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Abstract: In this article, the multitouch option, also called the n —touch option (or the “baseball”
option when n = 3) is analyzed and valued in closed form. This is a kind of barrier option that sets
a gradual knock-out / knock-in mechanism based on the number of times the underlying asset has crossed a
predefined barrier in various time intervals before expiry. The higher the number of predefined time intervals
during which the barrier has been touched, the lower the value of a knock-out contract at expiry, and
conversely for a knock-in one. Multitouch options can be viewed as an extension of step barrier options,
preserving the ability of the latter to adjust the exposure to risk over time, while eliminating the notorious
danger of “sudden death” that holders of step barrier options are faced with. Unlike occupation time
derivatives, the payoff at expiry does not depend on the amount of time spent outside the authorized range,
but on the number of passages beyond the authorized range.
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Introduction

Barrier options are the most heavily traded non-standard European options in the financial
markets, particularly in the foreign exchange ones. They are also embedded in a lot of popular
structured derivatives in stock and interest rate markets (see, e.g., Bouzoubaa and Osseiran, 2010).
Besides, as analytical tools, they are at the core of the modeling of major financial phenomena such
as default risk, in the so-called “structural models” (see, e.g., Bielecki and Rutkowski 2004). The
reader unacquainted with barrier options may refer, e.g., to Cont (2010) or to an online financial
encyclopedia for basic facts and definitions.

Since their first appearance as traded contracts in the 1970’s, there have been a huge number of
variations in their payoff, leading to a wide variety of non-standard barrier options. Among the most
well-known of them are the partial-time, the outside and the step barrier options. The specificity of
partial-time barrier options is that barrier crossing is not monitored during the entire option’s
lifetime. It may end before expiry (“early-ending” barrier) or start after the contract’s inception
(“forward start” barrier). Heynen and Kat (1994 a) and Carr (1995) were the first to publish exact
formulae for early-ending and forward-start barrier options. More generally, barrier monitoring may
start any time after the contract’s inception and terminate any time before expiry. This flexible
specification of the time during which a barrier is active, known as a “window”, was handled by
Armstrong (2001) for single barriers (also called one-sided barriers) and by Guillaume (2003) for
double barriers (also called two-sided barriers) and combinations of one-sided and two-sided
barriers. The knock-out or knock-in condition during the option’s lifetime and the moneyness
condition at expiry may also be defined w.r.t. two different underlying assets. This is what
characterizes an outside option, which was first valued by Heynen and Kat (1994 b). Finally, instead
of being constant, the barrier may be piecewise constant, i.e. defined as a step function : the option’s
lifetime is divided into several time intervals on which the barrier takes different values. Exact
analytical valuation of step barrier functions was achieved by Guillaume (2001) when the barrier is
one-sided and by Guillaume (2010) when the barrier is two-sided.
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A major reason for the success of barrier options is that they allow investors to choose the market
scenarios they want to be insured against, i.e. only those that are adverse to their positions, unlike a
vanilla option that hedges them against all possible scenarios, including those that are favourable to
their positions. As such, barrier options are both more flexible and less expensive than vanilla options.
In addition, partial-time barrier options also allow investors to choose the time intervals on which
they want to be hedged, while step barrier options allow them to modulate the level of the barrier
during the option’s life. As for outside barrier options, they make it possible to manage the effect of
volatility by combining a low volatility on the asset to which a knock-out barrier is assigned and a
high volatility on the asset whose moneyness is tested at expiry. For more background on how to
make an optimal use of all these instruments, the reader may refer to Das (2006).

However, all the aforementioned barrier option contracts have one common limitation, i.e. the
crossing of the barrier is designed as an “all or nothing” triggering mechanism. Indeed, a single
passage at any moment that the barrier is active is enough to deprive a knock-out contract of all its
value or to transform a knock-in contract into a vanilla option. For knock-out barriers, this is known
as the “sudden death” risk. It is definitely an unattractive feature for investors in markets where a
short term volatility spike may entail a temporary breach of the barrier while the underlying asset
has spent the vast majority of its time inside the authorized fluctuation range. It also makes hedging
more difficult for traders, who are faced with discontinuous deltas and gammas going to infinity in
the vicinity of the barrier. Various solutions to this problem have already been put forward. One of
the oldest and simplest ones is the “soft barrier” (Hart and Ross, 1994), in which the knock-out or
knock-in provision is defined as a range between an upper level and a lower level, and different
percentages of the option’s payoff at expiry are paid out to the option’s holder according to the
highest or lowest point reached in this range during the option’s lifetime. Another approach consists
in defining the option’s payoff as a function of the time spent above or below the barrier. The
corresponding contract is known as an “occupation-time derivatives”. This approach was pioneered
Chesney, Jeanblanc and Yor (1997) under the name of “parisian option” and by Linetsky (1999) under
the name of “step option” (which is not to be confused with a step barrier option).

Multitouch options develop an alternative way of dealing with the “all or nothing” problem
associated with traditional barrier options, which consists in setting a gradual knock-out / knock-in
mechanism, based neither on the location of the maximum or minimum observed value of the
underlying asset price within a range, nor on a measure of the occupation time of the underlying
asset within an authorized fluctuation range, but rather on the number of times the underlying asset
has crossed a predefined barrier in various time intervals before expiry. The higher the number of
predefined time intervals during which the barrier has been touched, the lower the value of a knock-
out contract at expiry, and conversely for a knock-in one. The n —touch option allows investors to
weigh different knock-out or knock-in scenarios according to the number of passages to the barrier,
whereas standard barrier options do not allow to distinguish between these scenarios. This makes
the multitouch barrier option a more flexible instrument that can better adapt to the investors’
expectations or needs. Compared with a standard knock-out barrier option, an n — touch knock-out
option not only makes it possible to adjust the exposure to risk over time in the same way as a step
barrier option, but it also provides a multichance game allowing its holder to receive a positive payoff
at expiry even if the knock-out barrier has been breached.

The number of crossings on a finite time interval is a stochastic process that can be called the
crossing counting process. Unlike other existing contracts, the multitouch barrier option is based on
a measure of the frequency of barrier crossings or, equivalently, on a measure of the intensity of the
crossing counting process defined as the mean number of crossings per time unit. For instance, with
a standard barrier, or a step barrier, or a partial-time barrier, a process may cross the barrier once and
then never cross it again until expiry. With an occupation-time contract, a process may spend some
time within the required barrier range (i.e. below an up-and-out barrier and above a down-and-out
barrier), and then spend all the time left until expiry outside this range. Whereas, in a multitouch
setting, if the process has crossed the barrier at least once in each of the time intervals that partition
the option’s lifetime, and the number of these time intervals is large enough, then there cannot be any
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significant period of time during which the process has been continuously out of the barrier range.
With this new instrument, what matters is not whether the process has hit the barrier range once, nor
how long the process has stayed inside the barrier range, but how often it has visited this range, even
for a very short period of time.

In this article, it is shown that a no-arbitrage exact value of a multitouch barrier option can be
analytically computed, at least for a moderate number of barrier crossings. A few extensions to more
general payoffs and shapes of the barrier are also tackled. This article is organized as follows : Section
1 provides a detailed description of the contracts under consideration, as well as a number of
numerical results aimed at comparing multitouch barrier option prices with standard barrier option
and step barrier option prices; Section 2 provides a proof of the valuation formula for a standard
multitouch barrier option; Section 3 shows how to value an outside multitouch barrier option, as well
as a multitouch barrier option with a barrier defined as a piecewise exponential affine function of
time, and discusses the possibility of analytical valuation of multitouch barrier options with large
numbers of barrier crossings.

Section 1 — Detailed payoff and first series of numerical results

The specificity of multitouch barrier options is to set a gradual knock-out / knock-in mechanism
according to the number of times the underlying asset has hit a predefined barrier in various time
intervals before expiry. In contrast with standard barrier options and their usual variants such as
partial-time or outside barrier options, the knock-out / knock-in mechanism is not triggered once and
for all by a single passage to the barrier. Instead, several levels of deactivation / activation are defined,
depending on the number of hits by the underlying asset during the option’s life. A fraction of the
standard call or put’s payoff is assigned to each number of hits. This fraction is a decreasing function
of the number of hits if the option is of knock-out type, while it is increasing if the option is of knock-
in type. Thus, a knock-out multitouch option does not expose the option’s holder to the notorious
risk of “sudden death” typical of a standard knock-out barrier option, whereby they lose the entirety
of their claim the moment the underlying asset crosses the barrier before the option’s expiry.

More precisely, let us denote as S, K and T the underlying asset, the strike price and the
option’s expiry, respectively, and let us divide the option’s lifetime into n intervals

{to =0, t1}7...,[tn71,tn = T]Then, a multitouch barrier call option of order n or, to put it more

simply, an n —touch call option, provides its holder with the following payoff :

. . (1)
;wi]‘{n:i} (S(T) - K)

where 7 € N is the number of predefined time intervals in which the barrier has been hit at least
once, and each w, € R, represents a rate of participation in the payoff at expiry.

An n —touch put option’s payoff is defined similarly. A standard knock-out step barrier option
is retrieved by setting w, =1 and w, = 0 forall i = 0. In the case n = 3, the n —touch option

is sometimes called a “baseball” option. The name is derived from the baseball game parlance “three
strikes and you are out”.
In its standard form, an n —touch barrier option features a step function of time or piecewise

constant function as its barrier, i.e. a constant barrier H;, > 0 is associated with each time interval
[tz‘—17tz’ ] , Vi€ {1,...,71}. However, other shapes can be specified for the barrier. For example, an
extension of the valuation method to exponentially curved barriers is introduced in Section 3.

There can be various ways to choose the w,’s. The simplest choice is to fix each w, in the
option’s contract. But you might want to make the w’ s path-dependent, e.g. define them as functions

of the maximum or minimum values of the underlying asset observed in each time interval [tl._l, 12 ]
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. In the remainder of this article, analytical results will be provided under the assumption that the

wi's are simply a sequence of participation rates fixed in the option’s contract.
In a standard n — touch barrier option, the predefined time intervals
[to =0, tl},...,[tn_l,tn = T] form a partition of [O,T] . When the length of the union of non-

intersecting predefined time intervals is smaller than the length of [O,T] , the n —touch barrier

option is of partial-time type.
Let us now provide a few illustrations of how payoffs can be formulated in more detail. For

instance, the payoff on a standard 2 — touch up-and-out put with expiry T = £, can be expanded as

follows :
(K,_S<Q>>“bﬂﬁ<ms}dgq@kx}+”% Ysiom g <msn)<x) ¥ Y5i<m 520, 8(1,)<k) (2)
+w, 1{§&2H17§122H27S(t3)<1{}
where §Z.j = sup S (t) and 1 0 is the indicator function taking value 1 if all the events inside the

t<t<t,
curly brackets happen and zero otherwise

Likewise, the payoff on a 3 — touch up-and-out put with expiry T = ¢, is given by :
(K = S(t,))x I (wply +wy (I + Iy + 1) + wy (I + I + L) + wyly ) (3)

where :

’r_ _ _
"= Yg(e,)<xp s = 1{§5<H1,§12<H2,§§<H3}’ Iy = 1{§§2H1,§122H2,§232H3} (4)

=1 I, =1

{S4>H,,5 <H, 53 <H, Iy = 1{§5<H1,§f >H,, 5 <H, }’ S <H,.5} <H,,5>H,}

I =1, I =1

Sy >H,, 82> H, 8} <H, I = 1{§5 <H,8P>H, 53 >H,} Sy> .82 <H,,5) > Hy}

Other knock-out or knock-in payoffs can be easily expanded in a similar manner by using the
law of total probability. For instance, the payoff on a 3 — touch down-and-in call writes :

(S(t,) = K ) x I (wpdy +wy (Jy + Ty + )+ wy (T + T + Ty ) + wyy ) ®)

where :

!’ _ _
T= Y )np i = 1{§ASH1,535H2,§;"§H3}7J8 = Ygomsom,s35m,) (6)

J2 - 1{55§H11§12>H2~§§>H3}’J3 = 1{%>H1,QIZSH2,§§'>H3}7J4 = 1{55>H1,§3>H2,§§§H3}

Jg = J, =

Ysions<msi<n )t = Ysien soom,s5<n,)

It is clear that any multitouch barrier option can be decomposed into a portfolio of non-standard
step barrier options combining various up-and-in, up-and-out, down-and-in, and down-and-out
steps.

Let us focus on the valuation of a 3 — touch up-and-out put with expiry ¢,. Following the
martingale equivalent method of option pricing, the no-arbitrage value of this option in a Black-
Scholes model is given by :


https://doi.org/10.20944/preprints202305.0786.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 May 2023 d0i:10.20944/preprints202305.0786.v1

7)

} 8
where :

3 9)
- Z‘%‘l{n:i} = wly +w <I2 + 1y + I4) T wy <I5 + I + ]7) + wyly
i=0

exp ( —Tty ) EQ

(KS(tS)ﬁizs:Owil{nJ

= exp(—rt3 ) KEQ — EQ

3 3
1{1,} x;owil{n:i} S(t3>><1{]/} X;Owil{n:i}

- @ isthe classical “risk-neutral” measure (i.e. the unique equivalent martingale measure in the
Black-Scholes model) under which the stochastic differential of S writes :

dS(t)=rS(t)dt + oS(t)dB(t) (10)

in which 7 is the riskless rate, 0 € R n and B (t) is a standard Brownian motion on a filtered
probability space (Q, F.F, Q)

After an elementary application of the Cameron-Martin-Girsanov theorem, the value of the 3 —
touch up-and-out put becomes :

] 1)
;wi {e‘rt:sKEQ ([’ X 1{f/=i}) — S(O)EQ(S) (]/ % l{nq} )}

where Q<S> is the classical forward-neutral measure whose Radon-Nikodym derivative w.r.t. @ is
given by :

dQ(S)
aq

t

o2 ] (12)

F = exp[aB(t) f?t

. . / . li
Therefore, it suffices to compute each EQ (I X 1{7;:2‘} ),z € {0,...,3}. Each EQ(S) (I X l{n:i})

will then be inferred by a mere change of drift in the stochastic differential of S . The detailed

computation of each E, (I "x1 (n=i) ) is provided in Section 2. Meanwhile, we proceed with a few

numerical results. In Tables 1,2,3,4,5 and 6, the prices of four different types of options are compared
as functions of the underlying asset’s volatility : vanilla put, standard UOP (up-and-out put), 3 — step
UOP, and 3 — touch UOP. We focus on an up-and-out barrier since this is the consistent and most
widespread form of insurance against adverse movements in the market on a long spot position. The
inputs of the tables vary according to the direction of the steps (increasing or decreasing), to the
options” expiry and to the options’'moneyness. In table 1, the step function is decreasing, while it
increasing in table 2. In tables 3 and 4, the options’ expiry is extended. In tables 5 and 6, the moneyness
of the options is changed, from ATM (at-the-money) in tables 1,2,3,4 to ITM (in-the-money) in table
5 and OTM (out-of-the-money) in table 6. All reported prices are computed using exact analytical
formulae : the ones for put and UOP options can be found in textbooks (see, e.g., Shreve 2010); those
for step barrier options are given by Guillaume (2001, 2015) and those for multitouch barrier options
are provided in this paper.
In all tables, the following specifications hold :

- the underlying asset’s value at the beginning of the option’s life #, is S (O) =100 and the

riskless rate is equal to 3.5%
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- in the “short term” setting, the option’s expiry ¢, is equal to 6 months, while ¢, is 2 years in

the “longer term” setting
- the value of the constant knock-out barrier of the UOP option is equal to 110
- the increasing up-and-out 3 - defined as the

[Hl =110,H, = 112,H; = 114], while the decreasing up-and-out 3 — step barrier is defined as the

step barrier is vector

vector [H, = 114,H, = 112,H; = 110]

- the time intervals associated with

each step have equal size, ie.

[to,tl] = [tl,tQ] = [tQ,tS] =1, /3 (note, though, that unequal sizes of the time intervals are handled
just as well by the analytical formula derived in Section 2)

- the weighting coefficients of the 3 - touch UOP options are

wy = Lw, = 0.75,w, = 0.5,w, = 0.25

Table 1. : short term, ATM, decreasing step barrier.

Vol = 18%

Vol = 36%

Vol = 64%

Vanilla put

4.21028552

9.19640912

16.8915617

Standard UOP

3.87930345

6.11543647

7.41655712

3 —step UOP

4.06327282

7.12573436

9.26066970

3 —touch UOP

4.14387237

8.24464223

13.4221543

Table 2. short term, ATM, increasing step barrier.

Vol =18% | Vol =36% | Vol =64%
Vanilla put 4.21028552 | 9.19640912 | 16.8915617
Standard UOP 3.87930345 | 6.11543647 | 7.41655712
3 —step barrier UOP | 3.94774692 | 6.28171713 | 7.57564760
3 —touch barrier UOP | 4.12363140 | 8.08141477 | 13.0947085

Table 3. : longe

r term, ATM, decreasing step barrier.

Vol =18% | Vol =36% | Vol =64%
Vanilla put 6.77089322 | 16.2132539 | 30.4462253
Standard UOP 4.37918160 | 6.33005693 | 7.39619749
3 — step barrier UOP | 5.13331495 | 8.00612395 | 9.68798236
3 —touch barrier UOP | 5.96475363 | 12.3318524 | 21.0176847

Table 4. : longer term, ATM, increasing step barrier.

Vol =18% | Vol =36% | Vol =64%
Vanilla put 6.77089322 | 16.2132539 | 30.4462253
Standard UOP 4.37918160 | 6.33005693 | 7.39619749
3 — step barrier UOP | 4.51329511 | 6.46393309 | 7.49064685
3 —touch barrier UOP | 5.85533987 | 12.0464166 | 20.5970811

Table 5. : longer term, ITM, decreasing step barrier.

Vol = 18%

Vol = 36%

Vol = 64%

Vanilla put

11.5899127

21.6573788

36.654626
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Standard UOP 6.68560137 | 7.88644982 | 8.55349279
3 — step barrier UOP | 7.92208416 | 10.0057384 | 11.2146769
3 —touch barrier UOP |9.65006219 | 16.0036889 | 24.9762416

Table 6. : longer

term, OTM, decreasing step bar

rier.

Vol = 18% | Vol =36% | Vol =64%
Vanilla put 3.37956019 | 11.4940697 | 24.6215650
Standard UOP 2.41880819 | 4.82385750 | 6.24758108
3 —step barrier UOP | 2.78825911 | 6.07420063 | 8.17314591
3 —touch barrier UOP | 3.11901323|9.02191302 | 17.2485329

Overall, the price differential observed between a standard UOP and a 3 - touch UOP is
substantial, reflecting the higher probability that the latter option will not expire worthless. The only
setting in which the price differential is small is when volatility is low (18%) and expiry is short term.
But this is the least significant setting inasmuch as all option prices are close to one another in it.
When volatility is intermediate (36%) and the option is ATM, the price differential increases to 27%
on a short term expiry and it almost doubles on a longer time expiry. When volatility is high (64%)
and the option is ATM, the price differential almost triples on a longer time expiry. The prices of ITM
and OTM options display similar patterns.

Since a multitouch barrier option can be decomposed into a weighted sum of step barrier
options, its value is sensitive to the price determinants specifically attached to step barrier options,
such as the ordering of the steps (i.e. the distribution of the steps over time according to each step’s
distance to the origin S)) and the relative sizes of the time intervals associated with each step. In
this respect, one can notice that the prices of multitouch UOP options with decreasing steps in tables
1 and 3 are higher than the prices of multitouch UOP options with increasing steps in tables 2 and 4.
For an explanation of this phenomenon and further insights into the specific price determinants of
step barrier options, one can refer to Guillaume (2015).

Of course, the price differential between an UOP and a multitouch UOP is heavily dependent

on the choice of the wi' s, which is freely negotiated between the buyer and the seller of the option.

n
If one decides to normalize the sum Zwi to 1, then the prices of multitouch knock-out barrier
=0
options become lower than those of standard knock-out barrier options, which shows that multitouch
barrier options can also be used to lower the cost of hedging relative to standard barrier options. For
instance, if we set w, = 0.5,w; = 0.25,w, = 0.15,w; = 0.1, then the prices of ATM, 2 — year

expiry, 3 — touch UOP options with decreasing steps become 2.830891789, 5.391604028 and
8.504985192 when volatility is 0.18%, 0.36% and 0.64%, respectively.

Section 2 — Analytical valuation of standard n — touch barrier options

In this Section, we show how to find an exact formula for the no-arbitrage value of a 3 - touch
up-and-out put, from which the values of other types of 3 — touch barrier options can be inferred, as
will be subsequently explained.

We begin by dealing with the computation of E, (I "x I, ) as defined in Section 1, which is the
probability required to value a 3 — step up-and-out put.

Let {X(t) = ln[%

continuous random variables X (t1>, X (tQ

> 0} . Then, by conditioning with respect to the absolutely

) and X (t3 ) , and by using the Markov property of

process X, the distribution under consideration can be written as the following multiple integral :
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b Aby  hyAhy kAR

EQ(I’XII):/ [ [ [ QX <hX(t)€dn)Q(X? < hy,X(t,) € du, | X (1) € dny )

Q(X} < hy, X(ty) € duy | X (t,) € du, ) daydayda, (13)

Since X is a Gaussian process, the random vector [X (tl ),X (t2 ),X (t3 )] follows a trivariate

normal distribution. Under ), each X (tl-) has expectation put,, where pu=r — o’ /2, and

t.
variance o°t;, and the correlation coefficient between X (tl.) and X (t]. ) is given by p;; = |-,

J
Vi,j € N;i < j. The first probability inside the integral in (13) is obtained by differentiating the
classical formula for the joint cumulative distribution of the extremum of a Brownian motion with
drift and its endpoint over a closed time interval (see, e.g., Shreve 2010). The next two probabilities

can be obtained by using the following simple lemma.

Lemma 1

Let {S (t),t > 0} be a geometric Brownian motion whose instantaneous variations under a

given probability measure P are driven by :
dS(t) = aS(t)dt + oS (t)dB(t) (14)
where B (t) is a standard Brownian motion,and o« € R , ¢ € R*

Let K and H be two positive real numbers such that H > S (0) and K < H.Let T bea

finite positive real number. Then, we have

f{sw q@gﬂﬁqume:smpﬁ (15)
0<t<u<T
k- T—t)_eX 2 —UUJ k—2h+x—u(T—t>
- oNT — 1t p[02<h ) N oNT —t
K H
k=1In ], h:ln[ ]
where 5(0) 5(0) and p=a—o0%/2

Proof of Lemma 1

It is a corollary of a classical result given by Levy (1939) that :

P[ sup S(u) < H,8(T) < K|S(t) (16)

t<u<T

Pl o g o

which can be rewritten as :

%mmﬂﬂgiﬂﬂngw] (17)

t<u<T
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i, ln[sii»]jg%it ulr )

K S(t)] [ H ] [S(t)
In|—F—|—1 —2]1 —1 —u(T -t
el SO ] L 11 101 B 0
0'2 S(O) S(O) oNT — t
N S(t) .
Therefore, by conditioning with respect to In S (O) , We obtain :
(18)
EP 1{ su’pTS u><HS(T)§K}|S(0>
S(u) H S(T) K ]
n sup In <In ,In <In
el o] 50200 5@ ) = 5
- 5(0) S(t)
o0 Inf——=| € dx
5(0)
" 1 (:zz—ut) (19)
= f ————exp| —
R 0\/% 202t
k—x—,u(T—t) [QH ] k—x—Q(h—x)—u(T—t)
N - =(h N d
{ oNT —t P 02( ) oNT —t !
Let us now define the functions 901, %, z and % as follows :
1|z, — pt; (20)
exp|—=
2l o t;
= =Q(X(t )€ dz,
(s) = — e = 0(x (1) e )
21
exp 1 Ij_xz_“<tj_ti)2 exp| — 1 xj_“tj_p__xqz_“tz'Q &)
(n.e) 2 o\t — 1, 21=p2 )| oft; Y ot
oy T, ) = =
2 j o 271'(15] —tl) U,[27rtj<1—p3j>
:Q<X(t]>€dxj|X(tz)€dx1)
(22)
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2
exp 2—'u<hj_xi)—1 $j+xi72hj7“(tj*ti) (23)

o2 2 cr«[t]. -t
a\/27r<tj —tl-)

¢2($i7x]‘> = 902($i’$j) -

= Q(X/ < hy, X(t;) € da; | X (1,) € da,

One can now express the valuation problem as the following explicit triple integral :

hyNhy  hyAhg  kARg (24)
EQ(I'Xll) = f f f ¢1<J:1)¢2(;1:1,$2)¢2($2,$3)dx3d$2dacl
T =—00 Ty =—00 !I,'S:*OO
Let the function @, [b1 sees D030y 95y Py 1 ] be defined by the following convolution of gaussian
densities:
n 2 2
v (yi - pz'fl.z'yi71> (25)
exp| —=— — 5
23 2(1 - /’z;u)
o, bl""7bn;pl.Z""7pn—l.n] = f - dy,,.-.dy,
v (27T)n/2 VI=ply,
i=2
where 2" = 1700 ] x] 00ty ... x |00t | b er, P 6[0,1[, vie{l..n}
Then, performing the necessary calculations, one can obtain :
By (I'x 1) = Q(S) < H,,S2 < H,y, 8} < Hy,S(t,) < K) (26)
o | M APy — oty by N by —pty kA — (27)
= ) ’ 3P1.99 P:
3 J\/Z J\/g U\/g 120 P23
2uh, | |h A by —2h —pt, hy Ahy —2h — pt, kA hy —2h — ut, (28)
—exp| — o, ; . 1P125Pa3
v 20 oty 7ty
2uhy ) by Ay + pt, by Ay — 2k, — pt, kA by, — 2k, — pt, (29)
—exp|— P, ) ) yTP121Pag
7 20 7ty oty
2uhy | | h A hy 4 pt, by Ahy + pty, kA By — 2h, — pt, (30)
—exp| — o, ) ) P12 TP
7 20 oty 7ty
24 (h, — h (31)
+exp p(hy, —h)
0_2
h Ay = 2y ko by Ay Py oy kAR 2 2ty
24 (h, —h (32)
+exp n( 32 )
o

hy A hy —2h 4 pt, hy Ahy —2h + pty, kA hy — 2hy + 2k — pt,

g\/z , U\/g ) O\/g 1P12: " Pa3
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+exp

20 (hy — hQ)] (33)

2
g

hy Nhy — it by A hy —2h, + ity kA hy — 2k, + 2h, — pt

CT\/Z ) 0\/g ) 0\/g 1 7P19) " Pa3

(34)

WAy =2 =ity By Ay = P 2ty KA R = Oy 2 gty
a\/z U\/g o'\/g 1.2 2.3

It is straightforward to show that the triple integral defining the function ®, can be rewritten

3

as the following single integral:

j’ exp(—x2/2> ~ Prot b ~ Pos?

\/E \/1 ,012 \/1 ,023

where N [b ] , Vb € R, is the univariate standard normal distribution function

(35)
do

o, [bl’bQ’b3;p1.2’p2.3] =

T=—00

Since, on the one hand, the function N [b] can be evaluated with adequate precision for all

option valuation purposes, and, on the other hand, the exponential function is of class C'*°, the
numerical evaluation of the integral in (35) does not raise any difficulty and can be implemented
using classical quadrature methods (see, e.g., Davis and Rabinowitz 2007). The computational time
using Gauss-Legendre quadrature is 0.005 second on an ordinary laptop personal computer, so that
it takes approximately 0.01 second to compute the price of a 3 — touch barrier option.

Alternatively, it is possible to obtain the probability under consideration as the solution of the
following integration problem :

oAby hyAhy kAR (36)
Bo(U'sx1))= [ [ [ @(X(4)€dn,X(t) € dn, X(t,) € da)

QX < m[x (1) € dn)Q(XF <h|¥ (1) € dn X (1) € doy)

QX3 < hy|X(ty) € doy, X (ty) € day ) duydayda,

Substituting for the four probabilities multiplied inside the integral in (36) yields :
1 (37)

Ey(I'x 1) =
Q 1
(27T>3/2 02\103\1.203 tityts
hyAhy  hy ARy kA 2
1|2 — pt) 1 [x2 — pt, ko
X exp| —— _
zl—\/—‘oo x2;/‘—oox3;/‘—oo 2[ o 7ﬁl : U\/g U\/7
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1—exp 2<h2 — xl)(% _ h2) 1—exp 2<h3 — %)(x?’ _ h3) dz,dx,dr,
o (t, —t) o (ty; —t,)
where :
oop = N1- Pl s Pagt = M' O3h2 = 1—pfy - p22.3\1

T

This integral can be explicitly computed, yielding a linear combination of trivariate standard
normal distribution functions N, [bl ybyy b33 Py 9501 50005 ], (bl, by, by ) € R? . The result is not given here
because it is not easier to calculate or to evaluate numerically. In the remainder of this section, we

will continue to use ®, functions, but all results involving them could also be written in terms of
N, functions.

Let us now proceed with E, (I "x1, ) . We have :

B,

(1) = Q(5) < H,,5) < H,,5) > H,) (38)
= Q(E& <H,S5 < H2) - Q(§01 <H,S}<H,,8 < H3)

The probability Q(S) < H,,57 < H,,8} < Hy)=Q(S} < H,, St < Hy, 85 < Hy,S(t) < Hy)

has just been computed and the probability Q(S_’& < H,S! < H, ) can be obtained as follows :

WAl h ~ ~ (39)
[ QX <mX(t)e€dn QX < hyX(b) € duy| X (1)) € du, )duyda,
M ARy

= f f o} (5171)% (xl,xQ)dxzdxl

Ty =—00 Ty =—00

oy A hz—th'p —exp[2uh2}N by Ay + oty —hy = pt, (40)
o 2uh1]N hy A hy —2h — pt, b, —2h — ut, } (41)
P 2 \/— ) P12
o o4/t 0\/5
e 2u(h2—h1)]N by Nhy = 2h + pt, —h, +2h —pt, (42)
p 9 2 ) Y p12
o o\, o,

To tackle the terminal condition at expiry t,, we use the following decomposition :
Q(Sy < Hy, S < Hy, S5 > Hy,S(t,) < K| (43)
= Q(8) < H,,5% < H,8(t;) < K) - Q(Sy < Hy, 8 < Hy, 8y < Hy,S(t,) < K|

where the term Q(gé < Hl,gf < HZ,S(t3> < K) can be handled as follows :
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WA b, (44)
f / f Q(X§ < by, X(t) € dny |Q(X} < hy, X(ty) € day | X (1)) € dr )

1 =700 Ty =—00 T3 =

Q(X(ty) € duy| X (1) € da, ) dayduydar,

Wby hy k (45)
= f f f ¢1(I1>¢2(l'lyl’Q)@2(I2,l‘3>dl‘3dx2dxl
ZI:*OO,/Lé:*OO T3:700
_ o hy N hy — pt, hy, — pt, k*/‘ts,p ) (46)
3 g\/t—l U\E o_\/g 1.27 1723
Cexp| 2 | |y it hy oty Rty (47)
3 ’ ’ ) 1.27172.3
x| 200 | ARy =2y ity By 2y oty ko 2h oty (48)
3 ) ’ 1127 1723
2u(h, — h (49)
+exp i 22 )
g

by =2y bty Zhy 2 oty Ry 2ty
U\/g U\/g U\/g 1.27 1723

Notice that Q(b_’& < H,S} < H2,S(t3) <K ) is the probability required to value an early-

3

ending two-step up-and-out put option with step barrier [H 1 H, ] on [ 0o b ] U [ ]
Next, we deal with £, (I’ x I, ) :
Ey(I'x1,)=Q(8) > H,5} < H,,8} < H,S(t;) < K) (50)
= Q(Ef < H,,5) < Hy,S(ty) < K)

~Q(8) < H,,5% < H,,5} < Hy,S(t,) < K

where the probability Q(gé <H,S}<H,,S8} < HS,S(tg) <K ) is already known and the
probability Q(§12 < H,,8} < HB,S(tg) < K) is given by :

hy Ak, kAR ~ (51)
[ [ [ ae(x(t)edn)Q(X} < h,X(t,) € du, | X (1) € dny )

.7)1:70() .7)2:700 .’173:700
QX5 < hy, X (t,) € duy | X (1, ) € da, ) duyda,da,
by hyAhy kAR (52

- f f f (pl(xl)%(3717372)%($2,$3)dx3d:1:2dx1

1'1:700 1'2:700.’[3:*00 )

d0i:10.20944/preprints202305.0786.v1
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h—ut hy Ahy — pt, kA by — pt, (53
) P12 Po3
N P )
(2 (Bt AR —2h — b kAR =2 — (54
exXp 5 3 ; ) » P10 Pag
A Y . )
N R P L A N A T et Ny S (55
exp| —; 5 ) ) 1 P12 TP
e e )
oo 2 =) By =ty By ARy = b 4ty kAR~ 2k + 2, — (56
exp 5 3 ) ) 3T Pryy oy
. o, oft, oty )

Notice that Q(§f < H,,8) < H,,8 (t3) <K ) is the probability required to value a forward-
start 2 - step up-and-out put option with step barrier [HQ, H, ] on [tp L, ] U [t27t3 ] .
We then proceed to B, (I' x I, ) :

Q(Sy > Hy, S < Hy, S5 > Hy,S(t,) < K| (57)
= Q(8) > H,, 87 < Hy,S(ty) < K)— By (I'x 1)
The term Q(S_’Ol > H,,8% < H2,S(t3> < K) can be obtained as follows :
Q52 < HyS(t,) < K) - Q5! < .82 < HyS(t,) < K) (58)
where Q(gg < Hl,gf < HQ,S(t3> < K) has already been calculated and :
Q(S? < H,,8(t;) < K
(59)
f f f Q(X (1) € dn, ) Q(X? < hy, X(t,) € duy | X (1,) € da)
Q(X(ty) € day| X (t,) € da, ) dayda,yday
hy b K (60)
= f f f @ (:1:1 )¢2 (zl,x2 )@2 (zQ,xg )dﬂz3dx2dxl
— o, hy — ut, h, —put, k— op hl—ut1 hy, — ut, k — ut, _— (61)
\/_ O'\/_2 O_\/_712723 O'\/t_170'\/g O_\/_712723
bt gt ko2 gt (62)
exp 24l U\/_ N N
o’ h1+,ut —h, — ut, l<:—2h2—ut3

0\/7 \/* 0@ 3 P12 Pa3
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63
24uh, —h, — pt, hy —2h — ut, k—2h — pt, (63)
o 2 s ’ ’ P12 Pa3
o 20 o\lt, o,
—exp <h2 _hl) o —h, + pt, —h, +2h — pt, k—2h, +2h — - (64)
2 B T P

Notice that @ (§12 < H,,S (t3 ) <K ) is the probability required to value a window up-and-out

put option with barrier H,.
The next case to handle is EQ (I "% I ) :

Ey(1,)=Q(8) < H,,5} > H,,8} < Hy,S(t;) < K) (65)
= Q(8) < H,8} < Hy,S(t;) < K)— By (I' < 1)
The term Q(gg < H1,§23 < H3,S(t3) < K) can be computed as follows :
hy KAk (66
f [ [ QX <mX(t)€dn )Q(X(t,) € dny| X (1) € da,) )
T} =—00 Ty =—00 Ty =—00
Q(X; < Hy X(ty) € duy| X (t,) € da, ) duydnyd,
hy kA (67
f f f (bl :1:1 @2 wl,m2)¢2(m2,mg)dx3dx dz, )
) =—00 Ty =—00 Tz =—00
(68
o h, — pt, hy — put, k/\h3—,ut3.p ) )
3 U\/Z ) U\/g ? J\/g 171271723
—exp 2puh, o —h, — pt, hy —2h — pt, kA hy —2h — put, o (69
o 3 J\/IZ ’ U\/g ’ J\/g ' P12y P23 )
exp 2uh, o h, + pt, hy, + pt, kA hy —2h, — pt, - §70
0_2 3 g'\/t—l ? O_\/t—2 ? O_\/Z 17120 2.3
(71
2u(hy —h )| | =h + pt, b, —2h + pt, kA hy —2h, + 2k — put,
+exp 3 @ > ’ 1P190 " Pas )
9 a\/z a\/g a\/g

Next, we deal with E, (I’ X 16) :

Ey(I'x 1) = Q(8) < H,,5% > H,,8} > H,,$(t;) < K) (72)
= Q(5) < H,,55 > Hy,S(t,) < K)— By (I'x I,)
where :
(73)

Q(S) <H,S >H,S(t,)<K)=Q(S <H.S8(t,)>H,S(t)<K)


https://doi.org/10.20944/preprints202305.0786.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 May 2023 d0i:10.20944/preprints202305.0786.v1

+Q(Sy < H,S(t,) < H,,8} > H,8(t,) < K)

3772

N (74)
[ QX <hX(4)€dn)Q(X(t,) € dny|X(t) € dny)

- £:L523*OO

%5

hy 3 k
Q(X (k) € duy|X (1) € dny ) dwydnydo, + [ [ [ Q(Xy < hy,X(t) € da,)

T) =—00 Ty =—00 Ty =—00
Q(X(t,) € dny | X (1) € do) )Q(X3 > hy, X (1) € duy | X (1, ) € du, ) daydn,d,

ok (75)

hy
f f f o (xl )<p2 (xl,a:Q )<p2 (x2,3:3 )dm3dx2dx1

T =—00 T, =hy Ty =—00

+ f f f ¢’1 Il ¥ I1’I2)(902<127$3) ¢2(x2,13>)dx3dx2dxl

| =—00 Ty =—00 Ty =—

h — pt, —h, + put, k— pt, A (76)
) 1.27 2.3
ol el

77
2puh, —h, —pt, —hy +2h + pt, k—2h — put, (77

—exp|—— |2, , ) 17 Pras T Pas

o o\t o\t, o\t,
78
+exp 2;@]@ h + ut, hy + put, k—2h3—,ut3‘p . (78)
ot o, ey,
79
~exp 2u<h3—h1) —h, + pt, h, —2h + pt, k—2h3+2h1—,ut3.p —p (79)
o* oty e, ey,

Q ( 501 < H, §23 >H,,S <t3 ) <K ) is the probability required to value a partial-time 2 — step
barrier put with a knock-out barrier H, on [to,t1 ], a knock-in barrier H, on [tZ,t3] and no active
barrier on [tl,tQ].

The penultimate case to tackleis E,(I'xI;) :
Ey(I'x 1) = Q(5} > H,,8) < Hy,S(t;) < K) = By (I'x 1) (80)
where Q(S? > H,,5} < Hy,S(t,) < K is computed as follows :
Q(S(t) < Hy, St > Hy, 55 < Hy,S(ty) < K|+ Q(S(4) > Hy, 52 > H,,5} < Hy,S(t,) < K

b kAhy (81)
f f f Q Eda,‘l)Q(XlQZ@,X(t2)€d$2|X<t1>€dxl)

7700 ‘LZ**OO ‘Ed

QX3 < hy, X (ty) € duy | X (1) € da, ) dydayda,
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hy kAR (82)
+f f f Q(X(t) € dn)Q(XP > hy, X (t,) € day | X (1,) € da, )

@y =hy 2,=—00 13=

QX5 < hy, X (t,) € duy | X (1, ) € da, ) duyda,da,

bk (83)
f f f ‘P1 5”1 ‘P2 xlv%) ¢2(I1’$2))¢2(3727$3)d$3d$2dm1
=—00 Ty =—00 Ty =—00
hy kAhy

+ f f f ‘Pl 5’71 302 xl’xZ) ¢2(ml,x2))¢2($2,x3)dx3dm2dx1

2y =hy 1y=—00 T3=—00

Performing the necessary calculations, one can obtain :

—h, + pt, h, —pt, kA hy — pt (84)
EQ(I/XI5):(I) : M1> . N27 4 MS;_pl.Q’pZ.S
o o, ey
hy + pt, hy — 2k, — put, kA hy — 2k, — put, o (85)
. 2//6}12 O-\/Z 9 U\/g ) U\/g ’ 12723
P o’ hy + pt, hy —2h, — put, k/\h372h27,ut3'7p )
U\/Z ) U\/g ) o-\/t—3 ’ 1.27772.3
86
2u(hy — b)) |~ +pt, by —2h, + 2k — pt, kA by —2h, + 2k — put, (86)
+ exp D, , ) 1P Py
o o\t o, ot
(87)
2uh, ® —hy, — ut, hy + pty kA hy —2hy — ut, ) )
—eXp ) s T T
o? 3 J\/Z 0\/% U\/g 1.2 2.3
h—ut h—2h2+ut2k/\h3—2h3+2h2—ut3 (88)
) 37 Pro> P
P o’ h—ut hy, —2h, + ut, kA hy —2h, +2h, — pt,
; =Py P
U\/— U\/g U\/Z 120" P23
(89)

7h1 — ut, h3 — 2h2 + 2h1 + wl, kA h3 — 2h3 + 2h2 — 2h1 — pity p
) ) ' P2y FPas
J‘M m/tQ J\/t3

Q(§01 > H,8% > H,,8} < H3,S(t3) < K) is the probability required to value a 3 — step in-

and-in-and-out put option with knock-in steps H, and H,, and knock-out step H,.
Eventually, E, (I % 18) is dealt with :
Ey(I'x Ig) = Q(S) > H,,S? > Hy,S(t;) < K) — E,(I'xI) (90)

where Q(gg > H1,§12 > HQ,S(tg) < K) can be decomposed into :
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Q31 = H,S(t) < K) - (8! = H, 82 < H,,8(t,) < K) (91)
Q(Ss > H,,87 < H,,8(t;) < K) has already been calculated and we have :
Q51> H.8(t) < K) = Q(S(t,) < K) - @[S} < H,5(t,) < K) (92)
where
(93)

Q(E} < H,S(ty) < K)

—h, + ut, k — ut. 20 —h, — ut, k —2h, — pt.
=N, l L 3;—,01_3 + exp 2hl N, l L i 3;P1A3
Uq/tl aw/t3 o aw/tl U*\,tg

Retracing our steps, we see that we have completed the closed form valuation of a 3 — touch up-

2 2
and-out put. As explained in Section 1, it suffices to take p = r + % instead of p =1 — % in all

the formulae obtained in this section to obtain the list of necessary probabilities under the Q(S)
measure.

We can now easily deduce other probabilities needed to recover the no-arbitrage prices of other
types of 3 — touch knock-out barrier options. Let us begin by a 3 — touch up-and-out call. The value
of this option is given by :

3

- KE, ;wil{n:i,S(t3)>K}

} (94)

3
exp(—rt3 ){EQ S (t3 )sz‘ l{n:i,S(t3)>K}
i=0

3

Do, L —is(s,)>K)

i=0

By the Cameron-Martin-Girsanov theorem, all we need to compute is E,

By the law of total probability and the continuity of paths of the process S, we have:

(95)

E, =E,

5 3
g%l{n:w(mbf(} ;wi Lmis(y)2x)

(96)

3 3
— !/
= EQ E Owil{nzi} — EQ 1" x E Owil{nzi}
i= =

3

Since the w,’s are known and we have already obtained Ey|1 "' Z wily,_jy |, we only have to
i=0

work out EQ

3
2 Y

The term E, (I 4) is given by (38). Moreover, since the event {§23 < Hg} includes the event
{S(t3> < H3}, we have:

EBo(L) = Q(8) < H,, 87 < Hy,8} < Hy,S(t) < Hy) (97)
By (L) = Q(Ss > H), 57 < H,, 8} < Hy,S(t;) < Hy)

By (1) = Q(Sy < H, 82 > H,, 85 < Hy,S(t,) < Hy)
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By (L) = Q(Ss > H,S? > H,,8) < Hy,S(t,) < Hy)

Therefore, E,(I,), E,(1,), Ey(I;) and E,(I;) are given by (27) - (34), (50) - (56), (65)
(71) and (84) - (89), respectively, with the substitution k = h, .
With regard to £, (16 ) , we have :

By(ly) = Q(S¢ < H,.52 > H,) - Q(5} < H,,5? > H,,5} < H,) (98)
= Q(8) < H,,5 > H,) - B, (1)

=Q(5) < H,)-Q(8) < H,5} < H,) - B,y (1) (99)

Q(gg < Hl,gf < Hz) is given by (40) — (42) and Q(gg < Hl) is a textbook formula

The probability E, (I . ) can be derived as follows :
By(l;)=Q(8s > H,,52 < H,) - Q(5} > H,.5? < H,,5} < H,) (100)
= Q(§12 < HZ) - Q(S} < H,,S5% < HQ) -Q(8y > H,, 8! < H,,5} < H3) (101)

where Q(gg > Hl,g'f < H2,§23 < H3) is given by (50) and it is easy to obtain :

- oo (102)
Q(St<t)= [ [ ¢(1)8(12)dndr,
oy ety bty | (b ) Ty oty —hy gty (103)

2 ) 7p12 eXp 9 2 Y ) p12
U\/Z cr\/g o o\t a\/g

Q(gf < H, ) is the probability required to value a forward start up-and-out put.

Finally, E, (I 8 ) is dealt with as follows :
By (1) = Q(S) = H,,5t = Hy) = Q(S) = H,,5! > H,,5} < H,) (104)
=Q(8) > H,)-Q(8) > H,,5? < H,) - Q(S} > H,,8? > H,,5} < H,) (105)
= Q(S¢ > H,)—(Q(82 < Hy) - Q(5) < H, 8 < H,)) - By (1) (106)

where the probability Q(b_’f < H2) — Q(gé < H1v§12 < H2) is given by (101), and the probability
Q(Eé > Hl) =1- Q(S_’(} < Hl) is a textbook formula

Retracing our steps, we see that we have completed the closed form valuation of a 3 — touch up-
and-out call.

Once formulae for 3 - touch up-and-out calls and puts are known, formulae for 3 — touch down-
and-out calls and puts ensue as a corollary. Indeed, the symmetry of paths of Brownian motion
entails:

Q(X7 <h,X(t;)<k)=Q(X/ >—h,X(t;) > —k),YH, > S(t,),¥K >0 (107)


https://doi.org/10.20944/preprints202305.0786.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 May 2023 d0i:10.20944/preprints202305.0786.v1

where we recall that )_(Zj = inf X (t)
t<t<t;

The important practical consequence is that, in order to derive the formula for a 3 — touch down-
and-out call from the formula for a 3 — touch up-and-out put, it suffices to multiply by — 1 all the
bounds (but not the correlation coefficients) of the cumulative distribution functions involved in the

formula for a 3 - touch up-and-out put. In other words, every function @, [bl, by, by ) 5, £y 4 ] that

appears in the formula for a 3 - touch up-and-out put becomes @, [—bl, by, —by; P, o, £y 4 ] in the

formula for a 3 — touch down-and-out call. Obviously, the same transformation applies to cumulative

distribution functions of smaller order, i.e. functions N H and N, [.,.;.] , that may appear in the
formula for a 3 — touch up-and-out put. For instance, from the probability Q(E& < H,S! < H2>

given by (40) — (42), one can immediately infer :

Q(Sy > H,,8} > H,)

N W fh2+ut2.p _exp[m@]]v ~h, A hy — pt, h2+wf2._p (108
2 U\/Z U\/g 1.2 02 2 U\/Z O_\/E 1.2 )
(2wh )| =l Ahy 2k 4t —hy + 2h + it (109

exp N, ; 1P
- 24 (hy — hl)]N iy N by £ 2 =ty By =2 oty (110

where H, > §(0) in Q(S) < H,,S? < H,) and H, < S(0) in Q(S) > H,,5? > H,)

Thus, there is no need to perform new analytical computations to obtain formulae for 3 — touch
down-and-out options.

Section 3. Generalization to other types of barriers, as well as to higher dimension

In this Section, we discuss extensions of the analytical method used in Section 2 to tackle a wider
variety of barriers and a greater number of barrier crossings.

3.1. Outside multitouch payoff

An outside barrier option is a kind of multiasset barrier option, the specificity of which is to
define one asset, say S, with regard to which barrier monitoring is performed, and another asset,
say V, with regard to which the moneyness of the option is tested at expiry. This allows, among
other things, to take advantage of the volatility spread between S and V', as well as of correlation
effects. When the barrier is knock-out, a classical strategy to optimize the expected payoff is to
combine a low volatility on $, a high volatility on V' and negative correlation between $ and V

. The payoff on a 3 - touch up-and-out put with expiry ¢, and outside barrier is given by :

L3 (111)
(K-V(ty)) ;wg{n:i}

where 7, i.e. the number of predefined time intervals in which the barrier has been hit, is determined

according to the variations of asset S.
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The previous payoff can be slightly generalized by defining #, > ¢, as the expiry of the option

and by considering an early-ending 3 — touch up-and-out put with expiry ¢, and outside barrier as

follows:
K (112)
(K B V(t4 )) Zowil{n:i}
where the step barrier is monitored on [to t }, [t t ], [t K ] but not on [ 3 4}
Under @), the stochastic differentials of S and V are givenby :
dS(t)=rS(t)dt + o4S(t)dB, (t) (113)
(114)

av(t)=rV(t)dt + o,V (t)dB, (1)

where 04,0, > 0 and d[Bl,BQ](t) =0, ,dt
The @ — probability, denoted by p, that the maximum payout rate w, is obtained at expiry,

is the probability required to value an early-ending, outside 3 — step up-and-out put option with

expiry t,, and is given by :

p=0Q(5,(01) < H,.5,(12) < H,,5,(23) < H, V(1) < K (115)

WAl Al -
f f f f Q(X(01) <k, X(t) € de))Q(X(1,2) < hy, X (1) € duy | X (1) € day)
(116)

Q(X(23) < hy, X (ty) € dy| X (t,) € day )Q(Y (8, ) € duy | X (8 ) € day ) dux,duvydaryda,

(
S(t) vit)
)

X(t)=1
where (t) n[S (0) (O , and we use the equality in law between

Q()_(HX(Q),X(tj)) and Q()_(if|X<tl. X ()Y (¢ ))
The covariance between X (tg) and Y( 4) can be written as follows :
cov[X(t3),Y<t4)] = Cov[ust3 + US\/EZl,,uvtél + va/g(%zl + 41— 912.2Z2)+ oAty — t3Z3}

(117)

and Y(t)

= 0,040, oty

2 2
o o
s V., and Z ,Z,,Z, are three independent standard normal

4

where =r—— and =r—
Mg 9 Hy 9

random variables

t.
Hence, the correlation coefficient between X (tg) and V(t4) is equal to 0, \/; and we
2%,

have:
WAl hAL, R (118)

f f f f ¢1 7, (;52 (:vl,:v2 )(]52 <x2,x3 )902 (azg,x4)dx4da:3dx2da:1

T} =—00 Ty =—00 Ty =—00 T; =—00

Performing the necessary calculations yields :
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b | bt By Al gty By gty Rty (119)
=0, , ; 1 P1.23 Pa35 P34Y%3
OS\/Z JS\/E “S\/g C71/\/7
hy A by — 2k — pgt, by A by — 2k — pgt, (120)
2u6h US\/Z US\/E
1
_ o o
P ag ! k—2p,,0,, lh1 — Hyty
hy =20 — pgt, Og ) 0
\/— ) \/— 1P1.95 Pa35 P34Y 5
Og t3 oy t4
By A by + gty Ay — 2, — pgl, (121)
2 US\/Z 05\/%
—exp s | g oy
O‘?g ! k—2p;,0,, —hy — pyt,
hy — 2hy, — pgt, Og 3 P
\/7 ) \/* » P12 Pa3rP34Y 0
gt oy
hy Ahy + pgt, by Ay + gt (122)
2h US\/Z O'S\/g
m
—exp| 22 oy
o’ ! k=2py 05— hy — iyt
§ —hy — pigt ¢ 0
VP12 T Po30 P34Y% 0
US\/Z UV\/Z
2pg (hQ ~ hl) (123)
BN d E—
Og
hy Ay —2h + gl 2h + hy Ay — 2hy — gl
US\/Z Us\/g
)
! k—2p,,0 12 (hz hl) Pty
hy, — 2h, + 2h, — pgt, B )
\/* ’ \/* P25 P235P34% 2
gty oyt
2 h, —h (124)
+exp MS( 3 1)
g
b N by 2y 4 il By Ay = O gty
ffsf asf
[}

E—2 h, — — pt
—h, + 2h — pgt, P340 120 ( hl) Hyty

US\/E UV\/Z

$P1 o>~ Pags P340



https://doi.org/10.20944/preprints202305.0786.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 May 2023 d0i:10.20944/preprints202305.0786.v1

2ptg (h3 — h, ) (125)

+exp| —————
9g
hy A hy — pgt, hy A hy —2hy + pgt,

US\/Z US\/t_

0]
‘ e+ 9h — gt k—2p,,0 120 (h _h2>_Wt4

2 - § 2, 5 =P1os—Py3r P340 o

2ug (hy —hy + Iy ) (126)
—exp

0%

Ry = 2 = gt By ARy = 2y 2+ gty
US\/Z ‘75\/7

! k— 2p3412 (h *h2+h1)*“vt4
—hy + 2h, — 2, — gl

) i =PLgs Pz Pyt s
og \/g oy \/_4

Hi
where h, = 1In

s(0)

K
k= ln[m] and the function @, [bl,bQ,bB,bA‘;pm,p2_3,p3.4 is defined by

(25).

The quadruple integral defining the function @, can be rewritten as the following double
integral :

2, [bl’b27b3vb4§p1.2’ Pa.3:P3.4 ] (127)
b3 —Pa3Ys

b Vl_p§.3 2 2 [
_ 1 _ (% * 3 ) b — p1yTy by — p3a1 — p22.3w3 — P3.4P23%
= exp N - N - dz,dr,

27 2 \/1 — P2 \/1 ~ P34

12:*0() I3 =—0Q

The numerical evaluation of (127) is just as easy as that of (35), for the same reasons as explained
in Section 2. Extensive testing shows that a mere 16-point Gauss-Legendre double quadrature suffices
to reach a minimum of 1077 precision in less than one hundredth of a second as long as
are encountered, a standard subregion adaptive algorithm will perform well, as explained by
Bernsten, Espelid and Genz (1991), along with a Kronrod rule to reduce the number of required
iterations (see, e.g., Davis and Rabinowitz 2007). These are widely used numerical integration
techniques and it is easy to find available code or built-in functions in the usual scientific computing
software.

Notice that the formula for an outside 3 — step up-and-out put option without the early-ending

< 0.99 . If even more accuracy is needed, or if more extreme values of the correlation coefficients

feature, i.e. with expiry {;, is immediately derived by substituting p,,0,, with 6, and by
substituting ¢, with ¢, in (119) - (126).

It is possible to obtain a formula for the probability p in terms of quadrivariate standard
normal distribution functions if one expresses the problem as the following integral :

hyNhy  hyAhg  hg ARy
r= [ [ f Q(X () € du,, X (1) € duy, X (t,) € day, Y (1) € da,)

T =—00 Ty =—00 I3 =—00 Ly =—00
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Q(Xy < hy|X(t,) € dny )Q(X} < hy|X(t,) € duy, X (1,) € da ) (128)
QX3 < hy|X (1) € duy, X (ty ) € day ) dar,drgilzyd,

The resulting formula is not given because it is more cumbersome and less easy to evaluate

numerically than (119) — (126).
Once the probability p has been obtained, it is possible, using the same method, to explicitly

calculate all the other probabilities involved in the valuation of an early-ending 3 — touch up-and-out

put with expiry t,, i.e. the following set P of probabilities :

P = {Q(E} >H,5% > H,8 >H,V(t)< K),Q(g(} > H, 8} < H,,5) < H, V()< K)

Q(Sy < H,8% > H,,8) < H,V(t,) < K),Q(b_’(} < H,,8% < Hy,S5} > H,V(t,) < K)

Q(E(} > H,,5 > H,,5} < H.V(t,) < K),Q(Eg < H,,8% > H,,5} > H,,V(t,) < K)
Q5 > 1,5 < H.5} > H.V(1,) < K)) (129)

Notice that, in contrast to a multitouch barrier option with a non-outside barrier, a new,
elementary change of measure is required to obtain the option value, which is given by :

3 (130)
Sw {KeQ(n=iv(y) < K)=v(0)Q") (n=iv (1) < K)}
i=1

The Radon-Nikodym derivative of the measure Q(V) w.r.t. @ isgivenby:

(V) 2 92 2(1—62 131
dg@ F, = exp UV01'2Wl(t>—0V2$t+UV«/1—012'2WQ<25>—M7§ (131)

where W, (t) and W, (t) are two independent, standard Brownian motions under Q(V), and F,

is the smallest filtration w.r.t. which both W, (t) and W, (t) are measurable; thus, under Q<V) , wWe
have :

2
T+U—V7f
2

2
g
P2t oot

(132)

t], By [V(t)] =V (0)exp

Egn [5(6)] = (o)

Table 7 reports numerical values for 3 — touch OEEUOP (Outside Early Ending Up and Out Put)
option prices as functions of volatility and correlation. The option’s expiry is ¢, = 1. All the other

parameters that are not given inside table 7 are identical as in table 1.

Table 7. : 3 — touch OEEUOP option prices with piecewise constant barrier as functions of volatility

and correlation.

3 —touch OEEUOP

oy = 20%,0, = 50%

oy = 50%,0, = 20%

oy = 35%,0, = 35%

6,, = —50%

12.6876269

3.19205121

6.93552897

6,, = 50%

15.1581431

4.37818109

9.02213614
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0., — 5% 14.0820718 3.84164681 8.09063875

3.2. Piecewise exponential affine step barrier

A more general and flexible form of barrier consists in replacing each constant H; on each

[tl " ] by a function of time. In general, only numerical approximations to the valuation problem

can be attained in this new framework (Wang and Poétzelberger 1997; Novikov, Frishling and
Kordzakhia 1999). However, as shown by Guillaume (2016), a remarkable exception is when the
barrier is defined as a piecewise exponential affine function of time. Then, exact solutions can be
found. Thisis all the more useful to notice as exponential functions display curvature, thus allowing

for a wide variety of shapes. More precisely, let us define a barrier g(t) for a standard geometric
Brownian motion S(t) as defined by (10) on a partition {[to =0, tl] [tn bt = T” of [O,T]
as follows :

(133)

9(t) = 325(0)exp(a, + b (t 1)) T, , (t)q, € R, € R € {12}
i=1

Then, the @ — probability, denoted by p, to receive a maximum payoutrate w, ona 3-touch

up-and-out put option with expiry T' = t,, is defined by :

(5(1)

< 5(0)exp(a, +bt).¥0 <t <) (134)
»=a|n(s(t) <
) <

S(0)exp(ay +b,(t =1 )),Vt, <t <t,)
S(0)exp(ay +by(t — 1)),V <t <t,)NS(t;) < K

n(s(t

It can be shown that :

g = bt =ty 2 = bty — it — (B — ) (135
p = o4 U\/Z G\/g )
- t3_ﬁ‘1t1_/‘2(t2_t1)_ﬂs(t3_tQ).

yP19:Po3
oty

o~ bty —2a) — gty 7% = bty =20 — it — iy (t, — 1) (136
TN e Ty
o’ Zs_b3t3_2a1_ﬁ‘1t1_/~‘2<t2_t1>_/‘3<t3_t2),p P )
0@ 1P1.2: P23
2 =ty — ity + 2t 2 — bty — 209 + ity — py (tl + tZ) (137
el s
o? 23 = byly — 20 +F‘1t1_/~‘2(t1+t2>_ﬂ3(t3_t2>,_p P )
a\/g 7T P12 P23
Zl — bltl — 2011 - lj'ltl + 2M2t1 Z2 - b2t2 - 2@2 + 2(]/1 + 'ultl - /’I/Q (tl + t2> (138
+ exp )\_3 . O.\/E U\/g
o2 | P2y = bty — 205 + 20, + ity — o (8 + by ) — py (b, — 1) )

y7P1.2:P23
oty


https://doi.org/10.20944/preprints202305.0786.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 May 2023 d0i:10.20944/preprints202305.0786.v1

2 = bty — it + 2t % = byly =ty — gy (= ) + 2ty (139
exp[)\—‘l]@( U\/Z U\/g
o%) 7|z = byty — 205 + ity +u2(t2 *tl)*#3(t2 +t3)~p —p )
J\/g P2 Pas
2 = bty =20 + 2t — ity B bty =20, — it — (B — 1) + 20t (140
+exp A5 ]¢3 J\/Z U\/g
o2 z3—b3t3—2a3+2a1+,ult1—|—,u2(t2—t1)—u3(t2+t3)'p . )
a\/g P12 Pa3

2 = bty — 25ty + 2t — ity 2 — bty — 20y + ot — (t + ) + 204t (141

)‘_6]@3 U\/E 7 J\/g )

+exp
2 z3—b3t3—2a3+2a2—,u1t1+u2(t1+t2>—u3(t2+t3)'_p . )
U\/g I 1.27 2.3
2 = bty —2a) = 2pgty + 2ty — uty (142
20
2y — bty — 205 + 20, + puty, — py (4 + b))+ 24, )

A
7 )
—exp[—Z](I)3 oyt

23 = byly — 205 + 20, _2a1_ﬁ‘1t1+:“2<t1 +t2)_ﬂs(t2 "'ts),

P12 Pas
where :

(143)

ay = ay — byty, a5 = as — b,

0_2

=== b k=In(K/S(0))
N = 2mas N = 2005 — 24yt + 205t Ny = 20, + 2505 — 4,0, — 2t + 201,
Ay = 2p50 + 2005t — 24 gty — 25y (tQ - tl)
N = 2p0 + 2pa; — Anay + 245t — 2 it — 2y <t2 - tl)
2 2

Ag = 21300 + 2pap00 — A0 + 2(“3 - “2) 4+ 2 (/‘3 My )t1 + 2p (t2 -4 ) = 24ty Hy (t2 - tl)

2
A =20, + 2py0 — Aoy + 2p00 + 2(u3 - “z) t + 2,u§ (t2 -t ) = 2ty ptq (tz -1, ) + 2(,113 — Hy )(2(11 + ultl)

2 = min(a1 + bltl,aZ), Zy = min(a2 + bQ(zf2 — tl),a3), z3 = min(a3 + b3<t3 - tg),k)
Details on how this solution is obtained can be found in Guillaume (2016). Following the same

method, it is possible to to explicitly calculate all the other probabilities involved in the valuation of

a 3 — touch UOP with a barrier defined as a piecewise exponential affine function g (t) as in (133).

Table 8 reports a few numerical values of prices as functions of volatility and moneyness. Apart from
the shape of the barrier, all the parameters in table 8 are the same as those in table 1. The function

g (t) is continuous at ¢, and t,, but note that piecewise continuity on [to,t3] is sufficient for the

formula in (135) — (142) to hold. The barrier g(t) starts at 108.328707 on time f,. Then, it takes
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values 109.965886 and 110.701441 at times ¢, and t,, respectively, before ending at 111.441916 at

expiry f,.
Itis a quite straightforward extension to value a 3 — touch OEEUOP with a piecewise exponential
affine barrier, in the same way as we moved on from a 3 — touch UOP to a 3 — touch OEEUOP when

the barrier was piecewise constant. Table 9 provides a few numerical results when the process S (t)

and the barrier ¢ (t) have the same specifications as in table 8, and when the process V' (t) has the

same specifications as in table 7.

Table 8. : 3 — touch UOP option prices with piecewise exponential affine step barrier.

3 —touch UOP | o = 18% o = 36% o= 64%

K =100 5.02931082 | 8.09776189 | 12.2562049
K =110 9.36383182 | 11.652507 | 15.5356909
K =90 1.59173168 | 4.82830602 | 9.09761268

Table 9. : 3 — touch OEEUOP option prices with piecewise exponential affine step barrier.

3 —touch OBEUOP | ;. — 20%,0, = 50% | oy = 50%,0, = 20% | o5 = 35%.0, = 35%
6, = —50% 4.04980406 2.65336826 5.40003822
., — 50% 8.53096357 4.95979365 9.36116401
0., — 5% 6.45391124 3.89816913 7.55304833

3.3. Higher dimension

So far, exact results have been provided only for 3 — touch barrier options. It is important to
know if an n —touch barrier option remains analytically tractable for n > 3. Let us refer to the
maximum number of crossings n as the dimension of the n — touch barrier option. Such
terminology is justified by the fact that n is the dimension of the integral problem associated with
an n —touch barrier option. Clearly, as n increases, the analytical calculations become more and
more time-consuming, and the resulting formulae more and more cumbersome. Among all possible
n —touch barrier option valuation formulae, the n —touch up-and-in put and the n —touch down-
and-in call are the ones that should require the fewest multidimensional integrals to compute and
thus the ones that should result in the most compact formulae. Indeed, consider the following

probability p, where the K 7:/ s are fixed positive real numbers and the H / s are all greater than zero,

with H, > S(O)

S5 > H,.S(t) < K\, SP > Hy,8(ty) < Ky, 85 > Hy, S(ty) < K,

PG s H (1) < K8 2 HLS(1) < K

—w4%mi@+%@+@> (144)
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Ry —2h — pty ky — 2hy + 2 + pty ky — 2k + 2y — 2 — pty Ky — 2hy + 2hy — 2k, + 2hy + i,

IR oty ’ oty ’ ayt,
5k — 9k +2h, — 2h, + 2h, — 2h — ut
: ° . . " i : v P12 P23 P340 Pys
oty

where the function &, [bl, by, by, 0,055 0195 Pogs Pags Pus ] is defined by (25)

In theory, the probability p in (144) could be used to value a 5 — step up-and-in put by taking
K, K, K, K, high enough for the probability
Q(S(tl) < KI,S(tQ) < KQ,S(t?)) < K3,S(t4) < K4) to become “very” close to 1. One should

beware, though, of the numerical errors entailed by taking the appropriate limits w.r.t. the K Z./ s in

(144). A little testing shows that they can be big, so that one cannot get around the analytical
derivation of the following probability:

Q(Sy > H,,5} > H,,5 > Hy, 5} > H,,5] > H,,S(t;) < K; ) )

which involves many more 5 — dimensional gaussian integrals than p
To evaluate the function @, it can be shown that the 5 — dimensional integral defining ®, can

be rewritten as the following triple integral, which is significantly faster to evaluate numerically :

- 2 P
by — Py 47 by =P34 ["3 V1=pi3 ‘*‘/’2.3‘”2]

b2 \/1*p§3 \/1*ﬂ§4 9 9 9
1 ' ' s S b —p
@5 [bl,.‘.,b5;pl'2,...,p4'5]:—_3 exp|— 2 23 41 N2 1.222
87[- Zy=—o0 l'gz—oc Ty=—00 \’1 — pl.?
b= p,5 |2, \/1 p§4 1034 (xg\Jl p223 1 Py 37, (146)

dz,dz,dr,

Vl o piﬁ

The probability p can also be expressed in terms of the pentavariate standard normal

cumulative distribution function N, as follows :
2
pzexp[—l;(h5 —hy +hy —hy —I—h,l)] (147)
o

ky — 2k — vt ky — 2Dy + 2hy + vty ky — 2hy + 2y — 2y — vty Ky — 2D, + 2y — 2k, + 2k + vt

M o\t ’ o\t ’ o\t
°|ky — 2hy + 2R, — 2hy + 2hy — 2h — Vi,
7 TPL2 PLyy T PLa PLs T PasPoas T Pasy P340 P35 T Pas
28

An exact three-dimensional quadrature rule for the numerical evaluation of the five-dimensional
function N, can be found in Guillaume (2018). This approach is not faster than implementing the

formula in (144), though.

Whatever the multitouch payoff considered, it is clear that, as n increases, so does the size of
the obtained formulae. Thus, although it is possible to calculate closed form formulae for multitouch
barrier options for n > 3, the number of terms involved makes it a quite tedious task. To give an
idea of the required effort, one can take a look at the number of terms involved in the calculation of
the probability needed to value a mere 5 — step knock-out put in Guillaume [2015]. For an arbitrary
dimension 7, the only realistic solution would be to find a way to automate the calculation.

However, even if a computer program were able to write down the exact solution of the n —
touch barrier option valuation problem for any n € N, with all the necessary details for its
immediate implementation, there would still be a more fundamental issue to be addressed than the
size of the resulting formula. Namely, the numerical evaluation of the multivariate gaussian integral
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of order n € N. It is well-known by specialists of numerical integration that it is impossible to
evaluate such an integral with arbitrary accuracy and efficiency for any n € N, due to the notorious
“curse of dimensionality”. For more background on this topic, the reader may refer to Genz and Bretz
(2009). In high dimension, the conditional Monte Carlo simulation method pioneered by Wang and
Potzelberger (1997) and Potzelberger and Wang (2001) remains extensively used by practitioners, due
to its flexibility and its good mix of speed (computational time grows linearly in dimension) and

precision (no discretization of each [ti—l’ 2 ] is required). Notice that the closed form solutions that

one can derive in low dimension are still a useful way to increase the speed of convergence of Monte
Carlo simulation in high dimension, either as accurate benchmarks that can be used as control

variates, or as a way to extend the Brownian bridge over time intervals larger than [ti_l Nz ] . Another

possible solution in high dimension is to notice that the function ® , as a convolution of Gaussian

densities, can be numerically evaluated by means of the fast Gauss transform algorithm pioneered
by Greengard and Strain (1991). Examples of applications of this numerical method to quantitative
problems in finance can be found in Broadie and Yamamoto (2005).
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