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Abstract: Link prediction is critical to complete the missing links in the network or to predict the generation of 
new links according to current network structure information, which is vital for analyzing the evolution of the 
network, such as the logical architecture construction of MEC (Mobile Edge Computing) routing links of 5G/6G 
Access Network. Link prediction can provide throughput guidance for MEC and select appropriate nodes for 
message forwarding processing and motivation of this article is to construct a better prediction algorithm to 
optimize network structure and promote throughput MEC routing links of 5G/6G Access Network. Traditional 
link prediction algorithms are always based on node similarity, which needs predefined similarity functions, 
is highly hypothetical and only can be applied to specific network structures without generality. To solve this 
problem, this paper has proposed a new efficient link prediction algorithm PLAS and its GNN (Graph Neural 
Network) version PLGAT based on subgraph of target node pair. In order to automatically learn the graph 
structure characteristics, the algorithm first extracts the h-hop subgraph of target node pair, and then predicts 
whether the target node pair will be linked according to the subgraph. Experiments on eleven real data sets 
show that our proposed link prediction algorithm is suitable for various network structures and superior to 
other link prediction algorithms especially in some 5G MEC Access Networks datasets with higher AUC 
values. 

Keywords: link prediction; graph neural network; graph embedding; 5G MEC network routing 
links 

 

1. Introduction 

In real life, many complex systems can be modeled into complex networks for analysis, such as 
power network, traffic network, routing network, citation network, 5G/6G space-air-ground 
communication networks, social network, etc.  

In link prediction task, nodes in the network always represent real entities such as routers and 
switches in network, and associations between entities represent edges. Link prediction is mainly 
based on current network structure and other information to complete the missing links in current 
network or predict the possible new connections in the future network [1] such as new routing links 
which may occur in the 5G/6G space-air-ground communication networks around satellite MEC 
equipment (Mobile Edge Computing) to transport data-densed computation. As an important 
research direction in complex networks, link prediction has extensive theoretical research value and 
practical application value. 

In other theoretical research value aspect, link prediction can reveal the evolutionary mechanism 
of the network and provide a simple and fair comparison method for the evolutionary network [2]. 
For example, for a certain type of network, many models provide evolutionary methods. The quality 
of evolutionary methods can be verified by real data sets, but these evolutionary methods are often 
limited by the scale of evolutionary time or the difficulty of real data set collection. The link prediction 
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algorithm provides a simple and fair comparison method. According to network structure at a 
moment 𝑡 − 𝑛, the link prediction algorithm can be used to complete the missing link in the current 
network or to predict the network at time 𝑡 when new links are generated in the future. Then, the 
accuracy of different evolution methods can be obtained by comparing with the network at the 
original moment. And advantages and disadvantages of different evolutionary methods can be 
obtained by analyzing the accuracy of new generated links. 

In other practical applications, for example, in social networks, link prediction algorithm 
recommends users who have the same interests but are not friends to online social users to improve 
user stickiness [3]. In Weibo or Facebook, link prediction algorithm can be used to recommend topics 
or short videos that users are interested in and to predict the popularity of some special topics and 
short videos [3]. In the field of e-commerce, the relationship graph between users and commodities 
can be established, and the link prediction algorithm can recommend relevant commodities to users, 
reduce the time of searching for commodities and improve efficiency [4]. In the protein network, 
there are many unknown links, and searching for these links requires many crossover experiments, 
which will waste a lot of manpower and material resources. However, the link prediction algorithm 
will predict the most likely links, which provides guiding opinions for the experiment, shortens the 
scope of the experiment, and speeds up the identification process of unknown links. And the 
experimental cost is reduced [5]. The research on link prediction in complex networks has a wide 
range of theoretical and practical value. 

2. Related Work 

In reality, a large number of complex systems can be represented by networks, with nodes 
representing different entities and edges representing relationships between entities. Link prediction 
is to predict the missing links in the current network and the generation of new links in the future 
network through the known network structure and other information [1]. It has a wide range of 
practical value in friend recommendation [3], product recommendation [4], knowledge graph 
completion [6] and other fields[29–31]. 

The heuristic algorithms commonly used in link prediction are based on node similarity [7]. This 
algorithm assigns a scoring function to each node pair, representing the similarity of node pair, and 
sorts the unobserved node pairs according to the scoring function. The node pairs with high similarity 
are more likely to generate new connections. This kind of algorithm can be classified according to the 
maximum hop number of the maximum neighbor node required to calculate the scoring function [8]. 
For example, CN [9] and JC [10] link prediction algorithms only need the one-hop neighbor node of 
the target node pair to calculate the score function, so it belongs to the heuristic algorithm of one-hop 
node similarity. AA [3] and RA [11] link prediction algorithms need the target node to calculate the 
two-hop neighbor node when calculating the score function. Therefore, it belongs to the heuristic 
algorithm of two-hop node similarity. This kind of similarity based heuristic algorithm has become 
the most common algorithm in link prediction because of its simplicity and effectiveness. However, 
such algorithms need strong assumptions. When changing from one network structure to another 
network structure, the assumptions are not consistent with the other network structure. For example, 
CN algorithm believes that the more common neighbors two nodes have, the more likely they will 
have links in the future, which is often correct in social networks. However, this is not true in protein 
interaction networks (the more common neighbors two nodes have, the less likely they are to generate 
links in the future) [12]. Therefore, it is a significant disadvantage of heuristic algorithms based on 
node similarity to select appropriate scoring functions for different network structures. 

The link prediction algorithm based on machine learning mainly transforms the link prediction 
task into a binary classification task, in which the node pairs with links are regarded as positive 
classes, and the node pairs without links are regarded as negative classes. The key to this kind of 
algorithm mainly lies in the selection of features and classification algorithms. In 2004, Faloutsos et 
al. [32] introduced a connection subgraph, which can well capture the topology between two nodes 
in a social network. In 2006, Al et al. [33] extracted the non-topological features of the network based 
on extracting the topological features of the network, which improved the algorithm's accuracy. In 
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2007, Liben et al. [34] extracted some network topology features from the citation network, such as 
CN, AA, Katz, etc., and input them into a supervised learning algorithm for learning and prediction. 
Their experimental results outperform link prediction algorithms based on individual network 
topologies. In 2010, Benchettara et al. [35] used the enhanced decision tree algorithm and found that 
using topological features in the feature set can significantly improve the link prediction algorithm's 
precision, recall, and F value. In 2014, Fire et al. [36] proposed a set of easily computable graph-
structured features and adopted two ensemble learning methods to predict missing links in the 
network. In 2018, Zhang et al. [37] used the attribute features of nodes as non-topological features to 
input into supervised learning algorithms, improving link prediction algorithms' accuracy. In 2018, 
Mandal et al. [38] used a variety of supervised learning algorithms for link prediction in a two-layer 
network composed of Twitter and Foursquare. In 2022, Kumar et al. [39] introduced the value of node 
centrality as a sample feature, input it into various supervised learning algorithms for prediction, and 
achieved the best results on the LGBM (Light Gradient Boosted Machine) classifier. The key to link 
prediction algorithms based on machine learning lies in selecting feature sets. Such algorithms often 
extract some topological features of the network as feature sets. However, when solving domain-
specific link prediction problems, corresponding domain knowledge is also required to construct its 
domain-specific features. Compared with the heuristic-based link prediction algorithm, the link 
prediction algorithm based on machine learning can improve its accuracy, but it also brings time 
costs for training models and feature selection. 

Link prediction algorithms based on graph representation learning mainly map high-
dimensional dense matrices (graph data) into low-dimensional dense vectors and then use the 
mapped vectors for downstream tasks, such as node classification [40,41], graph classification [42,43], 
link prediction [44], etc. In 2014, Perozzi et al. [45] first proposed the graph representation algorithm 
DeepWalk for unsupervised learning. The algorithm obtains the sequence of nodes through random 
walks and inputs the sequence of nodes as sentences into the Skip-Gram model in the Word2Vec 
algorithm to obtain the node vector representation. In 2015, Tang et al. [23] proposed the LINE 
algorithm model, which proposed a method of edge sampling so that the vectors of the obtained 
nodes retain the first-order similarity and second-order similarity. In 2016, Grover et al. [13] proposed 
the Node2Vec algorithm. Node2Vec is similar to DeepWalk, but Node2Vec uses a biased random 
walk method, which balances depth-first walk and breadth-first walk, and obtains a higher-quality 
embedded representation. In 2016, Wang et al. [46] proposed the SDNE (Structural Deep Network 
Embedding) model. SDNE is a semi-supervised deep learning model that uses a deep network 
structure to simultaneously optimize the first-order and second-order similarity objective functions 
and obtains vectors for preserving the graph's local and global structure. In 2016, Cao et al. [47] 
proposed the DNGR algorithm model. DNGR uses the random walk model (Random Surfing) to 
generate the probability co-occurrence matrix, calculates the PPMI matrix with the probability co-
occurrence matrix, and uses the superimposed denoising automatic encoding machine to extract 
features to obtain the vector representation of the node. In 2016, Kipf et al. [48] proposed the GCN 
(Graph Convolutional Network) model. The algorithm considers the influence of neighbor nodes and 
continuously aggregates the characteristics of neighbor nodes. Embedding neighbor nodes can obtain 
scalability, and the global information can be described by aggregating the characteristics of neighbor 
nodes through multiple iterations. In 2016, Kipf et al. [24] proposed the VGAE (Variational Graph 
Auto-Encoders) model, introducing variational autoencoders into graph data. The distribution of the 
node vector representation of the known graph is learned through GCN convolution, the 
representation of the node vector is sampled in the distribution and then decoded (link prediction) 
to reconstruct the graph. In 2017, Veličković et al. [28] proposed the GAT (Graph Attention Networks) 
model, which introduced an attention mechanism. When calculating the vector representation of 
nodes, the model's generalization ability is improved by assigning different weights to the 
characteristics of nodes. At the same time, a multi-head attention mechanism is introduced, and the 
features obtained by multiple attention mechanisms are spliced and averaged to obtain the final node 
representation. In 2017, Hamilton et al. [49] proposed the GraphSage algorithm model for large-scale 
graph data. By learning an aggregation function, the neighbor nodes are sampled and aggregated to 
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obtain a new vector representation of the node. In 2018, Chen et al. [50] proposed the HARP algorithm 
model. HARP selects the starting node by weight and combines it with DeepWalk and Node2Vec to 
obtain a better embedding representation. In 2018, Schlichtkrull et al. [51] proposed the R-GCN 
(Relational Graph Convolutional Networks) algorithm model. R-GCN introduced weight sharing 
and parameter constraints to improve the performance of the link prediction algorithm. In 2018, Sam 
et al. [52] learned the representation vectors of nodes in historical time slices through the Node2Vec 
algorithm, concatenated the vectors of nodes in historical time slices to obtain the representation of 
future time slice links, and finally used supervised learning algorithms to predict future time links 
state. In 2019, Lei et al. [53] used GCN to learn the network topology features of each time slice, used 
LSTM (Long Short Term Memory) to capture the evolution pattern of multiple continuous time slice 
dynamic networks, and then used GAN (Generative Adversarial Network) to generate a 
representation of links in future time slices. In 2017, Zhang et al. [54] proposed the WLNM link 
prediction model, which extracts the h-hop closed subgraph of the target node pair and sends the 
adjacency matrix of the subgraph to the fully connected layer for learning, which improves the link 
prediction algorithm results. Link prediction methods based on graph representation learning are 
difficult to capture deeper network structural relationships in complex networks and more complex 
relationship features between nodes due to limited walk steps and aggregation methods, resulting in 
lower algorithm accuracy. 

Considering that the existing link prediction algorithms are unsuitable for different network 
structures, capturing the deeper network structure relationships and the more complex relationship 
characteristics between nodes is difficult, this paper proposes a link prediction algorithm based on 
subgraph (PLAS Predicting Links by Analysis Subgraph). The algorithm firstly obtains h-hop 
neighbor nodes of the target node pair to form a subgraph, and then assigns labels to each node of 
the subgraph. The nodes in the Subgraph are sorted according to labels. Finally, the nodes of the 
subgraph are input to the full connection layer in a consistent order for classification.  

And our contributions are as follows: 

1. A subgraph node labeling method is provided, which can automatically learn graph structure 
features and input nodes of subgraphs into the full connection layer in a consistent order.    

2. A link prediction method (PLAS) based on subgraph is proposed, which can be applied to 
different network structures and is superior to other link prediction algorithms.   

3. Based on torch, the link prediction algorithm (PLAS) model based on subgraph is implemented 
and verified on seven real data sets. Experimental results show that PLAS algorithm is superior 
to other link prediction algorithms. 

4. The existing algorithm PLAS is improved by introducing graph attention network, and a link 
prediction algorithm (PLGAT) is proposed, which has been verified on seven real data sets and 
two 5G/6G space-air-ground communication networks. The experimental results show that 
PLGAT algorithm is superior to other link prediction algorithms. Furthermore, our proposed 
PLGAT algorithm for link prediction can precisely find out the new links on the Mobile MEC 
equipment network in 5G/6G to provide better QoS for data transportation. 

3. PLAS model framework 

This paper proposed a link prediction algorithm PLAS (Predicting Links by Analysis Subgraph) 
based on Subgraph. PLAS algorithm transforms the link prediction task into a graph classification 
task, with the target node taking the linked subgraph as a positive sample and the target node taking 
the unlinked subgraph as a negative sample. Compared with the link prediction algorithm based on 
machine learning, it uses node labels to learn the graph features of the subgraph automatically and 
integrates the potential features of the subgraph nodes and node attribute features. The subgraph 
with multi-features has more comprehensive information, which can improve link prediction 
accuracy. Figure 1 is the frame diagram of the model, which is mainly divided into four modules: 1. 
Extraction of subgraphs; 2. Graph labeling algorithm; 3. Subgraph encoding; 4. Fully connected layer 
learning.  
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Figure 1. Schematic diagram of PLAS algorithm model 

The principle of the PLAS algorithm is shown in Figure 1. Given the undirected and unweighted 
graph 𝐺(𝑉, 𝐸) at the input time 𝑡 , the subgraph of the h-hop of the target node 𝐴, 𝐵  is firstly 
extracted 𝐺஺,஻௛  (1-hop in the graph), and then labels are assigned to each node in the subgraph 
through the graph labeling algorithm. The nodes in the subgraph are sorted according to labels and 
the information characteristic matrix 𝑋஺,஻௛  is constructed according to their order. Then select the first 𝑘 node, splicing the corresponding features of the first 𝑘 node in the information matrix 𝑋஺,஻௛  to 
represent the embedding of the subgraph of target node pair, and finally input it to the fully 
connection layer for learning. 𝐺௫,௬௛  is the closed subgraph of the h-hop of the target node pair (𝑥, 𝑦), 
including all the first-order, second-order and nodes of h-order nodes and edges of corresponding 
nodes. 𝑋௫,௬௛  is information feature matrix that sorts nodes in the subgraph and builds in accordance 
with their order, which is described as follows: 

𝑋஺,஻ℎ = ቌ𝐹ଵ௘ 𝐹ଵ௟ 𝐹ଵ௚⋮ ⋮ ⋮𝐹௡௘ 𝐹௡௟ 𝐹௡௚ቍ (1)

Where 𝐹ଵ௘, 𝐹ଵ௟ and 𝐹ଵ௚ are the explicit attribute feature, implicit attribute feature and graph 
label of the first node in the information feature matrix. And each row in information feature matrix 𝑋௫,௬௛  represents the feature of a node in the subgraph 𝐺௫,௬௛ . The feature of each node is composed of 
explicit attributes (attributes of the node itself, such as interest, position, gender, etc.), implicit 
attributes (Node2Vec [13] embedding nodes in the graph) and the label of each node in the subgraph 
(network structure features). 

3.1. Extraction of subgraphs 

In order to learn the topological features of the network, the PLAS algorithm extracts its h-hop 
closed subgraph for each target node pair. In a natural system, the connection between nodes will be 
affected by neighbor nodes, and the more intermediate nodes on the node path, the weaker the 
relationship between two nodes. Although more node structure may lead to more link information, 
whether the node pair will generate a link will be primarily affected by 1-hop or 2-hop neighbor 
nodes. In this paper, the ℎ parameter is set to 1 or 2 according to the sparseness of the network 
structure. When the average number of neighbor nodes of each node in the network is greater than 
10, parameter ℎ is selected as 1; when the average number of neighbor nodes of each node in the 
network is less than 10, parameter ℎ is selected as 2. It ensures that the value of ℎ will not be set too 
small, resulting in insufficient neighbor information, significantly impacting the prediction results. 
Moreover, with the decrease of ℎ parameter, the number of neighbor nodes extracted from the target 
node pairs will decrease exponentially, indicating that the dimension of feature vector of subgraph 
decreases, which can significantly reduce the training time of the model. 

But for large-scale networks, such as social networks, where a superstar has millions of fans, the 
number of first-order neighbor nodes is very large, which will lead to a memory explosion when the 
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subgraph is extracted. This paper sets a threshold 𝑁 to prevent the problem of oversampling of 
subgraphs. When extracting the subgraph of the target node pair, if the number of subgraph nodes 
exceeds the threshold value 𝑁, the current h-order neighbor nodes will be randomly sampled to 
equal 𝑁 , prioritizing sampling nodes with closer hops. For example, we need to extract 2-hop 
neighbor node subgraphs, while setting the threshold N value with 100, extract first-order neighbor 
nodes to 50, extract second-order neighbor nodes to 250, and the sum of first-order neighbor nodes 
and second-order neighbor nodes is greater than the threshold 𝑁. Therefore, we need to randomly 
sample second-order neighbor nodes (randomly select 50 nodes from 250 nodes) so that the number 
of summary points in the subgraph is equal to the threshold 𝑁. 

The subgraph extraction algorithm is described as follows: 

Algorithm: Subgraph extraction 
Input: Target node pair (𝑖, 𝑗), graph 𝐺(𝑉, 𝐸), h-hops neighbor nodes, threshold 𝑁 
Output: h-hops subgraph 𝑆 of target node pair (𝑖, 𝑗) 
1：𝑉(𝑠) = {𝑖, 𝑗} 
2：𝑁(𝑡𝑒𝑚𝑝) = {} 
3：𝑐 = 1  
4：while 𝑐 ≤ ℎ 𝒅𝒐 
5：   𝑁(𝑡𝑒𝑚𝑝) = 𝑇௜௖ ∪ 𝑇௝௖  
6：   𝑖𝑓 𝑙𝑒𝑛(𝑁(𝑡𝑒𝑚𝑝)) + 𝑙𝑒𝑛(𝑉(𝑠)) > 𝑁:  
7：      𝑁(𝑡𝑒𝑚𝑝) = 𝑠𝑎𝑚𝑝𝑙𝑒(𝑁(𝑡𝑒𝑚𝑝))  
8：      𝑉(𝑠) = 𝑁(𝑡𝑒𝑚𝑝) ∪ 𝑉(𝑠)  
9：      break  
10：  𝑉(𝑠) = 𝑁(𝑡𝑒𝑚𝑝) ∪ 𝑉(𝑠)  
11：  𝑐 = 𝑐 + 1  
12：𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆  
13：𝑆 = 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ(𝑉(𝑠))   
14：𝒓𝒆𝒕𝒖𝒓𝒏 𝑆 

The target node h-hop neighbor node subgraph extraction algorithm process is as follows: for 
the target node pair (𝑖, 𝑗) in graph 𝐺 , first add the target node pair (𝑖, 𝑗) to the subgraph node 
set 𝑉(𝑠), and then add the node pair (𝑖, 𝑗) first-order neighbors, second-order neighbors to the h-
order neighbors to the set 𝑉(𝑠). The relationship between all nodes and nodes in the set constitutes 
a subgraph S. 

3.2. Graph labeling algorithm 

The graph is an unordered data structure. We need a graph labeling algorithm to sort the nodes 
in the graph according to their labels to form an ordered sequence so that the fully connected layer 
can read node feature in a consistent order. 

The Weisfeiler Lehman (WL) algorithm [14] is widely used in graph classification, and it is a 
classic graph labeling algorithm. The main idea of WL algorithm is to use the labels of neighbor nodes 
to update their own labels iteratively and compress the updated labels into new ones until they 
converge. The primary process of WL algorithm is as follows:  

1. It initializes all nodes in the graph to the same label 1, and each node aggregates its label and the 
labels of neighbor nodes to construct a label string. 

2. The nodes in the graph are sorted in ascending order of label strings, and according to the sorting 
update to new labels 1, 2, 3, ...  nodes with the same label string will get the same new label. For 
example, suppose that the label of node 𝑥 is 2, its neighbor label is {3,1,2}, the label of node 𝑦 
is 2, and its neighbor label is {2,1,2}. The label strings of 𝑥 and 𝑦 are < 2123 > and < 2122 > 
respectively. Because < 2122 > is less than < 2123 > in the dictionary order, 𝑦 will be assigned a 
smaller label than 𝑥 in the next iteration.  
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3. This process is repeated until the node label stops changing. Figure 2 shows updating the nodes' 
label from 1 to (1, ... 5). 
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Figure 2. Schematic diagram of WL algorithm 

WL algorithm has two key advantages: 1. The final label coding represents the structural role of 
nodes in the graph. Nodes with similar structure have similar labels in different graphs. 2. It defines 
the relative order of nodes in the graph, which is also consistent in different subgraphs. However, 
the WL algorithm treats all nodes in the subgraph equally during initialization and assigns the same 
label. After multiple rounds of iterations, the final node label encoding makes it impossible to 
distinguish the target node pair from other nodes in the subgraph, resulting in untargeted model 
training. Therefore, we designed a new graph labeling algorithm combined with the shortest 
distance, which can ensure that the nodes in different subgraphs are sorted in a consistent order and 
distinguish the target node pair from other nodes in the subgraph. 

Algorithm: subgraph labeling 
Input: Target node pair (𝑖, 𝑗), subgraph node list 𝑁, subgraph S  
Output: Ordered list with labels 𝑂 
1：  𝑂 ← (𝑖, (0,1))  
2：  𝑂 ← (𝑗, (1,0))  
3：  𝑅 = 𝑁 − {𝑖, 𝑗}  
4：  𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑣 ∈ 𝑅 𝑑𝑜  
5：    𝑑௜ = 𝑑(𝑣, 𝑖)  
6：    𝑑௝ = 𝑑(𝑣, 𝑗)  
7：    𝑂 ← (𝑣, (𝑑௜ , 𝑑௝))  
8：  𝒆𝒏𝒅 𝒇𝒐𝒓  
9：  𝑠𝑜𝑟𝑡𝑒𝑑 𝑂 𝑏𝑦 (𝑑௜ , 𝑑௝)  
10： 𝒓𝒆𝒕𝒖𝒓𝒏 𝑂 

The process of the subgraph labeling algorithm is as follows. The label string ൫𝑑௜ , 𝑑௝൯ for each 
node consists of the shortest distance from that node to the target link node pair (𝑖, 𝑗), where 𝑑௜ and 𝑑௝ are the shortest distances from this node to the target nodes 𝑖 and 𝑗 respectively. After extracting 
the subgraph, we put all the extracted nodes into set 𝑅. For each node in set 𝑅, we calculate the 
shortest distance ൫𝑑௜ , 𝑑௝൯ from each node to the target node pair (𝑖, 𝑗) as the label string, and add it to 
the sequence list 𝑂 for uniform sorting. And we allocate the label strings (0,1) and (1,0) for the target 
link node pair (𝑖, 𝑗), respectively. The sequence list 𝑂 is sorted first by the value of 𝑑௜, and then by 
the value of 𝑑௝. 

Since the shortest distance (𝑑௜ , 𝑑௝) from other nodes to the target node pair is always greater 
than or equal to 1, according to the sorting rules of the sequence list, the label string (0,1), (1,0) of 
the target link node pair is always smaller than the label string of other nodes. Therefore, the first two 
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elements in the sequence list 𝑂 are always target node pairs (𝑖, 𝑗), which can well distinguish the 
target link node from other nodes in the subgraph. The label string of a node defines the structural 
role in the subgraph centered on the target link node pair. And in the subgraph centered on different 
links, nodes with the same structural role have similar label strings. Compared with the WL 
algorithm, the graph labeling algorithm in this paper only needs to calculate the shortest distance 
from the node in the subgraph to the target node, and there is no iterative process of updating the 
node label of the sub graph, so it has low time complexity. 

3.3. Subgraph encoding 

The purpose of subgraph encoding is to represent the subgraph centered on the target node pair 
as a node information feature matrix 𝑋௫,௬௛  with specific order. We construct the information feature 
matrix according to the order of nodes in the sequence list 𝑂. The information feature of each node 
is composed of explicit attribute, implicit attribute and node label. 

Explicit attribute: The attribute of the node itself is the attribute feature of the data set. For 
example, in the social network, the attribute feature of the node is interest, hobby, gender, etc. 

Implicit attribute: Forming node embeddings in a graph using a graph embedding algorithm. 
Node2vec is the common node embedding algorithm, it first obtains a series of node sequences by 
random walk in the network, and then models such node sequences by processing word vectors to 
obtain the representation of node vectors in the network.  

The label of each node in the subgraph: The node label is represented by the function 𝑓(𝑣) =(𝑑௜ , 𝑑௝), which assigns a label string 𝑓(𝑣) to each node in the subgraph. Node labels have three main 
functions:  

1. It can represent that different nodes play different roles in the subgraph. The shorter the shortest 
path of other nodes in the subgraph relative to the target node pair, the greater its impact on 
whether the target node will generate links in the future, so it plays a more important role in the 
subgraph.  

2. Graph is an unordered data structure, which has no fixed order. Therefore, it is necessary to sort 
the nodes in the sub graph through labels, and then input them to the fully connection layer in 
a consistent order for learning.  

3. After extracting the ℎ hop subgraph of the target link node pair (𝑖, 𝑗), we calculate the shortest 
path from other nodes in the subgraph to the target node pair (𝑖, 𝑗), and assign a label string to 
each node in the subgraph. When all node features in the subgraph are spliced and sent to the 
fully connection layer for learning, the fully connection layer will automatically learn the graph 
structure features suitable for the current network, including the discovered graph structure 
features or the undiscovered graph structure features. For example, CN algorithm is to calculate 
the number of common neighbor nodes of the target node pair. The full connection layer only 
needs to find the number of nodes with node label (1,1). By assigning a node label string to each 
node in the graph through the icon algorithm, our algorithm model can automatically learn the 
graph structure characteristics of the network, so it can be applied to different network 
structures. The later experimental results show that our algorithm is better in AUC than other 
link prediction algorithms. 

When we obtain the explicit attribute, implicit attribute, and label of each node in the subgraph, 
we splice the characteristics (explicit attribute, implicit attribute, and node label) of each node in the 
order of the sequence list, and construct its information feature matrix to represent the whole 
subgraph. 

3.4. Fully connected layer learning 

The fully connected layer is used to integrate the information feature matrix 𝑋௫,௬௛  of the ℎ hop 
subgraph of different target link node pairs for learning. Since the number of nodes in the h-hop 
subgraph of each node pair is different, the training of the fully connected layer will be significantly 
affected by the subgraph with a large number of nodes, while the impact of the node information 
with a small number of subgraphs will be affected by neglect. Therefore, it is necessary to set a unified 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 May 2023                   doi:10.20944/preprints202305.0797.v1

https://doi.org/10.20944/preprints202305.0797.v1


 9 

 

node number threshold 𝐾 to balance the feature dimension input of different subgraphs. We sort 
each node in the subgraph using a graph labeling algorithm. When the number of nodes in the 
subgraph is greater than 𝐾, the nodes ranked after 𝐾 are discarded. When the number of nodes in 
the subgraph is less than 𝐾, we construct virtual nodes so that the number of nodes equals 𝐾, and 
zero vectors represent the feature of the virtual nodes in 𝑋௫,௬௛ . We set the specific 𝐾 value according 
to the overall network topology. We sort the number of each subgraph node in training set in 
ascending order and take the value of the corresponding element at the 0.6 scale index as 𝐾. If the 𝐾 
value is set too small, too many nodes need to be deleted, resulting in too much information loss; if 
the 𝐾 value is set too large, we need to construct a large number of virtual nodes that do not contain 
any information, and it will also cause the input feature dimension to be too large, increasing the 
training time. Therefore, we have compromised selecting the 𝐾  value according to the network 
topology. 

The neural network structure of the fully connected layer consists of an input layer, a hidden 
layer, and an output layer. The number of neurons in the input layer is determined by the dimension 
of each node feature vector multiplied by 𝐾, and the number of neurons in the hidden layer is set to 
128. And the number of neurons in the output layer is 2, because we converted link prediction into a 
graph classification problem (two classes), where the subgraph with linked node pairs represents one 
class, the subgraph without linked node pairs represents the other class. In this paper, the ReLU 
function was used for activation function and cross entropy loss function for the loss function. 

4. Experiments Results 

Experiment environment: Stand-alone processor AMD Ryzen 7 4800H with Radeon Graphics 
2.90 GHz, NVIDIA GeForce RTX 2060, memory 16G, operating system is Windows 10, the 
programming language is Python, based on the deep learning framework Pytorch. 

4.1. PLAS algorithm 

We conducted experiments with PLAS model on seven real data sets, and evaluated our model 
with AUC (Area Under Curve). USAir [15] is the transportation network of American Airlines, NS is 
the co-author network composed of researchers on the network [16], Pb is the blog network of the 
U.S. government [17], Yeast is the network composed of protein interactions in yeast [18], Cele is the 
divine network composed of neurons of a worm [19], power is the power network in the western 
United States [19], and router is the Internet network composed of routers [20]. Furthermore, we 
introduced the dataset Bupt5GMEC which is the real network structure of 5G MEC Access Network 
in BUPT (Beijing University of Posts and Telecommunications) while it demonstrates the inside 
routing structure of BUPT for 5G MEC access experimental environment through a MEC Hub Node. 
And this 5G MEC access experimental environment has be used to evaluate some routing links in 5G 
MEC experiments in Figure 3. Besides that, we also found some other important 5G MEC Access 
Network with the name CM1-5G and CM2-5G from other 5G MEC experiment joined developed with 
China Mobile. Finally, the real AS topology dataset ITDK0304S of Global Internet is added to Table 1 
to carry out evaluation on the largest subset of real Internet topology [27]. For the construction of the 
ITDK0304S dataset, because the original dataset has some nodes separated from the overall network 
structure, there are few links between these nodes, and they are relatively independent of the overall 
network. As a result, it contains less information and research value and will affect model training. 
Therefore, we use the FastGN [55] community detection algorithm to divide the original data set. We 
use several communities that can mainly represent the overall structure to construct the ITDK0304S 
data set and delete some individual communities with few nodes and nodes not worth researching. 
Since our model performs link prediction through extracted subgraphs, for large-scale real-world 
networks, we can adjust the hop count and threshold 𝑁 of sampling neighbours during subgraph 
extraction to ensure sufficient information for training without causing oversampling. 
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Figure 3. 5G MEC Access Network Structure in BUPT 

Table 1 contains the statistical information of each network. We abstract the real-world network 
structure data into the form of point-edge pairs. We take all the node pairs with edges in each network 
(as positive samples) and take the same number of node pairs without edges (as negative samples) 
to form a data set, and then randomly select 90% of the node pairs with and without edges as the 
training set and the remaining 10% of the data set as the test set. When we use the Node2Vec 
algorithm to calculate the implicit attributes of nodes, the node sequence obtained by random walk 
may imply information about whether there is a link between the target node pair, resulting in poor 
model generalization. Therefore, when the Node2Vec algorithm embeds nodes for each subgraph, 
links are added to the target nodes without link relationship so that the link information of any target 
node pair in the training set is the same.  

Table 1. Statistical information of network structure of experimental data set 

DataSet |𝑽| |𝑬| 
Router 5022 6258 
USAir 332 2126 

NS 1589 2742 
PB 1222 16714 

Yeast 2375 11693 
Cele 297 2148 

Power 4941 6594 
Bupt5GMEC 135 338 

CM1-5G 1500 5990 
CM2-5G 1499 4498 

ITDK0304S 3780 10757 

We selected five classical heuristic algorithms based on node similarity to compare with our 
algorithm, which are common neighbors (CN) [16], Jaccard coefficient (JC) [10], Adamic ADAR (AA), 
resource allocation (RA) and Katz [22].  

CN: the number of common neighbors of target node 𝑥 and 𝑦, which is defined as follows: 
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𝐶𝑁(𝑥, 𝑦) = |𝑇(𝑥) ∩ 𝑇(𝑦)| (2)𝑇(𝑥) represents a collection of neighbor nodes 𝑥, |𝑇(𝑥)| represents the number of neighbors of 
node 𝑥. 

JC: it is similar to CN algorithm. It is the expression of standardization of common neighbors. 
Its definition is as follows: 𝐽𝐶(𝑥, 𝑦) = | 𝑇(𝑥) ∩ 𝑇(𝑦)𝑇(𝑥) ∪ 𝑇(𝑦) | (3)

AA: a neighbor node with a small degree has a larger weight, which is defined as follows: 𝐴𝐴(𝑥, 𝑦) = ෍ 1𝑙𝑜𝑔 | 𝑇(𝑧)|௭∈்(௫)∩்(௬)  (4)

RA: it is similar to AA, but the punishment is different. Its definition is as follows: 𝑅𝐴(𝑥, 𝑦) = ෍ 1|𝑇(𝑧)|௭∈்(௫)∩்(௬)  (5)

Katz: it calculates all paths of the target node. The shorter the path, the higher the weight. It is 
defined as follows: 

𝐾𝑎𝑡𝑧(𝑥, 𝑦) = ෍ 𝐵௟ ⋅ |𝑝𝑎𝑡ℎ௫,௬௟ |ஶ
௟ୀଵ  (6)

We also selected three methods of link prediction using graph embedding to compare with our 
model, which are node2vec (n2v) [13], line [23], vgae [24]. They all embed the nodes of the graph, 
then splice the vectors of the target node pairs and send them to the fully connected layer for 
classification learning. 

We use 50 epochs to train our model. In the process of training, we randomly select 10% of the 
training set as our verification set for evaluation, and we save the model with the best performance 
on the verification set. Finally, we use the saved model to predict on the test set. 

We first compare with five heuristic based link prediction algorithms, and the results are shown 
in Table 2 and Figure 4: 

Table 2. Comparison results with five heuristic link prediction algorithms (AUC) 

DataSet CN JC AA RA Katz PLAS 

Router 56.57 56.38 56.40 56.38 38.62 88.81 

USAir 94.02 89.81 95.08 95.67 92.90 93.28 
NS 93.94 94.40 94.77 94.33 95.03 98.93 

PB 92.07 87.39 92.31 92.45 92.89 93.37 

Yeast 89.41 89.30 89.32 89.44 92.30 95.04 

Cele 84.95 80.18 87.03 87.49 86.45 87.84 

Power 58.90 58.80 58.83 58,83 65.90 74.27 
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Figure 4. Comparison results with five heuristic link prediction algorithms (AUC) 

As shown in Table 2, our algorithm performs better than heuristic link prediction algorithm on 
data sets on NS, Pb, yeast, Cele, power and router. On the USAir dataset, our algorithm is also better 
than Katz and JC algorithms. Among them, on sparse data sets such as power and router, the AUC 
of heuristic link prediction algorithm is about 65% and 55% respectively, while the AUC of our link 
prediction algorithm can reach about 75% and 85%, which is increased by 10% and 30% respectively. 
As shown in Table 2, our algorithm performs better than heuristic link prediction algorithm on data 
sets on NS, Pb, yeast, Cele, power and router. On the USAir dataset, our algorithm is also better than 
Katz and JC algorithms. Among them, on sparse data sets such as power and router, the AUC of 
heuristic link prediction algorithm is about 65% and 55% respectively, while the AUC of our link 
prediction algorithm can reach about 75% and 85%, which is increased by 10% and 30% respectively. 

We then compare with three link prediction algorithms based on graph representation. The 
experimental results are shown in Table 3 and Figure 5: 

Table 3. Comparison results with three link prediction algorithms based on graph representation 
learning (AUC) 

Dataset Node2Vec LINE VGAE PLAS 

Router 65.46 67.17 61.53 88.81 

USAir 91.40 81.47 89.30 93.28 

NS 91.55 80.63 94.04 98.93 

PB 85.79 76.94 90.70 93.37 

Yeast 93.68 87.45 93.87 95.04 

Cele 84.13 69.22 81.87 87.84 

Power 76.23 55.64 71.20 74.27 
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Figure 5. Comparison results with three link prediction algorithms based on graph representation 
learning (AUC) 

As shown in Table 3, the link prediction algorithm based on graph representation has better 
performance on the sparse data set of power and router than the heuristic link prediction algorithm, 
but compared with our algorithm, especially on the router data, our algorithm improves the AUC by 
about 20%. On USAir, NS, Pb, yeast and Cele datasets, our algorithm is better than the link prediction 
algorithm based on graph representation. 

4.2. PLGAT algorithm 

The PLAS algorithm treats neighbor nodes equally, lacks consideration of the degree of influence 
on different neighbor nodes, and may discard some nodes in the training of the fully connected layer, 
resulting in information loss. Aiming at these problems, we improve PLAS and propose a link 
prediction algorithm PLGAT (Predicting Links by Graph Attention Networks) based on graph 
attention network [28]. The algorithm distinguishes the degree of influence of different nodes on the 
target node through the attention mechanism. It aggregates the information of the discarded nodes 
through two layers of GAT convolution layers so that the nodes have comprehensive information 
and improve the accuracy of the link prediction algorithm. In addition, the algorithm defines the 
relative position of the nodes in the subgraph through the pooling layer module and reflects the 
directionality of the subgraph (centering on the target node and expanding to the neighbor nodes on 
both sides), which improves the link prediction results. The PLGAT model framework of our 
algorithm is shown in Figure 6: 
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Figure 6. Schematic diagram of PLGAT algorithm 
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Compared with the PLAS model, PLGAT takes the subgraph features further processing with 
GAT. Firstly, the h-hop subgraph of the target node pair was extracted. Then, the subgraph 
aggregates the information of the neighbor nodes through the GAT convolution layer, and combines 
the original node features with the new features obtained through the GAT convolution layer to get 
the new feature representation of the node. Finally, through a pooling layer, nodes in the subgraph 
are sorted according to specific sorting rules, and the feature of the first 𝐾 nodes are selected as the 
subgraph encoding, which is sent to the fully connection layer for classification. 

4.2.1. GAT convolution layer  

Graph Attention Network (GAT) takes a set of node features ℎ = {ℎሬ⃗ ଵ, ℎሬ⃗ ଶ, … , ℎሬ⃗ ே} as input, where ℎሬ⃗ ௜ ∈ ℝி ,𝑁 represents the number of nodes, and 𝐹 indicates the dimension of the node's original 
features. It generates a new set of features ℎᇱ = {ℎሬ⃗ ଵᇱ , ℎሬ⃗ ଶᇱ , … , ℎሬ⃗ ேᇱ } through the graph attention layer, 
where ℎሬ⃗ ௜ᇱ ∈ ℝிᇲ

, 𝐹ᇱ indicates the dimension of the node's new feature vector. 
In order to obtain sufficient expression information, GAT needs to perform at least one learnable 

linear transformation on the features of input nodes to obtain new node features. Therefore, the 
algorithm trains a weight matrix 𝑤 for all nodes, 𝑤 ∈ ℝிᇲ×ி, this weight matrix is the relationship 
between input features and output features. For each node, a single-layer feed-forward neural 
network is used to calculate the self-attention coefficient between nodes. The attention coefficient is 
expressed as: 𝑒௜௝ = 𝑎(𝑊ℎሬ⃗ ௜ , 𝑊ℎሬ⃗ ௝) (7)𝑎 is a single-layer feed forward neural network, and 𝑒௜௝ represents the importance of node 𝑗 
to node 𝑖. Typically, each node computes the attention coefficient with any other node, but this 
results in loss of graph structure information. In order to obtain the graph structure features, GAT 
introduces the masked attention mechanism, and distributes attention to the set of neighbor nodes 𝑁௜ of node 𝑖, and 𝑗 ∈ 𝑁௜. At the same time, GAT uses the SoftMax function to regularize all neighbor 
nodes 𝑗 of node 𝑖, and adds a LeakyReLU nonlinear function to the output of the feed forward 
neural network. Therefore, the formula of the complete attention mechanism is as follows: 

𝑎௜௝ = 𝑒𝑥𝑝( 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑢( 𝑎்⃗[𝑊ℎሬ⃗ ௜||𝑊ℎሬ⃗ ௝]))∑ 𝑘 ∈ 𝑁௜ 𝑒𝑥𝑝( 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑢( 𝑎்⃗[𝑊ℎ௜||𝑊ℎሬ⃑ ௞])) (8)

𝑎 is a single-layer feedforward neural network, and 𝑎⃗ is the weight matrix between layers in 
the neural network. 

After obtaining the attention coefficient between different nodes through the above formula, the 
final output characteristics of the node are obtained by aggregating the characteristics of neighboring 
nodes. The formula is as follows: ℎሬ⃗ ௜ᇱ = 𝜎( ෍ 𝑎௜௝𝑊ℎሬ⃗ ௝௝∈ே೔ ) (9)𝜎 is a non-linear activation function. 

In order to stabilize the learning process of self-attention, GAT uses a multi-head attention 
mechanism. Specifically, it uses 𝑘 independent self-attention mechanisms to splice the obtained new 
features. GAT uses 𝑘  average instead of splicing operations. Therefore, the final formula of the 
multi-head attention mechanism is: 

ℎሬ⃗ ௜ᇱ = 𝜎(1𝐾 ෍ ෍ 𝑎௜௝௞ 𝑊௞ℎሬ⃗ ௝௝∈ே೔
௄

௞ୀଵ ) (10)

𝑘  represents a total number of attention mechanisms, 𝑎௞  represents the 𝑘௧௛  attention 
coefficient, and 𝑊௞  represents the linear transformation weight matrix under the 𝑘௧௛  attention 
mechanism. 
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In the task of deep learning, it is generally believed that the higher the complexity of the model, 
the higher the fitting effect. For the graph neural network, whether to add more convolutional layers 
to improve the model's performance should be decided according to the specific situation of the task. 
Increasing the depth of the convolutional layer increases the aggregation radius, but when the 
convolutional layers reach a certain depth, almost every node in the graph contains global graph 
information. Although a large number of convolutional layers can bring global information beneficial 
to graph classification tasks, it increases the complexity of the model, resulting in a long training time 
and model overfitting. Since the category of a node is primarily affected by local neighbor nodes, a 
small number of convolutional layers can achieve better performance, so we only extract the target 
node to the neighbor nodes within two hops to form a subgraph, and only use two convolutional 
layers to make the target node aggregate the global graph information, which improves the accuracy 
of the algorithm without bringing the complexity of the model.  

We use the node features obtained in the subgraph encoding part of PLAS as the original input 
features 𝐹଴. The original feature 𝐹଴ is input into the GAT convolution layer for calculation, the 
feature 𝐹ଵ is obtained through the first layer of GAT convolution, and the feature 𝐹ଶ is obtained 
through the second layer of GAT convolution. We concatenate the three feature to obtain the final 
feature representation of the node as follows: 𝐹 = 𝐹଴||𝐹ଵ||𝐹ଶ (11)

Among them, || represents the connection operation, and the final feature representation of 
each node obtained through two GAT convolutional layers contains almost the global information of 
the subgraph. 

4.2.2. Pooling layer 

The pooling operation of the graph is used to aggregate the global node information to obtain a 
global graph vector representation. The pooling methods of graph data are mainly divided into two 
categories, one is hierarchical pooling [25], the other is global pooling [26]. The hierarchical pooling 
method mainly includes two processes: 1. Calculate the assignment matrix to determines which 
neighbor nodes are allocated together to form a cluster; 2. The nodes in each cluster are aggregated 
into a new super node in a certain aggregation way, and then these super nodes are used to form a 
new graph. F For large-scale graphs, this hierarchical pooling method is very effective. The scale of 
the graph is reduced through continuous convolution and pooling operations to obtain the final 
representation of the entire graph. The global pooling method selects appropriate nodes to form a 
representation of the entire graph after multiple convolutions, which minimizes the loss of 
information. Therefore, in small-scale graph, global pooling method is superior to hierarchical 
pooling method. We extract the h-hop neighbor nodes of the target node pair to form the subgraph, 
which mainly has the following two characteristics:  

1. The subgraph is centered on the target node pair and spreads out to the neighbor nodes on both 
sides, which has strong directionality.  

2. The number of neighbor hops in the subgraph is limited, resulting in the subgraph often being 
a small-scale graph.  

For small-scale graphs, using the global pooling method is more appropriate. However, it is 
difficult for this global pooling method to show the directionality of the subgraph, and it is 
challenging to select appropriate nodes with uniform rules to form a subgraph feature representation. 
Based on the global pooling method, we use the graph labeling algorithm in PLAS to sort the nodes 
in the sub-graphs by a specific sorting rule to solve the above problems. In graph labeling algorithm, 
the label string (𝑑௜ , 𝑑௝) consists of two parts, one is the shortest distance 𝑑௜ from the target node 𝑖, 
and the other is the shortest distance 𝑑௝  from the target node 𝑗. For the target node 𝑖, the label 
character is always (0,1), and for the target node 𝑗, the label string is always (1,0). The nodes in the 
subgraph are first sorted by 𝑑௜, and then sorted by 𝑑௝ if 𝑑௜ is equal. Sorting in this rule has two main 
benefits:  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 May 2023                   doi:10.20944/preprints202305.0797.v1

https://doi.org/10.20944/preprints202305.0797.v1


 16 

 

1. Because the shortest distance 𝑑௜ from other nodes in the subgraph to the target node pair (𝑖, 𝑗), 𝑑௝  is greater than or equal to 1, the target node pair (𝑖, 𝑗) is always ranked in the first two 
elements, and the node closer to the target node in the subgraph will be ranked in the front, and 
the node farther away from the target node will be ranked in the back, which reflects the 
direction of the subgraph.  

2. Nodes in the subgraph will be sorted according to consistent rules. We only need to select the 
first 𝐾 nodes to represent the feature expression of the current subgraph, to unify the rules of 
node selection in the global pooling method. For the case that the number of nodes in the 
subgraph is greater than 𝐾, only nodes after 𝐾 need to be truncated, and the discarded nodes 
will not lose all node information, because other nodes in the subgraph have learned the 
discarded node information through the two layers of GAT convolution layer. If the number of 
nodes in the subgraph is less than 𝐾 , simply add virtual nodes, where virtual nodes are 
represented by the zero vector. 

4.3.3. Experimental dataset and settings 

We carried out experiments on seven real data sets: USAir[15], NS[17], PB[17], Yeast[18], 
Cele[19], Power[19] and Router[20], and evaluated the performance of the algorithm with the AUC. 

To evaluate our algorithm on real 5G MEC access network environment and real AS topology 
of Global Internet, we test our algorithm on Bupt5GMEC, CM1-5G, CM2-5G and ITDK0304S network 
datasets.  

For each data set, all the linked node pairs in the current network structure are selected as 
positive samples, and then an equal number of unlinked node pairs are randomly selected as negative 
samples, which balances the positive and negative samples. And 80% of the positive samples and 
10% of the negative samples are randomly selected as the training set, 10% as the verification set, and 
the remaining 10% as the test set. The number of neurons in the first hidden layer of the fully 
connected layer is set to 1024, the number of neurons in the second hidden layer is set to 512, and the 
number of neurons in the output layer is set to 2. 

4.3.4. Experiment results analysis 

We use the AUC as evaluation of algorithm, during the training process, we use 50 epochs to 
train our model, save the model that performs best on the verification set, and use it for prediction 
on the test set. We repeat the above operation ten times and take the average of the ten experimental 
results as the final result. 

Firstly, we compare with five heuristic based link prediction algorithms, and the experimental 
results are shown in Table 4: 

Table 4. Comparison of PLGAT with five heuristic link prediction algorithms (AUC) 

Dataset CN JC AA RA Katz PLAS PLGAT 

USAir 94.02 89.81 95.08 95.67 92.90 88.81 95.21 

NS 93.94 94.40 94.77 94.33 95.03 93.28 97.96 

PB 92.07 87.39 92.31 92.45 92.89 98.93 94.32 

Yeast 89.41 89.30 89.32 89.44 92.30 93.37 94.41 

Cele 84.95 80.18 87.03 87.49 86.45 95.04 89.52 

Power 58.90 58.80 58.83 58,83 65.90 87.84 79.27 

Router 56.57 56.38 56.40 56.38 38.62 74.27 91.42 

Bupt5GMEC 75.01 75.02 68.75 75.02 23.78 99.67 99.67 

CM1-5G 54.23 53.79 53.32 54.13 50.22 69.84 66.43 

CM2-5G 
ITDK0304S 

76.15 

 85.41 

72.22 

 85.41 

74.79 

 83.60 

76.21 

 85.42 

50.71 

 48.77 

88.95 

  98.90 

91.34 

97.88 
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As shown in Table 4, Figure 7 and Figure 8, our method PLAS and PLGAT are better than the 
heuristic link prediction algorithm in the NS, PB, Yeast, Cele, Power, Router, Bupt5GMEC, CM1-5G, 
CM2-5G and ITDK0304S datasets. Especially in the data set with sparse Power, Router and 
Bupt5GMEC communication network, our methods are superior to the heuristic link prediction 
algorithm obviously while the AUC index has increased by about 15% and 30% respectively. On the 
USAir dataset, our method performs as well as the heuristic link prediction algorithm, which is 
slightly lower than RA algorithm and better than other algorithms. 

 

Figure 7. Comparison of PLGAT with five heuristic link prediction algorithms (AUC)-a 

 

Figure 8. Comparison of PLGAT with five heuristic link prediction algorithms (AUC)-b. 

Then PLGAT is compared with three link prediction algorithms based on graph representation 
learning and the PLAS algorithms, and the results are shown in Table 5: 

Table 5. Comparison of PLGAT with three link prediction algorithms based on graph representation 
(AUC) 

Dataset Node2Vec LINE VGAE PLAS PLGAT 

USAir 91.40 81.47 89.30 93.28 95.21 

NS 91.55 80.63 94.04 98.93 97.96 
PB 85.79 76.94 90.70 93.37 94.32 

Yeast 93.68 87.45 93.87 95.04 94.41 
Cele 84.13 69.22 81.87 87.84 89.52 

Power 76.23 55.64 71.20 74.27 79.27 
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Router 65.46 67.17 61.53 88.81 91.42 

Bupt5GMEC 85.61 83.42 87.56 99.67 99.67 

CM1-5G 53.22 56.75 60.34 69.84 66.43 
CM2-5G 81.24 84.31 83.76 88.95 91.34 

ITDK0304S 85.87 86.56 87.35 98.90 97.88 
 
As shown in Table 5 and Figure 9, compared with PLAS, both algorithms convert link prediction 

into graph classification tasks. The PLGAT algorithm proposed in this chapter is superior to PLAS 
algorithm in USAir, PB, Cele, Power, Router, Bupt5GMEC, CM1-5G, CM2-5G and ITDK0304S 
datasets. In Power data set, our algorithm improves by more than 5%. In terms of Yeast data, the 
performance of our algorithm was inferior to that of the PLAS algorithm, but the difference was 
within 1%.  

 

Figure 9. Graphic Comparison of PLGAT with three link prediction algorithms based on graph 
representation (AUC) 

Compared with VGAE algorithm, both algorithms use GNN (Graph Neural Network) to learn 
neighbor node information. Our algorithm is superior to VGAE algorithm in USAir, NS, PB, Yeast, 
Cele, Power, Router, Bupt5GMEC, CM1-5G, CM2-5G and ITDK0304S datasets. On the Router data 
set, our algorithm improved by more than 30%. For the LINE and Node2Vec algorithms, our 
algorithm outperforms them in all respects. For the heuristic link prediction algorithm, the 
performance of our algorithm is lower than that of RA algorithm only on USAir data set, and on other 
data sets, the performance of our algorithm is far better than that of the heuristic link prediction 
algorithm. 

5. Conclusions 

Link prediction is a hot research field at present. It is very important for mining and analyzing 
the evolution of networks. Although the heuristic algorithm based on node similarity is simple and 
effective, it cannot be applied to all network structures. Finding effective heuristic indexes for 
different network structures requires a process of repeated experiments. Based on the above 
problems, we design a link prediction algorithm based on target node pair subgraph, which combines 
the characteristics of graph structure and node characteristics, and can play a role in different network 
structures. Finally, we compare five heuristic link prediction algorithms based on node similarity and 
three link prediction algorithms based on graph embedding on eleven real data sets. The results show 
that the performance of our algorithm is much better than other link prediction algorithms. 
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