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Abstract: Link prediction is critical to complete the missing links in the network or to predict the generation of
new links according to current network structure information, which is vital for analyzing the evolution of the
network, such as the logical architecture construction of MEC (Mobile Edge Computing) routing links of 5G/6G
Access Network. Link prediction can provide throughput guidance for MEC and select appropriate nodes for
message forwarding processing and motivation of this article is to construct a better prediction algorithm to
optimize network structure and promote throughput MEC routing links of 5G/6G Access Network. Traditional
link prediction algorithms are always based on node similarity, which needs predefined similarity functions,
is highly hypothetical and only can be applied to specific network structures without generality. To solve this
problem, this paper has proposed a new efficient link prediction algorithm PLAS and its GNN (Graph Neural
Network) version PLGAT based on subgraph of target node pair. In order to automatically learn the graph
structure characteristics, the algorithm first extracts the h-hop subgraph of target node pair, and then predicts
whether the target node pair will be linked according to the subgraph. Experiments on eleven real data sets
show that our proposed link prediction algorithm is suitable for various network structures and superior to
other link prediction algorithms especially in some 5G MEC Access Networks datasets with higher AUC
values.

Keywords: link prediction; graph neural network; graph embedding; 5G MEC network routing
links

1. Introduction

In real life, many complex systems can be modeled into complex networks for analysis, such as
power network, traffic network, routing network, citation network, 5G/6G space-air-ground
communication networks, social network, etc.

In link prediction task, nodes in the network always represent real entities such as routers and
switches in network, and associations between entities represent edges. Link prediction is mainly
based on current network structure and other information to complete the missing links in current
network or predict the possible new connections in the future network [1] such as new routing links
which may occur in the 5G/6G space-air-ground communication networks around satellite MEC
equipment (Mobile Edge Computing) to transport data-densed computation. As an important
research direction in complex networks, link prediction has extensive theoretical research value and
practical application value.

In other theoretical research value aspect, link prediction can reveal the evolutionary mechanism
of the network and provide a simple and fair comparison method for the evolutionary network [2].
For example, for a certain type of network, many models provide evolutionary methods. The quality
of evolutionary methods can be verified by real data sets, but these evolutionary methods are often
limited by the scale of evolutionary time or the difficulty of real data set collection. The link prediction
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algorithm provides a simple and fair comparison method. According to network structure at a
moment t — n, the link prediction algorithm can be used to complete the missing link in the current
network or to predict the network at time ¢ when new links are generated in the future. Then, the
accuracy of different evolution methods can be obtained by comparing with the network at the
original moment. And advantages and disadvantages of different evolutionary methods can be
obtained by analyzing the accuracy of new generated links.

In other practical applications, for example, in social networks, link prediction algorithm
recommends users who have the same interests but are not friends to online social users to improve
user stickiness [3]. In Weibo or Facebook, link prediction algorithm can be used to recommend topics
or short videos that users are interested in and to predict the popularity of some special topics and
short videos [3]. In the field of e-commerce, the relationship graph between users and commodities
can be established, and the link prediction algorithm can recommend relevant commodities to users,
reduce the time of searching for commodities and improve efficiency [4]. In the protein network,
there are many unknown links, and searching for these links requires many crossover experiments,
which will waste a lot of manpower and material resources. However, the link prediction algorithm
will predict the most likely links, which provides guiding opinions for the experiment, shortens the
scope of the experiment, and speeds up the identification process of unknown links. And the
experimental cost is reduced [5]. The research on link prediction in complex networks has a wide
range of theoretical and practical value.

2. Related Work

In reality, a large number of complex systems can be represented by networks, with nodes
representing different entities and edges representing relationships between entities. Link prediction
is to predict the missing links in the current network and the generation of new links in the future
network through the known network structure and other information [1]. It has a wide range of
practical value in friend recommendation [3], product recommendation [4], knowledge graph
completion [6] and other fields[29-31].

The heuristic algorithms commonly used in link prediction are based on node similarity [7]. This
algorithm assigns a scoring function to each node pair, representing the similarity of node pair, and
sorts the unobserved node pairs according to the scoring function. The node pairs with high similarity
are more likely to generate new connections. This kind of algorithm can be classified according to the
maximum hop number of the maximum neighbor node required to calculate the scoring function [8].
For example, CN [9] and JC [10] link prediction algorithms only need the one-hop neighbor node of
the target node pair to calculate the score function, so it belongs to the heuristic algorithm of one-hop
node similarity. AA [3] and RA [11] link prediction algorithms need the target node to calculate the
two-hop neighbor node when calculating the score function. Therefore, it belongs to the heuristic
algorithm of two-hop node similarity. This kind of similarity based heuristic algorithm has become
the most common algorithm in link prediction because of its simplicity and effectiveness. However,
such algorithms need strong assumptions. When changing from one network structure to another
network structure, the assumptions are not consistent with the other network structure. For example,
CN algorithm believes that the more common neighbors two nodes have, the more likely they will
have links in the future, which is often correct in social networks. However, this is not true in protein
interaction networks (the more common neighbors two nodes have, the less likely they are to generate
links in the future) [12]. Therefore, it is a significant disadvantage of heuristic algorithms based on
node similarity to select appropriate scoring functions for different network structures.

The link prediction algorithm based on machine learning mainly transforms the link prediction
task into a binary classification task, in which the node pairs with links are regarded as positive
classes, and the node pairs without links are regarded as negative classes. The key to this kind of
algorithm mainly lies in the selection of features and classification algorithms. In 2004, Faloutsos et
al. [32] introduced a connection subgraph, which can well capture the topology between two nodes
in a social network. In 2006, Al et al. [33] extracted the non-topological features of the network based
on extracting the topological features of the network, which improved the algorithm's accuracy. In
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2007, Liben et al. [34] extracted some network topology features from the citation network, such as
CN, AA, Katz, etc., and input them into a supervised learning algorithm for learning and prediction.
Their experimental results outperform link prediction algorithms based on individual network
topologies. In 2010, Benchettara et al. [35] used the enhanced decision tree algorithm and found that
using topological features in the feature set can significantly improve the link prediction algorithm's
precision, recall, and F value. In 2014, Fire et al. [36] proposed a set of easily computable graph-
structured features and adopted two ensemble learning methods to predict missing links in the
network. In 2018, Zhang et al. [37] used the attribute features of nodes as non-topological features to
input into supervised learning algorithms, improving link prediction algorithms' accuracy. In 2018,
Mandal et al. [38] used a variety of supervised learning algorithms for link prediction in a two-layer
network composed of Twitter and Foursquare. In 2022, Kumar et al. [39] introduced the value of node
centrality as a sample feature, input it into various supervised learning algorithms for prediction, and
achieved the best results on the LGBM (Light Gradient Boosted Machine) classifier. The key to link
prediction algorithms based on machine learning lies in selecting feature sets. Such algorithms often
extract some topological features of the network as feature sets. However, when solving domain-
specific link prediction problems, corresponding domain knowledge is also required to construct its
domain-specific features. Compared with the heuristic-based link prediction algorithm, the link
prediction algorithm based on machine learning can improve its accuracy, but it also brings time
costs for training models and feature selection.

Link prediction algorithms based on graph representation learning mainly map high-
dimensional dense matrices (graph data) into low-dimensional dense vectors and then use the
mapped vectors for downstream tasks, such as node classification [40,41], graph classification [42,43],
link prediction [44], etc. In 2014, Perozzi et al. [45] first proposed the graph representation algorithm
DeepWalk for unsupervised learning. The algorithm obtains the sequence of nodes through random
walks and inputs the sequence of nodes as sentences into the Skip-Gram model in the Word2Vec
algorithm to obtain the node vector representation. In 2015, Tang et al. [23] proposed the LINE
algorithm model, which proposed a method of edge sampling so that the vectors of the obtained
nodes retain the first-order similarity and second-order similarity. In 2016, Grover et al. [13] proposed
the Node2Vec algorithm. Node2Vec is similar to DeepWalk, but Node2Vec uses a biased random
walk method, which balances depth-first walk and breadth-first walk, and obtains a higher-quality
embedded representation. In 2016, Wang et al. [46] proposed the SDNE (Structural Deep Network
Embedding) model. SDNE is a semi-supervised deep learning model that uses a deep network
structure to simultaneously optimize the first-order and second-order similarity objective functions
and obtains vectors for preserving the graph's local and global structure. In 2016, Cao et al. [47]
proposed the DNGR algorithm model. DNGR uses the random walk model (Random Surfing) to
generate the probability co-occurrence matrix, calculates the PPMI matrix with the probability co-
occurrence matrix, and uses the superimposed denoising automatic encoding machine to extract
features to obtain the vector representation of the node. In 2016, Kipf et al. [48] proposed the GCN
(Graph Convolutional Network) model. The algorithm considers the influence of neighbor nodes and
continuously aggregates the characteristics of neighbor nodes. Embedding neighbor nodes can obtain
scalability, and the global information can be described by aggregating the characteristics of neighbor
nodes through multiple iterations. In 2016, Kipf et al. [24] proposed the VGAE (Variational Graph
Auto-Encoders) model, introducing variational autoencoders into graph data. The distribution of the
node vector representation of the known graph is learned through GCN convolution, the
representation of the node vector is sampled in the distribution and then decoded (link prediction)
to reconstruct the graph. In 2017, Velickovic et al. [28] proposed the GAT (Graph Attention Networks)
model, which introduced an attention mechanism. When calculating the vector representation of
nodes, the model's generalization ability is improved by assigning different weights to the
characteristics of nodes. At the same time, a multi-head attention mechanism is introduced, and the
features obtained by multiple attention mechanisms are spliced and averaged to obtain the final node
representation. In 2017, Hamilton et al. [49] proposed the GraphSage algorithm model for large-scale
graph data. By learning an aggregation function, the neighbor nodes are sampled and aggregated to
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obtain a new vector representation of the node. In 2018, Chen et al. [50] proposed the HARP algorithm
model. HARP selects the starting node by weight and combines it with DeepWalk and Node2Vec to
obtain a better embedding representation. In 2018, Schlichtkrull et al. [51] proposed the R-GCN
(Relational Graph Convolutional Networks) algorithm model. R-GCN introduced weight sharing
and parameter constraints to improve the performance of the link prediction algorithm. In 2018, Sam
et al. [52] learned the representation vectors of nodes in historical time slices through the Node2Vec
algorithm, concatenated the vectors of nodes in historical time slices to obtain the representation of
future time slice links, and finally used supervised learning algorithms to predict future time links
state. In 2019, Lei et al. [53] used GCN to learn the network topology features of each time slice, used
LSTM (Long Short Term Memory) to capture the evolution pattern of multiple continuous time slice
dynamic networks, and then used GAN (Generative Adversarial Network) to generate a
representation of links in future time slices. In 2017, Zhang et al. [54] proposed the WLNM link
prediction model, which extracts the h-hop closed subgraph of the target node pair and sends the
adjacency matrix of the subgraph to the fully connected layer for learning, which improves the link
prediction algorithm results. Link prediction methods based on graph representation learning are
difficult to capture deeper network structural relationships in complex networks and more complex
relationship features between nodes due to limited walk steps and aggregation methods, resulting in
lower algorithm accuracy.

Considering that the existing link prediction algorithms are unsuitable for different network
structures, capturing the deeper network structure relationships and the more complex relationship
characteristics between nodes is difficult, this paper proposes a link prediction algorithm based on
subgraph (PLAS Predicting Links by Analysis Subgraph). The algorithm firstly obtains h-hop
neighbor nodes of the target node pair to form a subgraph, and then assigns labels to each node of
the subgraph. The nodes in the Subgraph are sorted according to labels. Finally, the nodes of the
subgraph are input to the full connection layer in a consistent order for classification.

And our contributions are as follows:

1. A subgraph node labeling method is provided, which can automatically learn graph structure
features and input nodes of subgraphs into the full connection layer in a consistent order.

2. A link prediction method (PLAS) based on subgraph is proposed, which can be applied to
different network structures and is superior to other link prediction algorithms.

3. Based on torch, the link prediction algorithm (PLAS) model based on subgraph is implemented
and verified on seven real data sets. Experimental results show that PLAS algorithm is superior
to other link prediction algorithms.

4. The existing algorithm PLAS is improved by introducing graph attention network, and a link
prediction algorithm (PLGAT) is proposed, which has been verified on seven real data sets and
two 5G/6G space-air-ground communication networks. The experimental results show that
PLGAT algorithm is superior to other link prediction algorithms. Furthermore, our proposed
PLGAT algorithm for link prediction can precisely find out the new links on the Mobile MEC
equipment network in 5G/6G to provide better QoS for data transportation.

3. PLAS model framework

This paper proposed a link prediction algorithm PLAS (Predicting Links by Analysis Subgraph)
based on Subgraph. PLAS algorithm transforms the link prediction task into a graph classification
task, with the target node taking the linked subgraph as a positive sample and the target node taking
the unlinked subgraph as a negative sample. Compared with the link prediction algorithm based on
machine learning, it uses node labels to learn the graph features of the subgraph automatically and
integrates the potential features of the subgraph nodes and node attribute features. The subgraph
with multi-features has more comprehensive information, which can improve link prediction
accuracy. Figure 1 is the frame diagram of the model, which is mainly divided into four modules: 1.
Extraction of subgraphs; 2. Graph labeling algorithm; 3. Subgraph encoding; 4. Fully connected layer
learning.
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Figure 1. Schematic diagram of PLAS algorithm model

The principle of the PLAS algorithm is shown in Figure 1. Given the undirected and unweighted
graph G(V,E) at the input time t, the subgraph of the h-hop of the target node A, B is firstly
extracted Gy (1-hop in the graph), and then labels are assigned to each node in the subgraph
through the graph labeling algorithm. The nodes in the subgraph are sorted according to labels and
the information characteristic matrix X} is constructed according to their order. Then select the first
k node, splicing the corresponding features of the first k node in the information matrix Xj to
represent the embedding of the subgraph of target node pair, and finally input it to the fully
connection layer for learning. Gj,, is the closed subgraph of the h-hop of the target node pair (x,y),
including all the first-order, second-order and nodes of h-order nodes and edges of corresponding
nodes. X}, is information feature matrix that sorts nodes in the subgraph and builds in accordance
with their order, which is described as follows:

F¢ F} Ef
Xig=|: & (1)
E¢ E} EY

n

Where F¢, F! and F are the explicit attribute feature, implicit attribute feature and graph
label of the first node in the information feature matrix. And each row in information feature matrix
X3, represents the feature of a node in the subgraph G,. The feature of each node is composed of
explicit attributes (attributes of the node itself, such as interest, position, gender, etc.), implicit
attributes (Node2Vec [13] embedding nodes in the graph) and the label of each node in the subgraph
(network structure features).

3.1. Extraction of subgraphs

In order to learn the topological features of the network, the PLAS algorithm extracts its h-hop
closed subgraph for each target node pair. In a natural system, the connection between nodes will be
affected by neighbor nodes, and the more intermediate nodes on the node path, the weaker the
relationship between two nodes. Although more node structure may lead to more link information,
whether the node pair will generate a link will be primarily affected by 1-hop or 2-hop neighbor
nodes. In this paper, the h parameter is set to 1 or 2 according to the sparseness of the network
structure. When the average number of neighbor nodes of each node in the network is greater than
10, parameter h is selected as 1; when the average number of neighbor nodes of each node in the
network is less than 10, parameter h is selected as 2. It ensures that the value of h will not be set too
small, resulting in insufficient neighbor information, significantly impacting the prediction results.
Moreover, with the decrease of h parameter, the number of neighbor nodes extracted from the target
node pairs will decrease exponentially, indicating that the dimension of feature vector of subgraph
decreases, which can significantly reduce the training time of the model.

But for large-scale networks, such as social networks, where a superstar has millions of fans, the
number of first-order neighbor nodes is very large, which will lead to a memory explosion when the
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subgraph is extracted. This paper sets a threshold N to prevent the problem of oversampling of
subgraphs. When extracting the subgraph of the target node pair, if the number of subgraph nodes
exceeds the threshold value N, the current h-order neighbor nodes will be randomly sampled to
equal N, prioritizing sampling nodes with closer hops. For example, we need to extract 2-hop
neighbor node subgraphs, while setting the threshold N value with 100, extract first-order neighbor
nodes to 50, extract second-order neighbor nodes to 250, and the sum of first-order neighbor nodes
and second-order neighbor nodes is greater than the threshold N. Therefore, we need to randomly
sample second-order neighbor nodes (randomly select 50 nodes from 250 nodes) so that the number
of summary points in the subgraph is equal to the threshold N.

The subgraph extraction algorithm is described as follows:

Algorithm: Subgraph extraction
Input: Target node pair (i, ), graph G(V, E), h-hops neighbor nodes, threshold N
Output: h-hops subgraph S of target node pair (i, )

: V(s) ={ij}
N(temp) = {}
c=1

while c < h do
N(temp) =Tf UTf
if len(N(temp)) + len(V(s)) > N:
N(temp) = sample(N (temp))
V(s) = N(temp) UV(s)
break
10:  V(s) = N(temp) UV (s)
11: c=c+1
12: end while
13: S = SubGraph(V(s))
14: return S

XA B PT

The target node h-hop neighbor node subgraph extraction algorithm process is as follows: for
the target node pair (i,j) in graph G, first add the target node pair (i,j) to the subgraph node
set V(s), and then add the node pair (i,j) first-order neighbors, second-order neighbors to the h-
order neighbors to the set V(s). The relationship between all nodes and nodes in the set constitutes
a subgraph S.

3.2. Graph labeling algorithm

The graph is an unordered data structure. We need a graph labeling algorithm to sort the nodes
in the graph according to their labels to form an ordered sequence so that the fully connected layer
can read node feature in a consistent order.

The Weisfeiler Lehman (WL) algorithm [14] is widely used in graph classification, and it is a
classic graph labeling algorithm. The main idea of WL algorithm is to use the labels of neighbor nodes
to update their own labels iteratively and compress the updated labels into new ones until they
converge. The primary process of WL algorithm is as follows:

1. Itinitializes all nodes in the graph to the same label 1, and each node aggregates its label and the
labels of neighbor nodes to construct a label string.

2. Thenodes in the graph are sorted in ascending order of label strings, and according to the sorting
update to new labels 1, 2, 3, ... nodes with the same label string will get the same new label. For
example, suppose that the label of node x is 2, its neighbor label is {3,1,2}, the label of node y
is 2, and its neighbor label is {2,1,2}. The label strings of x and y are < 2123 > and < 2122 >
respectively. Because < 2122 > is less than < 2123 > in the dictionary order, y will be assigned a
smaller label than x in the next iteration.

doi:10.20944/preprints202305.0797.v1
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3. This process is repeated until the node label stops changing. Figure 2 shows updating the nodes'
label from 1 to (1, ... 5).

Q) @
@ (D (2 @
(D (D) @ (3
0 \‘ cond St% 9 \| /\

First Step Second Step

First step

First step: update the Second Step: Assign new labels to nodes by
node label string sorting the label string

Figure 2. Schematic diagram of WL algorithm

WL algorithm has two key advantages: 1. The final label coding represents the structural role of
nodes in the graph. Nodes with similar structure have similar labels in different graphs. 2. It defines
the relative order of nodes in the graph, which is also consistent in different subgraphs. However,
the WL algorithm treats all nodes in the subgraph equally during initialization and assigns the same
label. After multiple rounds of iterations, the final node label encoding makes it impossible to
distinguish the target node pair from other nodes in the subgraph, resulting in untargeted model
training. Therefore, we designed a new graph labeling algorithm combined with the shortest
distance, which can ensure that the nodes in different subgraphs are sorted in a consistent order and
distinguish the target node pair from other nodes in the subgraph.

Algorithm: subgraph labeling
Input: Target node pair (i, ), subgraph node list N, subgraph S
Output: Ordered list with labels O
. 0« (i, (01)
0 < (,(1,0))
R=N~-{ij
for each v ER do
d;=d(v,i)
dj =d(v,j)
0 < (v,(d;,d)))
end for
sorted O by (d;, dj)
return 0

O 00 N O Ul i W N =

—
o

The process of the subgraph labeling algorithm is as follows. The label string (d;, d;) for each
node consists of the shortest distance from that node to the target link node pair (i, j), where d; and
d; are the shortest distances from this node to the targetnodes i and j respectively. After extracting
the subgraph, we put all the extracted nodes into set R. For each node in set R, we calculate the
shortest distance (di, d]-) from each node to the target node pair (i,j) as the label string, and add it to
the sequence list O for uniform sorting. And we allocate the label strings (0,1) and (1,0) for the target
link node pair (i, ), respectively. The sequence list O is sorted first by the value of d;, and then by
the value of d;.

Since the shortest distance (d;,d;) from other nodes to the target node pair is always greater
than or equal to 1, according to the sorting rules of the sequence list, the label string (0,1), (1,0) of
the target link node pair is always smaller than the label string of other nodes. Therefore, the first two
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elements in the sequence list O are always target node pairs (i, j), which can well distinguish the
target link node from other nodes in the subgraph. The label string of a node defines the structural
role in the subgraph centered on the target link node pair. And in the subgraph centered on different
links, nodes with the same structural role have similar label strings. Compared with the WL
algorithm, the graph labeling algorithm in this paper only needs to calculate the shortest distance
from the node in the subgraph to the target node, and there is no iterative process of updating the
node label of the sub graph, so it has low time complexity.

3.3. Subgraph encoding

The purpose of subgraph encoding is to represent the subgraph centered on the target node pair
as a node information feature matrix X}, with specific order. We construct the information feature
matrix according to the order of nodes in the sequence list 0. The information feature of each node
is composed of explicit attribute, implicit attribute and node label.

Explicit attribute: The attribute of the node itself is the attribute feature of the data set. For
example, in the social network, the attribute feature of the node is interest, hobby, gender, etc.

Implicit attribute: Forming node embeddings in a graph using a graph embedding algorithm.
Node2vec is the common node embedding algorithm, it first obtains a series of node sequences by
random walk in the network, and then models such node sequences by processing word vectors to
obtain the representation of node vectors in the network.

The label of each node in the subgraph: The node label is represented by the function f(v) =
(d;, d;), which assigns a label string f(v) to each node in the subgraph. Node labels have three main
functions:

1. It can represent that different nodes play different roles in the subgraph. The shorter the shortest
path of other nodes in the subgraph relative to the target node pair, the greater its impact on
whether the target node will generate links in the future, so it plays a more important role in the
subgraph.

2. Graphis an unordered data structure, which has no fixed order. Therefore, it is necessary to sort
the nodes in the sub graph through labels, and then input them to the fully connection layer in
a consistent order for learning.

3. After extracting the h hop subgraph of the target link node pair (i,), we calculate the shortest
path from other nodes in the subgraph to the target node pair (i,)), and assign a label string to
each node in the subgraph. When all node features in the subgraph are spliced and sent to the
fully connection layer for learning, the fully connection layer will automatically learn the graph
structure features suitable for the current network, including the discovered graph structure
features or the undiscovered graph structure features. For example, CN algorithm is to calculate
the number of common neighbor nodes of the target node pair. The full connection layer only
needs to find the number of nodes with node label (1,1). By assigning a node label string to each
node in the graph through the icon algorithm, our algorithm model can automatically learn the
graph structure characteristics of the network, so it can be applied to different network
structures. The later experimental results show that our algorithm is better in AUC than other
link prediction algorithms.

When we obtain the explicit attribute, implicit attribute, and label of each node in the subgraph,
we splice the characteristics (explicit attribute, implicit attribute, and node label) of each node in the
order of the sequence list, and construct its information feature matrix to represent the whole
subgraph.

3.4. Fully connected layer learning

The fully connected layer is used to integrate the information feature matrix X/, of the h hop
subgraph of different target link node pairs for learning. Since the number of nodes in the h-hop
subgraph of each node pair is different, the training of the fully connected layer will be significantly
affected by the subgraph with a large number of nodes, while the impact of the node information
with a small number of subgraphs will be affected by neglect. Therefore, it is necessary to set a unified

doi:10.20944/preprints202305.0797.v1
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node number threshold K to balance the feature dimension input of different subgraphs. We sort
each node in the subgraph using a graph labeling algorithm. When the number of nodes in the
subgraph is greater than K, the nodes ranked after K are discarded. When the number of nodes in
the subgraph is less than K, we construct virtual nodes so that the number of nodes equals K, and
zero vectors represent the feature of the virtual nodes in X;,,. We set the specific K value according
to the overall network topology. We sort the number of each subgraph node in training set in
ascending order and take the value of the corresponding element at the 0.6 scale index as K. If the K
value is set too small, too many nodes need to be deleted, resulting in too much information loss; if
the K value is set too large, we need to construct a large number of virtual nodes that do not contain
any information, and it will also cause the input feature dimension to be too large, increasing the
training time. Therefore, we have compromised selecting the K value according to the network
topology.

The neural network structure of the fully connected layer consists of an input layer, a hidden
layer, and an output layer. The number of neurons in the input layer is determined by the dimension
of each node feature vector multiplied by K, and the number of neurons in the hidden layer is set to
128. And the number of neurons in the output layer is 2, because we converted link prediction into a
graph classification problem (two classes), where the subgraph with linked node pairs represents one
class, the subgraph without linked node pairs represents the other class. In this paper, the ReLU
function was used for activation function and cross entropy loss function for the loss function.

4. Experiments Results

Experiment environment: Stand-alone processor AMD Ryzen 7 4800H with Radeon Graphics
290 GHz, NVIDIA GeForce RTX 2060, memory 16G, operating system is Windows 10, the
programming language is Python, based on the deep learning framework Pytorch.

4.1. PLAS algorithm

We conducted experiments with PLAS model on seven real data sets, and evaluated our model
with AUC (Area Under Curve). USAir [15] is the transportation network of American Airlines, NS is
the co-author network composed of researchers on the network [16], Pb is the blog network of the
U.S. government [17], Yeast is the network composed of protein interactions in yeast [18], Cele is the
divine network composed of neurons of a worm [19], power is the power network in the western
United States [19], and router is the Internet network composed of routers [20]. Furthermore, we
introduced the dataset BuptSGMEC which is the real network structure of 5G MEC Access Network
in BUPT (Beijing University of Posts and Telecommunications) while it demonstrates the inside
routing structure of BUPT for 5G MEC access experimental environment through a MEC Hub Node.
And this 5G MEC access experimental environment has be used to evaluate some routing links in 5G
MEC experiments in Figure 3. Besides that, we also found some other important 5G MEC Access
Network with the name CM1-5G and CM2-5G from other 5G MEC experiment joined developed with
China Mobile. Finally, the real AS topology dataset ITDK0304S of Global Internet is added to Table 1
to carry out evaluation on the largest subset of real Internet topology [27]. For the construction of the
ITDKO0304S dataset, because the original dataset has some nodes separated from the overall network
structure, there are few links between these nodes, and they are relatively independent of the overall
network. As a result, it contains less information and research value and will affect model training.
Therefore, we use the FastGN [55] community detection algorithm to divide the original data set. We
use several communities that can mainly represent the overall structure to construct the ITDK0304S
data set and delete some individual communities with few nodes and nodes not worth researching.
Since our model performs link prediction through extracted subgraphs, for large-scale real-world
networks, we can adjust the hop count and threshold N of sampling neighbours during subgraph
extraction to ensure sufficient information for training without causing oversampling.


https://doi.org/10.20944/preprints202305.0797.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 May 2023 doi:10.20944/preprints202305.0797.v1

Campus Network

Internet

Figure 3. 5G MEC Access Network Structure in BUPT

Table 1 contains the statistical information of each network. We abstract the real-world network
structure data into the form of point-edge pairs. We take all the node pairs with edges in each network
(as positive samples) and take the same number of node pairs without edges (as negative samples)
to form a data set, and then randomly select 90% of the node pairs with and without edges as the
training set and the remaining 10% of the data set as the test set. When we use the Node2Vec
algorithm to calculate the implicit attributes of nodes, the node sequence obtained by random walk
may imply information about whether there is a link between the target node pair, resulting in poor
model generalization. Therefore, when the Node2Vec algorithm embeds nodes for each subgraph,
links are added to the target nodes without link relationship so that the link information of any target
node pair in the training set is the same.

Table 1. Statistical information of network structure of experimental data set

DataSet V] |E|
Router 5022 6258
USAir 332 2126

NS 1589 2742
PB 1222 16714
Yeast 2375 11693
Cele 297 2148
Power 4941 6594
Bupt5GMEC 135 338
CM1-5G 1500 5990
CM2-5G 1499 4498
ITDKO0304S 3780 10757

We selected five classical heuristic algorithms based on node similarity to compare with our
algorithm, which are common neighbors (CN) [16], Jaccard coefficient (JC) [10], Adamic ADAR (AA),
resource allocation (RA) and Katz [22].

CN: the number of common neighbors of target node x and y, which is defined as follows:
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CN(Cx,y) = T(x) N TH)I )

T(x) represents a collection of neighbor nodes x, |T(x)| represents the number of neighbors of
node x.

JC: it is similar to CN algorithm. It is the expression of standardization of common neighbors.
Its definition is as follows:

Tx)NnT
1@ = 173 oreg ®
AA: a neighbor node with a small degree has a larger weight, which is defined as follows:
AA(x,y) = WlT(z)l (4)
2eT(ONT(Y)

RA: it is similar to AA, but the punishment is different. Its definition is as follows:

RA(x,y) = Z — (5)
IT (2|

ZET(x)NT(y)

Katz: it calculates all paths of the target node. The shorter the path, the higher the weight. It is
defined as follows:

Katz(x,y) = Z B! |pathi,| (6)
1=1

We also selected three methods of link prediction using graph embedding to compare with our
model, which are node2vec (n2v) [13], line [23], vgae [24]. They all embed the nodes of the graph,
then splice the vectors of the target node pairs and send them to the fully connected layer for
classification learning.

We use 50 epochs to train our model. In the process of training, we randomly select 10% of the
training set as our verification set for evaluation, and we save the model with the best performance
on the verification set. Finally, we use the saved model to predict on the test set.

We first compare with five heuristic based link prediction algorithms, and the results are shown
in Table 2 and Figure 4:

Table 2. Comparison results with five heuristic link prediction algorithms (AUC)

DataSet CN JC AA RA Katz PLAS
Router 56.57 56.38 56.40 56.38 38.62 88.81
USAir 94.02 89.81 95.08 95.67 92.90 93.28

NS 93.94 94.40 94.77 94.33 95.03 98.93
PB 92.07 87.39 92.31 92.45 92.89 93.37
Yeast 89.41 89.30 89.32 89.44 92.30 95.04
Cele 84.95 80.18 87.03 87.49 86.45 87.84

Power 58.90 58.80 58.83 58,83 65.90 74.27

doi:10.20944/preprints202305.0797.v1
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Figure 4. Comparison results with five heuristic link prediction algorithms (AUC)

As shown in Table 2, our algorithm performs better than heuristic link prediction algorithm on
data sets on NS, Pb, yeast, Cele, power and router. On the USAir dataset, our algorithm is also better
than Katz and JC algorithms. Among them, on sparse data sets such as power and router, the AUC
of heuristic link prediction algorithm is about 65% and 55% respectively, while the AUC of our link
prediction algorithm can reach about 75% and 85%, which is increased by 10% and 30% respectively.
As shown in Table 2, our algorithm performs better than heuristic link prediction algorithm on data
sets on NS, Pb, yeast, Cele, power and router. On the USAir dataset, our algorithm is also better than
Katz and JC algorithms. Among them, on sparse data sets such as power and router, the AUC of
heuristic link prediction algorithm is about 65% and 55% respectively, while the AUC of our link
prediction algorithm can reach about 75% and 85%, which is increased by 10% and 30% respectively.

We then compare with three link prediction algorithms based on graph representation. The
experimental results are shown in Table 3 and Figure 5:

Table 3. Comparison results with three link prediction algorithms based on graph representation

learning (AUC)
Dataset Node2Vec LINE VGAE PLAS
Router 65.46 67.17 61.53 88.81
USAir 91.40 81.47 89.30 93.28
NS 91.55 80.63 94.04 98.93
PB 85.79 76.94 90.70 93.37
Yeast 93.68 87.45 93.87 95.04
Cele 84.13 69.22 81.87 87.84

Power 76.23 55.64 71.20 74.27
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Figure 5. Comparison results with three link prediction algorithms based on graph representation
learning (AUC)

As shown in Table 3, the link prediction algorithm based on graph representation has better
performance on the sparse data set of power and router than the heuristic link prediction algorithm,
but compared with our algorithm, especially on the router data, our algorithm improves the AUC by
about 20%. On USAir, NS, Pb, yeast and Cele datasets, our algorithm is better than the link prediction
algorithm based on graph representation.

4.2. PLGAT algorithm

The PLAS algorithm treats neighbor nodes equally, lacks consideration of the degree of influence
on different neighbor nodes, and may discard some nodes in the training of the fully connected layer,
resulting in information loss. Aiming at these problems, we improve PLAS and propose a link
prediction algorithm PLGAT (Predicting Links by Graph Attention Networks) based on graph
attention network [28]. The algorithm distinguishes the degree of influence of different nodes on the
target node through the attention mechanism. It aggregates the information of the discarded nodes
through two layers of GAT convolution layers so that the nodes have comprehensive information
and improve the accuracy of the link prediction algorithm. In addition, the algorithm defines the
relative position of the nodes in the subgraph through the pooling layer module and reflects the
directionality of the subgraph (centering on the target node and expanding to the neighbor nodes on
both sides), which improves the link prediction results. The PLGAT model framework of our
algorithm is shown in Figure 6:

Fully connected
layer

Subgraph GAT convolution layer Pooling layer

Figure 6. Schematic diagram of PLGAT algorithm


https://doi.org/10.20944/preprints202305.0797.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 May 2023 doi:10.20944/preprints202305.0797.v1

14

Compared with the PLAS model, PLGAT takes the subgraph features further processing with
GAT. Firstly, the h-hop subgraph of the target node pair was extracted. Then, the subgraph
aggregates the information of the neighbor nodes through the GAT convolution layer, and combines
the original node features with the new features obtained through the GAT convolution layer to get
the new feature representation of the node. Finally, through a pooling layer, nodes in the subgraph
are sorted according to specific sorting rules, and the feature of the first K nodes are selected as the
subgraph encoding, which is sent to the fully connection layer for classification.

4.2.1. GAT convolution layer

Graph Attention Network (GAT) takes a set of node features h = {ﬁl, ﬁz, ) EN} as input, where
h; € RF N represents the number of nodes, and F indicates the dimension of the node's original
features. It generates a new set of features h' = (R}, Y, ..., hiy} through the graph attention layer,
where H{ € RF', F' indicates the dimension of the node's new feature vector.

In order to obtain sufficient expression information, GAT needs to perform at least one learnable
linear transformation on the features of input nodes to obtain new node features. Therefore, the
algorithm trains a weight matrix w for all nodes, w € RF 'XF  this weight matrix is the relationship
between input features and output features. For each node, a single-layer feed-forward neural
network is used to calculate the self-attention coefficient between nodes. The attention coefficient is
expressed as:

eij = a(WEL,WH]) (7)

a is a single-layer feed forward neural network, and e;; represents the importance of node j
to node i. Typically, each node computes the attention coefficient with any other node, but this
results in loss of graph structure information. In order to obtain the graph structure features, GAT
introduces the masked attention mechanism, and distributes attention to the set of neighbor nodes
N; ofnode i, and j € N;. At the same time, GAT uses the SoftMax function to regularize all neighbor
nodes j of node i, and adds a LeakyReLU nonlinear function to the output of the feed forward
neural network. Therefore, the formula of the complete attention mechanism is as follows:

exp( LeakyReLu( aT [WHh;| |Wﬁj]))

= — 8
Yk € N; exp(LeakyReLu( a"[Wh;||W h;])) ®

aij

a is a single-layer feedforward neural network, and a is the weight matrix between layers in
the neural network.

After obtaining the attention coefficient between different nodes through the above formula, the
final output characteristics of the node are obtained by aggregating the characteristics of neighboring
nodes. The formula is as follows:

Ri=0() ayWh) ©
JEN;
o is a non-linear activation function.
In order to stabilize the learning process of self-attention, GAT uses a multi-head attention

mechanism. Specifically, ituses k independent self-attention mechanisms to splice the obtained new
features. GAT uses k average instead of splicing operations. Therefore, the final formula of the

B= o= kWwkh, 10
i=0(g agW*h;) (10)

k

multi-head attention mechanism is:

k represents a total number of attention mechanisms, a* represents the k' attention
coefficient, and W* represents the linear transformation weight matrix under the k** attention
mechanism.
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In the task of deep learning, it is generally believed that the higher the complexity of the model,
the higher the fitting effect. For the graph neural network, whether to add more convolutional layers
to improve the model's performance should be decided according to the specific situation of the task.
Increasing the depth of the convolutional layer increases the aggregation radius, but when the
convolutional layers reach a certain depth, almost every node in the graph contains global graph
information. Although a large number of convolutional layers can bring global information beneficial
to graph classification tasks, it increases the complexity of the model, resulting in a long training time
and model overfitting. Since the category of a node is primarily affected by local neighbor nodes, a
small number of convolutional layers can achieve better performance, so we only extract the target
node to the neighbor nodes within two hops to form a subgraph, and only use two convolutional
layers to make the target node aggregate the global graph information, which improves the accuracy
of the algorithm without bringing the complexity of the model.

We use the node features obtained in the subgraph encoding part of PLAS as the original input
features F°. The original feature F° is input into the GAT convolution layer for calculation, the
feature F' is obtained through the first layer of GAT convolution, and the feature F 2 is obtained
through the second layer of GAT convolution. We concatenate the three feature to obtain the final
feature representation of the node as follows:

F = FO||F||F? (11)

Among them, || represents the connection operation, and the final feature representation of
each node obtained through two GAT convolutional layers contains almost the global information of
the subgraph.

4.2.2. Pooling layer

The pooling operation of the graph is used to aggregate the global node information to obtain a
global graph vector representation. The pooling methods of graph data are mainly divided into two
categories, one is hierarchical pooling [25], the other is global pooling [26]. The hierarchical pooling
method mainly includes two processes: 1. Calculate the assignment matrix to determines which
neighbor nodes are allocated together to form a cluster; 2. The nodes in each cluster are aggregated
into a new super node in a certain aggregation way, and then these super nodes are used to form a
new graph. F For large-scale graphs, this hierarchical pooling method is very effective. The scale of
the graph is reduced through continuous convolution and pooling operations to obtain the final
representation of the entire graph. The global pooling method selects appropriate nodes to form a
representation of the entire graph after multiple convolutions, which minimizes the loss of
information. Therefore, in small-scale graph, global pooling method is superior to hierarchical
pooling method. We extract the h-hop neighbor nodes of the target node pair to form the subgraph,
which mainly has the following two characteristics:

1. The subgraph is centered on the target node pair and spreads out to the neighbor nodes on both
sides, which has strong directionality.

2. The number of neighbor hops in the subgraph is limited, resulting in the subgraph often being
a small-scale graph.

For small-scale graphs, using the global pooling method is more appropriate. However, it is
difficult for this global pooling method to show the directionality of the subgraph, and it is
challenging to select appropriate nodes with uniform rules to form a subgraph feature representation.
Based on the global pooling method, we use the graph labeling algorithm in PLAS to sort the nodes
in the sub-graphs by a specific sorting rule to solve the above problems. In graph labeling algorithm,
the label string (d;, d;) consists of two parts, one is the shortest distance d; from the target node i,
and the other is the shortest distance d; from the target node j. For the target node i, the label
character is always (0,1), and for the target node j, the label string is always (1,0). The nodes in the
subgraph are first sorted by d;, and then sorted by d; if d; is equal. Sorting in this rule has two main
benefits:

doi:10.20944/preprints202305.0797.v1
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1. Because the shortest distance d; from other nodes in the subgraph to the target node pair (i, ),
d; is greater than or equal to 1, the target node pair (i,j) is always ranked in the first two
elements, and the node closer to the target node in the subgraph will be ranked in the front, and
the node farther away from the target node will be ranked in the back, which reflects the
direction of the subgraph.

2. Nodes in the subgraph will be sorted according to consistent rules. We only need to select the
first K nodes to represent the feature expression of the current subgraph, to unify the rules of
node selection in the global pooling method. For the case that the number of nodes in the
subgraph is greater than K, only nodes after K need to be truncated, and the discarded nodes
will not lose all node information, because other nodes in the subgraph have learned the
discarded node information through the two layers of GAT convolution layer. If the number of
nodes in the subgraph is less than K, simply add virtual nodes, where virtual nodes are
represented by the zero vector.

4.3.3. Experimental dataset and settings

We carried out experiments on seven real data sets: USAir[15], NS[17], PB[17], Yeast[18],
Cele[19], Power[19] and Router[20], and evaluated the performance of the algorithm with the AUC.

To evaluate our algorithm on real 5G MEC access network environment and real AS topology
of Global Internet, we test our algorithm on BuptSGMEC, CM1-5G, CM2-5G and ITDK0304S network
datasets.

For each data set, all the linked node pairs in the current network structure are selected as
positive samples, and then an equal number of unlinked node pairs are randomly selected as negative
samples, which balances the positive and negative samples. And 80% of the positive samples and
10% of the negative samples are randomly selected as the training set, 10% as the verification set, and
the remaining 10% as the test set. The number of neurons in the first hidden layer of the fully
connected layer is set to 1024, the number of neurons in the second hidden layer is set to 512, and the
number of neurons in the output layer is set to 2.

4.3.4. Experiment results analysis

We use the AUC as evaluation of algorithm, during the training process, we use 50 epochs to
train our model, save the model that performs best on the verification set, and use it for prediction
on the test set. We repeat the above operation ten times and take the average of the ten experimental
results as the final result.

Firstly, we compare with five heuristic based link prediction algorithms, and the experimental
results are shown in Table 4:

Table 4. Comparison of PLGAT with five heuristic link prediction algorithms (AUC)

Dataset CN JC AA RA Katz PLAS PLGAT
USAir 94.02 89.81 95.08 95.67 92.90 88.81 95.21
NS 93.94 94.40 94.77 94.33 95.03 93.28 97.96
PB 92.07 87.39 92.31 92.45 92.89 98.93 94.32
Yeast 89.41 89.30 89.32 89.44 92.30 93.37 94.41
Cele 84.95 80.18 87.03 87.49 86.45 95.04 89.52
Power 58.90 58.80 58.83 58,83 65.90 87.84 79.27
Router 56.57 56.38 56.40 56.38 38.62 74.27 91.42

BuptSGMEC  75.01 75.02 68.75 75.02 23.78 99.67 99.67
CM1-5G 54.23 53.79 53.32 54.13 50.22 69.84 66.43
CM2-5G 76.15 72.22 74.79 76.21 50.71 88.95 91.34

ITDKO304S  g541 8541 8360 8542 4877 98.90 97.88

doi:10.20944/preprints202305.0797.v1
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As shown in Table 4, Figure 7 and Figure 8, our method PLAS and PLGAT are better than the
heuristic link prediction algorithm in the NS, PB, Yeast, Cele, Power, Router, BuptsGMEC, CM1-5G,
CM2-5G and ITDKO0304S datasets. Especially in the data set with sparse Power, Router and
Bupt5GMEC communication network, our methods are superior to the heuristic link prediction
algorithm obviously while the AUC index has increased by about 15% and 30% respectively. On the
USAir dataset, our method performs as well as the heuristic link prediction algorithm, which is
slightly lower than RA algorithm and better than other algorithms.

ECN mJC mAA RA mKatz EPLAS B PLGAT
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Figure 7. Comparison of PLGAT with five heuristic link prediction algorithms (AUC)-a
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Figure 8. Comparison of PLGAT with five heuristic link prediction algorithms (AUC)-b.

Then PLGAT is compared with three link prediction algorithms based on graph representation
learning and the PLAS algorithms, and the results are shown in Table 5:

Table 5. Comparison of PLGAT with three link prediction algorithms based on graph representation

(AUC)
Dataset Node2Vec LINE VGAE PLAS PLGAT
USAir 91.40 81.47 89.30 93.28 95.21
NS 91.55 80.63 94.04 98.93 97.96
PB 85.79 76.94 90.70 93.37 94.32
Yeast 93.68 87.45 93.87 95.04 94.41
Cele 84.13 69.22 81.87 87.84 89.52

Power 76.23 55.64 71.20 74.27 79.27
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Router 65.46 67.17 61.53 88.81 91.42
Bupt5GMEC 85.61 83.42 87.56 99.67 99.67
CM1-5G 53.22 56.75 60.34 69.84 66.43
CM2-5G 81.24 84.31 83.76 88.95 91.34
ITDK0304S 85.87 86.56 87.35 98.90 97.88

As shown in Table 5 and Figure 9, compared with PLAS, both algorithms convert link prediction
into graph classification tasks. The PLGAT algorithm proposed in this chapter is superior to PLAS
algorithm in USAir, PB, Cele, Power, Router, BuptsGMEC, CM1-5G, CM2-5G and ITDKO0304S
datasets. In Power data set, our algorithm improves by more than 5%. In terms of Yeast data, the
performance of our algorithm was inferior to that of the PLAS algorithm, but the difference was

within 1%.
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Figure 9. Graphic Comparison of PLGAT with three link prediction algorithms based on graph
representation (AUC)

Compared with VGAE algorithm, both algorithms use GNN (Graph Neural Network) to learn
neighbor node information. Our algorithm is superior to VGAE algorithm in USAir, NS, PB, Yeast,
Cele, Power, Router, BuptsGMEC, CM1-5G, CM2-5G and ITDKO0304S datasets. On the Router data
set, our algorithm improved by more than 30%. For the LINE and Node2Vec algorithms, our
algorithm outperforms them in all respects. For the heuristic link prediction algorithm, the
performance of our algorithm is lower than that of RA algorithm only on USAir data set, and on other
data sets, the performance of our algorithm is far better than that of the heuristic link prediction
algorithm.

5. Conclusions

Link prediction is a hot research field at present. It is very important for mining and analyzing
the evolution of networks. Although the heuristic algorithm based on node similarity is simple and
effective, it cannot be applied to all network structures. Finding effective heuristic indexes for
different network structures requires a process of repeated experiments. Based on the above
problems, we design a link prediction algorithm based on target node pair subgraph, which combines
the characteristics of graph structure and node characteristics, and can play a role in different network
structures. Finally, we compare five heuristic link prediction algorithms based on node similarity and
three link prediction algorithms based on graph embedding on eleven real data sets. The results show
that the performance of our algorithm is much better than other link prediction algorithms.
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