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Abstract: Protein-protein interactions (PPIs) are associated with various diseases; hence, they are 

important targets in drug discovery. However, the physicochemical empirical properties of PPI-

targeted drugs are distinct from those of conventional small molecule oral pharmaceuticals, which 

adhere to the ”rule of five (RO5).” Therefore, developing PPI-targeted drugs using conventional 

methods, such as molecular generation models, is difficult. In this study, we propose a molecule 

generation model based on deep reinforcement learning, which is specialized for generating PPI 

inhibitor candidates. We successfully generated potential PPI inhibitor compounds by modifying 

the scoring functions of the existing small molecule generation model and constructed a virtual li-

brary of generated PPI inhibitor compounds. 
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1. Introduction 

Significant advances in science and technology have been made since the 1950s; however, the 

efficiency of the drug discovery process has notably declined. Specifically, the number of drug ap-

provals per billion US dollars of research and development spending has halved approximately every 

nine years [1]. One of the main reasons for this decline in drug discovery is that the current drug-

target space is nearly saturated. Therefore, since the early 2000s, researchers have been actively ex-

ploring novel therapeutic targets, such as protein-protein interactions (PPIs) [2–6]. PPIs play a crucial 

role in various cellular processes and are associated with many diseases, such as cancer [6] and Alz-

heimer’s disease [7]. However, targeting PPIs is complex, and only a few compounds have been ap-

proved or have progressed to the clinical trial stage as PPI inhibitors [8]. 

One of the difficulties in targeting PPIs is that they have different properties compared to con-

ventional drug discovery targets. The binding interface of PPIs is wider than the average binding 

region of a typical protein target. As a result, PPI inhibitor molecules tend to be larger and more 

diverse in conformation [9]. 

Lipinski et al. [10, 11] proposed a rule of thumb, known as the “Rule of five (RO5),” to evaluate 

the likelihood of a compound with specific physicochemical properties becoming an orally active 

drug. According to this rule, the compounds that do not meet two or more of the following four 

criteria are considered to be poorly absorbed and unlikely to eventually become pharmaceutical 

products. 

● Molecular weight ≤ 500 

● Indicator of lipophilicity, LogP ≤ 5 

● Number of hydrogen bond donors ≤ 10 

● Number of hydrogen bond acceptors ≤ 5 

On the other hand, Morelli et al. [12] studied the properties of PPI inhibitors obtained from the 

2P2I database [13]. This database contains protein complex structures and interaction regions stored 

in the PDB file format, along with complex structures where PPI inhibitors are bound. They showed 
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that most PPI inhibitors from the database violated RO5 significantly. Furthermore, they showed that 

the following rule of thumb, called “Rule of four (RO4)”, was more applicable to the PPI inhibitors. 

● Molecular weight > 400 

● Indicator of lipophilicity, LogP > 4 

● Number of cyclic structures > 4 

● Number of hydrogen bond acceptors > 4 

High throughput screening (HTS) is commonly used to find active compounds in the early 

phases of drug discovery. HTS is a rapid assay process that evaluates numerous compounds quickly 

and can effectively identify active compounds from vast libraries for a specific target. However, when 

HTS is performed for PPI as a target using a compound library consisting of general small molecule 

compounds, the acquisition rate of hit compounds is significantly lower [14]. Therefore, studies on 

the development of PPI-specific libraries to obtain high hit rates have been conducted to date [15,16]. 

However, such existing compound libraries mainly contain derivatives of the principal core struc-

tures used in known PPI inhibitors, limiting the diversity of compounds in the libraries. 

To address this restricted range of compounds, we focused on a large-scale search method in 

this study. Moreover, we used a deep-reinforcement-learning-based molecular generation model to 

produce potential novel PPI inhibitors. Molecular generation aims at discovering novel compounds 

with desirable properties and activities from a vast compound space. To produce potential PPI inhib-

itors, the scoring function of the molecular generation model was modified according to their prop-

erties. In addition, a virtual library containing the generated PPI-target compounds was constructed. 

2. Materials and Methods 

2.1. Molecular generation model 

In this study, we used a molecular generation model called REINVENT, developed by Blaschke 

et al. [17]. This model is based on character string (SMILES notation) and uses recurrent neural net-

works as the architecture. Moreover, it generates molecules with desired properties in combination 

with reinforcement learning. A pre-trained model based on ChEMBL [18], which is a database of 

chemical compounds, was obtained from [19] and used for reinforcement learning in the same way 

as described in a previous study [17]. 

 

2.2. Scoring function 

The scoring function of REINVENT S(x) of one generated compound x is calculated in the range 

of 0 to 1. Three scoring functions used in this study were quantitative estimates of drug-likeness 

(QED) [20], RO4 [12], and quantitative estimate index for early-stage screening of compounds target-

ing PPIs (QEPPI) [21]. QED is an index that quantifies the drug-likeness of small molecules and is 

equivalent to making RO5 continuous. It is defined in the range of 0 to 1 and was used as the score 

S(x). RO4 was introduced as the REINVENT score, and for each fulfilled RO4 four conditions, 0.25 is 

added to the total score S(x); thus, the score ranges from 0 to 1. The QEPPI is a quantitative index of 

PPI inhibitor suitability, ranging from 0 to 1. It has also been used for PPI inhibitor evaluation in 

molecular generation studies [22]. The QEPPI was used directly as the overall score S(x) in this study. 

 

2.3 Computational experiments 

The three scoring functions, QED-based, RO4-based, and QEPPI-based, described above, were 

used in this work, and reinforcement learning was performed for 3,000 steps each. Parameters other 

than the scoring function S(x) were set to default values [19]. The numbers of compounds generated 

by applying the QED, RO4, and QEPPI scoring functions in 3,000 steps of REINVENT training were 

357,456; 368,140; and 359,722, respectively. To obtain higher scoring molecules among the generated 

compounds, the compounds generated in the last 100 steps (i.e., between steps 2,901 and 3,000) were 

extracted, resulting in 11,714; 12,547; and 12,097 compounds for QED, RO4, and QEPPI, respectively. 
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3. Results 

3.1 Inducing exploration through reinforcement learning 

The QED, RO4 equivalent, and QEPPI scores were calculated for each of the three generated 

compound sets, and their distributions for each score are shown in Figures 1–3. As anticipated and 

in line with expectations, the investigation confirmed that compounds generated with QED as the 

scoring function tend to have higher QED scores (Figure 1), compounds generated with RO4 as the 

scoring function tend to have higher RO4 scores (Figure 2), and compounds generated with QEPPI 

as the scoring function tend to have higher QEPPI scores (Figure 3). As can be seen, the exploration 

was induced to the region where the scoring function was higher, indicating that reinforcement learn-

ing was properly performed. 

 

Figure 1. Distribution of QED scores of the compounds generated between the REINVENT steps 2,901 

and 3,000. 
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Figure 2. Distribution of RO4 equivalent scores of the compounds generated between the REINVENT 

steps 2,901 and 3,000. 

 

Figure 3. Distribution of QEPPI scores of the compounds generated between the REINVENT steps 

2,901 and 3,000. 
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3.2 Distribution of compounds generated by REINVENT 

Molecular weight and LogP, a measure of lipophilicity, are both related to RO4 and can be used 

to evaluate PPI inhibitor-likeness. Figures 4(a) and 4(b) show the distribution of molecular weight 

and LogP of the generated compounds for each scoring function. In the case of QED, both molecular 

weight and LogP were skewed toward the smaller values, and the generated molecules could not be 

suitable for PPI inhibitors. On the other hand, when RO4 was used, most of the molecules generated 

satisfied RO4 (molecular weight > 400, LogP > 4). Although the QEPPI-generated molecules did not 

satisfy RO4, 85.3% and 58.6% of all the generated compounds fulfilled RO4 conditions for molecular 

weight and LogP, respectively. In addition, Figure 5 plots a two-dimensional scatter plot of the over-

laid molecular weight and LogP distributions for the RO4 and QEPPI cases. Molecules with exces-

sively high molecular weight and LogP, such as in RO4, were not generated by the QEPPI scoring 

function, and the compounds were concentrated in the appropriate chemical space where high QEPPI 

scores can be obtained. 

 

 
       (a) Molecular Weight                             (b) LogP 

Figure 4. Distribution of the generated compounds. (a) Distribution of molecular weight, (b) distribu-

tion of lipophilicity (LogP). 

 

Figure 5. Molecular weight–LogP scatter plots of the RO4- and QEPPI-generated compounds. 
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3.3 Indicators for oral bioavailability 

Veber’s rule is an indicator of oral bioavailability, and compounds that satisfy the following two 

properties tend to have good membrane permeability when administered orally [23]. 

● Number of rotatable bonds, Rbond ≤ 10  

● Topological polar surface area TPSA ≤ 140 

The numbers of QED-, RO4-, and QEPPI-generated molecules satisfying Veber’s rule were 11,712; 

9,617; and 12,029, with percentages of 99.9% (11,712/11,714), 76.6% (9,617/12,547), and 99.4% 

(12.029/12,097), respectively. Thus, molecules generated using the QEPPI scoring function can also 

be expected to have good oral bioavailability at ratios almost equal to those generated using the QED. 

 

3.4 Constructing virtual libraries of PPI-target compounds 

Based on the results, the compounds generated based on the QEPPI (proposed method 2) are 

more likely to be able to target PPIs, as they combine general drug-like properties while satisfying 

PPI inhibitor-specific properties such as RO4. Therefore, 12,097 compounds generated based on 

QEPPI were used as the basis for the virtual library for developing PPI inhibitors.  

In addition, the pan assay interference compounds (PAINS) filter [24] was used to identify sub-

structural features of generated compounds that appear in promiscuous compounds or frequent hit-

ters in many biochemical high throughput screening campaigns and removed their compounds. 

PAINS filter removed 845 (7.0%) compounds. Then, the remaining 11,252 compounds constituted the 

virtual library, published on https://github.com/ohuelab/iPPI-REINVENT. Figure 6 shows some ex-

amples of compounds included in this library. Compounds a, b, and c in Figure 6 had the average, 

minimum, and maximum molecular weights, respectively, of the compounds in the virtual library. 

Compound d had the highest number of similar known PPI inhibitors. Compound e is an example 

of a compound containing a slightly longer alkyl chain. In fact, these compounds will not be suitable 

as drugs as they are, especially c, which has a strange structure with an aromatic ring containing a 

sulfonamide. However, we hope that it will be obtained PPI inhibitor hits from this virtual library 

and contribute to drug discovery. 

 

Figure 6. Examples of compounds that have been generated and included in the virtual library. 
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4. Discussion 

4.1 Chemical space of generated compounds 

One of the objectives of this study is to generate novel PPI inhibitor compound candidates from 

an unexplored compound space by modifying a scoring function according to the characteristics of 

PPI inhibitors in the molecule generation model. In this study, three types of scoring functions, QED, 

RO4, and QEPPI, were used to explore the compound space and generate molecules. The distribu-

tions of molecular weight and LogP for each compound shown in Figures 4 and 5 are skewed toward 

the smaller values for QED and are excessively large for RO4. On the other hand, the QEPPI-gener-

ated molecules exhibited smaller and more coherent distributions while satisfying RO4. Therefore, 

the QEPPI-based molecular generation achieved the above objective by exploring the compound 

space that remained unexplored in the cases of QED and RO4. Note that the pre-trained model used 

in this study utilized ChEMBL and was not PPI inhibitor specific. Therefore, pre-training with a da-

taset derived from a known PPI inhibitor may improve the efficiency of the exploration and genera-

tion. 

4.2 Comparison with existing PPI libraries 

To determine whether the QEPPI-based compound library, which is considered more suitable 

for recent PPI inhibitor design, could be a useful virtual library, we compared the corresponding 

12,097 compounds with those in an existing PPI compound library—the Enamine PPI library [25]. 

This commercial PPI library contains 40,640 compounds with core structures that are expected to 

bind to specific substructures extracted from more than 20 different protein complex structures. 

Figure 7(a) and Figure 7(b) show the distributions of the QED and QEPPI scores. In addition, 

Figure 8 shows two-dimensional scatter plots for molecular weight and LogP. These results show 

that the compounds in the Enamine library have small molecular weights and LogP values and high 

QED scores, while those generated by QEPPI have higher molecular weights and LogP values. More-

over, the QEPPI scores of the compounds generated in this study were also higher. Therefore, we can 

conclude that commercial PPI libraries are oriented toward more oral drug-like tendencies and that 

our proposed generated compounds contain more PPI inhibitor-like compounds. 

 

 

                 (a) QED                                  (b) QEPPI 

Figure 7. Distribution of scores (number of steps: 100) for the compounds generated by the proposed 

method 2 and obtained from the Enamine PPI library: (a) QED and (b) QEPPI scores. 
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Figure 8. Molecular weight–LogP scatter plots of the compounds generated by the proposed method 

2 and obtained from the Enamine PPI library. 

5. Conclusions 

In this study, we used REINVENT—a molecular generation tool—to generate compounds using 

three types of scoring functions: QED, RO4, and QEPPI. In all cases, we could generate compounds 

with the desired properties targeted by the scoring functions. However, this study aimed to generate 

candidate compounds for novel PPI inhibitors, and most of the compounds generated based on QED 

did not meet RO4 conditions. In addition, using the QEPPI scoring function, a higher ratio of mole-

cules was generated with superior oral bioavailability compared to the RO4-generated molecules. 

From this collection of QEPPI-based compounds with PPI inhibitor-likeness, 11,252 compounds were 

selected, excluding those with improper structures with PAINS filter. These compounds are for use 

as a virtual library in assay experiments. Compared with the Enamine PPI library, these compounds 

can be considered a complement to the existing PPI libraries. 

Only the QEPPI-generated compounds were considered in this study. Since REINVENT sup-

ports complex scoring functions, we believe that the search for compounds in chemical space can be 

broadened by applying and modifying various scoring functions. In future work, we intend to ex-

plore ways to enhance the scoring functions and expand our search to include chemical spaces that 

cannot be adequately covered by the existing PPI libraries.  

The synthesizability of virtual compounds is also crucial for actual biochemical assays. PAINS 

filter was applied to the generated compounds to remove inappropriate compounds; however, this 

method alone cannot consider synthetic feasibility. In fact, in the Enamine PPI library, those com-

pounds that fit all of the multiple medicinal chemistry filters, including PAINS, were selected [25]; 

for example, the synthetic accessibility score [26] guesses the difficulty of synthesizing a compound. 

There is also room for consideration of a more reliable retrosynthetic analysis [27], although it re-

quires long computation times. In future work, we would like to incorporate such a method that 

allows us to computationally evaluate the synthetic feasibility of compounds. It would be necessary 

to consider and provide the contribution of molecular substructures with interpretable artificial in-

telligence and other technologies [28]. We aim to construct an even more helpful chemical library that 

will allow efficient screening in the future. 
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