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H F A W N =

Abstract: Disease surveillance is used to monitor ongoing control activities, detect early outbreaks, 1
and inform intervention priorities and policies. However, much data from disease surveillance =
remain under-utilised to support real-time decision-making. Using the Brazilian Amazon malaria s
surveillance data set as a case study, we explore the potential for unsupervised anomaly detection 4
machine learning techniques to discover signals of epidemiological interest. We found that our s
models were able to provide an early indication of outbreak onset, outbreak peaks, and change points
in the proportion of positive malaria cases. Specifically, the sustained rise in malaria in the Brazilian -
Amazon in 2016 was flagged by several models. We found that no single model detected all the =
anomalies across all health regions. Because of this, we also provide the minimum number of machine  »
learning models (top-k models) to maximise the number of anomalies detected across different health 10
regions. We discovered that the top-3 models that maximise the coverage of the number and types of 11
anomalies detected across the 13 health regions are: Principal component analysis, Stochastic outlier 12
selection and Multi-covariance determinant. Anomaly detection is a potentially valuable approach to 13
discovering patterns of epidemiological importance when confronted with a large volume of data 14
across space and time. Our exploratory approach can be replicated for other diseases and locations to s

inform monitoring, timely interventions and actions toward endemic disease control. 16
Keywords: Anomaly detection; Malaria; Machine learning;big data 17
1. Introduction 18

Disease surveillance programs established by local, state and national governments 1o
collect health data of potential epidemiological importance [1]. The volume and velocity 2o
of data collected through these systems are increasing over time in both formal and infor- =
mal methods of collecting data [2]. Despite the availability of large quantities of disease 22
surveillance data, most of them are not adequately or optimally [2] utilised to support  =s
real-time public health decisions. The reasons for this under-utilisation of epidemiological 24
data include limited availability of data analysts, data quality issues such as delayed and =5
missing data, and competing priorities for health system resources [3-5]. As a consequence, 26
more data are collected than can be analysed, missing an opportunity to inform timely  2-
decisions. Here, using a malaria case study, we explore the benefits of using anomaly s
detection approaches to inform timely decisions about appropriate disease interventions 2o
and increase the chance of controlling disease transmission within the population [6]. 30

Different methods of generating evidence from surveillance data are useful to support .
public health decisions, depending on the type of disease outbreak. For pandemics where
daily growth estimates, peak size and timing are reported and frequently analysed by s
humans, a simple dashboard of a statistical summary of case numbers and corresponding  sa
locations might be sufficient to re-target available interventions. However, for endemic s
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diseases where frequent analysis of case reports by humans is not frequently performed but e
regular insights are still required, methods that enable automated generation of evidence a7
from surveillance data are required. In this paper, we focus on malaria, which is an endemic s
tropical disease. 30

Among the evidence required for endemic disease management, we found the fol- 4
lowing important: identifying the acceptable disease burden within a population; when, 4
why and how rapid growth (flareup) in case numbers would occur beyond the acceptable 22
threshold; the spatiotemporal variation in progress towards disease elimination, and the 4
effectiveness of interventions [7]. Most of the evidence required for endemic disease man- 44
agement is detected as deviations from the known characteristics of the endemic disease 45
recorded in the surveillance data during outbreak monitoring. The departure from normal 4
behaviour and the process of detecting such departures by mining the collected data is 4
termed anomaly or outlier detection [8-10]. 48

An anomaly is an observation that deviates so much from other observations as to s
arouse suspicion that it was generated by a different mechanism [10] or as an error in  so
the current mechanism. Anomaly detection is the process of mining the patterns in data s
that do not tally with the expected behaviour of the system that generates the data [9]. s
Anomalies may occur as a result of reporting error, variability in measurement, change in s
natural processes, human-induced errors, fault in machines, fraudulent activities, response  sa
to intervention measures, among other reasons. Anomaly detection is a part of Artificial in- s
telligence (AI) methods. Alis generally concerned with building smart machines (powered e
by algorithms) capable of performing tasks that typically require human intelligence [11] s
and are able to discover patterns based on several experiences presented to them [12]. 58

In this paper, we focus on applying Al-based anomaly detection methods to detect  so
anomalies in endemic disease surveillance data, with the purpose of assisting public e
health managers to make better decisions. In doing this work, we intend to achieve &
the following objective: (i) designing an anomaly detection framework that enables the e
repeatable integration of methods, data and generated insights into the decision support e
system of different regions to assist in the control and eventual elimination of endemic s
diseases; (ii) evaluating the potential epidemiological significance of the spatio-temporal s
anomalous patterns detected by the machine learning models, and (iii) assessing the s
consistency and variation in anomalous patterns detected by models in order to select the o7
best models to be deployed into production for anomaly detection in surveillance data e
streams. oo

With the above objectives in mind, we answer the following research questions: (1) 7
What are the relevant epidemiological anomalies that can be detected in routine disease =
surveillance data? (2) What are the minimum number of models (top-k models) that canbe 7
deployed to maximise the number of detected anomalies across different health regions? 7
How consistent and variable are the performance of these models across the data from 7
different health regions? 75

The case study for this research is the state of Para in Brazilian Amazon region (see 7
Figure 1) where malaria has remained endemic especially in the northern region. The 7
surveillance data for this case study is a de-identified and public version of the Brazilian s
epidemiological surveillance system of malaria (SIVEP-Malaria) database recorded from 7o
2009 to 2019 [13]. This data set contains daily positive and negative test results (but o
aggregated into months in this work as the days and dates have been removed) malaria e
diagnosis outcome for each patient. The state of Para is divided into 13 health regions for e
health administration purposes. 83

In the remainder of this paper, we first introduce the framework for exploring anomaly  es
detection in surveillance data and then explain the data set we used to validate this es
framework. We then describe the various unsupervised machine learning algorithms that =6
we employed for exploring the anomalies in the data. Further, we present results and then &
discuss the aspects of the framework and anomaly detection methods and results that are s
most relevant to the control and management of endemic disease outbreaks. 89
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Figure 1. Map of Brazil showing the northern states in the Amazon area that accounts for 99% of
malaria cases in Brazil. The state of Para can be seen in the north-central region.

2. Methods 90

In this section, we first introduce our design of a framework to enable automated and o2
repeatable surveillance data analysis anomaly detection irrespective of space and time. We o2
then leverage the components of the framework to describe how we processed the data and e
applied different unsupervised anomaly detection algorithms to the data to detect patterns  os
and anomalies of different types. o5

2.1. Anomaly detection framework %

A major consideration in designing modern data analysis framework or pipelineis o7
taking concept drift and data drift into consideration [14,15]. These concepts refer to the o=
change in data distribution over time and as you move from one hospital or health region oo
to another. Continuously integrating new data and retraining the detection algorithm are 100
important for updating the performance of the deployed model. 101

Figure 2 presents a decision support framework that is based on anomaly detection 02
using endemic disease surveillance data. As an endemic disease, we assume that case 10
numbers and situation reports are not analysed on daily basis by humans. This assumption  10s
is in contrast with on-going pandemics like COVID-19 [16] in which daily case analysis 1os
is carried out. Hence, only a monthly review triggered by alerts would lead to conscious  10s
analysis and investigation by humans. Daily reports take an average of one month to be 107
collated and aggregated into the health regions that make up a state government. The 10
entire surveillance data per health region is used as a training set for the anomaly detection 100
models. 110

To understand the framework in Figure 2, Table 1 provides the description of each of 111
the steps. The framework can be used to consistently apply anomaly detection models to 112
surveillance data collected over time in different regions and for different endemic diseases. 113

The remaining subsections will give further details on the data transformation, feature 114
extraction, machine learning algorithms used for anomaly detection models training and 115
the major parameters used by the training algorithms. 116

2.2. Epidemiological Feature Selection and Pre-processing 117

Although there are 42 fields recorded in the SIVEP time series surveillance data
for malaria, for the purpose of this study we used four fields: Date (in Months), total
number of tests, number of negative results and number of positive results. These last three
features were converted into a single feature: the proportion of positive tests, Ip, which is the
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refer to ensembles of anomaly detection models. The appropriate definition of an anomaly for each
health region is used to select the best anomaly detector ( My,g;) for that health region. The models
are retrained and tuned over time as novel data becomes available.

Table 1. Summary of the pipeline methods and steps for online anomaly detection using surveillance
data

Step No. Major activities

1 Train candidate anomaly detectors per health region using train set

Based on local epidemic demands, select best anomaly detector, My,

Tune model parameters after using for 6 - 12 months to evaluate performance

As new data arrives, use the best detector, My,s 4 to detect and interpret anomaly
New data for evaluation and model re-training

Update the models with the new data and repeat from Step 1

NUl = WIN

proportion of tests that were conducted that returned a positive result for malaria, for each
state and health region. Ip is mathematically defined as:

_Np

Ip =
P= Ny

@
where Np is the total number of positive cases per month and N7 is the number of s
tests carried out per month. As Ip is a proportion, we can compare values across time and 110
space even if the testing capacity is changing over the months and across the geographical 120
health regions. However, we assume a uniform distribution of cases across a health region 121
such that we have equal chance of detecting an infected person within a health region. 122
With the assumed uniform distribution of positive cases per health region, an increase 123
in Ip would then truly represent the situation where more people in the health region are 124
becoming affected. The reason for the rise will then be investigated. Given the same testing 125
capacity (N7), a decline in Ip would then represent either a naturally dying epidemic or the 126
outcome of a deployed intervention. 127
In Figure 3, we show the state level aggregated data from the Para state of Brazil which 12e
we used to demonstrate the original epidemiological features of interest that we used to 12
derive I p- 130
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Figure 3. Original recorded surveillance data from Para state in Brazil. This shows the monthly total
tests (blue), number of negatives (green) and number of positives (red).

Similar data to Figure 3 was extracted for the 13 health regions by separating the Para  1s:
state into its health regions. The extracted data were then transformed to Ip for each of 1s2
the health regions. An example outcome of the data transformation is shown in Figure 4. 1s:
To reduce noise, we applied the moving average transformation to the derived feature, Ip 122
using a window size of six months. Moving average is used to remove some noise and  1ss
irregularity (e(t) in equation 2) to enhance the prediction accuracy of the machine learning 13
algorithms. 137

Data for Para (PA) State

1 = §-Month average

Steady state = Original Data

Decline Flare Up

Test Data

Proportion of positives
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Figure 4. Feature engineering and time series data transformation. Endemic outbreaks could move
from a Steady state to periods of either a rapid growth (flareup) or Decline in Ip.

A time series data, y(t) can be generalised using an additive model as:

y(t) = g(t) +5(t) +h(t) +e(t) )
where: 138
¢(t) is the trend (changes over a long period of time) 130
s(t) is seasonality (periodic or short term changes) 140
h(t) is the effects of holidays to the forecast 141
e(t) is the error term or irregularities (the unconditional changes specific to a circum- a2
stance). 143

Different learning algorithms can model time series data well depending on what 14
components of time series are present in the data. The unsupervised approach to anomaly  1ss
detection is exploratory in nature and the evaluation are subjectively performed by humans. 14

Although unsupervised anomaly detection algorithms are given certain inputs by 14
humans that enable them set a metric threshold for objectively and automatically detecting 1ss
anomalies, the detected anomalies will need to be certified by experts. Table 2 shows 14
the unsupervised models which are integrated in the Pycaret framework [17] and uses a  1so
specific distance measure to estimate the point anomalies in a time series data. 151

Clustering-based local outlier (cluster or CBL), Local outlier factor (lof) and Connectivityas:
based local outlier (cof) are based on local outlier concepts. CBL uses a distance measure 1ss
that considers both the distance of an object to its nearest cluster and also the size of the 1ss
cluster. So, small clusters are not simply discarded as outliers as a whole. The lof algorithm 1ss
uses k-nearest neighbour to define the density of objects whose distances from one another s
would be considered in defining the density of the locality. The reachability distance, which s
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Table 2. Unsupervised anomaly detection algorithms. The distance measures used by each algorithm
differ. A single anomaly score will be computed for each data point. Based on a contamination rate
(10% by default) a threshold on anomaly score is used to flag anomalous data points.

No. ModelID. Model Name Core Distance measure
1 cluster Clustering-Based Local Outlier [18] Local outlier factor
2 cof Connectivity-Based Local Outlier [19] average chaining distance
3 iforest Isolation Forest [20] Depth of leaf branch
4 histogram Histogram-based Outlier Detection [21] HBOS
5 knn K-Nearest Neighbors Detector [22] Distance Proximity
6 lof Local Outlier Factor [18] Reacheability distance
7 svm One-class SVM detector [23] hyper-sphere volume
8 pca Principal Component Analysis [24] Magnitude of reconstruction erro
9 mcd Minimum Covariance Determinant [25] Robust distance from MCD
10 s0s Stochastic Outlier Selection [26] Affinity probability density

is a non-symmetric measure of distance, is used to determine an outlier. Each data point 1ss
may have a different reachability distance and this distance is used to define the degree of 1se
anomaly. The larger the value, the more anomalous the point from its local neighbours [18]. 160

Connectivity-based local outlier cof is an improved version of lof. The density- ie
based lof algorithm has a shortcoming in that it completely depends on the density of the 1s2
neighbouring points. It performs poorly when the density of the outlier is similar to its e
nearby data points. Hence, cof recognises that anomalies must not be of a lower density 1es
than the data it deviates from [19]. 165

Isolation Forest (iforest) algorithm is an unsupervised version of decision tree. Itis 1ee
a binary decision tree. The iforest algorithm is based on the assumption that anomalies e
are few and unique and that they belong to the shallow branches where they easily isolate 1es
themselves from the rest of the tree branches. A random set of features are selected and 160
used to build the tree using the data points. The sample that travels deep into the tree is 170
unlikely to be anomalies. The Isolation Forest algorithm is computationally efficient and it 172
is very effective in anomaly detection. However, the final anomaly score depends on the 172
contamination parameter provided while training the model - meaning that we should have 17
an idea of what percentage of the data is anomalous so as to get a better prediction [20].  17a

Histogram-based anomaly detection (histogram) assumes feature independence and  17s
builds the histogram of each feature. The anomaly score is based on histogram-based 17
outlier score (HBOS). HBOS can be constructed from either univariate or multivariate 177
features of each data point. For multivariate problems, the anomaly score of all variables is 172
added up to rank the data. Given d variables with p data points, the HBOS is calculated as: 17
[21] 180

d 1
HBOS(p) :Ig)log<histi(p)> (3)

Histogram outlier detector first constructs a histogram for a variable by choosing a 1.
bin. The computed score for each variable is normalised to 1.0 and summed up across the s
d variables to compute the global outlier score. A data point may be anomalous in one 1es
variable but not in others. Hence, a data point that is an outlier in almost all the variables is 1es
almost definitely an anomaly in the data set. 185

K-Nearest Neighbors (KNN) is popularly used as a supervised learning algorithm. 1s6
However, it can also be used as an unsupervised learning algorithm and can be used to  1s7
detect outliers or anomalies in data. The assumption in this implementation for anomaly 1es
detection is that outliers are not in close proximity with other neighbours. A threshold is  1se
defined for proximity and used to determine data points that do not belong to a neigh- s
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bourhood. A key parameter that determines the number of neighbours that will be used in 10
calculating the proximity measure is the n_neighbors parameter. 192

One-class SVM detector (svim) is an unsupervised version of a traditional SVM 1.
regressor or classifier. It uses either a min-volume hyper-sphere [23] or a max-margin e
hyperplane metric to separate anomalous data from the normal ones. The major purpose 1ss
of one-class SVM is to detect novelty in data. It helps to detect rare events. Novelty and 196
weak signals are special aspects of anomaly detection. In one-class SVM, data points that 17
lie outside the hyper-shere or below the hyper-plane are considered anomalies. 198

Principal Component Analysis (PCA) is a method that decomposes a signal into its 190
major components. The first component is usually the most important. This is followed by 200
the second, third and so on. The idea of using PCA for outlier detection is that the data point = zo:
with high reconstruction error from its principal components are outliers from the dataset 202
[24]. For different PCA algorithms, the way the anomaly score is calculated may differ. The 20
use of residuals, leverage and influence of a data point may all be put into consideration. zos
However, these metrics are better utilised in a visualisation than in an automated outlier zos
detection system. Hence, some human evaluation and domain knowledge may need to 206
apply in setting the threshold for outlier threshold using the appropriate metrics for the 207
problem domain. 208

Minimum Covariance Determinant (MCD) is an anomaly detection method that uses 200
the fact that tightly distributed data will have a smaller covariance determinant value. So, =210
instead of using the entire data set to calculate distribution parameters (such as mean and 21
standard deviation), it divides the data into sub-samples and then computes the covariance 212
determinant of each sub-group. The number of sub-samples & is such that 5 < h < n, 23
where n is the total number of data points [25]. The group with minimum determinant 2
would be used as the central group for distance calculation. It is best suited for determining =15
outliers in multivariate data [25]. MCD uses robust distance measures that are not amenable 216
to the unrealistic distributional assumptions that underlie the use of Mahalanobis distance =17
measures for outlier detection in most other classical methods. Mahalanobis distance =z
computation is sensitive to the presence of outliers in data as the outliers tend to draw 21
the distributional statistics towards themselves. Hence, the robust distance is a robust 220
calculation of the Mahalanobis distance such that the effect of outliers is minimised. 221

Stochastic oultier selection (SOS) [26] method is a statistical modeling method for 222
anomaly detection. This method assumes that the data follows a stochastic model witha 223
form of probability density function (pdf). Normal data exists in areas of higher density 224
while anomalies exist in areas of lower density. Hence, the measure of distance used to 22
determine anomaly is probability density. For parametric stochastic models, a pdf is assumed 226
apriori, with some values assumed for the model parameters. However, for non-parametric 227
modelling, little or no assumption is made about the value of these parameters and the zzs
algorithm has to learn the model parameters directly from the data. We have followed 220
largely non-parametric modelling in this work. We focus on discovering the model that =2s0
best models the data based on the type of anomaly that is of interest to epidemiologists. In 231
this research, we are interested in outbreak anomalies. 232

A major parameter and assumption that underlie the algorithms and methods em-  2s:
ployed in this work, which is based on unlabelled data, is the use of Proportion of anomaly or 23
Contamination rate, yj. Contamination rate is the fraction of the total data that we assume to 235
be anomalous. Our default value is 0.1 (10%) fraction of the data. In our standard experi- =236
ments, we have set # = 0.1. We also conducted a sensitivity analysis for this parameter, =zs
using values of 7 = [0.1,0.2,0.3,0.4]. 238

2.3. Selecting top-k models for maximum coverage 230

The problem of selecting models that optimise both anomaly detection coverage and 240
reduced inference time (Top-k model) is a version of the classical set cover and maximum za
coverage problems [27]. The set cover problem is described thus: given a universe i/ and a 242
family S of subsets of U, a cover is a subfamily K C S of sets whose union is . In simple 243
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terms and in this research, the set cover problem is finding the least number of models that 24a
can detect the same number of anomalies detected by the 10 models. In situations where 245
the top k models cannot detect all the possible anomalies, the maximum coverage problem 246
wants to ensure that no other k models set can detect more anomalies than the selected top  2a
k models. Hence, we want to select the top k models to maximise anomaly detection. 248

In this work, we gradually increased coverage until k models were selected or 100% 240
coverage was achieved. At each stage, we chose a model with a detected anomaly set Kj, =zs0
which contained the largest number of uncovered elements. We repeated this process until  2s:
100% coverage was achieved, up to a maximum of k times. We then recorded the model s
set that achieved 100% coverage or the fop — k models and the percentage coverage they 2ss
achieved. We performed this analysis for each health region and also for health regions s

combined into a single unit. 285
3. Results 256

We present the major results relating to algorithms and discovered anomalies of sz
interest. 258
3.1. Anomalies by contamination rate 250

The number of anomalies detected by each algorithm is linearly proportional to the 260
contamination rate, . This observation is consistent across the 13 health regions. The ze
anomalous data points were subjected to evaluation by epidemiological experts to interpret ez
their significance. As the contamination rate increases, more data points are flagged as zes
anomalies. The contamination rate that identifies all the anomalies that are of interest to  zes
epidemiologists is retained and deployed for anomaly detection within that health region. zes
In the next subsection, we see the nature and location of the detected anomalies. 266

3.2. Detected anomalies and epidemiological significance 207

For the purpose of this study, we define epidemiological events of interest as the onset  zes
of an outbreak, the peaks and troughs of an outbreak, and change points in the proportion 26
of positive cases. Models that distinctly flagged these events are considered to perform 27
better than others. am

Figure 5 shows the anomalies detected from ARAGUAIA and XINGU. Figure 5a shows 272
that the early rising or decline of cases can be detected from the data. So, the change points 273
in the data sets are detected as anomalies. This is appropriate for either early detection 27
of outbreaks or early signs of effectiveness of an intervention as indicated by declining 275

incidence. 276
0.254
s Anomal
K=l nomaly types
tO 0.2+ o 025 ® Flareup Anomaly
2 -g, ® Decline Anomaly
= Q
< 015 g ©2
8 % 0.15
% 0.1 @
o
IE o 01
@ H
e} i =
£ oos 2 0o
0 : ‘ : 0 : : ‘
2010 2012 2014 2016 2010 2012 2014 2016
Date Date
(a) Early flareups detected (ARAGUAIA (b) Clusters of anomalies but not early flareup
health region, detected by sos model) (XINGU health region detected by cof model)

Figure 5. Early change-point anomalies vs collocated anomalies

On the other hand, Figure 5b detected continuous rising points, peak points and =277
continuous falling points as anomaly. These anomaly clusters show a strong change in 275
curve direction. This latter anomaly detector is suitable for reducing false alarms. An 27
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alarm for anomalous points is only triggered when a change in direction of data have been  2e0
strongly established. 201

The models that produced the results in Figures 5a and 5b are Stochastic outlier e
selection (So0S) and cluster-based models, respectively. Therefore, health regions with zes
low-risk tolerance can implement the SoS model while more risk-tolerant health regions  zes
can implement cluster-based anomaly detectors. 205

It is worth understanding how early an outbreak can be detected. The outbreak detection  2ee
time is the time between the first report of a rising epidemic to the time that the models flag  2e7
a report as anomalous. Another important time to note is the time between the first rising  2es
outbreak detection to the peak of the outbreak. This later time determines how effective a 260
deployed intervention could be when an anomaly is detected. Figure 6 shows results from 200
the ARAGUAIA health region illustrating how early the two major outbreaks over the ten 20
years could have been detected. In this figure, we have zoomed into the relevant portions  ze:
of figure 5a to illustrate an early flagging of outbreaks. We have chosen ARAGUAIA as it 203

has numerous number of outbreaks throughout the decade of 2009 to 2019. 204
'\-ua‘ T
- . i All Subdata
"3 g @ Outbreak anomaly
g b 02| # Eendemicanomaly 1
= 0.1 o
g oy
E o
c . § 01f 8
g 5-10 €
2 =%
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o = ] o 2 o = & 2 8
R E R R 2 7 2 R
Dates Dates
(a) Early small outbreak detection (b) Early large outbreak detection

Figure 6. For early detection of endemic disease transitions, the sos algorithm is more appropriate.
The yellow dashed line represents the threshold for separating anomalies that occur within outbreaks
(when the positivity rate is more than or equal to the 10% of the sampled population) and endemic
situations (when the positivity rate is less than 10% of the sampled population).

In figure 6a, the first instance of increasing proportion of positive cases (Ip) was 205
reported in January 2012. As the next report in February 2012 arrived, the data was 206
reported as being anomalous. So, only one time step delay was allowed before anomaly  2e7
detection. This outbreak peaked in July 2012, 5 months after it was detected. There were no 208
further alarms between February and July 2012, meaning that the flareup trend continued. 200

In figure 6b, we had a larger outbreak. In April 2015, the first occurrence of high 300
case prevalence was flagged immediately as anomalous. Hence, there was zero delay in 3o
flagging that very early phase of an outbreak as being anomalous. No further alarm was o2
triggered until September 2015 and then January 2016 until the outbreak peaked in May  sos
2016. Whereas the alert in September 2015 can be explained as possible slow down in  sos
the outbreak, that of January 2016 indicates a continued rising in proportion of positives. sos
These are strategic anomalous alerts that should be very useful for planning intervention  soe
or investigating why existing interventions are not successful. 307

In both examples shown in figure 6a, it is clear that we can detect outbreaks very early sos
(with zero or 1-lag time step) using the appropriate anomaly detection algorithm thatis e
suitable for modeling early detection using in a given health region. 310

3.3. Consistency and Variation in anomaly detected by models a1

For the dates whose proportion of positive cases were detected as anomalous, we 12
checked how many of the models jointly detected such dates as anomalous. We plotted 31
a heat map of the number of anomalous dates jointly detected by model pairs. Certain s1s
patterns can be seen to emerge within and cross health regions as shown in Figure 7. We  s1s
highlight which models mostly agreed and which models rarely agreed with other models. 16
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Figure 7. Each cell in the heat map shows the anomalies detected jointly by two models.The models,
pca and sos, have strong disagreement with each other and other models on the dates flagged as

anomalous

The pattern shows that majority of the models found the same points as anomalous. s17
Specifically, cluster, cof, forest, histogram, knn, lof, svm and mcd agreed on at least 85% of 1.
their detected anomalous data points. In contrast, pca and sos disagreed with all other 1
models and with each other on the data points marked as anomalous. Models that are sz
jointly consistent their prediction or detection may be used as ensemble to cross-validate sz
anomalous data points and increase the confidence of decision makers. Other models that 22
vary considerably in their prediction or disagree with other models may not be discarded. sz
These later types of models are important in detecting novelty, rare events, early changes sz
or weak signals. 225

In other health regions, some new patterns and changes to previously described sze
patterns were observed as shown in Figure 8. Most models detected different types of = s2r
anomalies and did not agree in most cases like previously. 228
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Figure 8. Increasing variation in jointly detected anomalies in some health regions

Most of the jointly consistent models continued to detect the same type and number 320
of anomalies but to lesser extent. One can observe that, svm and mcd disagreed with other 330
models that they were previously consistent with and strongly agreed with each other s:
by detecting the same number of anomalies. In CARAJAS, all the data points flagged as a2
anomalous by svm were also flagged as anomalous by mcd. In LAGO DE TUCURI, both 333
models had 13 out of 14 anomalous points they detected as being the same. In LAGO DE 334
TUCURI, however, it is difficult to establish strong consistency among models. It seems all 335
models are detecting largely disjoint anomalous points. As inconsistencies continues to  sss
wane across models, sos even showed stronger disagreement(see MARAJO II) with other s
models in the type of anomalies jointly detected. 238
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It can be inferred that even though different models detect similar anomalies, the 330
distribution of each dataset coming from different region will likely change the behaviour s
of each model, resulting in different type and number of anomalies detected in each region. ss

Without detailed reference to the mathematical details about these models, we can  sa2
identify similar models irrespective of data distribution. Next, we examine the temporal s
variation in the detected anomalies. 34s

3.4. Temporal location of detected anomalies 245

We observed that the temporal location of the flagged anomalies by models were sig- 46
nificantly different, despite most of the models flagging almost equal number of anomalies a7
per contamination rate. Figure 9 exemplifies the location of detected anomalies by some  sas
algorithms as distributed across different months and years. 240
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o
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s
. % 015
. 3
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H o
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o Date
(a) Outbreak Anomalies by SVM located be- (b) Decline anomalies by PCA located be-
tween 2011 and 2014 tween 2015 and 2016

Figure 9. The location of anomalies detected by different algorithms varied in years in which they
were detected. Event occurring in these years in a given health region may help to interpret the
significance of the detected anomaly in that region

Figure 9 clearly shows the variation in the temporal location of detected anomalies ss0
by two algorithms. The One-Class SVM (Figure 9a) and the PCA (Figures 9b) provided s
interesting but contrasting anomalies. Whereas the first detected the peaks of the outbreaks, ss:
the other detected the troughs of the dying epidemic. Hence, the attention of human experts s
may be required to validate the output of each model and then select the best model for sa
each region based on the anomaly event relevant to the region. 355

To compare the location of detected anomalies across models, time and space, we  ss6
defined a parameter called Proportion of anomaly per year. This is the ratio of anomaly sz
detected by a model in a year to the total number of anomalies detected over a decade. sse
Hence, the values lie between 0 and 1. Figure 10 shows two major variations in the temporal s
location of the detected anomalies across regions. 360

In Figure 10 (Araguaia), 8 out of 10 models detected 77% or more anomalies in 2016 36
alone. This is a very strong agreement among the models irrespective of the type of se
anomaly detected by each model. This provides a strong evidence for supporting further ses
investigation about what happened in 2016 in the epidemiology of malaria that region in  ses
2016 in comparison with other years. Hence, we can say that the anomalies in this health e
region clustered in 2016. We observed similar situation is Carajas (2011), Metropolitanal ses
(2010), Metropolitana III (2010) and Rio Caetes (2010). 367

The dispersed temporal location of anomalies was observed in some regions as no  ses
single year had large number of anomalies detected. However, some models co-detected  seo
anomalies in certain year. For eample, in Baixo Amazonas, a significant number of models 7
(at least 6 out of 10) detected more than 20% of anomalies in each of 2010, 2013 and 2016. 37
Again, 2016 has strong outlier content. This is because knn, lof and mcd detected more than sz
40% anomalies in 2016 alone when compared to 9 other years under consideration. 373
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Figure 10. Proportion of anomaly per model per year. There is a clustered temporal location(
ARAGUAIA) and a dispersion temporal location (BAIXO) of anomalies

The importance of anomalies detected by models may be seen from the perspective of sz
more models detecting the same anomaly within certain temporal domain or few models s7s
detecting few anomalies within a temporal domain. Each of these behaviour may prove sz
either that a known anomalous even occurred within a temporal location or that a novelty sz
is being detected by a few models. 378

3.5. Model selection for inclusion in endemic disease surveillance system 379

For practical purposes, not up to ten models will be deployed and maintained in each  sso
of the 13 health regions under study. It could be financially and technically demanding se
for the state government to maintain 10 models across 13 health regions. Also, some of e
the models detected redundant anomalies such that up to eight models jointly detected es
one anomaly. Although this redundant detection helps to increase our confidence in the ssa
detected anomaly, it will increase inference time in production. Hence, after establishing  ses
consistency in detected anomalies across models, we propose to select the top k models  ss6
that either gives us 100% coverage of all the anomalies or a pre-determined high (75 - 95) s
percentage of all anomalies. 388

To solve the above problem, we applied the classical set cover and maximum coverage sso
greedy heuristic algorithm [27]. The results showing the progression of percentage coverage s
as more models are added to the k-subsets is shown in Figure 11. 301
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Figure 11. Local and global coverage by top — k models: (a) Between 4 — 8 models are required to
achieve 100% coverage per health region. (b) Anomaly coverage of top-k when anomalies from the 13
health regions are combined. Six models achieved 95% coverage across the 13 health regions

Across the 13 regions between four to eight models are required to achieve 100%  se2
coverage per region. This is known as the local coverage as only the anomalies detected  ses
in each region are fed as input to the set cover algorithm. For global coverage analysis, 304
Figure 11b shows that all models are required to achieve 100% coverage. However, first sos
few models have high percentage of anomaly coverage. Only two models (pca and so0s) are 306
required to cover 50% of all the anomalies in the 13 health regions. Three models achieved o7
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73.53% while six models achieved 94.81% coverage. With 95% coverage, there is a good e
coverage of all possible anomalies without implementing the last four models, but without e
considering which models are locally relevant to a health region. 400

With reference to individual health regions, Figure 12 shows the coverage progression o
as more models are added to a health region. We have used Araguaia (Figure 12a) and 02
Tocantins (Figure 12b) to illustrate regions that required the smallest number of models  40s
to achieve 100% coverage and the largest number of models to achieve 100% coverage, aos
respectively. a0s

Percentage Coverage
Percentage Coverage

i 1
0 2 4 6 8 10 0 2 4 6 8 10

top k models top k models
(a) Smallest number of models to achieve (b) Largest number of models required to
100% coverage: four models required with achieve 100% coverage: eight models. First 4
only cluster and sos achieving 77% coverage. models can achieve about 80% coverage

Figure 12. Progression of coverage in selected health regions with minimum (four) and maximum
(eight) model sets to achieve 100% anomaly coverage

It is interesting to see how the local ranking of models differs from global ranking of  cs
models. The top-ranked models locally differ a bit from the global ranking. For example, o7
the top-3 global models (Figure 11b) are pca,sos and mcd - covering 73.53% of all anomalies. 408
In contrast, the top-3 local models (in Araguaia) are cluster, sos and pca covering about 97%.  4oe
In Tocantins, the top-3 models are cluster, pca and cof, covering only 72.2% of anomalies 410
detected in the region. Only pca consistently ranked among the top-3 models in the global = 411
and local coverage problem. The cluster algorithm only ranked 6" in the global coverage a1
problem while it ranked 1% in the two local coverage problems. This result shows that s
whereas cluster may have detected most anomalies in Araguaia and Tocantins, the reverse 41a
is the case for most of the other 11 regions under consideration. 415

4. Discussion 416

The availability of large public health data is not currently matched by their use to a7
support real-time public health decision-making [4]. Methods and frameworks are needed s
that can use historic data to discover patterns and provide insights to support decision- a1
making. In this work, we have explored ten unsupervised machine-learning models to and 420
assessed their potential to discover anomalies in malaria surveillance data. In addition, we = 42
have designed a framework that enables continuous integration of new data to update our 422
decisions in near real-time. a23

The three major anomalous patterns detected by the models we explored models that 424
are relevant to epidemiology are: rapid growth (flareup), drastic decline in case number, and  a2s
change in trend direction of the proportion of positive cases. These events and patterns were 426
chosen on the basis of having been deemed epidemically important in previous work [30]  s27
and [31]. The one-class svm model was the model best able to detect the peaks of outbreak szs
flareups while pca was best able to detect the valley of decline in the proportion of positive a2e
cases. The change in direction of positive case trends was helpful in early detection of 430
outbreaks through the sos model. The findings for each health region differ in some ways 43
and therefore, a standard framework was adopted so that data from new region or disease 432
can be analysed in a reproducible way using all models available. 433
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We found that no single method or model performed well in detecting all pre-defined  «3a
anomalies across all health regions. When all the 13 health regions in Para state were ass
combined, pca, sos and mcd were found to be the top-3 models that maximised the number 436
and types of anomalies detected. However, in some individual health regions, cluster sz
algorithm ranked first before pca and sos in terms of maximising the number of anomalies a3s
detected when used alone. Overall, pca and sos performed well on average across individual 439
health regions and for the combined health regions. 440

These results can provide guidance about model selection when we are focusing either 4
on a specific type of anomaly or on maximising the broad range of anomalies detected, and 442
when we are focusing on either a specific health region or on the combination of regions s
at the state level. The choice of which combination of models to use is likely to be driven s
by the risk appetite of a health region and the type of epidemiological anomaly they are ass
most interested in detecting and mitigating. For risk-averse regions, models that detect rare 446
events should be included, even though not many other models confirm this rare event. 47
Health regions with higher risk appetite would focus on models that confirm well known  ass
anomalies. For example, model ensembles (svm, mcd, cluster) that confirm that an outbreak 4o
has actually taken-off will be deployed regions with higher risk appetite while models that 4so
detect early outbreaks such as sos would be deployed in risk-averse regions even whenno s
other model confirms an alert for early warning against a potential outbreak. as2

There are two methods of controlling alarm fatigue from both true positive and false ass
alarms considered in this work. The first is reducing the contamination rate parameter ass
for each anomaly detector. The second approach is through the confirmation of an alarm  ass
event by all top-k models before a warning alarm is sent out. In this second case, k would  4se
be the set of models that determine the same type of anomalies more often than not. Hence, 457
model selection will depend on their consistency in detecting the anomaly of concern over ass
time. The limit in the number of models that will be selected and deployed will also be  ase
affected by the space and time complexity [32]. The number of alarms sent out per unit aso
time and the critical nature of an alarm will determine how fatigued a human recipient will 46
become. a62

The pipeline in Figure 2 can be replicated in different settings with different surveil- 4es
lance data to select the best model for anomalies of different kinds ranging from flareups, ses
a decline in cases, and change in epidemic curve directions. Further, it serves as a sim- 65
ple framework experimental framework but compliant with continuous integration and s
Continuous deployment (CI/CD) paradigm [15], which is relevant in dynamic software se7
engineering environments. With the dynamic nature of disease outbreaks, a CI/CD - com- 4ss
pliant framework will take care of both data drift and concept drift [28,29] and continually  4es
select the best model as new data arrive. Concept and data drift will be experienced a7
within a health region over time and will also be encountered as model trained using data s
from one region is deployed into another region or for different disease surveillance data. 472
With concept drift, the statistical properties of data change over time and across regions. a7
Hence, the idea of adapting the CI/CD paradigm into an anomaly detection framework as 474
depicted in Figure 2 helps to handle data and concept drifts that would be associated with 475
epidemiological data collected over time and in different regions. a76

This work has several limitations and possibilities for future extension. As unsuper- 47
vised anomaly detection methods do not use labelled event classification, they will require  as
some time to be validated by many domain experts. New patterns are first identified from 470
the data and plausible interpretations are given afterwards. Hence, the epidemiological 4so
significance assigned to different anomalies detected in this endemic data are still subject e
to further expert evaluations. Again, although we assumed that the distribution of data 4s=
will change over time, we did not quantify the magnitude of the drift in order to formally 4es
and dynamically determine when model swap or retraining should be triggered. Future ass
work will focus on performing drift analysis and formalising the drift threshold [14,28] for 4es
warning alerts and automatic model selection, retraining or replacement. pres
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In conclusion, this paper has demonstrated that anomaly detection models can be ez
successfully applied to epidemiological surveillance data to discover unknown patterns ass
that are relevant for intervention design and formulation of disease elimination strategy. ass
However, only the fop-k models that maximises the detection of the anomaly of concern 4s0
should be deployed and maintained in production. This approach strikes a balance between 401
the detection of all anomalies and the cost of resources required to run multiple models to  ae2
maximise the type of anomalies detected. 493

The volume and variety of some public health data have rendered most statistical 4ss
methods inadequate for extracting evidence for robust decision-making. For example, ass
other sources of public health information such as patients” health records and other digital s6
traces such as social media, blogs, internet documents, phone logs and recorded voice 4o7
logs cannot be adequately analysed using statistical methods [33]. Artificial Intelligence o8
and unsupervised machine learning methods such as anomaly detection methods can s
utilise a larger volume of surveillance data to provide deeper insights better to support soo
decision-making for the elimination of endemic diseases. so1
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