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Abstract: In this article, the multitouch option, also called the n  touch option (or the “baseball” 
option when 3n  ) is analyzed and valued in closed form. This is a kind of barrier option that sets 
a gradual knock-out / knock-in mechanism based on the number of times the underlying asset has crossed a 
predefined barrier in various time intervals before expiry. The higher the number of predefined time intervals 
during which the barrier has been touched, the lower the value of a knock-out contract at expiry, and 
conversely for a knock-in one. Multitouch options can be viewed as an extension of step barrier options, 
preserving the ability of the latter to adjust the exposure to risk over time, while eliminating the notorious 
danger of “sudden death” that holders of step barrier options are faced with. Unlike occupation time 
derivatives, the payoff at expiry does not depend on the amount of time spent outside the authorized range, 
but on the number of passages beyond the authorized range. 
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Introduction 

Barrier options are the most heavily traded non-standard European options in the financial 
markets, particularly in the foreign exchange ones. They are also embedded in a lot of popular 
structured derivatives in stock and interest rate markets (see, e.g., Bouzoubaa and Osseiran, 2010). 
Besides, as analytical tools, they are at the core of the modeling of major financial phenomena such 
as default risk, in the so-called “structural models” (see, e.g., Bielecki and Rutkowski 2004). The 
reader unacquainted with barrier options may refer, e.g., to Cont (2010) or to an online financial 
encyclopedia for basic facts and definitions. 

Since their first appearance as traded contracts in the 1970’s, there have been a huge number of 
variations in their payoff, leading to a wide variety of non-standard barrier options. Among the most 
well-known of them are the partial-time, the outside and the step barrier options. The specificity of 
partial-time barrier options is that barrier crossing is not monitored during the entire option’s 
lifetime. It may end before expiry (“early-ending” barrier) or start after the contract’s inception 
(“forward start” barrier). Heynen and Kat (1994 a) and Carr (1995) were the first to publish exact 
formulae for early-ending and forward-start barrier options. More generally, barrier monitoring may 
start any time after the contract’s inception and terminate any time before expiry. This flexible 
specification of the time during which a barrier is active, known as a “window”, was handled by 
Armstrong (2001) for single barriers (also called one-sided barriers) and by Guillaume (2003) for 
double barriers (also called two-sided barriers) and combinations of one-sided and two-sided 
barriers. The knock-out or knock-in condition during the option’s lifetime and the moneyness 
condition at expiry may also be defined w.r.t. two different underlying assets. This is what 
characterizes an outside option, which was first valued by Heynen and Kat (1994 b). Finally, instead 
of being constant, the barrier may be piecewise constant, i.e. defined as a step function : the option’s 
lifetime is divided into several time intervals on which the barrier takes different values. Exact 
analytical valuation of step barrier functions was achieved by Guillaume (2001) when the barrier is 
one-sided and by Guillaume (2010) when the barrier is two-sided. 
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A major reason for the success of barrier options is that they allow investors to choose the market 
scenarios they want to be insured against, i.e. only those that are adverse to their positions, unlike a 
vanilla option that hedges them against all possible scenarios, including those that are favourable to 
their positions. As such, barrier options are both more flexible and less expensive than vanilla options. 
In addition, partial-time barrier options also allow investors to choose the time intervals on which 
they want to be hedged, while step barrier options allow them to modulate the level of the barrier 
during the option’s life. As for outside barrier options, they make it possible to manage the effect of 
volatility by combining a low volatility on the asset to which a knock-out barrier is assigned and a 
high volatility on the asset whose moneyness is tested at expiry. For more background on how to 
make an optimal use of all these instruments, the reader may refer to Das (2006). 

However, all the aforementioned barrier option contracts have one common limitation, i.e. the 
crossing of the barrier is designed as an “all or nothing” triggering mechanism. Indeed, a single 
passage at any moment that the barrier is active is enough to deprive a knock-out contract of all its 
value or to transform a knock-in contract into a vanilla option. For knock-out barriers, this is known 
as the “sudden death” risk. It is definitely an unattractive feature for investors in markets where a 
short term volatility spike may entail a temporary breach of the barrier while the underlying asset 
has spent the vast majority of its time inside the authorized fluctuation range. It also makes hedging 
more difficult for traders, who are faced with discontinuous deltas and gammas going to infinity in 
the vicinity of the barrier. Various solutions to this problem have already been put forward. One of 
the oldest and simplest ones is the “soft barrier” (Hart and Ross, 1994), in which the knock-out or 
knock-in provision is defined as a range between an upper level and a lower level, and different 
percentages of the option’s payoff at expiry are paid out to the option’s holder according to the 
highest or lowest point reached in this range during the option’s lifetime. Another approach consists 
in defining the option’s payoff as a function of the time spent above or below the barrier. The 
corresponding contract is known as an “occupation-time derivatives”. This approach was pioneered 
Chesney, Jeanblanc and Yor (1997) under the name of “parisian option” and by Linetsky (1999) under 
the name of “step option” (which is not to be confused with a step barrier option). 

Multitouch options develop an alternative way of dealing with the “all or nothing” problem 
associated with traditional barrier options, which consists in setting a gradual knock-out / knock-in 
mechanism, based neither on the location of the maximum or minimum observed value of the 
underlying asset price within a range, nor on a measure of the occupation time of the underlying 
asset within an authorized fluctuation range, but rather on the number of times the underlying asset 
has crossed a predefined barrier in various time intervals before expiry. The higher the number of 
predefined time intervals during which the barrier has been touched, the lower the value of a knock-
out contract at expiry, and conversely for a knock-in one. The n  touch option allows investors to 
weigh different knock-out or knock-in scenarios according to the number of passages to the barrier, 
whereas standard barrier options do not allow to distinguish between these scenarios. This makes 
the multitouch barrier option a more flexible instrument that can better adapt to the investors’ 
expectations or needs. Compared with a standard knock-out barrier option, an n  touch knock-out 
option not only makes it possible to adjust the exposure to risk over time in the same way as a step 
barrier option, but it also provides a multichance game allowing its holder to receive a positive payoff 
at expiry even if the knock-out barrier has been breached. 

The number of crossings on a finite time interval is a stochastic process that can be called the 
crossing counting process. Unlike other existing contracts, the multitouch barrier option is based on 
a measure of the frequency of barrier crossings or, equivalently, on a measure of the intensity of the 
crossing counting process defined as the mean number of crossings per time unit. For instance, with 
a standard barrier, or a step barrier, or a partial-time barrier, a process may cross the barrier once and 
then never cross it again until expiry. With an occupation-time contract, a process may spend some 
time within the required barrier range (i.e. below an up-and-out barrier and above a down-and-out 
barrier), and then spend all the time left until expiry outside this range. Whereas, in a multitouch 
setting, if the process has crossed the barrier at least once in each of the time intervals that partition 
the option’s lifetime, and the number of these time intervals is large enough, then there cannot be any 
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significant period of time during which the process has been continuously out of the  barrier range. 
With this new instrument, what matters is not whether the process has hit the barrier range once, nor 
how long the process has stayed inside the barrier range, but how often it has visited this range, even 
for a very short period of time.  

In this article, it is shown that a no-arbitrage exact value of a multitouch barrier option can be 
analytically computed, at least for a moderate number of barrier crossings. A few extensions to more 
general payoffs and shapes of the barrier are also tackled. This article is organized as follows : Section 
1 provides a detailed description of the contracts under consideration, as well as a number of 
numerical results aimed at comparing multitouch barrier option prices with standard barrier option 
and step barrier option prices; Section 2 provides a proof of the valuation formula for a standard 
multitouch barrier option; Section 3 shows how to value an outside multitouch barrier option, as well 
as a multitouch barrier option with a barrier defined as a piecewise exponential affine function of 
time, and discusses the possibility of analytical valuation of multitouch barrier options with large 
numbers of barrier crossings. 

Section 1 – Detailed payoff and first series of numerical results 

The specificity of multitouch barrier options is to set a gradual knock-out / knock-in mechanism 
according to the number of times the underlying asset has hit a predefined barrier in various time 
intervals before expiry. In contrast with standard barrier options and their usual variants such as 
partial-time or outside barrier options, the knock-out / knock-in mechanism is not triggered once and 
for all by a single passage to the barrier. Instead, several levels of deactivation / activation are defined, 
depending on the number of hits by the underlying asset during the option’s life. A fraction of the 
standard call or put’s payoff is assigned to each number of hits. This fraction is a decreasing function 
of the number of hits if the option is of knock-out type, while it is increasing if the option is of knock-
in type. Thus, a knock-out multitouch option does not expose the option’s holder to the notorious 
risk of “sudden death” typical of a standard knock-out barrier option, whereby they lose the entirety 
of their claim the moment the underlying asset crosses the barrier before the option’s expiry.  

More precisely, let us denote as S , K  and T  the underlying asset, the strike price and the 
option’s expiry, respectively, and let us divide the option’s lifetime into n  intervals 

0 1 10, ,..., ,n nt t t t T
        Then, a multitouch barrier call option of order n  or, to put it more 

simply, an n  touch call option, provides its holder with the following payoff :  

    
0

n

i i
i

S T K





   
(1) 

where     is the number of predefined time intervals in which the barrier has been hit at least 

once, and each i    represents a rate of participation in the payoff at expiry.  
An n  touch put option’s payoff is defined similarly. A standard knock-out step barrier option 

is retrieved by setting 0 1   and 0i   for all 0i  . In the case 3n  , the n  touch option 
is sometimes called a “baseball” option. The name is derived from the baseball game parlance “three 
strikes and you are out”. 

In its standard form, an n  touch barrier option features a step function of time or piecewise 
constant function as its barrier, i.e. a constant barrier 0iH   is associated with each time interval 

1,i it t
   ,  1,...,i n  . However, other shapes can be specified for the barrier. For example, an 

extension of the valuation method to exponentially curved barriers is introduced in Section 3. 

There can be various ways to choose the i  s. The simplest choice is to fix each i  in the 

option’s contract. But you might want to make the i  s path-dependent, e.g. define them as functions 

of the maximum or minimum values of the underlying asset observed in each time interval 1,i it t
  
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. In the remainder of this article, analytical results will be provided under the assumption that the 

i s   are simply a sequence of participation rates fixed in the option’s contract. 
In a standard n  touch barrier option, the predefined time intervals 

0 1 10, ,..., ,n nt t t t T
         form a partition of 0,T   . When the length of the union of non-

intersecting predefined time intervals is smaller than the length of 0,T   , the n  touch barrier 

option is of partial-time type. 
Let us now provide a few illustrations of how payoffs can be formulated in more detail. For 

instance, the payoff on a standard 2 – touch up-and-out put with expiry 2T t  can be expanded as 
follows :  

            
  

1 2 1 2 1 2
0 1 1 2 2 0 1 1 2 2 0 1 1 2 3

1 2
0 1 1 2 3

0 1, , , , , ,
2

2 , ,

S H S H S t K S H S H S t K S H S H S t K

S H S H S t K

K S t
 


        

  

           

  


 

(2) 

where  sup
i j

j
i

t t t
S S t

 
  and  .  is the indicator function taking value 1 if all the events inside the 

curly brackets happen and zero otherwise 
Likewise, the payoff on a 3 – touch up-and-out put with expiry 3T t  is given by : 

       3 0 1 1 2 3 4 2 5 6 7 3 8K S t I I I I I I I I I             (3) 

where : 

      1 2 3 1 2 3
3 0 1 1 2 2 3 0 1 1 2 2 3

1 8, , , ,
, ,S t K S H S H S H S H S H S H

I I I      
       (4) 

     1 2 3 1 2 3 1 2 3
0 1 1 2 2 3 0 1 1 2 2 3 0 1 1 2 2 3

2 3 4, , , , , ,
, ,

S H S H S H S H S H S H S H S H S H
I I I              

     1 2 3 1 2 3 1 2 3
0 1 1 2 2 3 0 1 1 2 2 3 0 1 1 2 2 3

5 6 7, , , , , ,
, ,

S H S H S H S H S H S H S H S H S H
I I I              

Other knock-out or knock-in payoffs can be easily expanded in a similar manner by using the 
law of total probability. For instance, the payoff on a 3 – touch down-and-in call writes :  

       3 0 1 1 2 3 4 2 5 6 7 3 8S t K J J J J J J J J J             (5) 

where : 

      1 2 3 1 2 3
3 0 1 1 2 2 3 0 1 1 2 2 3

1 8, , , ,
, ,S t K S H S H S H S H S H S H

J J J      
       (6) 

     1 2 3 1 2 3 1 2 3
0 1 1 2 2 3 0 1 1 2 2 3 0 1 1 2 2 3

2 3 4, , , , , ,
, ,

S H S H S H S H S H S H S H S H S H
J J J              

     1 2 3 1 2 3 1 2 3
0 1 1 2 2 3 0 1 1 2 2 3 0 1 1 2 2 3

5 6 7, , , , , ,
, ,

S H S H S H S H S H S H S H S H S H
J J J              

 inf
i j

j
i t t t

S S t
 

  

It is clear that any multitouch barrier option can be decomposed into a portfolio of non-standard 
step barrier options combining various up-and-in, up-and-out, down-and-in, and down-and-out 
steps. 

Let us focus on the valuation of a 3 – touch up-and-out put with expiry 3t . Following the 
martingale equivalent method of option pricing, the no-arbitrage value of this option in a Black-
Scholes model is given by : 
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      

3

3 3
0

exp Q i i
i

rt E K S t 





 
   
  

   
(7) 

           

3 3

3 3
0 0

exp Q I i i Q I i i
i i

rt KE E S t    
 

                               
      

(8) 

where : 

-      
3

0 1 1 2 3 4 2 5 6 7 3 8
0

i i
i

I I I I I I I I    


          
(9) 

- Q  is the classical “risk-neutral” measure (i.e. the unique equivalent martingale measure in the 
Black-Scholes model) under which the stochastic differential of S  writes :  

       dS t rS t dt S t dB t   (10) 

in which r  is the riskless rate,     and  B t  is a standard Brownian motion on a filtered  

probability space  , , ,t Q    

After an elementary application of the Cameron-Martin-Girsanov theorem, the value of the 3 – 
touch up-and-out put becomes : 

          3

3

1

0 S
rt

i Q i iQ
i

e KE I S E I  
 



       
(11) 

where  SQ  is the classical forward-neutral measure whose Radon-Nikodym derivative w.r.t. Q  is 
given by :  

 
 

2

exp
2

S

t
dQ

B t t
dQ




       
  

(12) 

Therefore, it suffices to compute each     , 0,..., 3Q iE I i   . Each     S iQ
E I     

will then be inferred by a mere change of drift in the stochastic differential of S . The detailed 
computation of each   Q iE I     is provided in Section 2. Meanwhile, we proceed with a few 

numerical results. In Tables 1,2,3,4,5 and 6, the prices of four different types of options are compared 
as functions of the underlying asset’s volatility : vanilla put, standard UOP (up-and-out put), 3 – step 
UOP, and 3 – touch UOP. We focus on an up-and-out barrier since this is the consistent and most 
widespread form of insurance against adverse movements in the market on a long spot position. The 
inputs of the tables vary according to the direction of the steps (increasing or decreasing), to the 
options’ expiry and to the options’moneyness. In table 1, the step function is decreasing, while it 
increasing in table 2. In tables 3 and 4, the options’ expiry is extended. In tables 5 and 6, the moneyness 
of the options is changed, from ATM (at-the-money) in tables 1,2,3,4 to ITM (in-the-money) in table 
5 and OTM (out-of-the-money) in table 6. All reported prices are computed using exact analytical 
formulae : the ones for put and UOP options can be found in textbooks (see, e.g., Shreve 2010); those 
for step barrier options are given by Guillaume (2001, 2015) and those for multitouch barrier options 
are provided in this paper.  

In all tables, the following specifications hold :  
- the underlying asset’s value at the beginning of the option’s life 0t  is  0 100S   and the 

riskless rate is equal to 3.5%  
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- in the “short term” setting, the option’s expiry 3t  is equal to 6 months, while 3t  is 2 years in 
the “longer term” setting 

- the value of the constant knock-out barrier of the UOP option is equal to 110 
- the increasing up-and-out 3 – step barrier is defined as the vector 

1 2 3110, 112, 114H H H     , while the decreasing up-and-out 3 – step barrier is defined as the 

vector 1 2 3114, 112, 110H H H      

- the time intervals associated with each step have equal size, i.e. 

0 1 1 2 2 3 3, , , / 3t t t t t t t              (note, though, that unequal sizes of the time intervals are handled 

just as well by the analytical formula derived in Section 2)  
- the weighting coefficients of the 3 – touch UOP options are 

0 1 2 31, 0.75, 0.5, 0.25        

Table 1. : short term, ATM, decreasing step barrier. 

 Vol = 18% Vol = 36% Vol = 64% 
Vanilla put 4.21028552 9.19640912 16.8915617 
Standard UOP  3.87930345 6.11543647 7.41655712 
3 – step UOP  4.06327282 7.12573436 9.26066970 
3 – touch UOP 4.14387237 8.24464223 13.4221543 

Table 2. short term, ATM, increasing step barrier. 

 Vol = 18% Vol = 36% Vol = 64% 
Vanilla put 4.21028552 9.19640912 16.8915617 
Standard UOP  3.87930345 6.11543647 7.41655712 
3 – step barrier UOP  3.94774692 6.28171713 7.57564760 
3 – touch barrier UOP 4.12363140 8.08141477 13.0947085 

Table 3. : longer term, ATM, decreasing step barrier. 

 Vol = 18% Vol = 36% Vol = 64% 
Vanilla put 6.77089322 16.2132539 30.4462253 
Standard UOP  4.37918160 6.33005693 7.39619749 
3 – step barrier UOP  5.13331495 8.00612395 9.68798236 
3 – touch barrier UOP 5.96475363 12.3318524 21.0176847 

Table 4. : longer term, ATM, increasing step barrier. 

 Vol = 18% Vol = 36% Vol = 64% 
Vanilla put 6.77089322 16.2132539 30.4462253 
Standard UOP  4.37918160 6.33005693 7.39619749 
3 – step barrier UOP  4.51329511 6.46393309 7.49064685 
3 – touch barrier UOP 5.85533987 12.0464166 20.5970811 

Table 5. : longer term, ITM, decreasing step barrier. 

 Vol = 18% Vol = 36% Vol = 64% 
Vanilla put 11.5899127 21.6573788 36.654626 
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Standard UOP  6.68560137 7.88644982 8.55349279 
3 – step barrier UOP  7.92208416 10.0057384 11.2146769 
3 – touch barrier UOP 9.65006219 16.0036889 24.9762416 

Table 6. : longer term, OTM, decreasing step barrier. 

 Vol = 18% Vol = 36% Vol = 64% 
Vanilla put 3.37956019 11.4940697 24.6215650 
Standard UOP  2.41880819 4.82385750 6.24758108 
3 – step barrier UOP  2.78825911 6.07420063 8.17314591 
3 – touch barrier UOP 3.11901323 9.02191302 17.2485329 

Overall, the price differential observed between a standard UOP and a 3 – touch UOP is 
substantial, reflecting the higher probability that the latter option will not expire worthless. The only 
setting in which the price differential is small is when volatility is low (18%) and expiry is short term. 
But this is the least significant setting inasmuch as all option prices are close to one another in it. 
When volatility is intermediate (36%) and the option is ATM, the price differential increases to 27% 
on a short term expiry and it almost doubles on a longer time expiry. When volatility is high (64%) 
and the option is ATM, the price differential almost triples on a longer time expiry. The prices of ITM 
and OTM options display similar patterns.  

Since a multitouch barrier option can be decomposed into a weighted sum of step barrier 
options, its value is sensitive to the price determinants specifically attached to step barrier options, 
such as the ordering of the steps (i.e. the distribution of the steps over time according to each step’s 
distance to the origin 0S )  and the relative sizes of the time intervals associated with each step. In 
this respect, one can notice that the prices of multitouch UOP options with decreasing steps in tables 
1 and 3 are higher than the prices of multitouch UOP options with increasing steps in tables 2 and 4. 
For an explanation of this phenomenon and further insights into the specific price determinants of 
step barrier options, one can refer to Guillaume (2015). 

Of course, the price differential between an UOP and a multitouch UOP is heavily dependent 

on the choice of the i  s, which is freely negotiated between the buyer and the seller of the option. 

If one decides to normalize the sum 
0

n

i
i



  to 1, then the prices of multitouch knock-out barrier 

options become lower than those of standard knock-out barrier options, which shows that multitouch 
barrier options can also be used to lower the cost of hedging relative to standard barrier options. For 

instance, if we set 0 1 2 30.5, 0.25, 0.15, 0.1       , then the prices of ATM, 2 – year 
expiry, 3 – touch UOP options with decreasing steps become 2.830891789, 5.391604028 and 
8.504985192 when volatility is 0.18%, 0.36% and 0.64%, respectively. 

Section 2 – Analytical valuation of standard n – touch barrier options  

In this Section, we show how to find an exact formula for the no-arbitrage value of a 3 – touch 
up-and-out put, from which the values of other types of 3 – touch barrier options can be inferred, as 
will be subsequently explained. 

We begin by dealing with the computation of  1QE I I   as defined in Section 1, which is the 

probability required to value a 3 – step up-and-out put. 

Let  
 
 

ln , 0
0

S t
X t t

S

            
. Then, by conditioning with respect to the absolutely 

continuous random variables  1X t ,  2X t  and  3X t , and by using the Markov property of 

process X , the distribution under consideration can be written as the following multiple integral :  
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         
1 2 2 3 3

1 2 3

1 2
1 0 1 1 1 1 2 2 2 1 1, ,

h h h h k h

Q
x x x

E I I Q X h X t dx Q X h X t dx X t dx
  

  

           

    3
2 3 3 3 2 2 3 2 1,Q X h X t dx X t dx dx dx dx    (13) 

Since X  is a Gaussian process, the random vector      1 2 3, ,X t X t X t    follows a trivariate 

normal distribution. Under Q , each  iX t  has expectation it , where 2 / 2r   , and 

variance 2
it , and the correlation coefficient between  iX t  and  jX t  is given by .

i
i j

j

t

t
  , 

, ,i j i j   . The first probability inside the integral in (13) is obtained by differentiating the 
classical formula for the joint cumulative distribution of the extremum of a Brownian motion with 
drift and its endpoint over a closed time interval (see, e.g., Shreve 2010). The next two probabilities 
can be obtained by using the following simple lemma. 

Lemma 1 

Let   , 0S t t   be a geometric Brownian motion whose instantaneous variations under a 

given probability measure P  are driven by : 

       dS t S t dt S t dB t    (14) 

where  B t  is a standard Brownian motion, and     ,      

Let K  and H  be two positive real numbers such that  0H S  and K H . Let T  be a 

finite positive real number. Then, we have 

       
0

sup , 0 x

t u T
P S u H S T K S t S e

  

       
 

 
 

 
2

22
exp

k x T t k h x T t
N h x N

T t T t

 

 

                              
 

(15) 

where  
ln ,

0

K
k

S

         
ln

0

H
h

S

       and 2 / 2     

Proof of Lemma 1 

It is a corollary of a classical result given by Levy (1939) that : 

     sup ,
t u T

P S u H S T K S t
 

      
 

   

 
     

2

2ln ln 2 ln
K K H

T t T t
S t S t S tH

N N
S tT t T t




 

 

                                                          
   
      

 

(16) 

which can be rewritten as :  

     sup ,
t u T

P S u H S T K S t
 

      
 (17) 
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   ln ln
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S tK
T t

S S
N

T t





                        
 
 
  

 

 
 
 

 
 
   

 
   

2

ln ln 2 ln ln
0 0 0 02

exp ln ln
0 0

S t S tK H
T t

S t S S S SH
N

S S T t




 

                                                                                          
 
  

 

Therefore, by conditioning with respect to  
 

ln
0

S t

S

     
, we obtain :  

   
 

0
sup ,

0
t u T

P
S u H S T K

E S
  

        

 
 
 
  
  

(18) 

 
 

 
   

 
   

 
 

0
sup ln ln , ln ln

0 0
ln

0
ln

0

h
t u T

S u S TH K
S t S t S S t S

P dx P
S tS

dx
S

  



                                                                                    

  
 

 2
2

1
exp

22

h x t

tt



 

         
  

(19) 

 
 

   
2

22
exp

k x T t k x h x T t
N h x N dx
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 

 

                                       
 

 

Let us now define the functions 1 , 2 , 1  and 2  as follows : 

    

2

1

1
exp

2

2

i i

i

i i i
i

x t

t
x Q X t dx

t






 

             
    

(20) 

 

 

 

 
 
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.
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.
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,
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t t t t
x x

t t t
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

  


    

                                            
 

 
 

    j j i iQ X t dx X t dx    

(21) 

      
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,

2
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i
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t
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t

 

 
 

 
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(22) 
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    ,j
i j j j i iQ X h X t dx X t dx     

(23) 

One can now express the valuation problem as the following explicit triple integral : 

       
1 2 2 3 3

1 2 3

1 1 1 2 1 2 2 2 3 3 2 1, ,
h h h h k h

Q
x x x

E I I x x x x x dx dx dx  
  

  

       
(24) 

Let the function 1 1.2 1.,..., ; ,...,n n n nb b   
     be defined by the following convolution of gaussian 

densities: 
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
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 


  

(25) 

where 1 2, , ... ,n
nD b b b                 , ib    , 1. 0,1i i 

    ,  1,...,i n 
 

Then, performing the necessary calculations, one can obtain : 
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h h

h h h t h h h h t k h h h t

t t t




  

 
  




          
 

     
 
 
 
  

 

(31) 

 3 1

2

1 2 1 1 2 3 1 2 3 3 1 3
3 1.2 2.3

1 2 3

2
exp

2 2 2 2
, , ; ,

h h

h h h t h h h t k h h h t

t t t




  

 
  




         
 

     
 
 
 
  

 

(32) 
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 3 2

2

1 2 1 2 3 2 2 3 3 2 3
3 1.2 2.3

1 2 3

2
exp

2 2 2
, , ; ,

h h

h h t h h h t k h h h t

t t t




  

 
  




        
  

     
 
 
 
  

 

(33) 

 3 2 1

2

2
exp

h h h



 


     
 

(34) 

1 2 1 1 2 3 2 1 2 3 3 2 1 3
3 1.2 2.3

1 2 3

2 2 2 2 2 2
, , ; ,

h h h t h h h h t k h h h h t

t t t

  
 

  

           
  

 
 
 
  

 

It is straightforward to show that the triple integral defining the function 3  can be rewritten 
as the following single integral: 

 
 2 2

1 1.2 3 2.3
3 1 2 3 1.2 2.3

2 2
1.2 2.3

exp / 2
, , ; ,

2 1 1

b

x

x b x b x
b b b N N dx

 
 

  

  
 

 

   
   
   
      

  
(35) 

where N b   , b   , is the univariate standard normal distribution function 

Since, on the one hand, the function N b    can be evaluated with adequate precision for all 

option valuation purposes, and, on the other hand, the exponential function is of class C , the 
numerical evaluation of the integral in (35) does not raise any difficulty and can be implemented 
using classical quadrature methods (see, e.g., Davis and Rabinowitz 2007). The computational time 
using Gauss-Legendre quadrature is 0.005 second on an ordinary laptop personal computer, so that 
it takes approximately 0.01 second to compute the price of a 3 – touch barrier option. 

Alternatively, it is possible to obtain the probability under consideration as the solution of the 
following integration problem :  

        
1 2 2 3 3

1 2 3

1 1 1 2 2 3 3, ,
h h h h k h

Q
x x x

E I I Q X t dx X t dx X t dx
  

  

         
(36) 

       1 2
0 1 1 1 1 2 1 1 2 2,Q X h X t dx Q X h X t dx X t dx      

    3
2 3 2 2 3 3 3 2 1,Q X h X t dx X t dx dx dx dx    

Substituting for the four probabilities multiplied inside the integral in (36) yields :  

 
 

1 3/2 3
2 1 3 1.2 1 2 3

1

2
QE I I

t t t   
    (37) 

1 2 2 3 3

1 2 3

2 2

1 1 2 2 1 1
1.22

1 2 12 1

1 1
exp

2 2

h h h h k h

x x x

x t x t x t

t t t

  


  

  

  



                         
    

 
2

2.3 1 1 1 13 3 1 1 2 2 1 1
1.3 1.22 2

3 1.2 13 1 2 11.23

21
1 exp

2

h x hx t x t x t x t

tt t t t

   
 

    

                                   
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  
 

  
 

2 1 2 2 3 2 3 3
3 2 12 2

2 1 3 2

2 2
1 exp 1 exp

h x x h h x x h
dx dx dx

t t t t 

                                  
 

where : 

 2
2 1 121   , 2.3 1.2 1.3

2.3 1
2 1

  





 , 2 2
3 1.2 1.3 2.3 1

1      

This integral can be explicitly computed, yielding a linear combination of trivariate standard 

normal distribution functions 3 1 2 3 1.2 1.3 2.3, , ; , ,N b b b      ,   3
1 2 3, ,b b b   . The result is not given here 

because it is not easier to calculate or to evaluate numerically. In the remainder of this section, we 
will continue to use 3  functions, but all results involving them could also be written in terms of 

3N  functions.  

Let us now proceed with  4QE I I  . We have :  

   1 2 3
4 0 1 1 2 2 3, ,QE I Q S H S H S H     (38) 

   1 2 1 2 3
0 1 1 2 0 1 1 2 2 3, , ,Q S H S H Q S H S H S H        

The probability     1 2 3 1 2 3
0 1 1 2 2 3 0 1 1 2 2 3 3 3, , , , ,Q S H S H S H Q S H S H S H S t H         

has just been computed and the probability  1 2
0 1 1 2,Q S H S H   can be obtained as follows : 

       
1 2 2

1 2

1 2
0 1 1 1 1 2 2 2 1 1 2 1, ,

h h h

x x

Q X h X t dx Q X h X t dx X t dx dx dx


 

       
(39) 

   
1 2 2

1 2

1 1 2 1 2 2 1,
h h h

x x

x x x dx dx 


 

    

1 1 2 2 2 1 1 2 2
2 1.2 2 1.22

1 2 1 2

2 22
, ; exp , ;

h t h t h h t h t
N N

t t t t

h h    
 

   

    
  

                    
 

(40) 

1 1 1 2 1 2
2 1.22

1 2

1 22 2 2
exp , ;

h h t h h t
N

t t

h h  


  

   


             
 

(41) 

 2 1 1 1 2 1 2
2 1.22

1 2

1 22 2 2
exp , ;

h h h t h h t
N

t t

h h  


  

     
 

             
 

(42) 

To tackle the terminal condition at expiry 3t , we use the following decomposition :  

  1 2 3
0 1 1 2 2 3 3, , ,Q S H S H S H S t K     (43) 

     1 2 1 2 3
0 1 1 2 3 0 1 1 2 2 3 3, , , , ,Q S H S H S t K Q S H S H S H S t K          

where the term   1 2
0 1 1 2 3, ,Q S H S H S t K    can be handled as follows : 
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       
1 2 2

1 2 3

1 2
0 1 1 1 1 2 2 2 1 1, ,

h h h k

x x x

Q X h X t dx Q X h X t dx X t dx


  

        
(44) 

    3 3 2 2 3 2 1dxQ X t dx X t dx dx dx   

     
1 2 2

1 2 3

1 1 2 1 2 2 2 3 3 2 1, ,
h h h k

x x x

dxx x x x x dx dx  


  

     
(45) 

1 1 2 2 3
3 1.2 2.3

1 2 3

2 , , ; ,
h t h t k t

t t t

h   
 

  

  
 

  
 
  

 
(46) 

2 1 1 2 2 2 3
3 1.2 2.32

1 2 3

22 2
exp , , ; ,

h h t h t k h t

t t t

h   
 

  

    
  

             
 

(47) 

1 1 2 1 1 2 1 2 1 3
3 1.2 2.32

1 2 3

2 2 2 2
exp , , ; ,

h h h h t h h t k h t

t t t

   
 

  

      
 

             
 

(48) 

 2 1

2

2
exp

h h






      
 

1 2 1 1 2 1 2 2 1 3
3 1.2 2.3

1 2 3

2 2 2 2
, , ; ,

h h h t h h t k h h t

t t t

  
 

  

        
 

 
 
 
  

 

(49) 

Notice that   1 2
0 1 1 2 3, ,Q S H S H S t K    is the probability required to value an early-

ending two-step up-and-out put option with step barrier 1 2,H H    on 0 1 1 2, ,t t t t       . 

Next, we deal with  2QE I I   :  

    1 2 3
2 0 1 1 2 2 3 3, , ,QE I I Q S H S H S H S t K        (50) 

  2 3
1 2 2 3 3, ,Q S H S H S t K     

  1 2 3
0 1 1 2 2 3 3, , ,Q S H S H S H S t K      

where the probability   1 2 3
0 1 1 2 2 3 3, , ,Q S H S H S H S t K    is already known and the 

probability   2 3
1 2 2 3 3, ,Q S H S H S t K    is given by :  

       
2 2 3 3

1 2 3

2
1 1 1 2 2 2 1 1,

h h h k h

x x x

Q X t dx Q X h X t dx X t dx
 

  

       

    3
2 3 3 3 2 2 3 2 1,Q X h X t dx X t dx dx dx dx    

(51) 

     
2 2 3 3

1 2 3

1 1 2 1 2 2 2 3 3 2 1, ,
h h h k h

x x x

x x x x x dx dx dx  
 

  

     
(52

) 
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2 1 2 3 2 3 3
3 1.2 2.3

1 2 3

, , ; ,
h t h h t k h t

t t t

  
 

  

    
 

 
 
 
  

 
(53

) 

2 2 1 2 3 2 2 3 2 3
3 1.2 2.32

1 2 3

2 2 2
exp , , ; ,

h h t h h h t k h h t

t t t

   
 

   

      
  

            
 

(54

) 

3 2 1 2 3 2 3 3 3
3 1.2 2.32

1 2 3

2 2
exp , , ; ,

h h t h h t k h h t

t t t

   
 

   

     
  

            
 

(55

) 

 3 2 2 1 2 3 2 2 3 3 2 3
3 1.2 2.32

1 2 3

2 2 2 2
exp , , ; ,

h h h t h h h t k h h h t

t t t

   
 

   

        
   

            
 

(56

) 

Notice that   2 3
1 2 2 3 3, ,Q S H S H S t K    is the probability required to value a forward-

start 2 - step up-and-out put option with step barrier 2 3,H H    on 1 2 2 3, ,t t t t       . 

We then proceed to  7QE I I   : 

  1 2 3
0 1 1 2 2 3 3, , ,Q S H S H S H S t K     (57) 

    1 2
0 1 1 2 3 2, , QQ S H S H S t K E I I       

The term   1 2
0 1 1 2 3, ,Q S H S H S t K    can be obtained as follows :  

     2 1 2
1 2 3 0 1 1 2 3, , ,Q S H S t K Q S H S H S t K       (58) 

where   1 2
0 1 1 2 3, ,Q S H S H S t K    has already been calculated and : 

  2
1 2 3,Q S H S t K   

       
2 2

1 2 3

2
1 1 1 2 2 2 1 1,

h h k

x x x

Q X t dx Q X h X t dx X t dx
  

        

    3 3 2 2 3 2 1Q X t dx X t dx dx dx dx   

(59) 

     
2 2

1 2 3

1 1 2 1 2 2 2 3 3 2 1, ,
h h k

x x x

x x x x x dx dx dx  
  

     
(60) 

3 3
2 1 2 2 3 1 1 2 2 3

1.2 2.3 1.2 2.3

1 2 3 1 2 3

, , ; , , , ; ,
h t h t k t h t h t k t

t t t t t t

     
   

     
 

              
      

  
(61) 

3

3

2 1 2 2 2 3
1.2 2.3

2 1 2 3
2

1 1 2 2 2 3
1.2 2.3

1 2 3

2
, , ; ,

2
exp

2
, , ; ,

h t h t k h t

h t t t
h t h t k h t

t t t

  
 

   
   

 
  





                                           

 

(62) 
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3
1 1 1 2 1 2 1 3

1.2 2.32
1 2 3

2 2 2
exp , , ; ,

h h t h h t k h t

t t t

   
 

   


                   
 

(63) 

 
3

2 1 1 1 2 1 2 2 1 3
1.2 2.32

1 2 3

2 2 2 2
exp , , ; ,

h h h t h h t k h h t

t t t

   
 

   


                   
 

(64) 

Notice that   2
1 2 3,Q S H S t K   is the probability required to value a window up-and-out 

put option with barrier 2H . 
The next case to handle is  3QE I I   :  

    1 2 3
3 0 1 1 2 2 3 3, , ,QE I Q S H S H S H S t K      (65) 

    1 3
0 1 2 3 3 0, , QQ S H S H S t K E I I       

The term   1 3
0 1 2 3 3, ,Q S H S H S t K    can be computed as follows :  

       
1 3 3

1 2 3

1
0 1 1 1 2 2 1 1,

h h k h

x x x

Q X h X t dx Q X t dx X t dx


  

       

    3
2 3 3 3 2 2 3 2 1,Q X H X t dx X t dx dx dx dx    

(66
) 

     
1 3 3

1 2 3

2 11 1 2 1 2 2 2 3 3, ,
h h k h

x x x

dx dxx x x x x dx  


  

     
(67
) 

3
1 1 3 2 3

1.2 2.3

1 2 3

3, , ; ,
h t h t k h t

t t t

  
 

  


       
  

 
(68
) 

3
1 1 1 3 1 2 1 3

1.2 2.32
1 2 3

32 2 2
exp , , ; ,

h h t h h t k h h t

t t t

   
 

   


                    
 

(69
) 

3
3 1 1 3 2 3 3

1.2 2.32
1 2 3

32 2
exp , , ; ,

h h t h t k h h t

t t t

   
 

   


                  
 

(70
) 

 
3

3 1 1 1 3 1 2 3 1 3
1.2 2.32

1 2 3

3
2 2 2 2

exp , , ; ,
h h h t h h t k h h h t

t t t

   
 

   


              
 
(71
) 

Next, we deal with  6QE I I   :  

    1 2 3
6 0 1 1 2 2 3 3, , ,QE I I Q S H S H S H S t K        (72) 

    1 3
0 1 2 3 3 4, , QQ S H S H S t K E I I       

where :  

       1 3 1
0 1 2 3 3 0 1 2 3 3, , , ,Q S H S H S t K Q S H S t H S t K        (73) 
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    1 3
0 1 2 3 2 3 3, , ,Q S H S t H S H S t K      

       
1

1 2 3 3

1
0 1 1 1 2 2 1 1,

h k

x x h x

Q X h X t dx Q X t dx X t dx


  

        

       
1 3

1 2 3

2 1
1

3 3 2 2 3 0 1 1 1,
h h k

x x x

dx dxQ X t dx X t dx dx Q X h X t dx
  

        

          2 1
3

2 2 1 1 2 3 3 3 2 2 3, dx dxQ X t dx X t dx Q X h X t dx X t dx dx      

(74) 

     
1

1 2 3 3

2 11 1 2 1 2 2 2 3 3, ,
h k

x x h x

dx dxx x x x x dx  


  

     

        
1 3

1 2 3

2 11 1 2 1 2 2 2 3 2 2 3 3, , ,
h h k

x x x

dx dxx x x x x x x dx   
  

     

(75) 

3
1 1 3 2 3

1.2 2.3

1 2 3

, , ; ,
h t h t k t

t t t

  
 

  


       
  

  
(76) 

3
1 1 1 3 1 2 1 3

1.2 2.32
1 2 3

2 2 2
exp , , ; ,

h h t h h t k h t

t t t

   
 

   


                     
 

(77) 

3
3 1 1 3 2 3 3

1.2 2.32
1 2 3

2 2
exp , , ; ,

h h t h t k h t

t t t

   
 

   


                 
 

(78) 

 
3

3 1 1 1 3 1 2 3 1 3
1.2 2.32

1 2 3

2 2 2 2
exp , , ; ,

h h h t h h t k h h t

t t t

   
 

   


                  
 

(79) 

  1 3
0 1 2 3 3, ,Q S H S H S t K    is the probability required to value a partial-time 2 – step 

barrier put with a knock-out barrier 1H  on 0 1,t t   , a knock-in barrier 2H  on 2 3,t t    and no active 

barrier on 1 2,t t   . 

The penultimate case to tackle is  5QE I I   :   

      2 3
5 1 2 2 3 3 3, ,Q QE I I Q S H S H S t K E I I         (80) 

where   2 3
1 2 2 3 3, ,Q S H S H S t K    is computed as follows : 

         2 3 2 3
1 2 1 2 2 3 3 1 2 1 2 2 3 3, , , , , ,Q S t H S H S H S t K Q S t H S H S H S t K          

       
2 3 3

1 2 3

2
1 1 1 2 2 2 1 1,

h h k h

x x x

Q X t dx Q X h X t dx X t dx


  

        

    3
2 3 3 3 2 2 3 2 1,Q X h X t dx X t dx dx dx dx    

(81) 
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       
3 3

1 2 2 3

2
1 1 1 2 2 2 1 1,

h k h

x h x x

Q X t dx Q X h X t dx X t dx


  

        

    3
2 3 3 3 2 2 3 2 1,Q X h X t dx X t dx dx dx dx    

(82) 

        
2 3 3

1 2 3

1 1 2 1 2 2 1 2 2 2 3 3 2 1, , ,
h h k h

x x x

x x x x x x x dx dx dx   


  

     

        
3 3

1 2 2 3

1 1 2 1 2 2 1 2 2 2 3 3 2 1, , ,
h k h

x h x x

x x x x x x x dx dx dx   


  

     

(83) 

Performing the necessary calculations, one can obtain :  

  2 1 3 2 3
3 1.2 2.3

1 2 3

3
5 , , ; ,Q

h t h t k h t

t t t
E I I

  
 

  

    
 

 
     
  

 
(84) 

2 1 3 2 2 2 3
3 1.2 2.3

2 1 2 3
2

1 1 3 2 2 2 3
3 1.2 2.3

1 2 3

3

3

2 2
, , ; ,

2
exp

2 2
, , ; ,

h t h h t k h h t

h t t t

h t h h t k h h t

t t t

  
 

   

  
 

  

     
 


     

 

                                

 

(85) 

 2 1 1 1 3 2 1 2 2 1 3
3 1.2 2.32

1 2 3

32 2 2 2 2
exp , , ; ,

h h h t h h h t k h h h t

t t t

   
 

   

         
 

             
 

(86) 

3 2 1 3 2 3 3
3 1.2 2.32

1 2 3

32 2
exp , , ; ,

h h t h t k h h t

t t t

   
 

   

     
  

             
 

(87) 

 
2 1 3 2 2 3 2 3

3 1.2 2.3
3 2 1 2 3

2
1 1 3 2 2 3 2 3

3 1.2 2.3

1 2 3

3

3

2 2 2
, , ; ,

2
exp

2 2 2
, , ; ,

h t h h t k h h h t

h h t t t

h t h h t k h h h t

t t t

  
 

   

  
 

  

      
  



      
  

                                

 

(88) 

 3 2 1

2

2
exp

h h h



       
 

1 1 3 2 1 2 3 2 1 3
3 1.2 2.3

1 2 3

32 2 2 2 2
, , ; ,

h t h h h t k h h h h t

t t t

  
 

  

         
  

 
 
 
  

 

(89) 

  1 2 3
0 1 1 2 2 3 3, , ,Q S H S H S H S t K     is the probability required to value a 3 – step in-

and-in-and-out put option with knock-in steps 1H  and 2H , and knock-out step 3H . 
Eventually,  8QE I I   is dealt with : 

      1 2
8 0 1 1 2 3 5, ,Q QE I I Q S H S H S t K E I I         (90) 

where   1 2
0 1 1 2 3, ,Q S H S H S t K    can be decomposed into :  
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     1 1 2
0 1 3 0 1 1 2 3, , ,Q S H S t K Q S H S H S t K       (91) 

  1 2
0 1 1 2 3, ,Q S H S H S t K    has already been calculated and we have : 

        1 1
0 1 3 3 0 1 3, ,Q S H S t K Q S t K Q S H S t K        (92) 

where  

  1
0 1 3,Q S H S t K   (93) 

1 1 3 1 1 1 1 3
2 1.3 2 1.32

1 3 1 3

2 2
, ; exp , ;

h t k t h h t k h t
N N

t t t t

    
 

   

                            
 

Retracing our steps, we see that we have completed the closed form valuation of a 3 – touch up-

and-out put. As explained in Section 1, it suffices to take 
2

2
r


    instead of 

2

2
r


    in all 

the formulae obtained in this section to obtain the list of necessary probabilities under the  SQ  
measure.  

We can now easily deduce other probabilities needed to recover the no-arbitrage prices of other 
types of 3 – touch knock-out barrier options. Let us begin by a 3 – touch up-and-out call. The value 
of this option is given by : 

         3 3

3 3

3 3 , ,
0 0

exp Q i i S t K Q i i S t K
i i

rt E S t KE     
 

                           
    

(94) 

By the Cameron-Martin-Girsanov theorem, all we need to compute is   3

3

,
0

Q i i S t K
i

E   


 
 
 
  
  . 

By the law of total probability and the continuity of paths of the process S , we have :  

     3 3

3 3

, ,
0 0

Q i i S t K Q i i S t K
i i

E E     
 

   
      
      
    

(95) 

   

3 3

0 0
Q i i Q i i

i i

E E I   
 

   
        
      
    

(96) 

Since the i  s are known and we have already obtained  

3

0
Q i i

i

E I  


 
   
  

  , we only have to 

work out   

3

0
Q i

i

E 


 
 
 
  
  . 

The term  4QE I  is given by (38). Moreover, since the event  3
2 3S H  includes the event 

  3 3S t H , we have: 

    1 2 3
1 0 1 1 2 2 3 3 3, , ,QE I Q S H S H S H S t H      (97) 

    1 2 3
2 0 1 1 2 2 3 3 3, , ,QE I Q S H S H S H S t H      

    1 2 3
3 0 1 1 2 2 3 3 3, , ,QE I Q S H S H S H S t H      
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    1 2 3
5 0 1 1 2 2 3 3 3, , ,QE I Q S H S H S H S t H      

Therefore,  1QE I ,  2QE I ,  3QE I  and  5QE I  are given by (27) – (34), (50) – (56), (65) – 

(71) and (84) – (89), respectively, with the substitution 3k h . 

With regard to  6QE I , we have :  

     1 2 1 2 3
6 0 1 1 2 0 1 1 2 2 3, , ,QE I Q S H S H Q S H S H S H        (98) 

   1 2
0 1 1 2 3, QQ S H S H E I     

     1 1 2
0 1 0 1 1 2 3, QQ S H Q S H S H E I       (99) 

 1 2
0 1 1 2,Q S H S H   is given by (40) – (42) and  1

0 1Q S H  is a textbook formula 

The probability  7QE I  can be derived as follows :  

     1 2 1 2 3
7 0 1 1 2 0 1 1 2 2 3, , ,QE I Q S H S H Q S H S H S H        (100) 

     2 1 2 1 2 3
1 2 0 1 1 2 0 1 1 2 2 3, , ,Q S H Q S H S H Q S H S H S H          (101) 

where  1 2 3
0 1 1 2 2 3, ,Q S H S H S H    is given by (50) and it is easy to obtain : 

     
2 2

1 2

2
1 2 1 2 2 11 1,2

h h

x x

Q S H dx dx 
 

     
(102) 

2 1 2 2 2 2 1 2 2
2 1.2 2 1.22

1 2 1 2

2
, ; exp , ;

h t h t h h t h t
N N

t t t t

    
 

   

                         
 

(103) 

 2
1 2Q S H  is the probability required to value a forward start up-and-out put. 

Finally,  8QE I  is dealt with as follows :  

     1 2 1 2 3
8 0 1 1 2 0 1 1 2 2 3, , ,QE I Q S H S H Q S H S H S H        (104) 

     1 1 2 1 2 3
0 1 0 1 1 2 0 1 1 2 2 3, , ,Q S H Q S H S H Q S H S H S H          (105) 

        1 2 1 2
0 1 1 2 0 1 1 2 5, QQ S H Q S H Q S H S H E I         (106) 

where the probability    2 1 2
1 2 0 1 1 2,Q S H Q S H S H     is given by (101), and the probability 

   1 1
0 1 0 11Q S H Q S H     is a textbook formula 
Retracing our steps, we see that we have completed the closed form valuation of a 3 – touch up-

and-out call. 
Once formulae for 3 – touch up-and-out calls and puts are known, formulae for 3 – touch down-

and-out calls and puts ensue as a corollary. Indeed, the symmetry of paths of Brownian motion 
entails:  

       , , , , 0j j
i j j i j j j iQ X h X t k Q X h X t k H S t K            (107) 
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where we recall that  inf
i j

j
i t t t

X X t
 

  

The important practical consequence is that, in order to derive the formula for a 3 – touch down-
and-out call from the formula for a 3 – touch up-and-out put, it suffices to multiply by – 1 all the 
bounds (but not the correlation coefficients) of the cumulative distribution functions involved in the 
formula for a 3 – touch up-and-out put. In other words, every function  3 1 2 3 1.2 2.3, , ; ,b b b      that 

appears in the formula for a 3 – touch up-and-out put becomes  3 1 2 3 1.2 2.3, , ; ,b b b         in the 

formula for a 3 – touch down-and-out call. Obviously, the same transformation applies to cumulative 
distribution functions of smaller order, i.e. functions .N     and 2 .,.;.N    , that may appear in the 

formula for a 3 – touch up-and-out put. For instance, from the probability  1 2
0 1 1 2,Q S H S H   

given by (40) – (42), one can immediately infer : 

 1 2
0 1 1 2,Q S H S H   

1 1 2 2 2 1 1 2 2
2 1.2 2 1.22

1 2 1 2

2 22
, ; exp , ;

h t h t h h t h t
N N

t t t t

h h    
 

   

  
  

                        
 
(108

) 

1 1 1 2 1 2
2 1.22

1 2

1 22 2 2
exp , ;

h h t h h t
N

t t

h h  


  




                  
 

(109

) 

 2 1 1 1 2 1 2
2 1.22

1 2

1 22 2 2
exp , ;

h h h t h h t
N

t t

h h  


  


 

                  
 

(110

) 

where  1 0H S  in  1 2
0 1 1 2,Q S H S H   and  1 0H S  in  1 2

0 1 1 2,Q S H S H   

Thus, there is no need to perform new analytical computations to obtain formulae for 3 – touch 
down-and-out options. 

Section 3. Generalization to other types of barriers, as well as to higher dimension 

In this Section, we discuss extensions of the analytical method used in Section 2 to tackle a wider 
variety of barriers and a greater number of barrier crossings. 

3.1. Outside multitouch payoff 

An outside barrier option is a kind of multiasset barrier option, the specificity of which is to 
define one asset, say S , with regard to which barrier monitoring is performed, and another asset, 
say V , with regard to which the moneyness of the option is tested at expiry. This allows, among 
other things, to take advantage of the volatility spread between S  and V , as well as of correlation 
effects. When the barrier is knock-out, a classical strategy to optimize the expected payoff is to 
combine a low volatility on S , a high volatility on V  and negative correlation between S  and V
. The payoff on a 3 – touch up-and-out put with expiry 3t  and outside barrier is given by :  

    

3

3
0

i i
i

K V t 





    
(111) 

where  , i.e. the number of predefined time intervals in which the barrier has been hit, is determined 
according to the variations of asset S . 
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The previous payoff can be slightly generalized by defining 4 3t t  as the expiry of the option 

and by considering an early-ending 3 – touch up-and-out put with expiry 4t  and outside barrier as 
follows: 

    

3

4
0

i i
i

K V t 





    
(112) 

where the step barrier is monitored on 0 1,t t   , 1 2,t t   , 2 3,t t    but not on 3 4,t t    
Under Q , the stochastic differentials of S  and V  are given by :   

       1SdS t rS t dt S t dB t   (113) 

       2VdV t rV t dt V t dB t   (114) 

where , 0S V    and  1 2 1.2,d B B t dt     

The Q  probability, denoted by p , that the maximum payout rate 0  is obtained at expiry, 
is the probability required to value an early-ending, outside 3 – step up-and-out put option with 
expiry 4t , and is given by : 

        1 1 1 2 1 3 40,1 , 1,2 , 2, 3 ,p Q S H S H S H V t K      (115) 

           
1 2 2 3 3

1 2 3 4

1 1 1 2 2 2 1 10,1 , 1,2 ,
h h h h h k

x x x x

Q X h X t dx Q X h X t dx X t dx
 

   

          

           3 3 3 2 2 4 4 3 3 4 3 2 12, 3 ,Q X h X t dx X t dx Q Y t dx X t dx dx dx dx dx      (116) 

where  
 
 

ln
0

S t
X t

S

     
 and  

 
 

ln
0

V t
Y t

V

     
, and we use the equality in law between 

    ,j
i i jQ X X t X t  and       , ,j

i i j jQ X X t X t Y t  

The covariance between  3X t  and  4Y t  can be written as follows : 

     2
3 4 3 3 1 4 3 1.2 1 1.2 2 4 3 3cov , cov , 1S S V V VX t Y t t t Z t t Z Z t t Z                   

 

1 2 1.2 3t    (117) 

where 
2

2
S

S r


    and 
2

2
V

V r


   , and 1 2 3, ,Z Z Z  are three independent standard normal 

random variables 

Hence, the correlation coefficient between  3X t  and  4V t  is equal to 3
1.2

4

t

t
  and we 

have:  

       
1 2 2 3 3

1 2 3 4

1 1 2 1 2 2 2 3 2 3 4 4 3 2 1, , ,
h h h h h k

x x x x

p x x x x x x x dx dx dx dx   
 

   

      
(118) 

Performing the necessary calculations yields : 
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1 2 1 2 3 2 3 4
4 1.2 2.3 3.4 12

1 2 3 4

3, , ; ,, ,S S S V

S S S V

h h t h h t h t k t
p

t t t t

   
   

   

     
 

 
 
 
  

 
(119) 

1 2 1 1 2 3 1 2

1 2
1

4
3.4 1.2 1 4

3 1 3
1.2 2.3 3.4 1.2

3 4

2

2 2
, ,

2
exp

2
2

; ,, ,

S S

S S
S

V
VS

S S

S V

h h h t h h h t

t t
h

k h t
h h t

t t

 

 


   
   

 




     

 
 

 

 
 
 
          
 
 
  

 

(120) 

1 2 1 2 3 2 2

1 2
2

4
3.4 1.2 2 4

3 2 3
1.2 2.3 3.4 1.2

3 4

2

2
, ,

2
exp

2
2

; ,, ,

S S

S S
S

V
VS

S S

S V

h h t h h h t

t t
h

k h t
h h t

t t

 

 


   
   

 




    

 
 

 


 
 
 
          
 
 
  

 

(121) 

1 2 1 2 3 2

1 2
3

4
3.4 1.2 3 4

3 3
1.2 2.3 3.4 1.2

3 4

2

, ,

2
exp

2

; ,, ,

S S

S S
S

V
VS

S S

S V

h h t h h t

t t
h

k h t
h t

t t

 

 


   
   

 




   

 
 

 


 
 
 
          
 
 
  

 

(122) 

 

 

2 1

1 2 1 1 1 2 3 2 2

1 2

4
3.4 1.2 4

3 2 1 3
1.2 2.3 3.4 1.2

3 4

2

2 1

2
exp

2 2 2
, ,

2
2 2

; ,, ,

V

S

S

S

S S

S S

V
S

S V

h h

h h h t h h h h t

t t

k t
h h h t

t t

h h




 

 


  
 

   
 




      


 

  


     
 
 
 
 
 
  
 
 
  

 

(123) 

 

 

3 1

1 2 1 1 2 3 1 2

1 2

4
3.4 1.2 4

3 1 3
1.2 2.3 3.4 1.2

3 4

2

3 1

2
exp

2 2
, ,

2
2

; ,, ,

V

S

S

S

S S

S S

V
S
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(124) 
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(125) 
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(126) 

where 
   

ln , ln
0 0

i
i

H K
k

S V
h 

             
 and the function 4 1 2 3 4 1.2 2.3 3.4, , , ; , ,b b b b        is defined by 

(25). 
The quadruple integral defining the function 4 can be rewritten as the following double 

integral : 

4 1 2 3 4 1.2 2.3 3.4, , , ; , ,b b b b        (127) 

 
3 2.3 2

2 2 2
2 3

2 3

2
2.3 2

1 1.2 2 4 3.4 2.3 3 3.4 2.3 2
2 32 2

1.2 3.4

1
1

exp
1

2 2 1 1

b

b

x x

y

xx b x b x x
N dx dxN




    

   






                             
   

The numerical evaluation of (127) is just as easy as that of (35), for the same reasons as explained 
in Section 2. Extensive testing shows that a mere 16-point Gauss-Legendre double quadrature suffices 
to reach a minimum of 710  precision in less than one hundredth of a second as long as 

. 0.99i j  . If even more accuracy is needed, or if more extreme values of the correlation coefficients 

are encountered, a standard subregion adaptive algorithm will perform well, as explained by 
Bernsten, Espelid and Genz (1991), along with a Kronrod rule to reduce the number of required 
iterations (see, e.g., Davis and Rabinowitz 2007). These are widely used numerical integration 
techniques and it is easy to find available code or built-in functions in the usual scientific computing 
software. 

Notice that the formula for an outside 3 – step up-and-out put option without the early-ending 
feature, i.e. with expiry 3t , is immediately derived by substituting 3.4 1.2   with 1.2  and by 

substituting 4t  with 3t  in (119) – (126). 
It is possible to obtain a formula for the probability p  in terms of quadrivariate standard 

normal distribution functions if one expresses the problem as the following integral :  

        
1 2 2 3 3 4

1 2 3 4

1 1 2 2 3 3 4 4, , ,
h h h h h h k

x x x x

p Q X t dx X t dx X t dx Y t dx
  

   

         
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       1 2
0 1 1 1 1 2 1 1 2 2,Q X h X t dx Q X h X t dx X t dx      (128) 

    3
2 3 2 2 3 3 4 3 2 1,Q X h X t dx X t dx dx dx dx dx    

The resulting formula is not given because it is more cumbersome and less easy to evaluate 
numerically than (119) – (126). 

Once the probability p  has been obtained, it is possible, using the same method, to explicitly 
calculate all the other probabilities involved in the valuation of an early-ending 3 – touch up-and-out 
put with expiry 4t , i.e. the following set   of probabilities :  

     1 2 3
0 1 1 2 2 3 4

1 2 3
0 1 1 2 2 3 4, , , , , , ,Q S H S H S H V t K Q S H S H S H V t K          

     1 2 3
0 1 1 2 2 3 4

1 2 3
0 1 1 2 2 3 4, , , , , , ,Q S H S H S H V t K Q S H S H S H V t K         

     1 2 3
0 1 1 2 2 3 4

1 2 3
0 1 1 2 2 3 4, , , , , , ,Q S H S H S H V t K Q S H S H S H V t K         

  1 2 3
0 1 1 2 2 3 4, , ,Q S H S H S H V t K     (129) 

Notice that, in contrast to a multitouch barrier option with a non-outside barrier, a new, 
elementary change of measure is required to obtain the option value, which is given by : 

          4

3

4 4
1

, 0 ,Vrt
i

i

Ke Q i V t K V Q i V t K  



      
(130) 

The Radon-Nikodym derivative of the measure  VQ  w.r.t. Q  is given by :  

 
   

 2 22 2
1.21.2 2

1.2 1 1.2 2

1
exp 1

2 2

V
VV

t V V
dQ

W t t W t t
dQ

  
   

            
  

(131) 

where  1W t  and  2W t  are two independent, standard Brownian motions under  VQ , and t  

is the smallest filtration w.r.t. which both  1W t  and  2W t  are measurable; thus, under  VQ , we 

have : 

           
2 2

1.20 exp , 0 exp
2 2

V V
S V

S VQ Q
E S t S r t E V t V r t

 
  

                                       
 

(132) 

Table 7 reports numerical values for 3 – touch OEEUOP (Outside Early Ending Up and Out Put) 
option prices as functions of volatility and correlation. The option’s expiry is 4 1t  . All the other 
parameters that are not given inside table 7 are identical as in table 1. 

Table 7. : 3 – touch OEEUOP option prices with piecewise constant barrier as functions of volatility 
and correlation. 

3 – touch OEEUOP 20%, 50%S V    50%, 20%S V    35%, 35%S V    

1.2 50%    12.6876269 
 

3.19205121 6.93552897 

1.2 50%   15.1581431 4.37818109 9.02213614 
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1.2 5%   14.0820718 3.84164681 8.09063875 

3.2. Piecewise exponential affine step barrier 

A more general and flexible form of barrier consists in replacing each constant iH  on each 

1,i it t
    by a function of time. In general, only numerical approximations to the valuation problem 

can be attained in this new framework (Wang and Pötzelberger 1997; Novikov, Frishling and 
Kordzakhia 1999). However, as shown by Guillaume (2016), a remarkable exception is when the 
barrier is defined as a piecewise exponential affine function of time. Then, exact solutions can be 
found.  This is all the more useful to notice as exponential functions display curvature, thus allowing 
for a wide variety of shapes. More precisely, let us define a barrier  g t  for a standard geometric 

Brownian motion  S t  as defined by (10) on a partition  0 1 10, ,..., ,n nt t t t T
         of 0,T    

as follows : 

          
11 ,

1

0 exp , , , 1,2,...,
i i

n

i i i t t i i
i

g t S a b t t t a b i n


   


         
(133) 

Then, the Q  probability, denoted by p , to receive a maximum payout rate 0  on a 3 – touch 

up-and-out put option with expiry 3T t , is defined by : 

      
       
         

1 1 1

2 2 1 1 2

3 3 2 2 3 3
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p Q S t S a b t t t t t

S t S a b t t t t t S t K

                             

 
(134) 

It can be shown that :  
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   
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) 

where : 

2 2 2 1,a b t    3 3 3 2a b t    (143) 

2

,
2i ib


       ln / 0k K S  

11 12 ,a   2
2 2 2 1 2 1 2 12 2 2 ,t t        2

1 2 1 1 2 1 2 13 1 2 22 2 4 2 2a t ta            

 2
4 3 3 3 2 1 3 1 2 3 2 12 2 2 2t t t t             

 2
5 3 3 1 1 3 1 3 2 1 3 1 2 3 2 12 2 4 2 2 2a a t t t t                 

       2 2
3 3 2 1 1 3 2 1 3 2 1 2 3 2 16 3 3 2 2 22 2 4 2 2 2 2t t t t t t                         

        2

3 3 2 1
2

7 1 1 2 2 2 3 3 3 2 1 2 3 2 1 3 2 1 1 12 2 4 2 2 2 2 2 2ta t t t t a t                           

 1 1 1 1 2min , ,z a b t a     2 2 2 2 1 3min , ,z a b t t a     3 3 3 3 2min ,z a b t t k    

Details on how this solution is obtained can be found in Guillaume (2016). Following the same 
method, it is possible to to explicitly calculate all the other probabilities involved in the valuation of 
a 3 – touch UOP with a barrier defined as a piecewise exponential affine function  g t  as in (133). 

Table 8 reports a few numerical values of prices as functions of volatility and moneyness. Apart from 
the shape of the barrier, all the parameters in table 8 are the same as those in table 1. The function 
 g t  is continuous at 1t  and 2t , but note that piecewise continuity on 0 3,t t    is sufficient for the 

formula in (135) – (142) to hold. The barrier  g t  starts at 108.328707 on time 0t . Then, it takes 
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values 109.965886 and 110.701441 at times 1t  and 2t , respectively, before ending at 111.441916 at 

expiry 3t . 
It is a quite straightforward extension to value a 3 – touch OEEUOP with a piecewise exponential 

affine barrier, in the same way as we moved on from a 3 – touch UOP to a 3 – touch OEEUOP when 
the barrier was piecewise constant. Table 9 provides a few numerical results when the process  S t  

and the barrier  g t  have the same specifications as in table 8, and when the process  V t  has the 

same specifications as in table 7. 

Table 8. : 3 – touch UOP option prices with piecewise exponential affine step barrier. 

3 – touch UOP 18%   36%   64%   

100K   5.02931082 8.09776189 12.2562049 

110K   9.36383182 11.652507 15.5356909 

90K   1.59173168 4.82830602 9.09761268 

Table 9. : 3 – touch OEEUOP option prices with piecewise exponential affine step barrier. 

3 – touch OEEUOP 20%, 50%S V    50%, 20%S V    35%, 35%S V    

1.2 50%    4.04980406 2.65336826 5.40003822 

1.2 50%   8.53096357 4.95979365 9.36116401 

1.2 5%   6.45391124 3.89816913 7.55304833 

3.3. Higher dimension 

So far, exact results have been provided only for 3 – touch barrier options. It is important to 
know if an  n  touch barrier option remains analytically tractable for 3n  . Let us refer to the 
maximum number of crossings n  as the dimension of the n  touch barrier option. Such 
terminology is justified by the fact that n  is the dimension of the integral problem associated with 
an n  touch barrier option. Clearly, as n  increases, the analytical calculations become more and 
more time-consuming, and the resulting formulae more and more cumbersome. Among all possible 
n  touch barrier option valuation formulae, the n  touch up-and-in put and the n  touch down-
and-in call are the ones that should require the fewest multidimensional integrals to compute and 
thus the ones that should result in the most compact formulae. Indeed, consider the following 

probability p , where the iK  s are fixed positive real numbers and the iH  s are all greater than zero, 

with  1 0H S   : 

     
   

1 2 3
0 1 1 1 1 2 2 2 2 3 3 3
4 5
3 4 4 4 4 5 5 5

, , , , , ,

, , ,

S H S t K S H S t K S H S t K
p Q

S H S t K S H S t K

               
 

 5 4 3 2 12

2
exp h h h h h





         
 (144) 
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1 1 1 2 2 1 2 3 3 2 1 3 4 4 3 2 1 4

1 2 3 4
5

5 5 4 3 2 1 5
1.2 2.3 3.4 4.5

5

2 2 2 2 2 2 2 2 2 2
, , ,

2 2 2 2 2
, , ,

k h t k h h t k h h h t k h h h h t

t t t t
k h h h h h t

t

   

   


   


               
 
             
  

 

where the function 5 1 2 3 4 5 12 23 34 45, , , , ; , , ,b b b b b         is defined by (25) 

In theory, the probability p  in (144) could be used to value a 5 – step up-and-in put by taking 

1 2 3 4, , ,K K K K  high enough for the probability 

        1 1 2 2 3 3 4 4, , ,Q S t K S t K S t K S t K     to become “very” close to 1. One should 

beware, though, of the numerical errors entailed by taking the appropriate limits w.r.t. the iK  s in 
(144). A little testing shows that they can be big, so that one cannot get around the analytical 
derivation of the following probability: 

  1 2 3 4 5
0 1 1 2 2 3 3 4 4 5 5 5, , , , ,Q S H S H S H S H S H S t K       (145) 

which involves many more 5 – dimensional gaussian integrals than p  
To evaluate the function 5 , it can be shown that the 5 – dimensional integral defining 5 can 

be rewritten as the following triple integral, which is significantly faster to evaluate numerically : 
2

4 3.4 3 2.3 2.3 2
3 2.3 2

2 2
2.3 3.4

2

1 1.2 2

2
1.23 4

1

1 1 2 2 2
2 3 4

5 1 5 1.2 4.5 3

2

1

1
,..., ; ,..., exp

28

b x xb x

x

b

xx

xx x x b
b b N

  

 



 



     



  

 

 

                     

 
    

 5 4.5

2
4.5

2 2
4 3.4 3.4 3 2.3 2.3 2

4 3 2
1

1 1
N

b x x x
dx dx dx





   
       
 
  
  

   
 

 
(146) 

The probability p  can also be expressed in terms of the pentavariate standard normal 
cumulative distribution function 5N  as follows : 

 5 4 3 2 12

2
expp h h h h h





         
 (147) 

1 1 1 2 2 1 2 3 3 2 1 3 4 4 3 2 1 4

1 2 3 4
5

5 5 4 3 2 1 5
1.2 1.3 1.4 1.5 2.3 2.4 2.5 3.4 3.5 4.5

5

2 2 2 2 2 2 2 2 2 2
, , ,

2 2 2 2 2
, , , , , , , ,

k h t k h h t k h h h t k h h h h t

t t t t
N

k h h h h h t

t

   

   


         


               
 
 
             
  

 

An exact three-dimensional quadrature rule for the numerical evaluation of the five-dimensional 
function 5N  can be found in Guillaume (2018). This approach is not faster than implementing the 
formula in (144), though.  

Whatever the multitouch payoff considered, it is clear that, as n  increases, so does the size of 
the obtained formulae. Thus, although it is possible to calculate closed form formulae for multitouch 
barrier options for 3n  , the number of terms involved makes it a quite tedious task. To give an 
idea of the required effort, one can take a look at the number of terms involved in the calculation of 
the probability needed to value a mere 5 – step knock-out put in Guillaume [2015]. For an arbitrary 
dimension n , the only realistic solution would be to find a way to automate the calculation.  

However, even if a computer program were able to write down the exact solution of the n 
touch barrier option valuation problem for any n   , with all the necessary details for its 
immediate implementation, there would still be a more fundamental issue to be addressed than the 
size of the resulting formula. Namely, the numerical evaluation of the multivariate gaussian integral 
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of order n   . It is well-known by specialists of numerical integration that it is impossible to 
evaluate such an integral with arbitrary accuracy and efficiency for any n   , due to the notorious 
“curse of dimensionality”. For more background on this topic, the reader may refer to Genz and Bretz 
(2009). In high dimension, the conditional Monte Carlo simulation method pioneered by Wang and 
Pötzelberger (1997) and Pötzelberger and Wang (2001) remains extensively used by practitioners, due 
to its flexibility and its good mix of speed (computational time grows linearly in dimension) and 
precision (no discretization of each 1,i it t

     is required). Notice that the closed form solutions that 

one can derive in low dimension are still a useful way to increase the speed of convergence of Monte 
Carlo simulation in high dimension, either as accurate benchmarks that can be used as control 
variates, or as a way to extend the Brownian bridge over time intervals larger than 1,i it t

   . Another 

possible solution in high dimension is to notice that the function n , as a convolution of Gaussian 
densities, can be numerically evaluated by means of the fast Gauss transform algorithm pioneered 
by Greengard and Strain (1991). Examples of applications of this numerical method to quantitative 
problems in finance can be found in Broadie and Yamamoto (2005). 
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