 27730-
27744. Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper_files/paper/2022

Peters, J. (2023, March 14). The Bing Al bot has been secretly running GPT-4. The Verge. Retrieved from
https://www.theverge.com/2023/3/14/23639928/microsoft-bing-chatbot-ai-gpt-4-1lm

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving Language Understanding by Generative
Pre-Training. San Francisco, California: OpenAl. Retrieved from https://github.com/openai/finetune-
transformer-lm

Roose, K. (2022, December 5). The Brilliance and Weirdness of ChatGPT. The New York Times. Retrieved from
https://www.nytimes.com/2022/12/05/technology/chatgpt-ai-twitter.html

Schaul, K., Chen, S. Y., & Tiku, N. (2023, April 19). Inside the secret list of websites that make AI like ChatGPT
sound smart. The Washington Post. Retrieved April 19, 2023, from
https://www.washingtonpost.com/technology/interactive/2023/ai-chatbot-learning/

Sennrich, R., Haddow, B., & Birch, A. (2015). Neural machine translation of rare words with subword units.
arXiv:1508.07909v5 [cs.CL]. d0i:10.48550/arXiv.1508.07909

Stevenson, A. (Ed.). (2010). Oxford dictionary of English. USA: Oxford University Press.

Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic geography,
46(supl), 234-240. doi:10.2307/143141

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . .. Polosukhin, I. (2017). Attention
is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett
(Ed.), Advances in mneural information processing systems 30 (NIPS 2017). Retrieved from
https://proceedings.neurips.cc/paper._files/paper/2017

W3Techs. (2023, April 18). Usage of character encodings broken down by ranking. Retrieved April 18, 2023, from Web
Technology Surveys (W3Techs): https://w3techs.com/technologies/cross/character_encoding/ranking

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 d0i:10.20944/preprints202305.0900.v1

30

Walczak, S. (2019). Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and
Human-Computer Interaction. Hershey, Pennsylvania, USA: IGI Global. doi:10.4018/978-1-5225-7368-5.ch004

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., ... Zhou, D. (2023). Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. arXiv:2201.11903v6 [cs.CL]. d0i:10.48550/arXiv.2201.11903

Widdowson, H. (2007). J.R. Firth, 1957, papers in linguistics 1934-51. International Journal of Applied Linguistics,
17(3), 402-413. doi:10.1111/j.1473-4192.2007.00164 .x

Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Stephen Wolfram, LLC. Retrieved from
https://www.wolframscience.com/nks/notes-8-8--zipfs-law/

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

