

Supporting Information

Suzuki-Miyaura Reaction in the Presence of *N*-Acetylcysteamine Thioesters Enables Rapid Synthesis of Biomimetic Polyketide Thioester Surrogates for Biosynthetic Studies

Sebastian Derra¹, Luca Schlotte¹ and Frank Hahn^{1,*}

¹Faculty Biology, Chemistry and Earth Sciences, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany

* Correspondence: frank.hahn@uni-bayreuth.de

Table of Content

General Methods	3
Substrate syntheses.....	4
References Supporting Information	23
NMR-Spectra	24

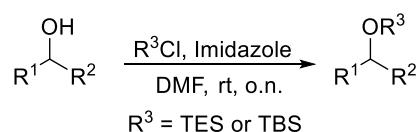
General Methods

Chemistry methods and materials

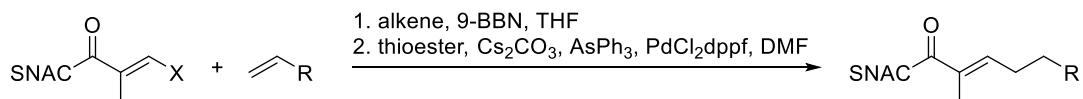
All chemicals and solvents were obtained from ABCR, ACROS ORGANICS, BLD PHARM, CARBOLUTION, CHEMIPUR, EURISOTOP, FISHER CHEMICAL, FLUOROCHEM, GRÜSSING, ROTH, SIGMA-ALDRICH, TCI and VWR and were, unless otherwise stated, used without further purification. Dry solvents were obtained from ACROS ORGANICS. All reactions were performed under argon gas with dry solvents and reagents. Light-sensitive substances were handled in brown glass- or aluminium foil wrapped flasks. The reactions were monitored *via* TLC with Alugram SilG/UV254 TLC-foils from MACHEREY-NAGEL. The substances were detected with UV-light and a KMnO₄-stain (1.50 g KMnO₄, 10.0 g K₂CO₃, 2.50 mL 5%-NaOH, 200 mL H₂O). Products were purified by flash chromatography on SiO₂ (Macherey-Nagel MN Kieselgel 60, 40-63 µm).¹ Semi-preparative HPLC was performed with a WATERS HPLC (600 controller, 2487 Dual wavelength absorbance detector) using a C18-SP stationary phase (H₂O:MeCN = 95:5 {5 min}, Gradient H₂O:MeCN 95:5 → 5:95 {20 min}, H₂O:MeCN = 5:95 {5 min}, 20 mL/min).

All NMR spectra were recorded with BRUKER AVANCE III HD 500 with the residual solvent signal as internal standard: CDCl₃ 7.26 ppm for ¹H, 77.16 ppm for ¹³C.² Signal multiplicities are stated, using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. For ¹³C-NMR, the following abbreviations were used: q = quarternary, t = tertiary, s = secondary, p = primary. The chemical shifts are reported as values of the δ-scale in [ppm] and the coupling constants *J* in [Hz]. Signal assignments were made with 2D-NMR spectra (COSY, HSQC, HMBC, NOESY). High resolution mass spectra (HRMS) were obtained with a THERMO FISHER SCIENTIFIC Q EXACTIVE (Orbitrap) mass spectrometer. Optical rotation was recorded on a JASCO P-1020 polarimeter (10 cm cell) using the sodium D line (589 nm). The given value of [α]^D represents the average of 50 individual measurements and is stated as deg·mL·g⁻¹·dm⁻¹. Elemental analyses were carried out with a 2400 CHN elemental analyzer from PERKIN-ELMER.

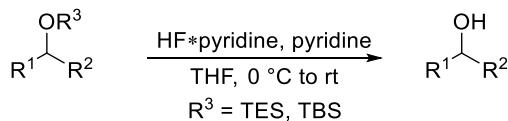
Substrate syntheses


General procedures

General Procedure 1: STEGLICH esterification for SNAC thioester formation

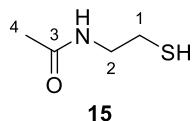

A solution of carboxylic acid (1.0 eq.) and *N*-acetylcysteamine (1.5 eq.) in CH₂Cl₂ (0.2 M) was cooled to 0 °C. Subsequently, DMAP (0.1 eq.) and EDC*HCl (1.5 eq.) were added. After warming to room temperature, the solution was stirred for 2 h, before diluting with saturated aqueous NH₄Cl solution. The resulting phases were separated and the aqueous one was extracted three times with CH₂Cl₂. The combined organic phases were washed with brine, dried over MgSO₄ and filtrated. The solvent was removed *in vacuo* and the crude thioester purified *via* flash chromatography.

General Procedure 2: Protection of hydroxyls as silyl ethers


To a stirred solution of secondary alcohol (1.0 eq.) in DMF (1 M) were added silylchloride (1.5 eq.) and imidazole (2.5 eq.). After stirring the mixture at room temperature overnight, pentane and water were added. The resulting phases were separated and the aqueous one was extracted three times with pentane. Subsequently, the combined organic phases were washed with brine, dried over MgSO₄ and filtrated. The solvent was removed *in vacuo* and the crude silyl ether was purified *via* filtration over a short plug of silica (pentane).

General Procedure 3: Hydroboration-SUZUKI-MIYAURI reaction

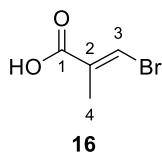
A solution of terminal alkene (1.5 eq.) in freshly degassed THF (1 M) was cooled to 0 °C and 9-BBN (1.5 eq., 0.5 M in THF) was added dropwise. The mixture was stirred overnight while being allowed to slowly warm to room temperature. Subsequently, freshly degassed DMF (total 0.2 M), thioester vinylhalogenide (1.0 eq.), PdCl₂(dppf) (5 mol%), AsPh₃ (5 mol%) and Cs₂CO₃ (2.0 eq.) were added and the suspension was heated to 50 °C. After complete consumption of starting material (TLC), EtOAc was added, and the mixture was transferred to a separating funnel containing aqueous LiCl solution (10% wt). After separation and extraction of the aqueous phase with EtOAc (3x), the combined organics were washed with brine and dried over MgSO₄. After concentration *in vacuo* the crude product was purified *via* flash chromatography.


General Procedure 4: Deprotection

The silyl ether (1.0 eq.) was dissolved in HF-containing stock-solution (70% HF*pyridine/pyridine/THF (1:2:8)) at 0 °C. After warming to room temperature and complete consumption of starting material according to TLC, saturated aqueous NaHCO₃ solution was added dropwise until no more formation of CO₂ was observed. Subsequently, phases were separated and the aqueous one was extracted three times with EtOAc. The combined organics were washed with brine and dried over MgSO₄. After concentration *in vacuo*, the crude product was purified *via* semi-preparative HPLC.

Synthetic reactions

***N*-acetylcysteamine (15)**

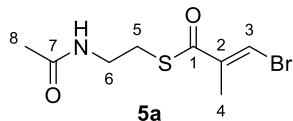


A solution of Cysteamine hydrochloride (30.0 g, 264 mmol, 1.0 eq) in H₂O (300 mL, 0.88 M) was cooled to 0 °C. NaOH (84.5 g, 2.11 mol, 8.0 eq) was added in small portions. After dropwise addition of acetic anhydride (68.0 mL, 719 mmol, 2.7 eq) the mixture was stirred for 1 h at room temperature. A pH of 7 was adjusted by adding concentrated HCl solution. The resulting phases were separated and the aqueous one was extracted three times with CH₂Cl₂. Subsequently, the combined organic phases were washed with brine, dried over MgSO₄ and filtrated. Removal of the solvent *in vacuo* yielded *N*-Acetylcysteamine (**15**, 26.3 g, 221 mmol, 84%) as colourless oil.

¹H-NMR (500 MHz, CDCl₃): δ = 5.92 (br, 1H, NH), 3.45-3.41 (m, 2H, 2-H), 2.67 (dt, J = 8.4, 6.4 Hz, 2H, 1-H), 2.01 (s, 3H, 4-H), 1.35 (t, J = 8.4 Hz, 1H, SH) ppm.

Analytical data are in accordance with those reported in the literature.^[1]

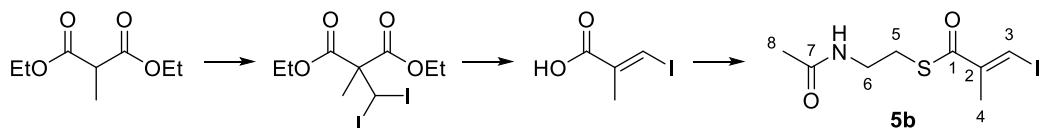
(E)-3-bromo-2-methylacrylic acid (16)



A solution of methacrylic acid (1.69 mL, 20.0 mmol, 1.00 eq.) in CHCl₃ (25.0 mL, 0.8 M) was heated to 45 °C. Bromine (1.04 mL, 20.4 mmol, 1.02 eq.) was added and the mixture was stirred for 1.5 h. After cooling down to room temperature, saturated aqueous NaHCO₃ solution was added and the resulting phases were separated. The organic phase was extracted three times with saturated aqueous NaHCO₃ solution and the combined aqueous phases were added to an aqueous KOH solution (25%, 150 mL). After stirring for three hours at room temperature, a pH < 3 was adjusted with concentrated HCl. Subsequently, the aqueous solution was extracted three times with Et₂O and the combined organics were dried over MgSO₄ and filtered. Removal of the solvent *in vacuo* yielded crude **16** which was used directly in the next step without further purification. Only a small amount was recrystallised from hexane for analytical purposes and obtained from this as white, needle-shaped crystals.

¹H-NMR (500 MHz, CDCl₃): δ = 7.71 (s, 1H, 3-H), 2.01 (s, 3H, 4-H) ppm.

Analytical data are in accordance with those reported in the literature.^[2]

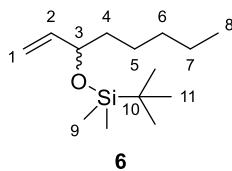

S-(2-acetamidoethyl) (E)-3-bromo-2-methylprop-2-enethioate (5a)

The reaction was carried out as described in general procedure 1. A solution of brominated methacrylic acid **16** (3.30 g, 20.0 mmol, 1.0 eq.) and HSNAC **15** (3.57 g, 30.0 mmol, 1.5 eq.) in CH₂Cl₂ (100 mL, 0.2 M), DMAP (244 mg, 2.00 mmol, 0.1 eq.) and EDC*HCl (5.75 g, 30.0 mmol, 1.5 eq.) were used. Purification by flash chromatography (SiO₂, cyclohexane:EtOAc / 1:1 → EtOAc) yielded product **5a** (4.52 g, 17.0 mmol, 85% over two steps) as a white solid.

R_f: (cyclohexane:EtOAc / 1:1) = 0.24; (EtOAc) = 0.35. **¹H-NMR** (500 MHz, CDCl₃): δ = 7.56 (q, J = 1.3 Hz, 1H, 3-H), 5.82 (br, 1H, NH), 3.48-3.44 (m, 2H, 6-H), 3.11 (t, J = 6.4 Hz, 2H, 5-H), 2.05 (d, J = 1.3 Hz, 3H, 4-H), 1.97 (s, 3H, 8-H) ppm. **¹³C-NMR** (125 MHz, CDCl₃): δ = 190.8 (q, C-1), 170.4 (q, C-7), 141.6 (q, C-2), 122.0 (t, C-3), 39.6 (s, C-6), 29.0 (s, C-5), 23.4 (p, C-8), 16.0 (p, C-4) ppm. **HRMS** [ESI⁺]: *m/z* for C₈H₁₃O₂N⁷⁹BrS [M+H]⁺: calculated = 265.9844, found = 265.9838; *m/z* for C₈H₁₃O₂N⁸¹BrS [M+H]⁺: calculated = 267.9824, found = 267.9814.

S-(2-acetamidoethyl) (E)-3-iodo-2-methylprop-2-enethioate (5b)

A suspension of NaH (1.44 g, 36 mmol, 1.2 eq.) in Et₂O (10 mL) was cooled to 0 °C. Subsequently, a solution of diethyl methylmalonate (5.11 mL, 30.0 mmol, 1.0 eq.) in Et₂O (50.0 mL, 0.6 M) was added dropwise. After heating on reflux for 1.5 h, iodoform (11.8 g, 30.0 mmol, 1.0 eq.) was added in one portion and heating was continued for 18 h. The reaction was quenched by addition of HCl (1 M) and H₂O. The resulting phases were separated and the aqueous one was extracted three times with Et₂O. Subsequently, the combined organic phases

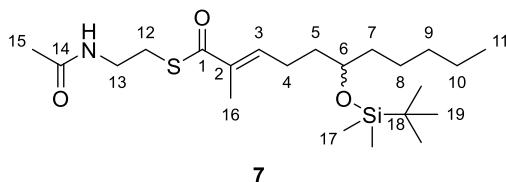

were washed with brine, dried over MgSO_4 and filtrated. The crude product was directly used in the next step without further purification.

Crude alkylation product was dissolved in EtOH (90 mL), before H_2O (32 mL) and KOH (8.40 g, 150 mmol, 5.0 eq.) were added. After heating on reflux for 4 h, the solvent was removed *in vacuo* and the residue was dissolved in aqueous K_2CO_3 -solution (10%). A $\text{pH} < 3$ was adjusted with concentrated HCl , the aqueous solution was extracted three times with Et_2O and the combined organics were dried over MgSO_4 and filtered. Removal of the solvent *in vacuo* yielded crude carboxylic acid which was used in the next step without further purification.

The esterification was carried out as described in general procedure 1. A solution of crude iodinated methacrylic acid and HSNAC **15** (5.36 g, 45.0 mmol, 1.5 eq.) in CH_2Cl_2 (150 mL, 0.2 M), DMAP (364 mg, 3.00 mmol, 0.1 eq.) and EDC* HCl (8.54 g, 45.0 mmol, 1.5 eq.) were used. Purification by flash chromatography (SiO_2 , cyclohexane: EtOAc / 1:1) yielded product **5b** (6.67 g, 21.3 mmol, 71% over three steps) as a yellowish solid.

R_f : (EtOAc) = 0.45. **1H-NMR** (500 MHz, CDCl_3): δ = 7.86 (q, J = 1.1 Hz, 1H, 3-H), 5.83 (br, 1H, NH), 3.48-3.44 (m, 2H, 6-H), 3.09 (t, J = 6.4 Hz, 2H, 5-H), 2.09 (d, J = 1.1 Hz, 3H, 4-H), 1.97 (s, 3H, 8-H) ppm. **13C-NMR** (125 MHz, CDCl_3): δ = 189.8 (q, C-1), 170.4 (q, C-7), 147.2 (q, C-2), 97.7 (t, C-3), 39.5 (s, C-6), 29.2 (s, C-5), 23.4 (p, C-8), 20.6 (p, C-4) ppm. **HRMS** [ESI $^+$]: m/z for $\text{C}_8\text{H}_{13}\text{O}_2\text{NIS}$ $[\text{M}+\text{H}]^+$: calculated = 313.9706, found = 313.9702.

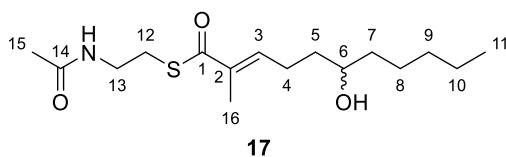
tert-butyldimethyl(oct-1-en-3-yloxy)silane (6)


The reaction was carried out as described in general procedure 2. A solution of 1-octen-3-ol (200 mg, 1.56 mmol, 1.0 eq.) in DMF (1.56 mL, 1 M), TBSCl (351 mg, 2.34 mmol, 1.5 eq.) and Imidazole (265 mg, 3.90 mmol, 2.5 eq.) were used. Purification by filtration over a short plug of silica (SiO_2 , pentane) yielded product **6** (378 mg, 1.56 mmol, quant.) as a colourless liquid.

R_f : (pentane) = 0.56. **1H-NMR** (500 MHz, CDCl_3): δ = 5.79 (ddd, J = 17.0, 10.3, 6.0 Hz, 1H, 2-H), 5.13 (ddd, J = 17.0, 1.9, 1.3 Hz, 1H, 1 \times 1-H), 5.01 (ddd, J = 10.3, 1.9, 1.3 Hz, 1H,

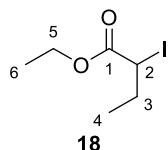
1 × 1-H), 4.09-4.05 (m, 1H, 3-H), 1.51-1.40 (m, 2H, 4-H), 1.35-1.24 (m, 6H, 5-H, 6-H, 7-H), 0.89-0.86 (m, 12H, 11-H, 8-H), 0.05 (s, 3H, 9-H), 0.03 (s, 3H, 9-H) ppm.

Analytical data are in accordance with those reported in the literature.^[3]


***S*-(2-acetamidoethyl) (*E*)-6-((*tert*-butyldimethylsilyl)oxy)-2-methylundec-2-enethioate (7)**

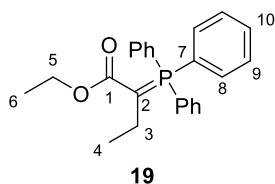
The reaction was carried out as described in general procedure 3. A solution of alkene **6** (50.0 mg, 206 µmol, 1.5 eq.) in THF (137 µL, 1 M), 9-BBN (412 µL, 206 µmol, 1.5 eq., 0.5 M in THF), DMF (685 µL, total 0.2 M), vinyl iodide **5b** (43.0 mg, 137 µmol, 1.0 eq.), PdCl₂(dppf) (5.0 mg, 7.00 µmol, 5 mol%), AsPh₃ (2.1 mg, 7.00 µmol, 5 mol%) and Cs₂CO₃ (89.0 mg, 275 µmol, 2.0 eq.) were used. Purification by flash chromatography (SiO₂, cyclohexane:EtOAc / 1:1) yielded product **7** (45.2 mg, 107 µmol, 78%) as a brown oil.

R_f: (cyclohexane:EtOAc / 1:1) = 0.45; **¹H-NMR** (500 MHz, CDCl₃): δ = 6.78 (tq, *J* = 7.3, 1.3 Hz, 1H, 3-H), 5.85 (br, 1H, NH), 3.71-3.66 (m, 1H, 6-H), 3.47-3.43 (m, 2H, 13-H), 3.07 (t, *J* = 6.3 Hz, 2H, 12-H), 2.34-2.17 (m, 2H, 4-H), 1.96 (s, 3H, 15-H), 1.88 (s, 3H, 16-H), 1.60-1.53 (m, 2H, 5-H), 1.47-1.41 (m, 2H, 7-H), 1.32-1.26 (m, 6H, 8-H, 9-H, 10-H), 0.90-0.87 (m, 12H, 19-H, 11-H), 0.06 (s, 3H, 17-H), 0.05 (s, 3H, 17-H) ppm. **¹³C-NMR** (125 MHz, CDCl₃): δ = 194.2 (q, C-1), 170.4 (q, C-14), 142.5 (t, C-3), 135.9 (q, C-2), 71.8 (t, C-6), 40.0 (s, C-13), 37.1 (s, C-7), 35.6 (s, C-5), 32.2 (s, C-9), 28.5 (s, C-12), 26.0 (p, C-19), 25.1 (s, C-8), 24.8 (s, C-4), 23.4 (p, C-15), 22.8 (s, C-10), 18.3 (q, C-18), 14.2 (p, C-11), 12.6 (p, C-16), -4.2 (p, C-17), -4.3 (p, C-17) ppm. **HRMS** [ESI⁺]: *m/z* for C₂₂H₄₄NO₃SSi [M+H]⁺: calculated = 430.2805, found = 430.2796.


***S*-(2-acetamidoethyl) (*E*)-6-hydroxy-2-methylundec-2-enethioate (17)**

A solution of silylether **7** (20.0 mg, 46.5 μ mol, 1.0 eq.) in MeOH (465 μ L, 0.1 M) was treated with PPTS (70.0 mg, 279 μ mol, 6.0 eq.). After stirred heating to 50 °C overnight, the reaction was quenched by the addition of water and Et₂O. The resulting phases were separated and the aqueous one was extracted three times with Et₂O. Subsequently, the combined organic phases were washed with brine, dried over MgSO₄ and filtrated. Removal of the solvent in vacuo and purifying *via* flash chromatography (SiO₂, EtOAc) yielded secondary alcohol **17** (7.3 mg, 24.2 μ mol, 52%) as a colourless oil.

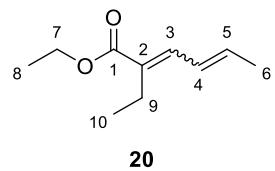
R_f: (EtOAc) = 0.29. **¹H-NMR** (500 MHz, CDCl₃): δ = 6.78 (tq, *J* = 7.3, 1.2 Hz, 1H, 3-H), 5.92 (br, 1H, NH), 3.63-3.59 (m, 1H, 6-H), 3.46-3.42 (m, 2H, 13-H), 3.06 (t, *J* = 6.3 Hz, 2H, 12-H), 2.41-2.27 (m, 2H, 4-H), 1.96 (s, 3H, 15-H), 1.89 (s, 3H, 16-H), 1.70 (br, 1H, OH), 1.66-1.54 (m, 2H, 5-H), 1.46-1.41 (m, 3H, 7-H, 1 \times 8-H), 1.33-1.24 (m, 5H, 1 \times 8-H, 9-H, 10-H), 0.89 (t, *J* = 6.9 Hz, 3H, 11-H) ppm. **¹³C-NMR** (125 MHz, CDCl₃): δ = 194.2 (q, C-1), 170.4 (q, C-14), 141.8 (t, C-3), 136.2 (q, C-2), 71.5 (t, C-6), 40.0 (s, C-13), 37.8 (s, C-7), 36.0 (s, C-5), 32.0 (s, C-9), 28.5 (s, C-12), 25.4 (s, C-8), 25.3 (s, C-4), 23.4 (p, C-15), 22.8 (s, C-10), 14.2 (p, C-11), 12.6 (p, C-16) ppm. **HRMS** [ESI⁺]: *m/z* for C₁₆H₃₀NO₃S [M+H]⁺: calculated = 316.1940, found = 316.1934.


ethyl 2-iodobutanoate (18)

To a light protected, stirred suspension of sodium iodide (28.4 g, 190 mmol, 2.0 eq.) in acetone (63.2 mL, 1.5 M) was added ethyl 2-bromobutanoate (14.0 mL, 94.8 mmol, 1.0 eq.). After 30 minutes, excess Et₂O (200 mL) was added and the suspension was filtered. Washing the organic solution with saturated aqueous Na₂S₂O₃ solution and brine and removing the solvent *in vacuo* yielded **18** (21.2 g, 87.7 mmol, 93%) as a light sensitive, colourless liquid.

¹H-NMR (500 MHz, CDCl₃): δ = 4.26-4.17 (m, 3H, 5-H, 2-H), 2.04-1.95 (m, 2H, 3-H), 1.28 (t, *J* = 7.1 Hz, 3H, 6-H), 0.97 (t, *J* = 7.3 Hz, 3H, 4-H) ppm. **¹³C-NMR** (125 MHz, CDCl₃): δ = 171.5 (q, C-1), 61.9 (s, C-5), 29.7 (s, C-3), 23.5 (t, C-2), 14.2 (p, C-4), 13.9 (p, C6) ppm. **EA**: calculated for C₆H₁₁IO₂: C = 29.77, H = 4.58; found: C = 30.01, H = 4.56.

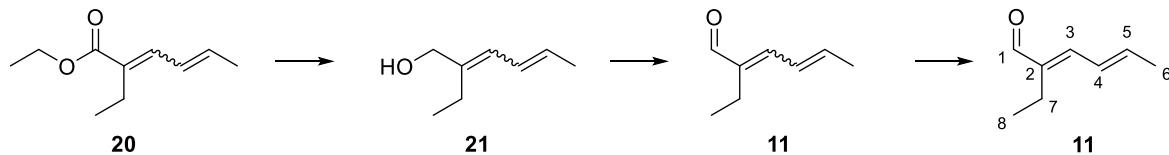
ethyl 2-(triphenyl- λ^5 -phosphaneylidene)butanoate (19)



To a light protected, stirred solution of Iodide **18** (21.2 g, 87.7 mmol, 1.0 eq.) in toluene (58.0 mL, 1.5 M) was added PPh₃ (45.9 g, 175 mmol, 2.0 eq.). After heating to 65 °C overnight, the supernatant was carefully removed and the residue was washed with toluene. Subsequently, CH₂Cl₂ and an aqueous K₂CO₃ solution (10%) were added and the emulsion was stirred for 40 minutes at room temperature. The resulting phases were separated and the aqueous one was extracted three times with CH₂Cl₂. Subsequently, the combined organic phases were washed with brine, dried over MgSO₄ and filtrated. Removal of the solvent *in vacuo* yielded crude **19** (31.2 g, 82.8 mmol, 95%) as viscous, yellow oil which was used directly in the next step without further purification.

¹H-NMR (500 MHz, CDCl₃): δ = 7.64-7.60 (m, 6H, 9-H), 7.55-7.52 (m, 3H, 10-H), 7.46-7.44 (m, 6H, 8-H), 4.05 (br, 0.5H, 5-H), 3.69 (br, 1.5H, 5-H), 1.96 (br, 2H, 3-H), 1.24 (br, 1H, 1 \times 6-H), 0.86 (t, J = 7.1 Hz, 3H, 4-H), 0.42 (br, 2H, 2 \times 6-H) ppm.

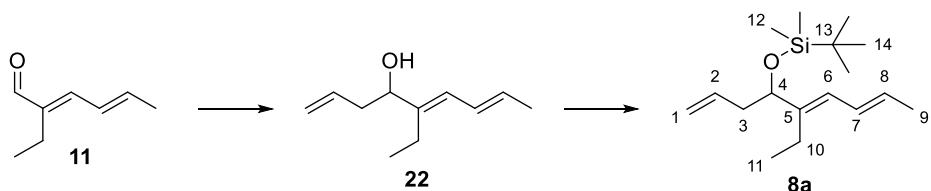
Analytical data are in accordance with those reported in the literature.^[4]


ethyl (2E,4E)-2-ethylhexa-2,4-dienoate (20)

A stirred solution of phosphorous ylide **19** (30.6 g, 81.3 mmol, 1.5 eq.) and crotonaldehyde (4.47 mL, 54.2 mmol, 1.0 eq.) in toluene (162 mL, 0.5 M) was heated to 70 °C for 5 h. Afterwards it was allowed to cool to room temperature and stirred overnight. Removal of the solvent *in vacuo* and purification *via* flash chromatography (SiO₂, cyclohexane \rightarrow cyclohexane:EtOAc / 39:1) yielded ethyl ester **20** (8.94 g, 53.1 mmol, 98%, *E:Z* = 10:1) as colourless liquid.

Major (*E*)-isomer: **R_f** : (cyclohexane:EtOAc / 39:1) = 0.27. **¹H-NMR** (500 MHz, CDCl₃): δ = 7.11 (d, *J* = 11.4 Hz, 1H, 3-H), 6.37 (ddq, *J* = 14.9, 11.4, 1.4 Hz, 1H, 4-H), 6.10 (dq, *J* = 14.9, 6.8 Hz, 1H, 5-H), 4.21 (q, *J* = 7.1 Hz, 2H, 7-H), 2.40 (q, *J* = 7.5 Hz, 2H, 9-H), 1.88 (dd, *J* = 6.8, 1.4 Hz, 3H, 6-H), 1.30 (t, *J* = 7.1 Hz, 3H, 10-H), 1.03 (t, *J* = 7.5 Hz, 3H, 8-H) ppm. **¹³C-NMR** (125 MHz, CDCl₃): δ = 168.5 (q, C-1), 138.2 (t, C-3), 138.0 (t, C-5), 131.5 (q, C-2), 127.2 (t, C-4), 60.5 (s, C-7), 20.4 (s, C-9), 19.1 (p, C-6), 14.5 (p, C-10), 14.4 (p, C-8) ppm. **HRMS** [ESI⁺]: *m/z* for C₁₀H₁₇O₂ [M+H]⁺: calculated = 169.1223, found = 169.1219.

(2*E*,4*E*)-2-ethylhexa-2,4-dienal (11)

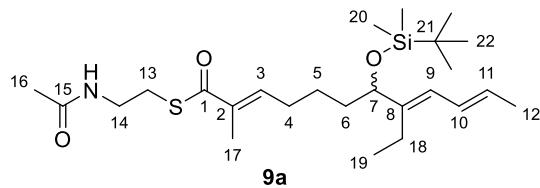


A stirred solution of ethyl ester **20** (1.00 g, 5.94 mmol, 1.0 eq.) in CH₂Cl₂ (30.0 mL, 0.2 M) was cooled to -78 °C. After dropwise addition of DIBAL-H (17.8 mL, 17.8 mmol, 3.0 eq., 1 M in hexane), the mixture was stirred for 30 minutes at -78 °C. Quenching with saturated aqueous NaK-tartrate solution was followed by stirring at room temperature for 2 h. The resulting phases were separated and the aqueous one was extracted three times with CH₂Cl₂. Subsequently, the combined organic phases were washed with brine, dried over MgSO₄ and filtrated. Removal of the solvent *in vacuo* yielded crude allylic alcohol **21** which was used directly in the next step without further purification.

The crude product was dissolved in CH₂Cl₂ (40.0 mL, 0.15 M) and DMP (2.77 g, 6.54 mmol, 1.1 eq.) was added at room temperature. After stirring for 40 minutes, saturated aqueous NaHCO₃ solution and Et₂O were added and stirring was continued for another 40 minutes. The resulting phases were separated and the aqueous one was extracted three times with Et₂O. Combined organic phases were washed four times with saturated aqueous Na₂S₂O₃ solution, once with brine, dried over MgSO₄ and filtrated. The solvent mixture was removed *in vacuo* and the crude aldehyde **11** was taken up again in Et₂O (40.0 mL, 0.15 M). After adding I₂ (4.52 g, 17.8 mmol, 3.0 eq.), the solution was heated to reflux overnight. Washing with saturated aqueous Na₂S₂O₃ solution and brine was followed by removing the solvent *in vacuo*. Purification *via* flash chromatography (SiO₂, pentane:Et₂O / 49:1) yielded *all-trans*-aldehyde **11** (575 mg, 4.63 mmol, 78% over three steps) as a colourless, slightly volatile liquid.

R_f : (pentane:Et₂O / 49:1) = 0.28. **¹H-NMR** (500 MHz, CDCl₃): δ = 9.38 (s, 1H, 1-H), 6.75 (d, *J* = 11.2 Hz, 1H, 3-H), 6.55 (ddq, *J* = 14.9, 11.2, 1.6 Hz, 1H, 4-H), 6.26 (dq, *J* = 14.9, 6.8 Hz, 1H, 5-H), 2.35 (q, *J* = 7.5 Hz, 2H, 7-H), 1.94 (dd, *J* = 6.8, 1.6 Hz, 3H, 6-H), 1.00 (t, *J* = 7.5 Hz, 3H, 8-H) ppm. **¹³C-NMR** (125 MHz, CDCl₃): δ = 195.0 (t, C-1), 149.1 (t, C-3), 142.1 (q, C-2), 140.8 (t, C-5), 127.2 (t, C-4), 19.3 (p, C-6), 17.6 (s, C-7), 13.8 (p, C-8) ppm. **HRMS** [ESI⁺]: *m/z* for C₈H₁₃O [M+H]⁺: calculated = 125.0960, found = 125.0957.

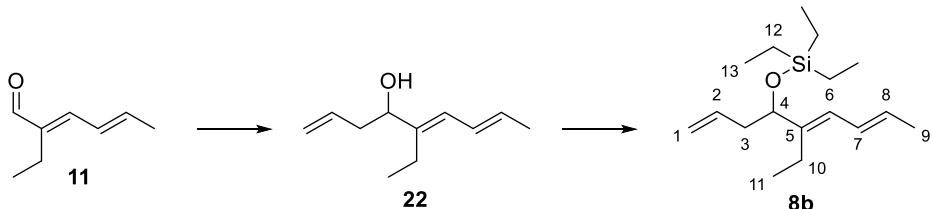
tert-butyl((5E,7E)-5-ethylnona-1,5,7-trien-4-yl)oxy)dimethylsilane (8a)


To a stirred suspension of magnesium chips (264 mg, 10.9 mmol, 3.0 eq.) in THF (15.0 mL) at 0 °C was added allyl bromide (625 μ L, 7.24 mmol, 2.0 eq.). Once the addition was complete, the cooling bath was removed and the mixture was heated to reflux for 1 h. After cooling to room temperature, the supernatant was dripped to a ice-cooled solution of aldehyde **11** (450 mg, 3.62 mmol, 1.0 eq.) in THF (20.0 mL, 0.1 M) and stirred at 0 °C for 3 h. Quenching with saturated aqueous NH₄Cl solution was followed by warming up to room temperature. The resulting phases were separated and the aqueous one was extracted three times with Et₂O. Subsequently, the combined organic phases were washed with brine, dried over MgSO₄ and filtrated. Removal of the solvent *in vacuo* yielded crude allylic alcohol **22** which was used directly in the next step without further purification.

The TBS-protection was carried out as described in general procedure 2. A solution of crude secondary alcohol **22** in DMF (3.60 mL, 1 M), TBSCl (818 mg, 5.43 mmol, 1.5 eq.) and Imidazole (616 mg, 9.05 mmol, 2.5 eq.) were used. Purification by filtration over a short plug of silica (SiO₂, pentane) yielded product **8a** (551 mg, 1.96 mmol, 54% over two steps) as a colourless liquid.

R_f : (pentane) = 0.49. **¹H-NMR** (500 MHz, CDCl₃): δ = 6.25 (ddq, *J* = 15.0, 11.1, 1.5 Hz, 1H, 7-H), 5.92 (d, *J* = 11.1 Hz, 1H, 6-H), 5.77 (ddt, *J* = 17.1, 10.1, 7.1 Hz, 1H, 2-H), 5.66 (dq, *J* = 15.0, 6.7 Hz, 1H, 8-H), 5.04-4.98 (m, 2H, 1-H), 4.04 (t, *J* = 6.3 Hz, 1H, 4-H), 2.27-2.22 (m, 2H, 3-H), 2.20 (dq, *J* = 14.0, 7.6 Hz, 1H, 1 \times 10-H), 2.08 (dq, *J* = 14.0, 7.6 Hz, 1H, 1 \times 10-H), 1.79 (dd, *J* = 6.7, 1.5 Hz, 3H, 9-H), 1.05 (t, *J* = 7.6 Hz, 3H, 11-H), 0.88 (s, 9H, 14-H), 0.02 (s,

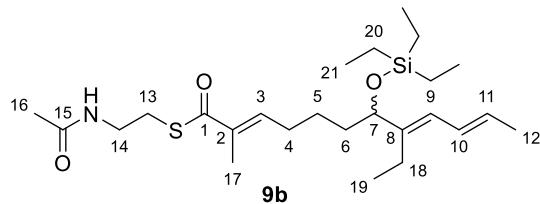
3H, 12-H), -0.02 (3H, 12-H) ppm. **¹³C-NMR** (125 MHz, CDCl₃): δ = 143.2 (q, C-5), 136.0 (t, C-2), 128.9 (t, C-8), 127.5 (t, C-7), 124.9 (t, C-6), 116.4 (s, C-1), 77.0 (t, C-4), 42.1 (s, C-3), 26.0 (p, 3 \times C-14), 20.6 (s, C-10), 18.6 (p, C-9), 18.4 (q, C-13), 14.9 (p, C-11), -4.4 (p, 1 \times C-12), -4.8 (p, 1 \times C-12) ppm. **EA:** calculated for C₁₇H₃₂OSi: C = 72.79, H = 11.50; found: C = 73.12, H = 11.09.


S-(2-acetamidoethyl) (2E,8E,10E)-7-((tert-butyldimethylsilyl)oxy)-8-ethyl-2-methyldodeca-2,8,10-trienethioate (9a)

The reaction was carried out as described in general procedure 3, except small changes in the used ratios. A solution of alkene **8a** (60.6 mg, 210 μ mol, 1.5 eq.) in THF (210 μ L, 1 M), 9-BBN (420 μ L, 210 μ mol, 1.5 eq., 0.5 M in THF), DMF (840 μ L, total 0.2 M), vinyl bromide **5a** (38.3 mg, 140 μ mol, 1.0 eq.), PdCl₂(dppf) (5.1 mg, 7.00 μ mol, 5 mol%) and K₂CO₃ (38.7 mg, 280 μ mol, 2.0 eq.) were used. Purification by flash chromatography (SiO₂, cyclohexane:EtOAc / 1:1) yielded product **9a** (17.7 mg, 37.8 μ mol, 27%) as a brown oil.

R_f : (cyclohexane:EtOAc / 1:1) = 0.41; **¹H-NMR** (500 MHz, CDCl₃): δ = 6.75 (tq, J = 7.3, 1.3 Hz, 1H, 3-H), 6.28-6.22 (m, 1H, 10-H), 5.92-5.82 (m, 2H, 9-H, NH), 5.66 (dq, J = 14.7, 6.9 Hz, 1H, 11-H), 4.02 (t, J = 5.6 Hz, 1H, 7-H), 3.47-3.43 (m, 2H, 14-H), 3.07 (t, J = 6.3 Hz, 2H, 13-H), 2.22-2.16 (m, 3H, 4-H, 1 \times 18-H), 2.07-2.03 (m, 1H, 1 \times 18-H), 1.97 (s, 3H, 16-H), 1.86 (d, J = 1.3 Hz, 3H, 17-H), 1.79 (dd, J = 6.9, 1.4 Hz, 3H, 12-H), 1.52-1.48 (m, 3H, 6-H, 1 \times 5-H), 1.40-1.37 (m, 1H, 1 \times 5-H), 1.04 (t, J = 7.6 Hz, 3H, 19-H), 0.89 (s, 9H, 22-H), 0.03 (s, 3H, 20-H), -0.02 (s, 3H, 20-H) ppm. **¹³C-NMR** (125 MHz, CDCl₃): δ = 194.2 (q, C-1), 170.4 (q, C-15), 143.2 (q, C-8), 142.3 (t, C-3), 136.0 (q, C-2), 129.0 (t, C-11), 127.5 (t, C-10), 125.0 (t, C-9), 76.8 (t, C-7), 40.0 (s, C-14), 36.8 (s, C-6), 29.0 (s, C-4), 28.6 (s, C-13), 26.0 (p, 3 \times C-22), 24.7 (s, C-5), 23.4 (p, C-16), 20.6 (s, C-18), 18.6 (p, C-12), 18.4 (q, C-21), 15.0 (p, C-19), 12.6 (p, C-17), -4.4 (p, C-20), -4.9 (p, C-20) ppm. **HRMS** [ESI⁺]: *m/z* for C₂₅H₄₅NNaO₃SSi [M+Na]⁺: calculated = 490.2781, found = 490.2775.

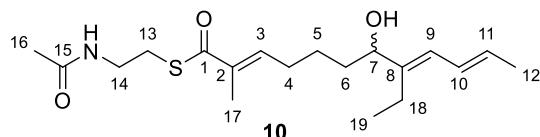
triethyl(((5E,7E)-5-ethylnona-1,5,7-trien-4-yl)oxy)silane (8b)



To a stirred suspension of magnesium chips (117 mg, 4.83 mmol, 3.0 eq.) in THF (6.50 mL) at 0 °C was added allyl bromide (278 μ L, 3.22 mmol, 2.0 eq.). Once the addition was complete, the cooling bath was removed and the mixture was heated to reflux for 1 h. After cooling to room temperature, the supernatant was dripped to a ice-cooled solution of aldehyde **11** (200 mg, 1.61 mmol, 1.0 eq.) in THF (10.0 mL, 0.1 M) and stirred at 0 °C for 3 h. Quenching with saturated aqueous NH₄Cl solution was followed by warming up to room temperature. The resulting phases were separated and the aqueous one was extracted three times with Et₂O. Subsequently, the combined organic phases were washed with brine, dried over MgSO₄ and filtrated. Removal of the solvent *in vacuo* yielded crude allylic alcohol **22** which was used directly in the next step without further purification.

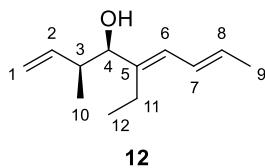
The TES-protection was carried out as described in general procedure 2. A solution of crude secondary alcohol **22** in DMF (1.60 mL, 1 M), TESCl (406 μ L, 2.42 mmol, 1.5 eq.) and Imidazole (274 mg, 4.02 mmol, 2.5 eq.) were used. Purification by filtration over a short plug of silica (SiO₂, pentane) yielded product **8b** (260 mg, 927 μ mol, 58% over two steps) as a colourless liquid.

R_f : (pentane) = 0.33. **¹H-NMR** (500 MHz, CDCl₃): δ = 6.28-6.22 (m, 1H, 7-H), 5.92 (d, *J* = 11.0 Hz, 1H, 6-H), 5.76 (ddt, *J* = 17.2, 10.1, 7.1 Hz, 1H, 2-H), 5.66 (dq, *J* = 13.5, 6.7 Hz, 1H, 8-H), 5.04-4.98 (m, 2H, 1-H), 4.05 (t, *J* = 6.3 Hz, 1H, 4-H), 2.29-2.25 (m, 2H, 3-H), 2.20 (dq, *J* = 14.6, 7.6 Hz, 1H, 1 \times 10-H), 2.10 (dq, *J* = 14.6, 7.6 Hz, 1H, 1 \times 10-H), 1.78 (dd, *J* = 6.7, 1.5 Hz, 3H, 9-H), 1.05 (t, *J* = 7.6 Hz, 3H, 11-H), 0.93 (t, *J* = 7.9 Hz, 9H, 13-H), 0.57 (q, *J* = 7.9 Hz, 6H, 12-H) ppm. **¹³C-NMR** (125 MHz, CDCl₃): δ = 143.2 (q, C-5), 135.9 (t, C-2), 128.9 (t, C-8), 127.5 (t, C-7), 124.9 (t, C-6), 116.4 (s, C-1), 76.9 (t, C-4), 42.1 (s, C-3), 20.6 (s, C-10), 18.6 (p, C-9), 14.9 (p, C-11), 7.1 (p, 3 \times C-13), 5.0 (s, 3 \times C-12) ppm. **EA:** calculated for C₁₇H₃₂OSi: C = 72.79, H = 11.50; found: C = 72.52, H = 11.63.


***S*-(2-acetamidoethyl) (2*E*,8*E*,10*E*)-8-ethyl-2-methyl-7-((triethylsilyl)oxy)dodeca-2,8,10-trienethioate (9b)**

The reaction was carried out as described in general procedure 3. A solution of alkene **8b** (40.0 mg, 143 μ mol, 1.5 eq.) in THF (95.0 μ L, 1 M), 9-BBN (286 μ L, 143 μ mol, 1.5 eq., 0.5 M in THF), DMF (500 μ L, total 0.2 M), vinyl iodide **5b** (29.8 mg, 95.0 μ mol, 1.0 eq.), $\text{PdCl}_2(\text{dppf})$ (3.5 mg, 4.75 μ mol, 5 mol%), AsPh_3 (1.5 mg, 4.75 μ mol, 5 mol%) and Cs_2CO_3 (61.9 mg, 190 μ mol, 2.0 eq.) were used. Purification by flash chromatography (SiO_2 , cyclohexane:EtOAc / 1:1) yielded product **9b** (38.6 mg, 82.7 μ mol, 87%) as a yellowish oil.

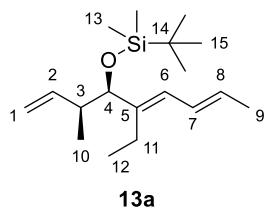
R_f : (cyclohexane:EtOAc / 1:1) = 0.29; **$^1\text{H-NMR}$** (500 MHz, CDCl_3): δ = 6.75 (tq, J = 7.2, 1.3 Hz, 1H, 3-H), 6.28-6.22 (m, 1H, 10-H), 5.91 (d, J = 11.1 Hz, 1H, 9-H), 5.87 (br, 1 H, NH), 5.66 (dq, J = 13.5, 6.6 Hz, 1H, 11-H), 4.03 (t, J = 5.8 Hz, 1H, 7-H), 3.47-3.43 (m, 2H, 14-H), 3.06 (t, J = 6.3 Hz, 2H, 13-H), 2.22-2.16 (m, 3H, 4-H, 1 \times 18-H), 2.11-2.04 (m, 1H, 1 \times 18-H), 1.96 (s, 3H, 16-H), 1.86 (d, J = 1.3 Hz, 3H, 17-H), 1.79 (dd, J = 6.6, 1.4 Hz, 3H, 12-H), 1.55-1.49 (m, 3H, 6-H, 1 \times 5-H), 1.45-1.37 (m, 1H, 1 \times 5-H), 1.04 (t, J = 7.6 Hz, 3H, 19-H), 0.93 (t, J = 7.9 Hz, 9H, 21-H), 0.57 (q, 6H, 20-H) ppm. **$^{13}\text{C-NMR}$** (125 MHz, CDCl_3): δ = 194.2 (q, C-1), 170.4 (q, C-15), 143.2 (q, C-8), 142.2 (t, C-3), 136.0 (q, C-2), 129.0 (t, C-11), 127.5 (t, C-10), 125.0 (t, C-9), 76.8 (t, C-7), 40.0 (s, C-14), 36.8 (s, C-6), 29.0 (s, C-4), 28.5 (s, C-13), 24.7 (s, C-5), 23.4 (p, C-16), 20.5 (s, C-18), 18.6 (p, C-12), 15.0 (p, C-19), 12.6 (p, C-17), 7.1 (p, C-21), 5.0 (s, C-20) ppm. **HRMS** [ESI $^+$]: m/z for $\text{C}_{25}\text{H}_{45}\text{NNaO}_3\text{SSi}$ [M+Na] $^+$: calculated = 490.2781, found = 490.2774.


***S*-(2-acetamidoethyl) (2*E*,8*E*,10*E*)-8-ethyl-7-hydroxy-2-methyldodeca-2,8,10-trienethioate (10)**

The reaction was carried out as described in general procedure 4. A solution of silyl ether **9b** (15.0 mg, 32.1 μ mol, 1.0 eq.) in THF (80 μ L), HF*pyridine (10 μ L, ~70% HF) and pyridine (20 μ L) were used and the reaction ran overnight. Purification by semi-preparative HPLC yielded product **10** (9.1 mg, 26.0 μ mol, 81%) as a colourless oil.

R_f: (cyclohexane:EtOAc / 1:1) = 0.27; **¹H-NMR** (500 MHz, CDCl₃): δ = 6.75 (tq, *J* = 7.3, 1.3 Hz, 1H, 3-H), 6.29-6.24 (m, 1H, 10-H), 5.97 (d, *J* = 11.0 Hz, 1H, 9-H), 5.87 (br, 1 H, NH), 5.72 (dq, *J* = 13.7, 6.8 Hz, 1H, 11-H), 4.08 (t, *J* = 5.8 Hz, 1H, 7-H), 3.47-3.43 (m, 2H, 14-H), 3.06 (t, *J* = 6.3 Hz, 2H, 13-H), 2.26-2.19 (m, 3H, 4-H, 1 \times 18-H), 2.16-2.09 (m, 1H, 1 \times 18-H), 1.96 (s, 3H, 16-H), 1.87 (d, *J* = 1.3 Hz, 3H, 17-H), 1.80 (dd, *J* = 6.8, 1.5 Hz, 3H, 12-H), 1.60-1.55 (m, 3H, 6-H, 1 \times 5-H), 1.47-1.45 (m, 1H, 1 \times 5-H), 1.06 (t, *J* = 7.6 Hz, 3H, 19-H) ppm. **¹³C-NMR** (125 MHz, CDCl₃): δ = 194.2 (q, C-1), 170.4 (q, C-15), 143.3 (q, C-8), 141.9 (t, C-3), 136.1 (q, C-2), 130.2 (t, C-11), 127.1 (t, C-10), 125.4 (t, C-9), 76.5 (t, C-7), 40.0 (s, C-14), 35.3 (s, C-6), 28.8 (s, C-4), 28.6 (s, C-13), 25.0 (s, C-5), 23.4 (p, C-16), 20.8 (s, C-18), 18.6 (p, C-12), 15.1 (p, C-19), 12.6 (p, C-17) ppm. **HRMS** [ESI⁺]: *m/z* for C₁₉H₃₁NNaO₃S [M+Na]⁺: calculated = 376.1916, found = 376.1912.

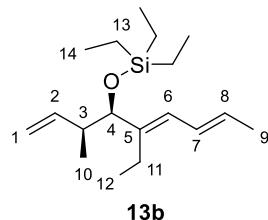
(3*S*,4*R*,5*E*,7*E*)-5-ethyl-3-methylnona-1,5,7-trien-4-ol (**12**)



A stirred solution of KO*t*Bu (651 mg, 5.80 mmol, 1.8 eq.) in THF (5.80 mL, 1 M) was cooled to -78 °C and precooled *cis*-butene (1.20 mL, 12.9 mmol, 4.0 eq.) was added. Subsequently, *n*-BuLi (2.32 mL, 5.80 mmol, 1.8 eq., 2.5 M in hexane) was added dropwise. The resulting yellow solution was warmed to -50 °C and stirred for 30 minutes. After re-cooling to -78 °C, a solution of (+)-Ipc₂BOMe (2.14 g, 6.76 mmol, 2.1 eq.) in Et₂O (6.80 mL, 1 M) was added slowly, which resulted in loss of yellow colour. Stirring for 30 minutes was followed by addition of BF₃×Et₂O (1.02 mL, 8.05 mmol, 2.5 eq.), ten minutes of stirring and addition of a solution of aldehyde **11** (400 mg, 3.22 mmol, 1.0 eq.) in Et₂O (4.60 mL, 0.7 M). After stirring for 6 h at -78 °C, a premixed solution of NaOH (10.0 mL, 3 M) and H₂O₂ (10.0 mL, 30%) was added and the solution was stirred overnight at room temperature. The resulting phases were separated and the aqueous one was extracted three times with Et₂O. Combined organic phases were washed with brine, dried over MgSO₄ and filtrated. Removal of the solvent *in vacuo* and

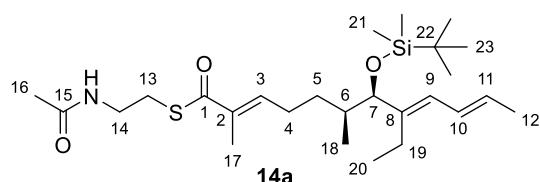
purification *via* flash chromatography (SiO₂, pentane:Et₂O / 29:1) yielded secondary alcohol **12** (418 mg, 2.31 mmol, 71%, 86% *e.e.*) as yellowish oil.

R_f : (n-Pentan:Et₂O / 29:1) = 0.32. **1H-NMR** (500 MHz, CDCl₃): δ = 6.31-6.25 (m, 1H, 7-H), 6.00 (d, *J* = 11.0 Hz, 1H, 6-H), 5.82 (ddd, *J* = 17.3, 10.5, 6.8 Hz, 1H, 2-H), 5.70 (dq, *J* = 14.9, 6.7 Hz, 1H, 8-H), 5.09-5.04 (m, 2H, 1-H), 3.99 (d, *J* = 5.5 Hz, 1H, 4-H), 2.47-2.41 (m, 1H, 3-H), 2.23 (dq, *J* = 15.0, 7.6 Hz, 1H, 1 \times 11-H), 2.06 (dq, *J* = 15.0, 7.6 Hz, 1H, 1 \times 11-H), 1.79 (dd, *J* = 6.7, 1.4 Hz, 3H, 9-H), 1.07 (t, *J* = 7.6 Hz, 3H, 12-H), 1.00 (d, *J* = 6.8 Hz, 3H, 10-H) ppm. **13C-NMR** (125 MHz, CDCl₃): δ = 141.8 (q, C-5), 141.6 (t, C-2), 129.7 (t, C-8), 127.2 (t, C-7), 125.5 (t, C-6), 114.8 (s, C-1), 78.7 (t, C-4), 41.4 (t, C-3), 21.7 (s, C-11), 18.6 (p, C-9), 14.7 (p, C-12), 13.7 (p, C-10) ppm. **EA**: calculated for C₁₂H₂₀O: C = 79.94, H = 11.18; found: C = 79.38, H = 11.32. $[\alpha]_{22}^D$: + 4.8 ° (c = 1.0 in CH₂Cl₂).


tert-butyl((3S,4R,5E,7E)-5-ethyl-3-methylnona-1,5,7-trien-4-yl)oxy)dimethylsilane (13a)

The TBS-protection was carried out as described in general procedure 2. A solution of secondary alcohol **12** (150 mg, 832 μ mol, 1.0 eq.) in DMF (830 μ L, 1 M), TBSCl (187 mg, 1.24 mmol, 1.5 eq.) and Imidazole (142 mg, 2.08 mmol, 2.5 eq.) were used. Purification by filtration over a short plug of silica (SiO₂, pentane) yielded product **13a** (222 mg, 754 μ mol, 91%) as a colourless liquid.

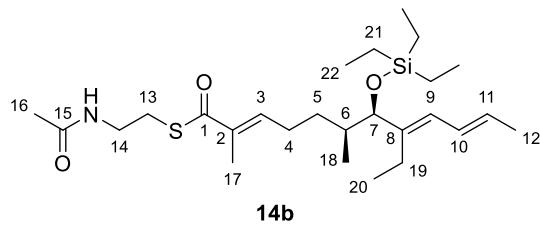
R_f : (pentane) = 0.79. **1H-NMR** (500 MHz, CDCl₃): δ = 6.28-6.23 (m, 1H, 7-H), 5.90 (d, *J* = 11.1 Hz, 1H, 6-H), 5.77 (ddd, *J* = 17.4, 10.3, 7.3 Hz, 1H, 2-H), 5.64 (dq, *J* = 13.6, 6.7 Hz, 1H, 8-H), 4.99-4.92 (m, 2H, 1-H), 3.85 (d, *J* = 5.5 Hz, 1H, 4-H), 2.32-2.28 (m, 1H, 3-H), 2.20 (dq, *J* = 15.2, 7.6 Hz, 1H, 1 \times 11-H), 2.01 (dq, *J* = 15.1, 7.6 Hz, 1H, 1 \times 11-H), 1.78 (dd, *J* = 6.7, 1.4 Hz, 3H, 9-H), 1.04 (t, *J* = 7.6 Hz, 3H, 12-H), 0.94 (d, *J* = 6.7 Hz, 3H, 10-H), 0.90 (s, 9H, 15-H), 0.01 (s, 3H, 13-H), -0.05 (s, 3H, 13-H) ppm. **13C-NMR** (125 MHz, CDCl₃): δ = 142.7 (t, C-2), 141.9 (q, C-5), 128.6 (t, C-8), 127.5 (t, C-7), 126.0 (t, C-6), 113.6 (s, C-1), 80.3 (t, C-4), 42.4 (t, C-3), 26.1 (p, C-15), 21.3 (s, C-11), 18.6 (p, C-9), 18.4 (q, C-14), 14.6 (p, C-12), 14.4 (p, C-10), -4.2 (p, C-13), -4.9 (p, C-13) ppm. **EA**: calculated for C₁₈H₃₄OSi: C = 73.40, H = 11.64; found.: C = 73.51, H = 11.70. $[\alpha]_{22}^D$: + 12.4 ° (c = 1.0 in CH₂Cl₂).


triethyl(((3*S*,4*R*,5*E*,7*E*)-5-ethyl-3-methylnona-1,5,7-trien-4-yl)oxy)silane (13b)

The TES-protection was carried out as described in general procedure 2. A solution of secondary alcohol **12** (80.0 mg, 443 μ mol, 1.0 eq.) in DMF (440 μ L, 1 M), TESCl (112 μ L, 666 μ mol, 1.5 eq.) and Imidazole (75.5 mg, 1.11 mmol, 2.5 eq.) were used. Purification by filtration over a short plug of silica (SiO_2 , pentane) yielded product **13b** (110 mg, 373 μ mol, 84%) as a colourless liquid.

R_f : (pentane) = 0.53. **¹H-NMR** (500 MHz, CDCl_3): δ = 6.28-6.23 (m, 1H, 7-H), 5.90 (d, *J* = 11.1 Hz, 1H, 6-H), 5.77 (ddd, *J* = 17.5, 10.4, 7.3 Hz, 1H, 2-H), 5.65 (dq, *J* = 13.7, 6.8 Hz, 1H, 8-H), 4.99-4.93 (m, 2H, 1-H), 3.88 (d, *J* = 5.5 Hz, 1H, 4-H), 2.32-2.28 (m, 1H, 3-H), 2.19 (dq, *J* = 15.0, 7.6 Hz, 1H, 1 \times 11-H), 2.04 (dq, *J* = 15.0, 7.6 Hz, 1H, 1 \times 11-H), 1.79 (dd, *J* = 6.8, 1.5 Hz, 3H, 9-H), 1.04 (t, *J* = 7.6 Hz, 3H, 12-H), 0.95-0.92 (m, 12H, 10-H, 14-H), 0.56 (q, *J* = 7.9 Hz, 6H, 13-H) ppm. **¹³C-NMR** (125 MHz, CDCl_3): δ = 142.6 (t, C-2), 142.1 (q, C-5), 128.7 (t, C-8), 127.6 (t, C-7), 125.9 (t, C-6), 113.6 (s, C-1), 80.6 (t, C-4), 42.4 (t, C-3), 21.2 (s, C-11), 18.6 (p, C-9), 14.62 (p, C-12), 14.57 (p, C-10), 7.1 (p, C-14), 5.0 (p, C-13) ppm. **EA**: calculated for $\text{C}_{18}\text{H}_{34}\text{OSi}$: C = 73.40, H = 11.64; found: C = 73.56, H = 11.55. $[\alpha]_{22}^D$: + 12.5 $^{\circ}$ (c = 1.0 in CH_2Cl_2).

S-(2-acetamidoethyl) (2*E*,6*S*,7*R*,8*E*,10*E*)-7-((*tert*-butyldimethylsilyl)oxy)-8-ethyl-2,6-dimethyldodeca-2,8,10-trienethioate (14a)



The reaction was carried out as described in general procedure 3 with changes to the equivalents used. A solution of alkene **13a** (42.5 mg, 144 μ mol, 1.0 eq.) in THF (145 μ L, 1 M), 9-BBN

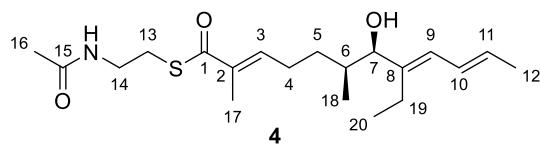
(288 μ L, 144 μ mol, 1.0 eq., 0.5 M in THF), DMF (720 μ L, total 0.2 M), vinyl bromide **5a** (57.5 mg, 216 μ mol, 1.5 eq.), PdCl₂(dppf) (5.3 mg, 7.20 μ mol, 5 mol%) and K₂CO₃ (39.8 mg, 288 μ mol, 2.0 eq.) were used. Purification by flash chromatography (SiO₂, cyclohexane:EtOAc / 1:1) yielded product **14a** (20.8 mg, 43.2 μ mol, 30%) as a yellowish oil.

R_f : (cyclohexane:EtOAc / 1:1) = 0.31; **¹H-NMR** (500 MHz, CDCl₃): δ = 6.73 (t, *J* = 7.3 Hz, 1H, 3-H), 6.28-6.22 (m, 1H, 10-H), 5.91 (br, 1H, NH), 5.88 (d, *J* = 11.1 Hz, 1H, 9-H), 5.64 (dq, *J* = 13.6, 6.7 Hz, 1H, 11-H), 3.78 (d, *J* = 5.4 Hz, 1H, 7-H), 3.46-3.42 (m, 2H, 14-H), 3.06 (t, *J* = 6.4 Hz, 2H, 13-H), 2.29-2.23 (m, 1H, 1 \times 4-H), 2.20-2.14 (m, 2H, 1 \times 4-H, 1 \times 19-H), 2.00-1.96 (m, 4H, 16-H, 1 \times 19-H), 1.86 (s, 3H, 17-H), 1.79 (dd, *J* = 6.7, 1.2 Hz, 3H, 12-H), 1.57-1.55 (m, 1H, 6-H), 1.51-1.48 (m, 1H, 1 \times 5-H), 1.23 -1.20 (m, 1H, 1 \times 5-H), 1.03 (t, *J* = 7.6 Hz, 3H, 20-H), 0.90 (s, 9H, 23-H), 0.85 (d, *J* = 6.6 Hz, 3H, 18-H), 0.02 (s, 3H, 21-H), -0.06 (s, 3H, 21-H) ppm. **¹³C-NMR** (125 MHz, CDCl₃): δ = 194.2 (q, C-1), 170.4 (q, C-15), 142.4 (t, C-3), 141.8 (q, C-8), 135.8 (q, C-2), 128.8 (t, C-11), 127.4 (t, C-10), 126.3 (t, C-9), 80.3 (t, C-7), 40.0 (s, C-14), 37.1 (t, C-6), 32.7 (s, C-5), 28.5 (s, C-13), 26.9 (s, C-4), 26.1 (p, 3 \times C-23), 23.4 (p, C-16), 21.1 (s, C-19), 18.6 (p, C-12), 18.4 (q, C-22), 14.8 (p, C-20), 14.3 (p, C-18), 12.6 (p, C-17), -4.2 (p, C-21), -4.9 (p, C-21) ppm. **HRMS** [ESI⁺]: *m/z* for C₂₆H₄₇NNaO₃SSi [M+Na]⁺: calculated = 504.2938, found = 504.2928. **[α]₂₂^D**: + 3.5 $^{\circ}$ (c = 1.0 in CH₂Cl₂).

***S*-(2-acetamidoethyl) (2*E*,6*S*,7*R*,8*E*,10*E*)-8-ethyl-2,6-dimethyl-7-((triethylsilyl)oxy)dodeca-2,8,10-trienethioate (14b)**

a.)

The reaction was carried out as described in general procedure 3 with changes to the equivalents used. A solution of alkene **13b** (40.0 mg, 136 μ mol, 1.0 eq.) in THF (135 μ L, 1 M), 9-BBN (272 μ L, 136 μ mol, 1.0 eq., 0.5 M in THF), DMF (680 μ L, total 0.2 M), vinyl bromide **5a** (54.2 mg, 204 μ mol, 1.5 eq.), PdCl₂(dppf) (5.0 mg, 6.28 μ mol, 5 mol%) and K₂CO₃ (37.5 mg,


272 μmol , 2.0 eq.) were used. Purification by flash chromatography (SiO₂, cyclohexane:EtOAc / 1:1) yielded product **14b** (33.4 mg, 69.4 μmol , 51%) as a yellowish oil.

b.)

The reaction was carried out as described in general procedure 3. A solution of alkene **13b** (40.0 mg, 136 μmol , 1.5 eq.) in THF (140 μL , 1 M), 9-BBN (272 μL , 136 μmol , 1.5 eq., 0.5 M in THF), DMF (450 μL , total 0.2 M), vinyl iodide **5b** (28.3 mg, 90.5 μmol , 1.0 eq.), PdCl₂(dppf) (3.3 mg, 4.50 μmol , 5 mol%), AsPh₃ (1.4 mg, 4.50 μmol , 5 mol%) and Cs₂CO₃ (58.9 mg, 181 μmol , 2.0 eq.) were used. Purification by flash chromatography (SiO₂, cyclohexane:EtOAc / 1:1) yielded product **14b** (32.4 mg, 67.2 μmol , 74%) as a yellowish oil.

R_f : (cyclohexane:EtOAc / 1:1) = 0.31. **¹H-NMR** (500 MHz, CDCl₃): δ = 6.75 (t, *J* = 7.3, 1.3 Hz, 1H, 3-H), 6.29-6.23 (m, 1H, 10-H), 5.88 (d, *J* = 11.1 Hz, 1H, 9-H), 5.86 (br, 1 H, NH), 5.65 (dq, *J* = 13.5, 6.6 Hz, 1H, 11-H), 3.80 (d, *J* = 5.7 Hz, 1H, 7-H), 3.47-3.43 (m, 2H, 14-H), 3.06 (t, *J* = 6.3 Hz, 2H, 13-H), 2.29-2.23 (m, 1H, 1 \times 4-H), 2.19-2.13 (m, 2H, 1 \times 4-H, 1 \times 19-H), 2.08-2.03 (m, 1H, 1 \times 19-H), 1.96 (s, 3H, 16-H), 1.87 (s, 3H, 17-H), 1.79 (dd, *J* = 6.6, 1.4 Hz, 3H, 12-H), 1.54-1.46 (m, 2H, 6-H, 1 \times 5-H), 1.24-1.17 (m, 1H, 1 \times 5-H), 1.03 (t, *J* = 7.6 Hz, 3H, 20-H), 0.93 (t, *J* = 7.9 Hz, 9H, 22-H), 0.87 (d, *J* = 6.6 Hz, 3H, 18-H), 0.57 (q, *J* = 7.9 Hz, 6H, 21-H) ppm. **¹³C-NMR** (125 MHz, CDCl₃): δ = 194.2 (q, C-1), 170.4 (q, C-15), 142.4 (t, C-3), 142.0 (q, C-8), 135.8 (q, C-2), 128.9 (t, C-11), 127.4 (t, C-10), 126.2 (t, C-9), 80.7 (t, C-7), 40.0 (s, C-14), 37.2 (t, C-6), 32.6 (s, C-5), 28.5 (s, C-13), 26.9 (s, C-4), 23.4 (p, C-16), 20.9 (s, C-19), 18.6 (p, C-12), 14.8 (p, C-20), 14.5 (p, C-18), 12.6 (p, C-17), 7.1 (p, 3 \times C-22), 5.1 (s, 3 \times C-21) ppm. **HRMS** [ESI⁺]: *m/z* for C₂₆H₄₇NNaO₃SSi [M+Na]⁺: calculated = 504.2938, found = 504.2929. **[α]₂₂^D**: + 5.4 ° (c = 1.0 in CH₂Cl₂).

S-(2-acetamidoethyl) (2*E*,6*S*,7*R*,8*E*,10*E*)-8-ethyl-7-hydroxy-2,6-dimethyldodeca-2,8,10-trienethioate (4)

The reaction was carried out as described in general procedure 4. A solution of silylether **14b** (10.0 mg, 20.8 μ mol, 1.0 eq.) in THF (80 μ L), HF*pyridine (10 μ L, ~70% HF) and pyridine (20 μ L) were used and the reaction ran overnight. Purification by semi-preparative HPLC yielded product **4** (6.2 mg, 16.8 μ mol, 81%) as a colourless oil.

R_f : (cyclohexane:EtOAc / 1:1) = 0.19. **¹H-NMR** (500 MHz, CDCl₃): δ = 6.75 (tq, *J* = 7.3, 1.3 Hz, 1H, 3-H), 6.31-6.26 (m, 1H, 10-H), 5.97 (d, *J* = 11.0 Hz, 1H, 9-H), 5.87 (br, 1 H, NH), 5.71 (dq, *J* = 13.6, 6.7 Hz, 1H, 11-H), 3.90 (d, *J* = 5.8 Hz, 1H, 7-H), 3.46-3.43 (m, 2H, 14-H), 3.06 (t, *J* = 6.4 Hz, 2H, 13-H), 2.31-2.25 (m, 1H, 1 \times 4-H), 2.22-2.15 (m, 2H, 1 \times 4-H, 1 \times 19-H), 2.09-2.04 (m, 1H, 1 \times 19-H), 1.96 (s, 3H, 16-H), 1.87 (s, 3H, 17-H), 1.80 (dd, *J* = 6.7, 1.3 Hz, 3H, 12-H), 1.70-1.66 (m, 1H, 6-H), 1.58-1.51 (m, 1H, 1 \times 5-H), 1.34-1.27 (m, 1H, 1 \times 5-H), 1.06 (t, *J* = 7.6 Hz, 3H, 20-H), 0.93 (d, *J* = 6.7 Hz, 3H, 18-H) ppm. **¹³C-NMR** (125 MHz, CDCl₃): δ = 194.1 (q, C-1), 170.4 (q, C-15), 142.4 (q, C-8), 142.2 (t, C-3), 135.9 (q, C-2), 129.9 (t, C-11), 127.1 (t, C-10), 125.7 (t, C-9), 79.6 (t, C-7), 40.0 (s, C-14), 36.2 (t, C-6), 32.6 (s, C-5), 28.5 (s, C-13), 26.7 (s, C-4), 23.4 (p, C-16), 21.4 (s, C-19), 18.6 (p, C-12), 14.9 (p, C-20), 14.2 (p, C-18), 12.6 (p, C-17) ppm. **HRMS** [ESI⁺]: *m/z* for C₂₀H₃₃NNaO₃S [M+Na]⁺: calculated = 390.2073, found = 390.2064. **[α]₂₂^D**: -11.4 $^{\circ}$ (c = 0.7 in CH₂Cl₂).

References Supporting Information

- [1] Li Y.; Zhang W.; Zhang H.; Tian W.; Wu L.; Wang S.; Zheng M.; Zhang J.; Sun Ch.; Deng Z.; Sun Y.; Qu X.; Zhou J., *Angew. Chem. Int. Ed.* **2018**, *57*, 5823–5827; *Angew. Chem.* **2018**, *130*, 5925–5929. <https://doi.org/10.1002/ange.201802805>.
- [2] Campbell N.; Sammis G., *Angew. Chem. Int. Ed. Engl.* **2014**, *53*, 6228. <https://doi.org/10.1002/anie.201403234>.
- [3] Whittaker A.; Lalic G., *Organic letters* **2013**, *15*, 1112. <https://doi.org/10.1021/ol4001679>.
- [4] Baldwin J.; Moloney M.; Parsons A., *Tetrahedron* **1992**, *48*, 9373. [https://doi.org/10.1016/S0040-4020\(01\)85626-X](https://doi.org/10.1016/S0040-4020(01)85626-X).

NMR-Spectra

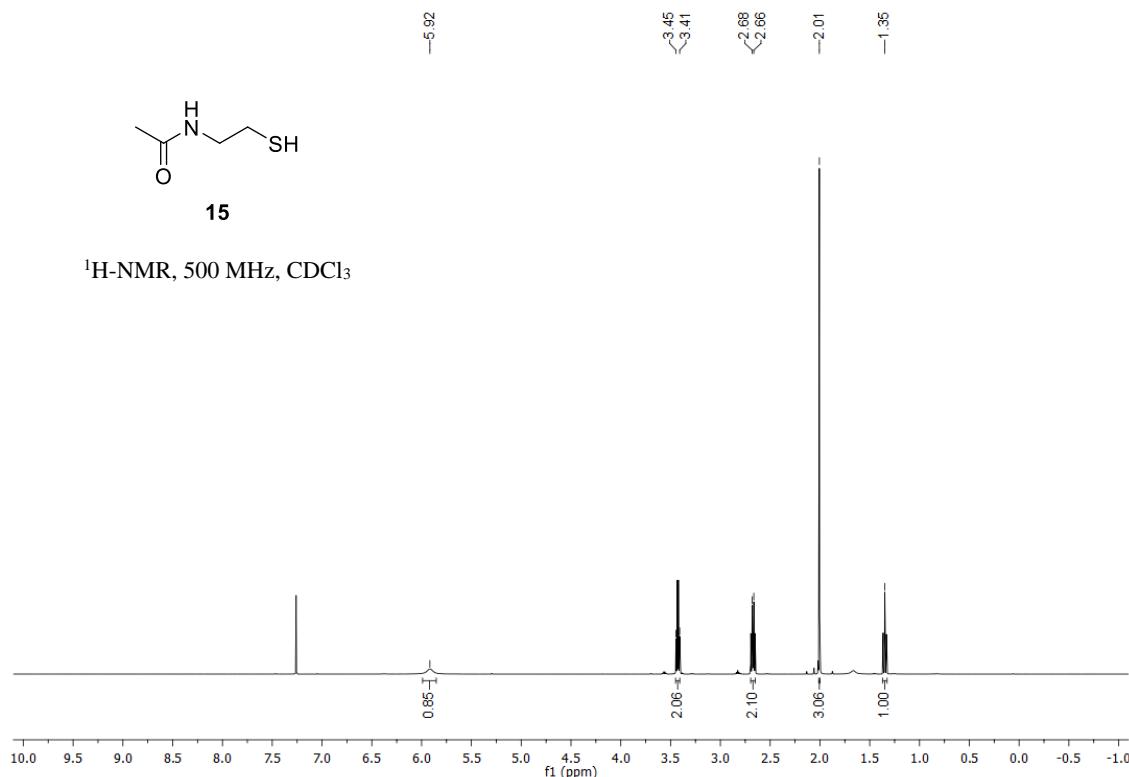


Figure S1: $^1\text{H-NMR}$ -spectrum of *N*-acetylcysteamine (**15**) in CDCl_3 .

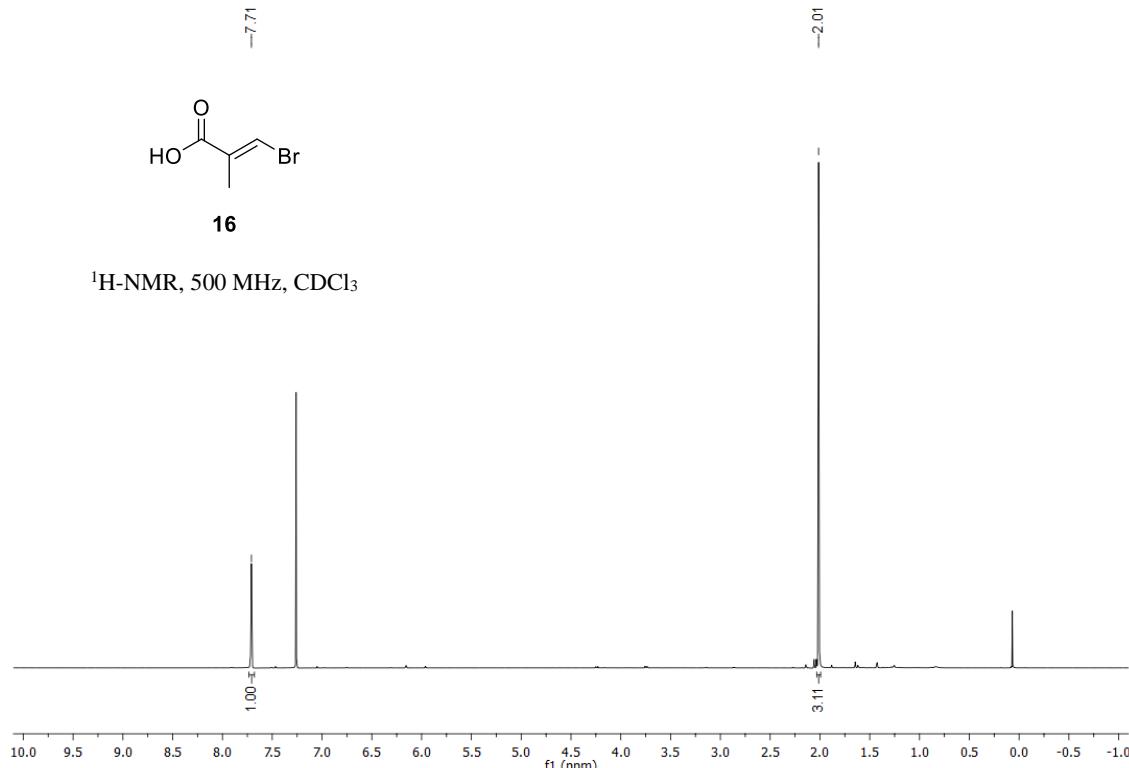


Figure S2: $^1\text{H-NMR}$ -spectrum of carboxylic acid **16** in CDCl_3 .

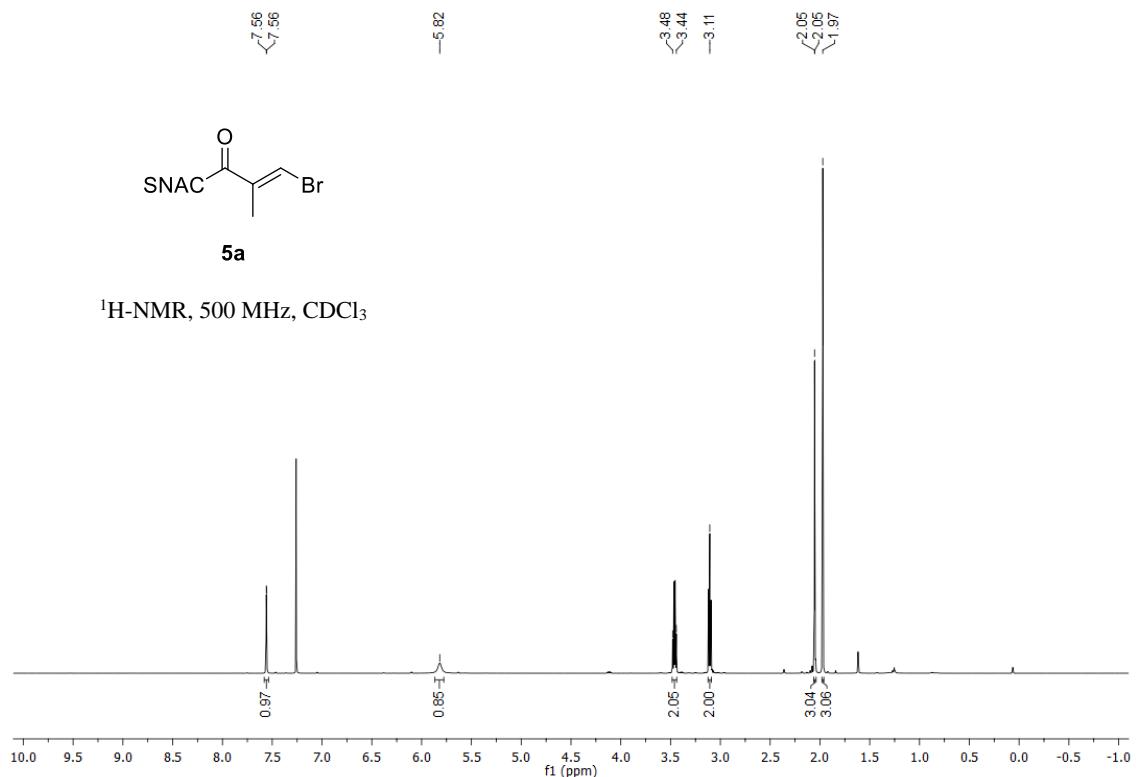


Figure S3: $^1\text{H-NMR}$ -spectrum of thioester **5a** in CDCl_3 .

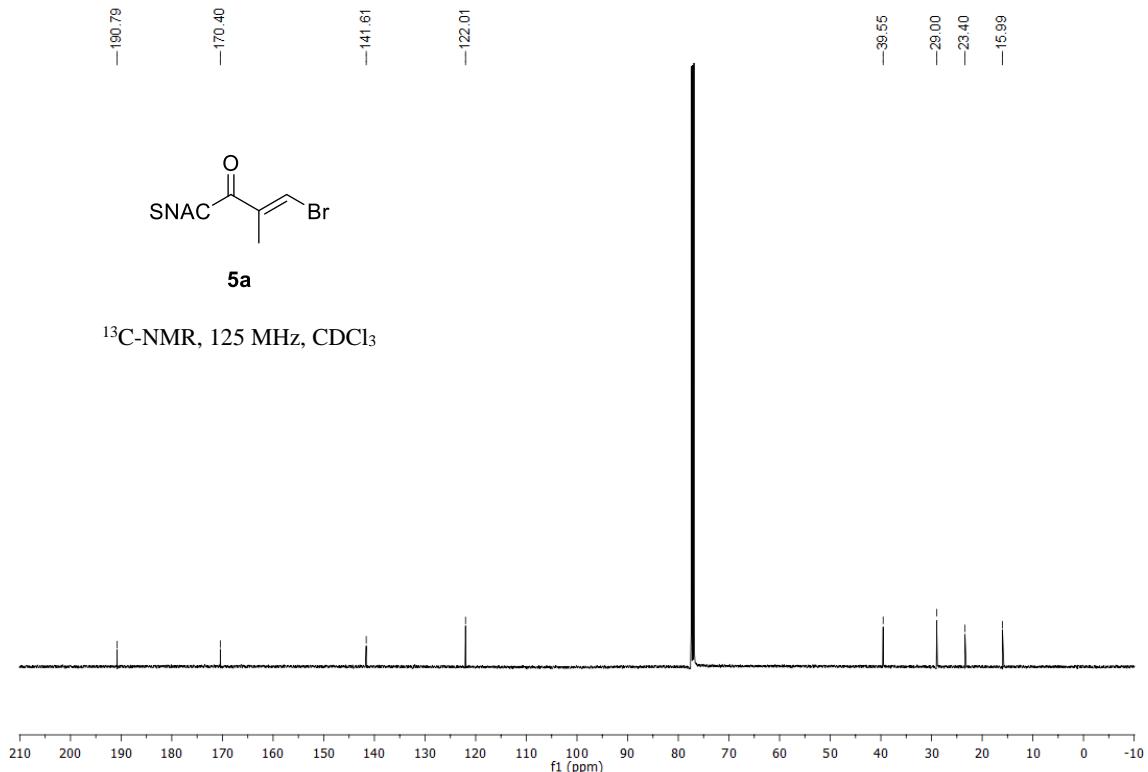


Figure S4: $^{13}\text{C-NMR}$ -spectrum of thioester **5a** in CDCl_3 .

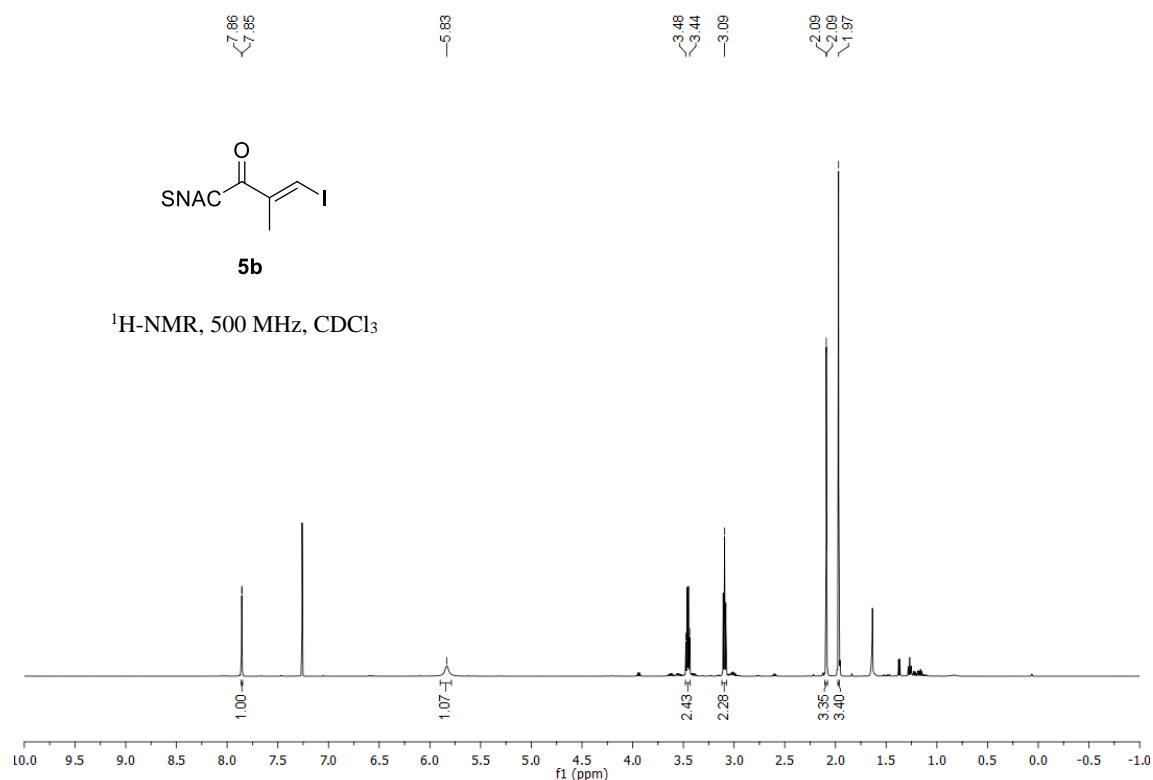


Figure S5: ¹H-NMR-spectrum of thioester **5b** in CDCl₃.

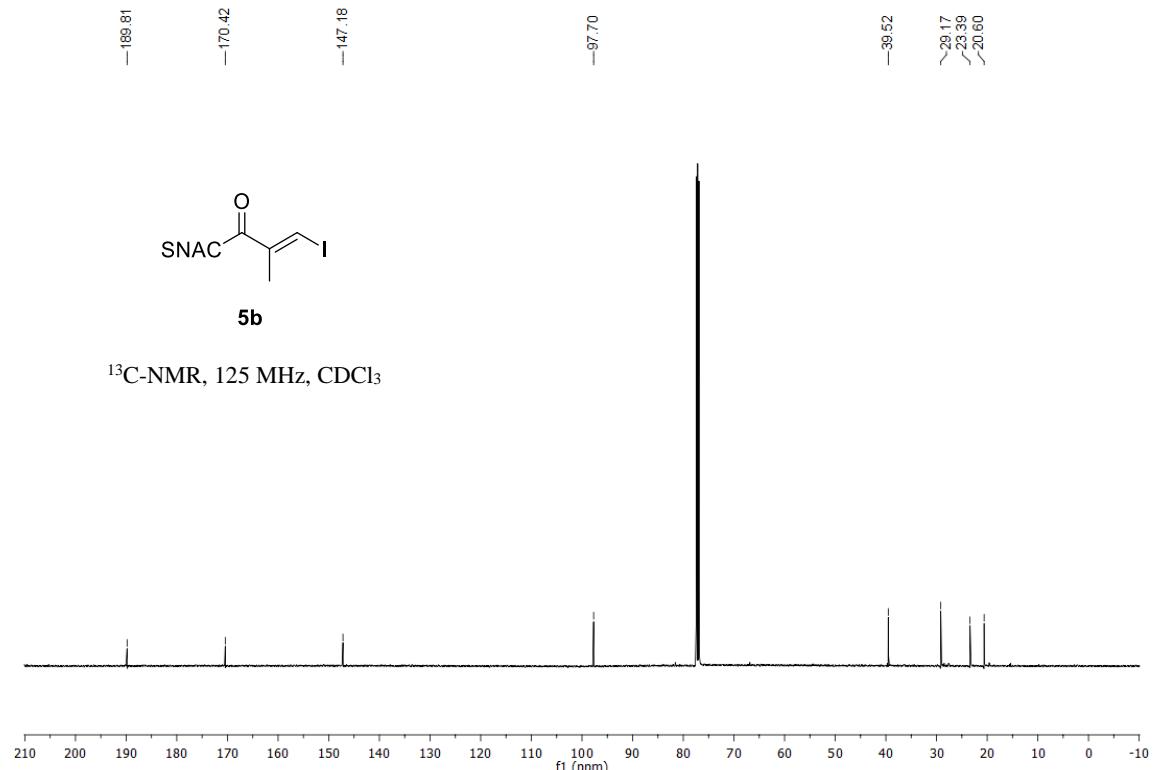


Figure S6: ¹³C-NMR-spectrum of thioester **5b** in CDCl₃.

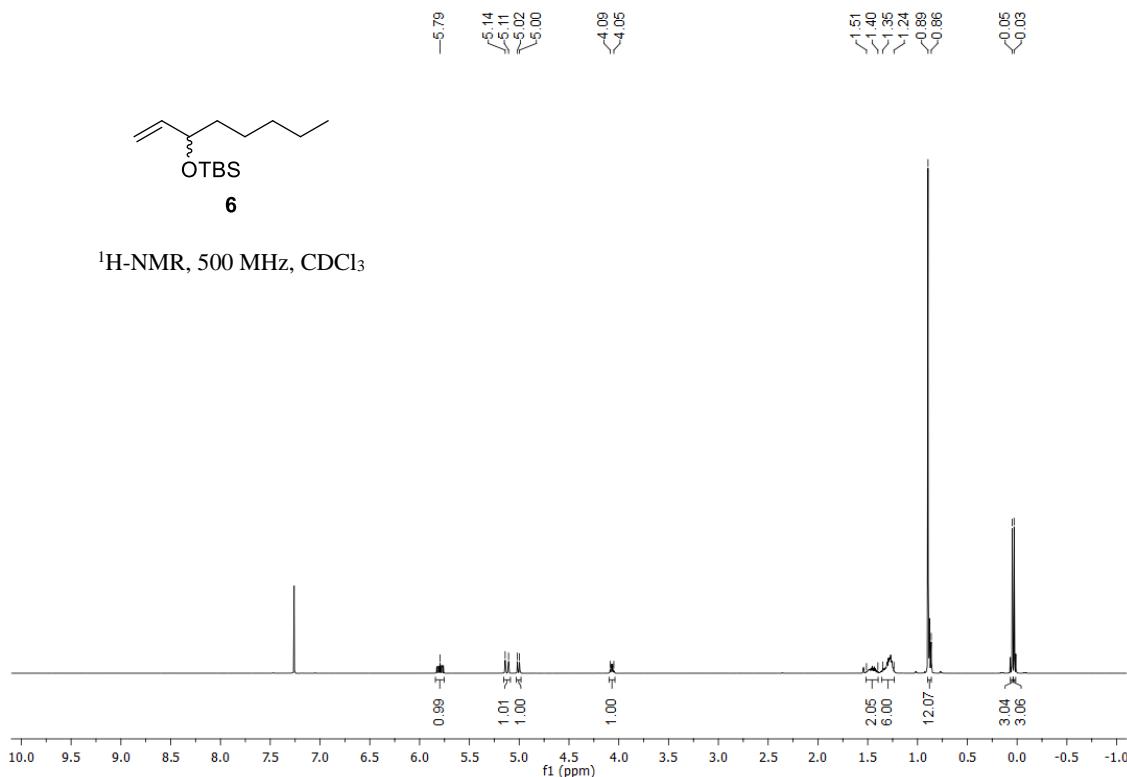


Figure S7: $^1\text{H-NMR}$ -spectrum of silyl ether **6** in CDCl_3 .

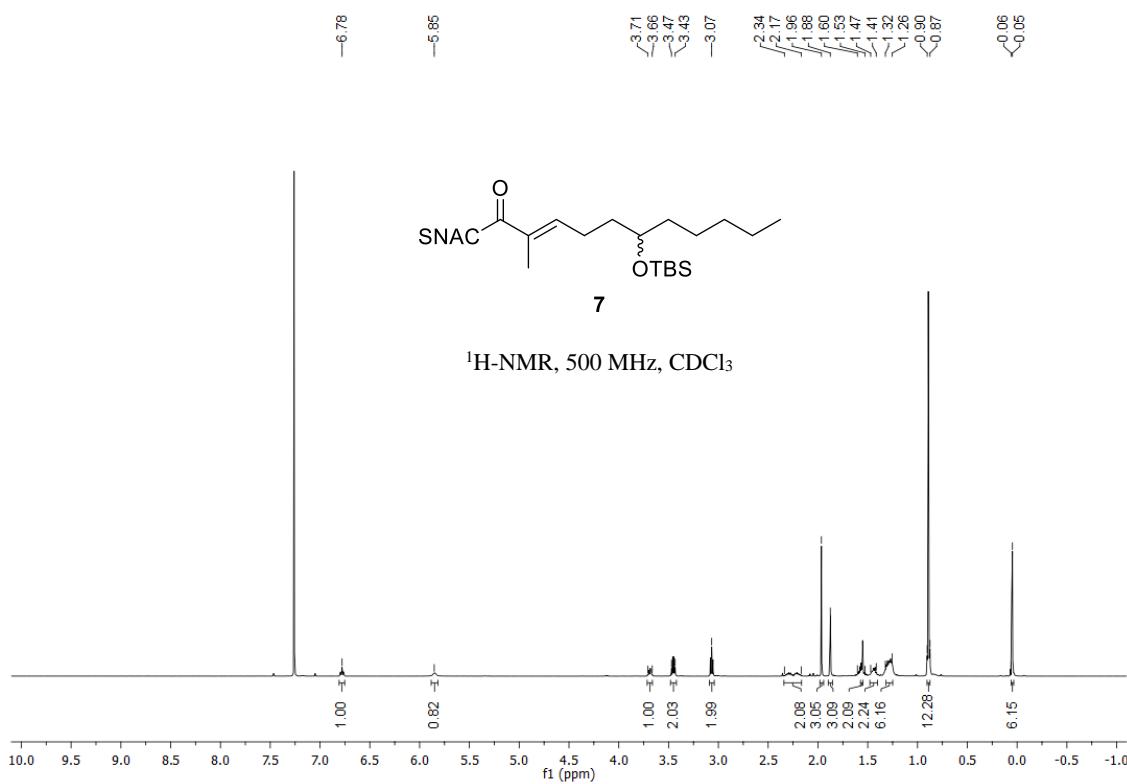


Figure S8: $^1\text{H-NMR}$ -spectrum of α,β -unsaturated thioester **7** in CDCl_3 .

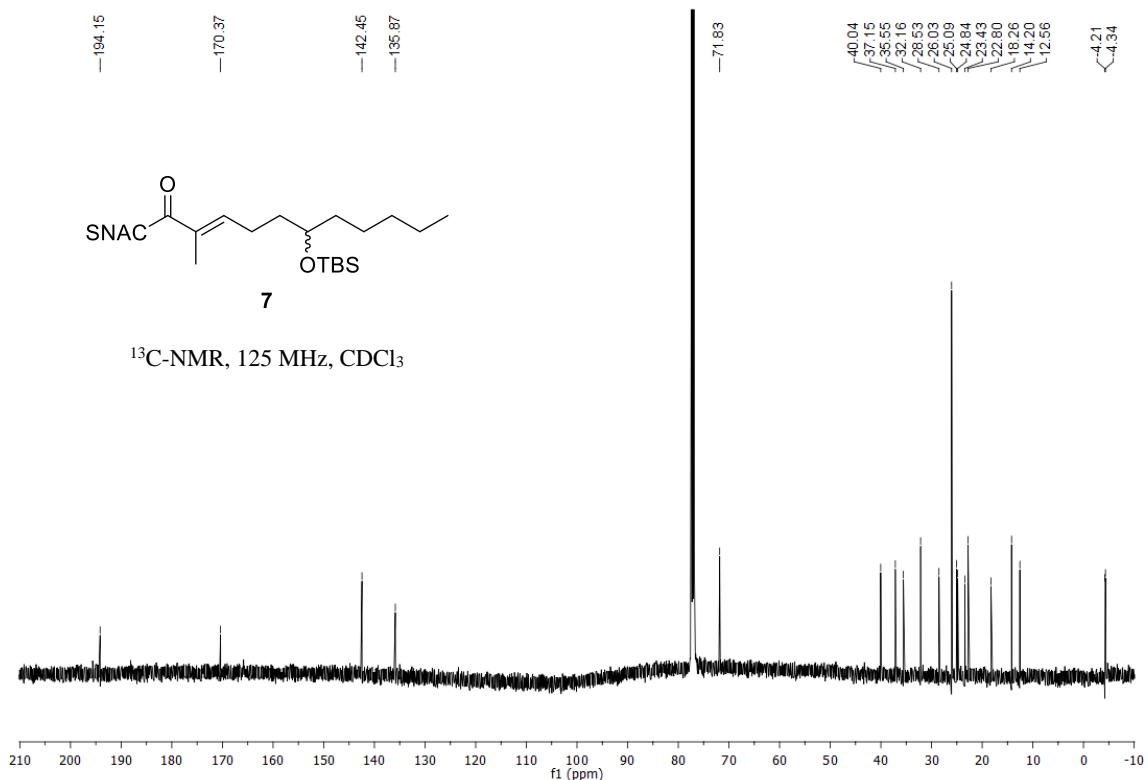


Figure S9: ¹³C-NMR-spectrum of α,β -unsaturated thioester **7** in CDCl₃.

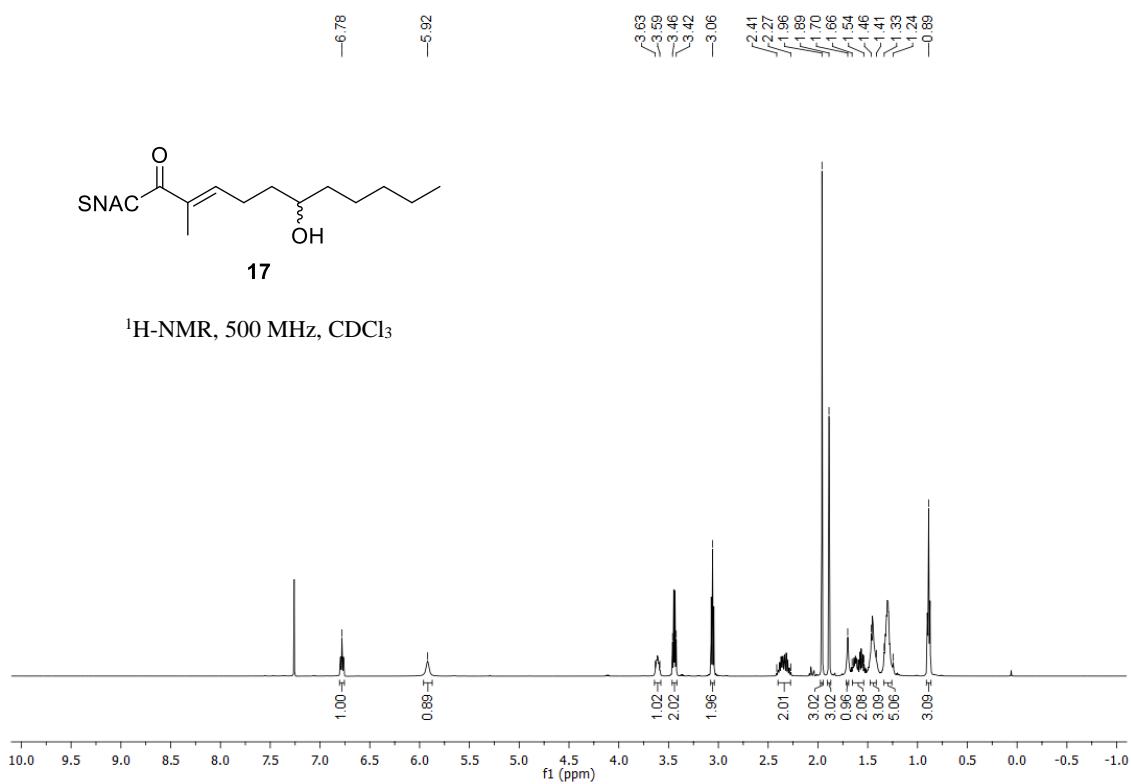


Figure S10: ¹H-NMR-spectrum of α,β -unsaturated thioester **17** in CDCl₃.

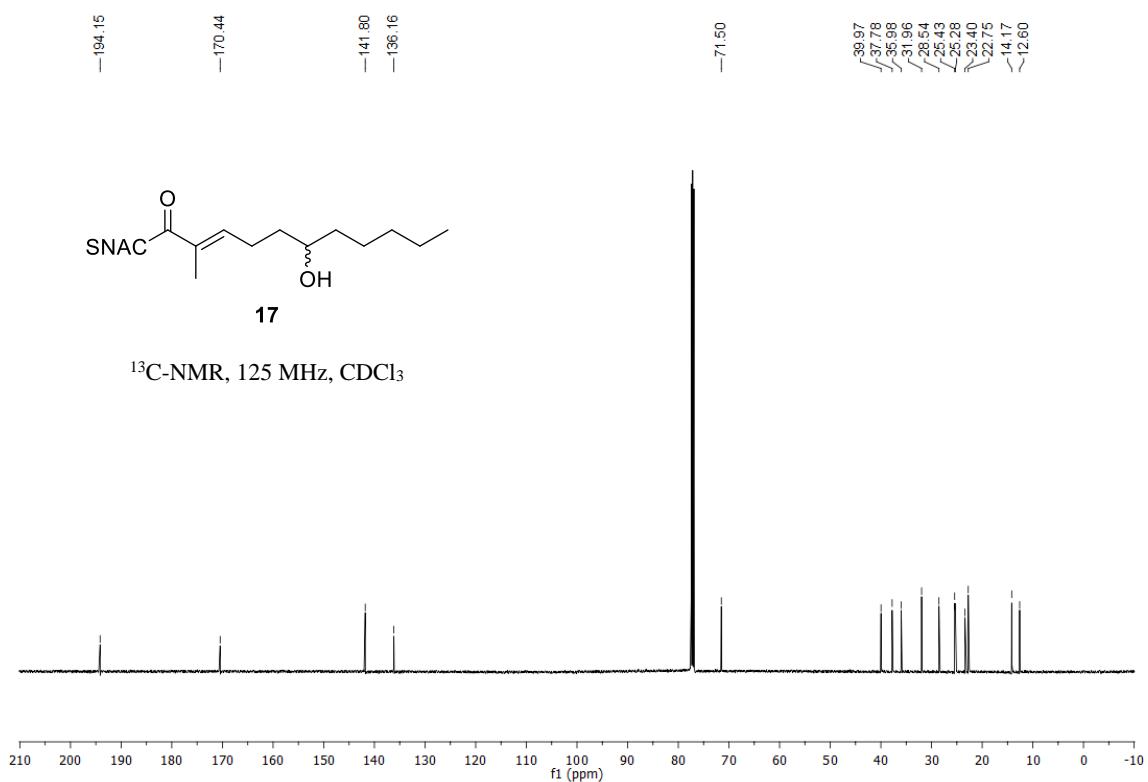


Figure S11: ¹³C-NMR-spectrum of α,β -unsaturated thioester **17** in CDCl₃.

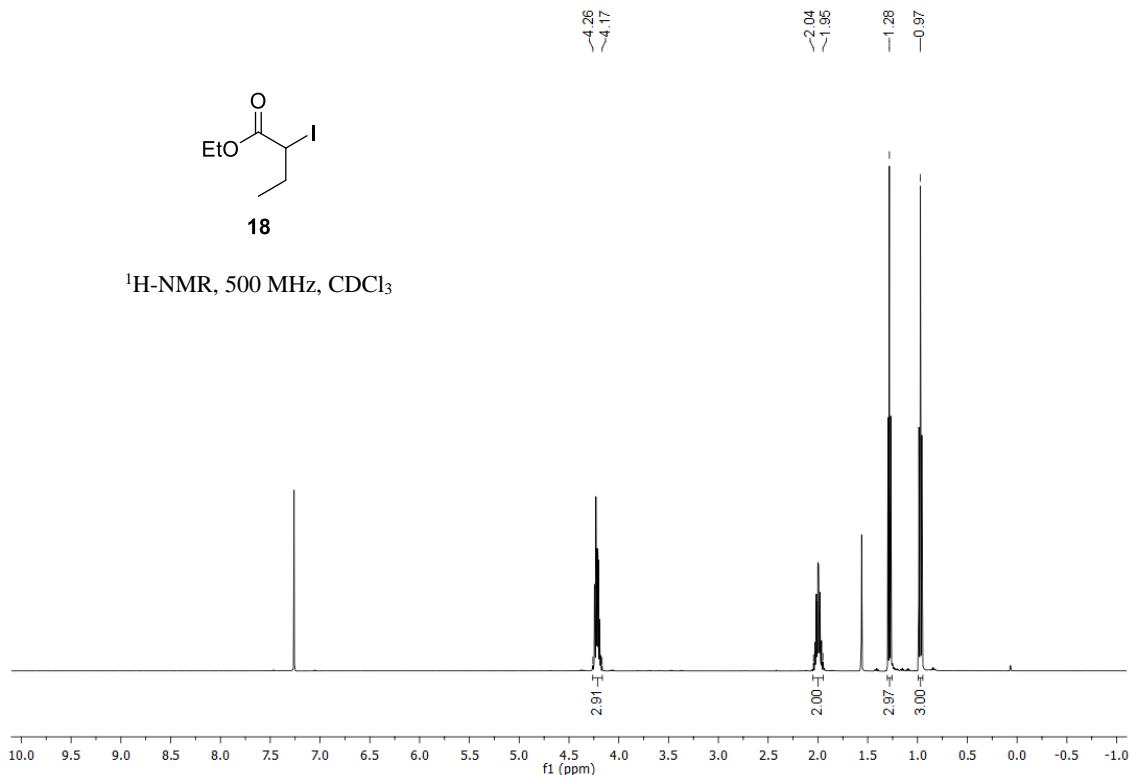


Figure S12: ¹H-NMR-spectrum of alkyl iodide **18** in CDCl₃.

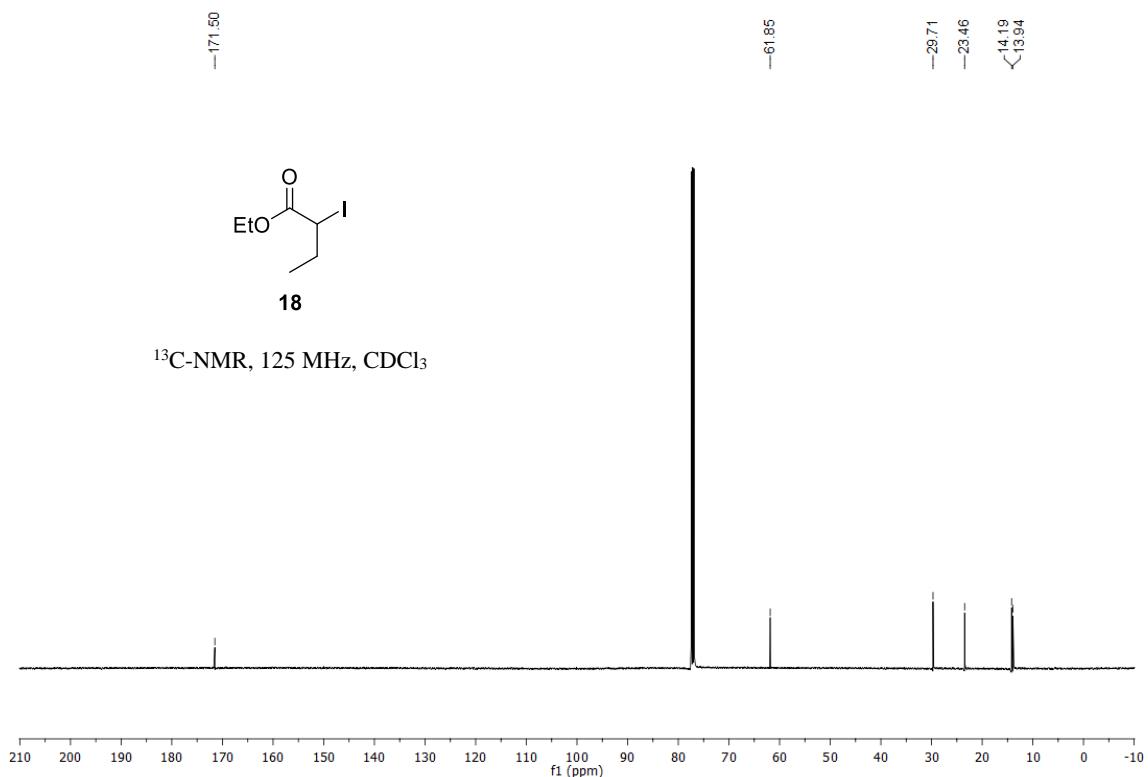


Figure S13: $^{13}\text{C-NMR}$ -spectrum of alkyl iodide **18** in CDCl_3 .

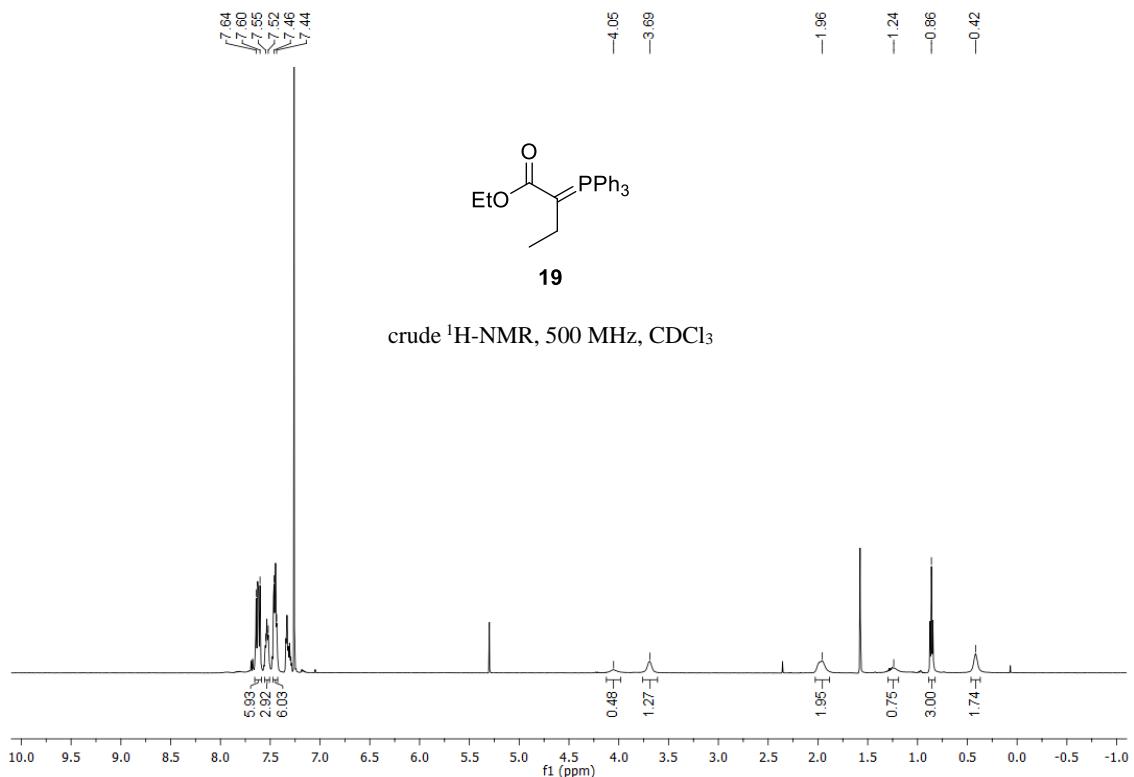


Figure S14: $^1\text{H-NMR}$ -spectrum of crude ylide **19** in CDCl_3 , containing residual signals of CH_2Cl_2 and toluene.

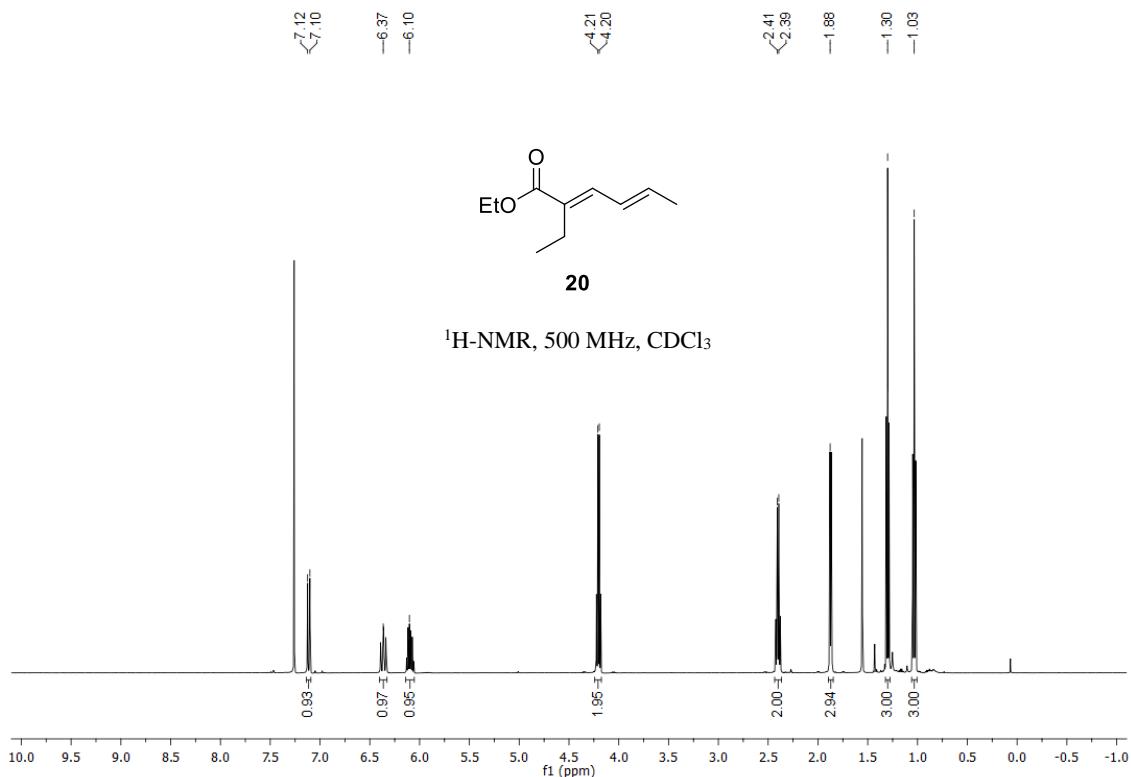


Figure S15: ¹H-NMR-spectrum of ethyl ester **20** in CDCl₃.

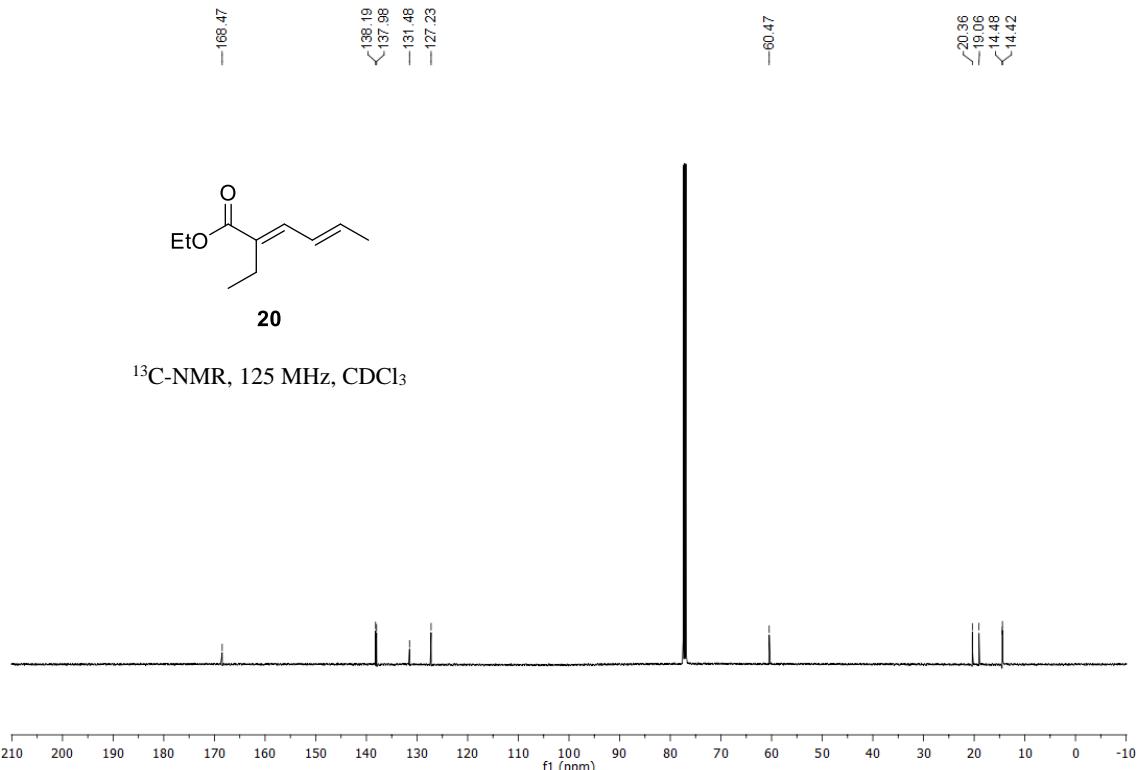


Figure S16: ¹³C-NMR-spectrum of ethyl ester **20** in CDCl₃.

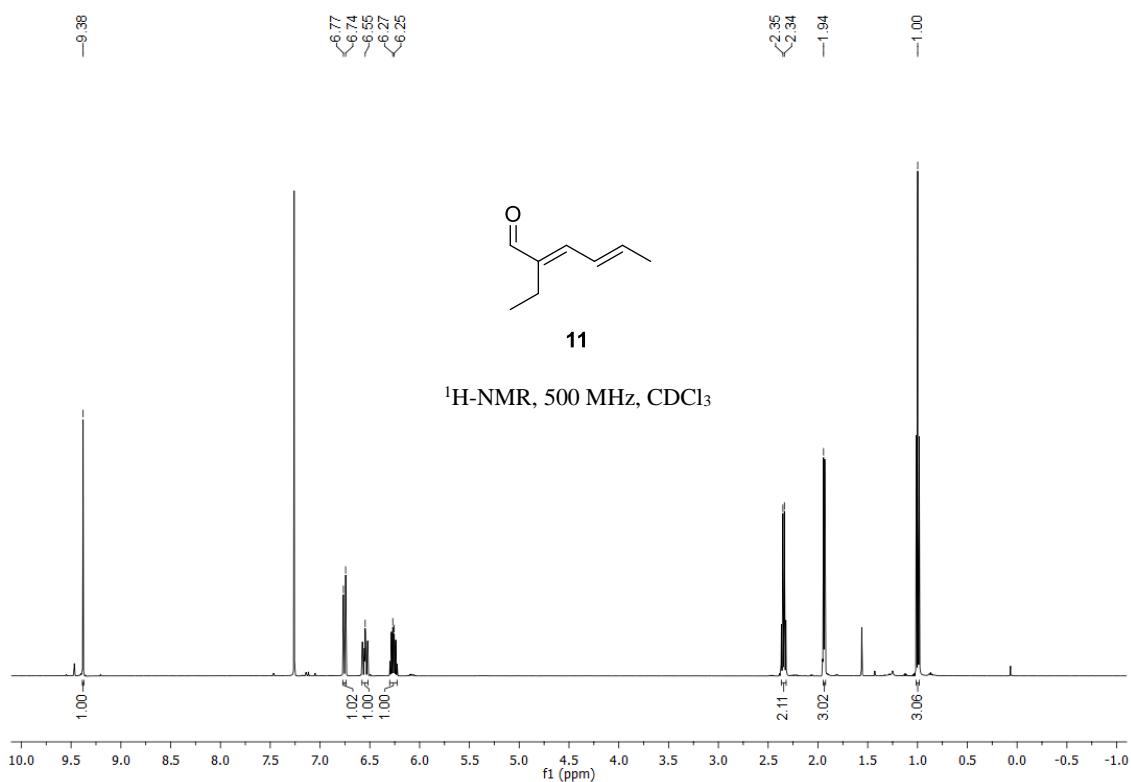


Figure S17: ¹H-NMR-spectrum of aldehyde **11** in CDCl₃.

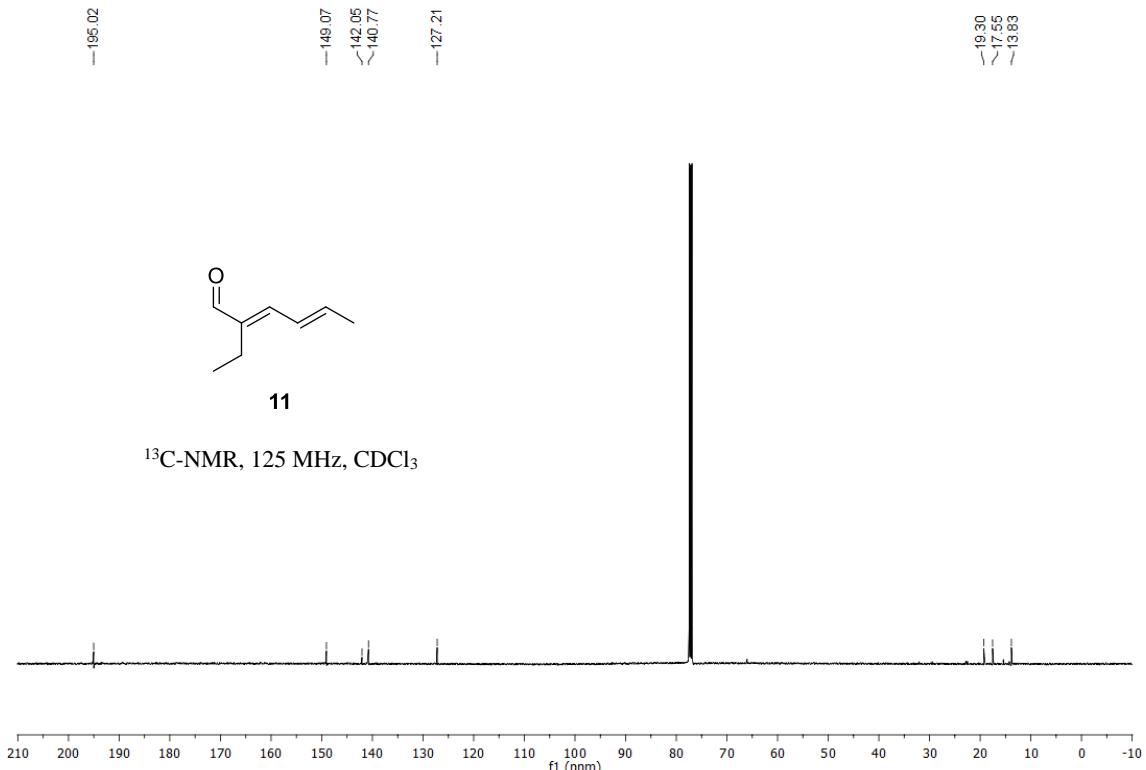


Figure S18: ¹³C-NMR-spectrum of aldehyde **11** in CDCl₃.

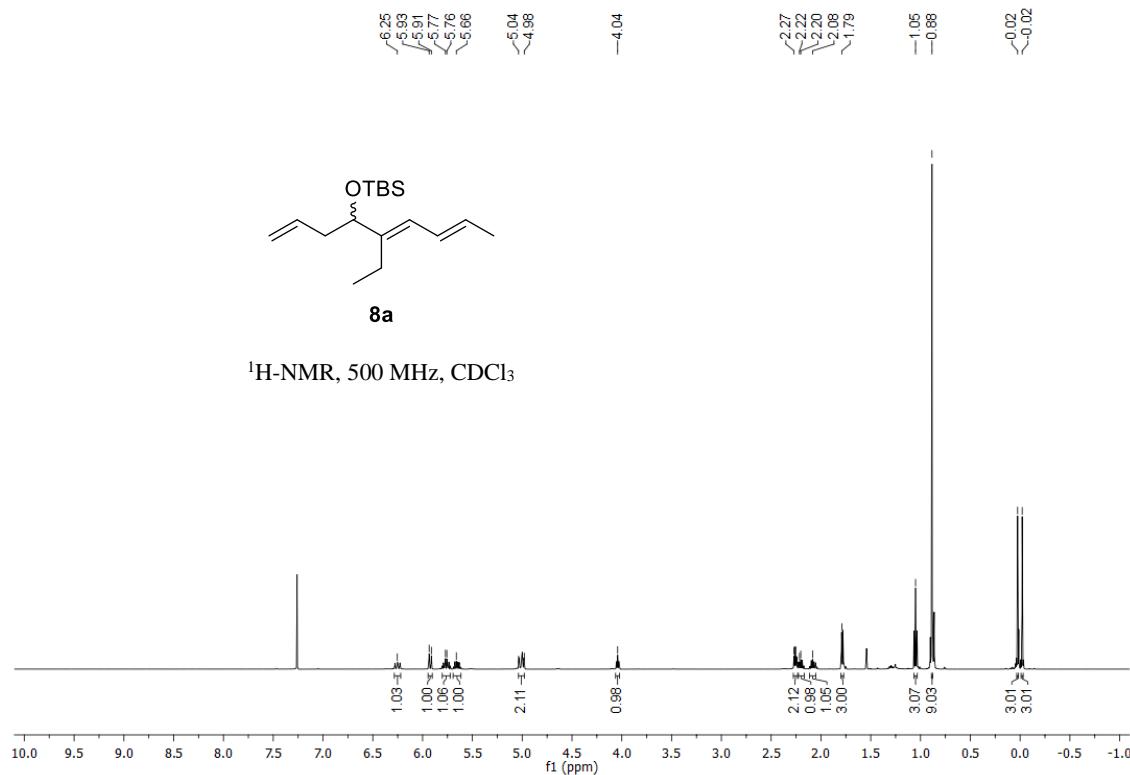


Figure S19: ¹H-NMR-spectrum of silyl ether **8a** in CDCl₃.

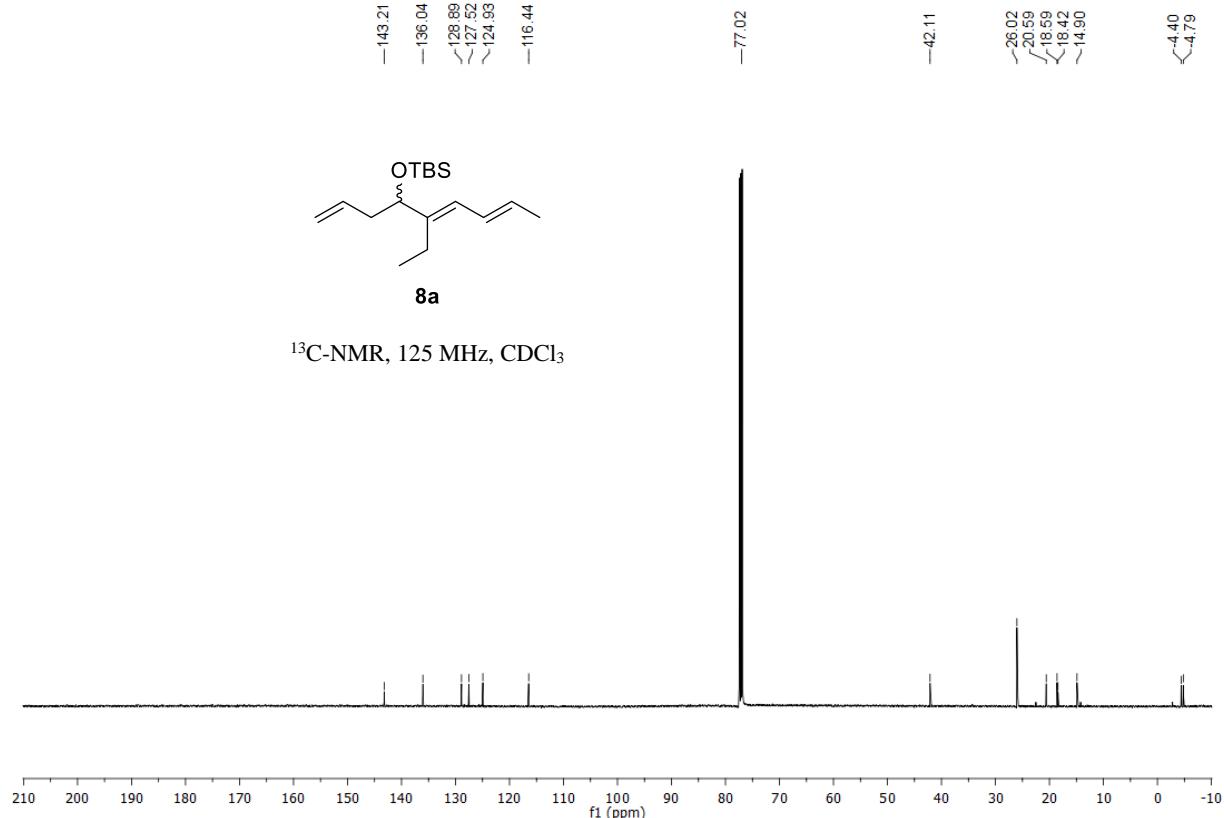


Figure S20: ¹³C-NMR-spectrum of silyl ether **8a** in CDCl₃.

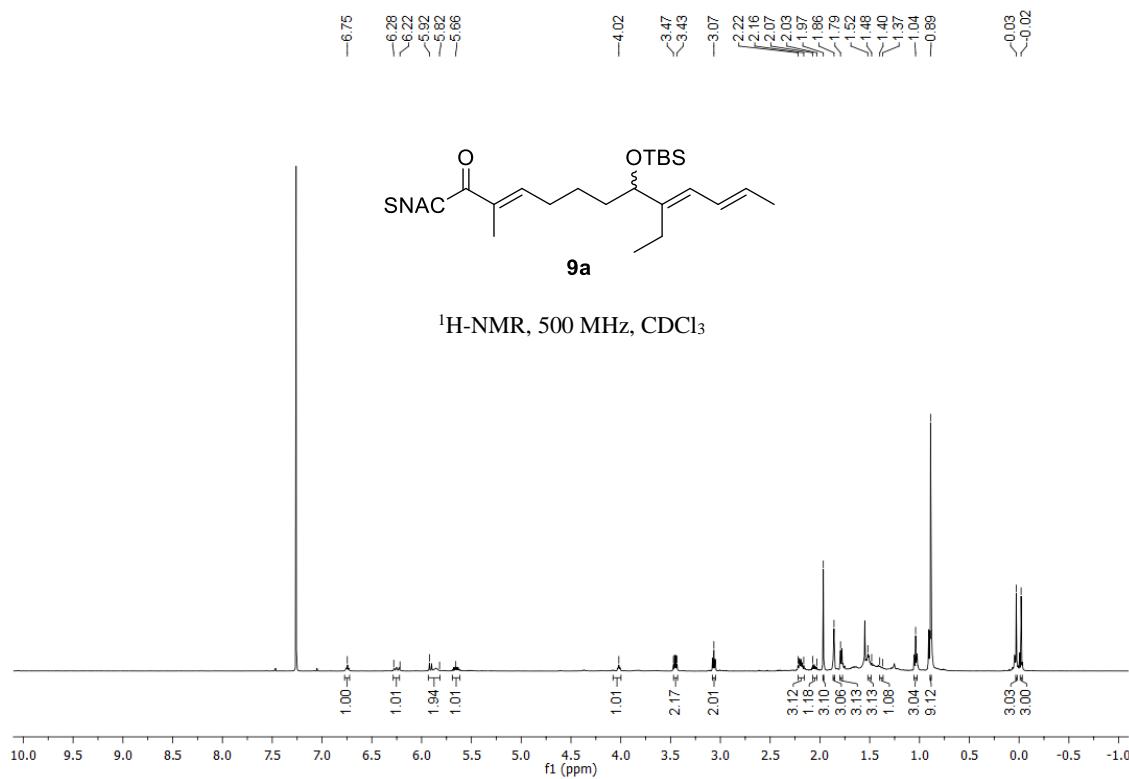


Figure S21: ¹H-NMR-spectrum of α,β -unsaturated thioester **9a** in CDCl₃.

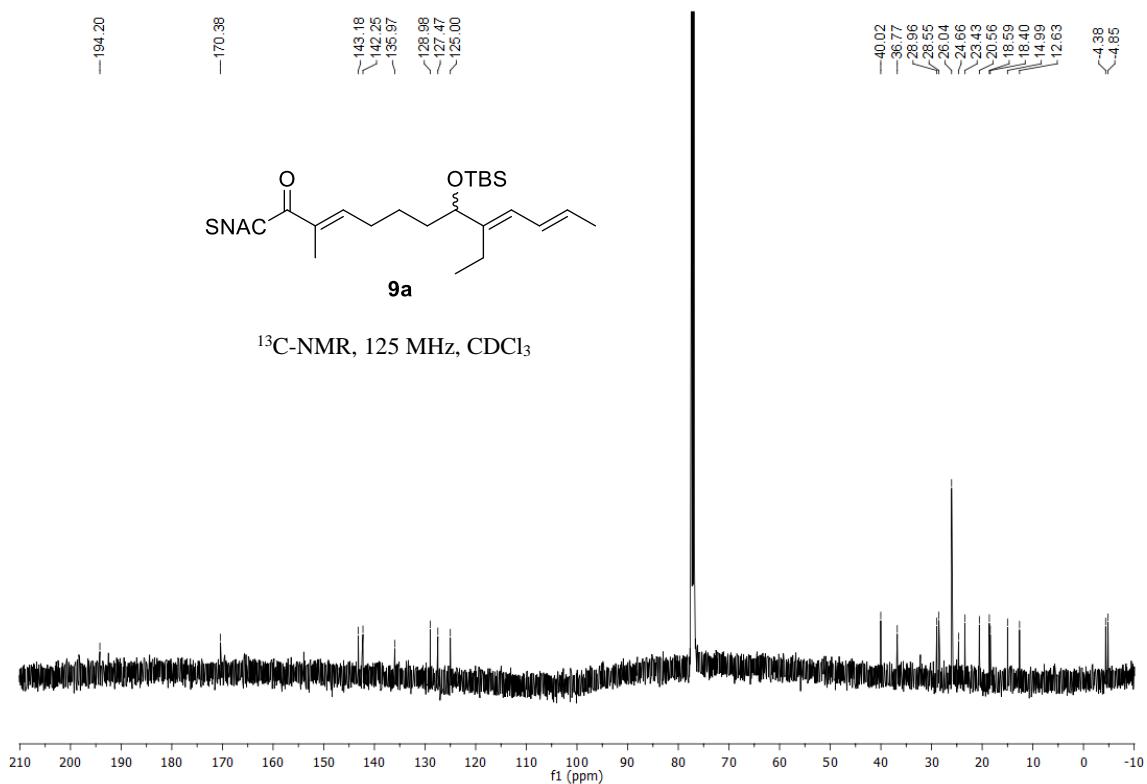


Figure S22: ¹³C-NMR-spectrum of α,β -unsaturated thioester **9a** in CDCl₃.

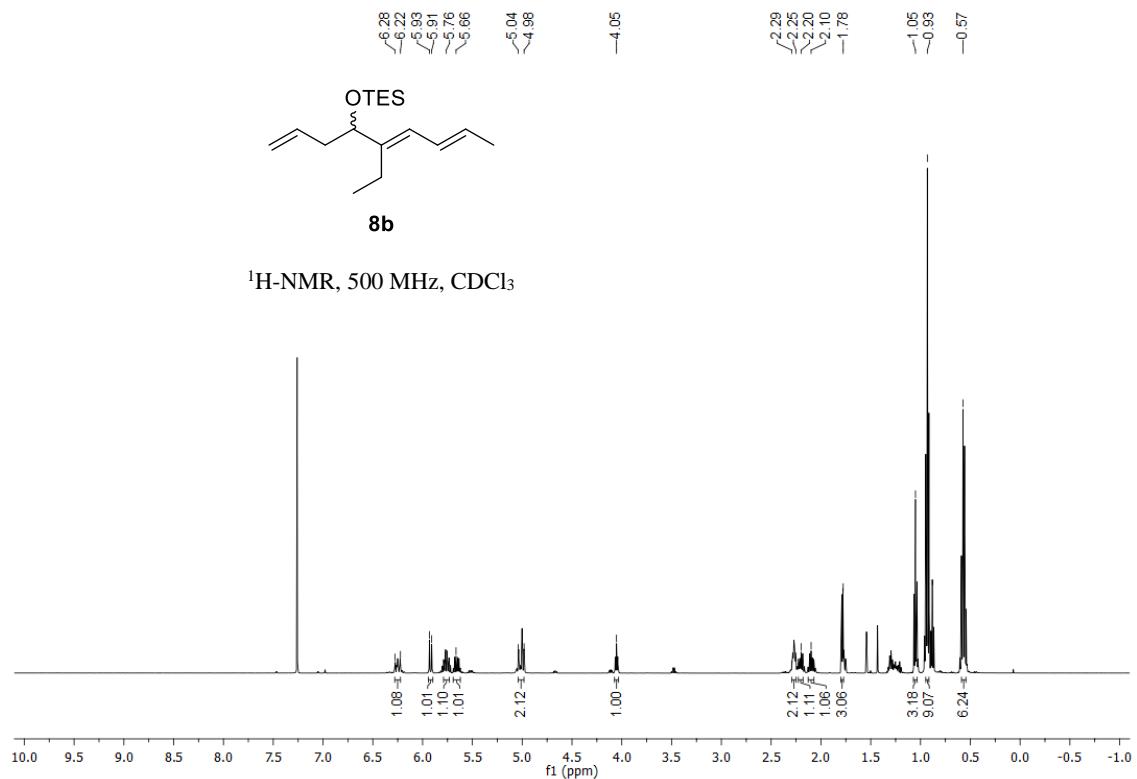


Figure S23: ¹H-NMR-spectrum of silyl ether **8b** in CDCl₃.

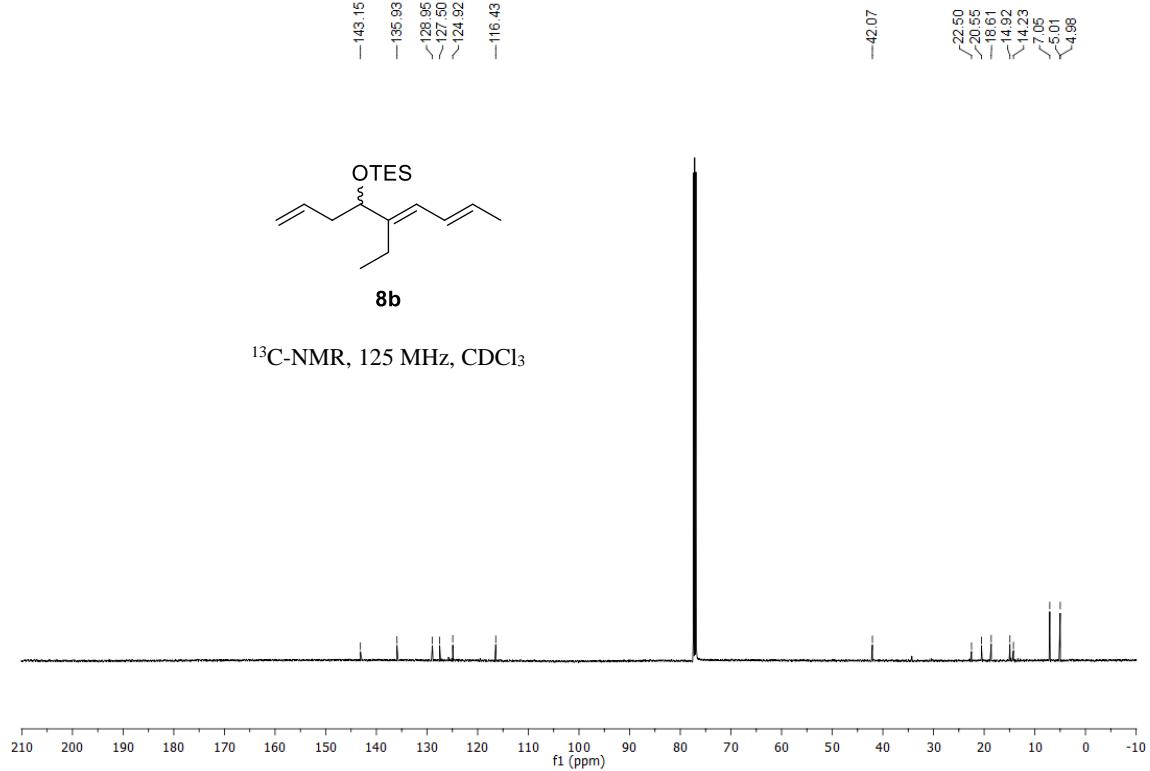


Figure S24: ¹³C-NMR-spectrum of silyl ether **8b** in CDCl₃.

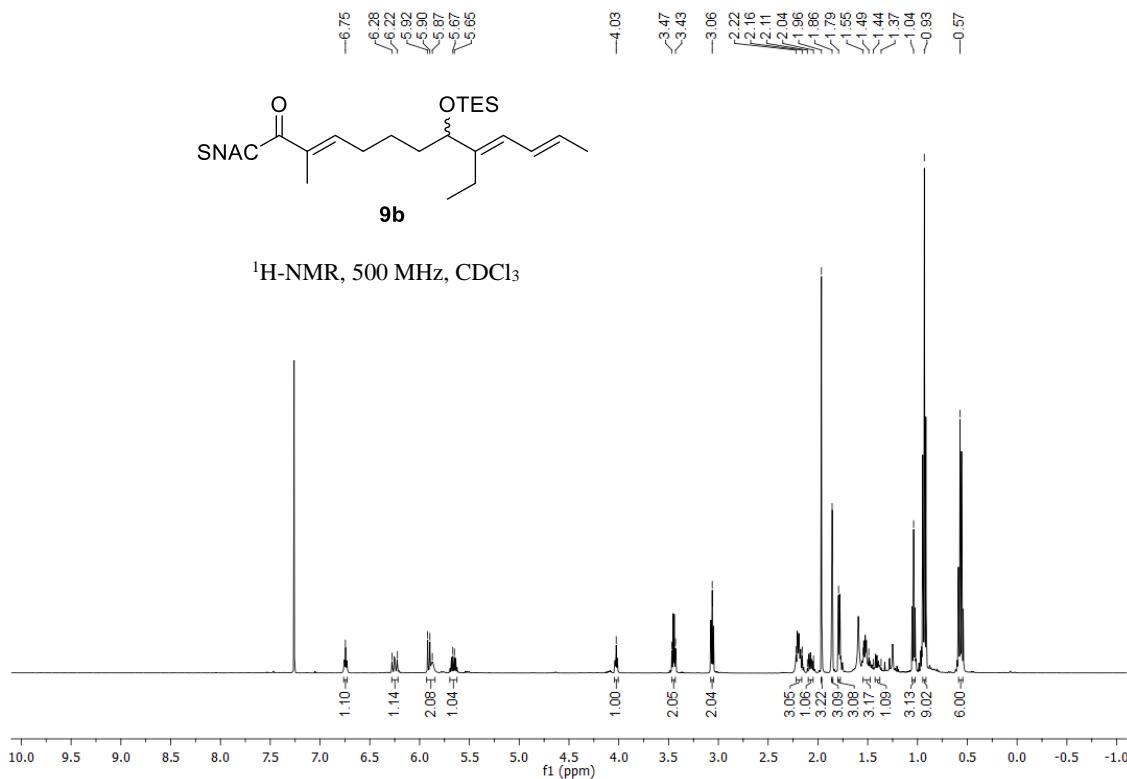


Figure S25: ¹H-NMR-spectrum of α,β -unsaturated thioester **9b** in CDCl₃.

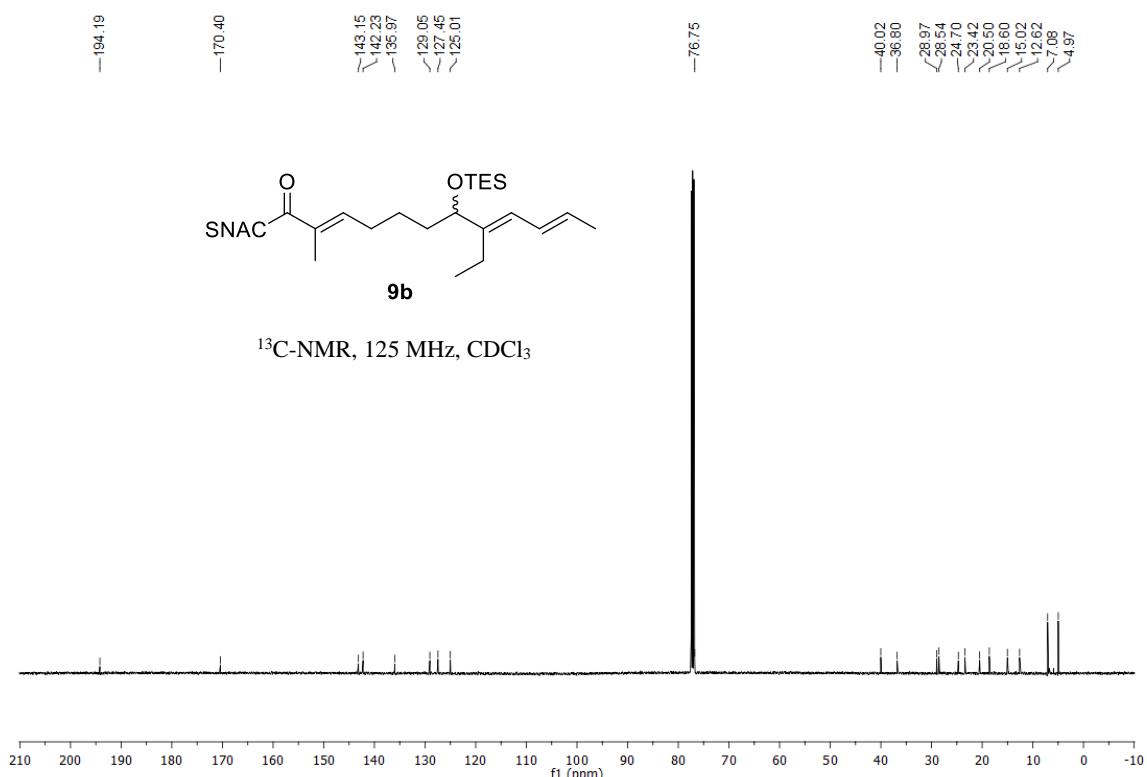


Figure S26: ¹³C-NMR-spectrum of α,β -unsaturated thioester **9b** in CDCl₃.

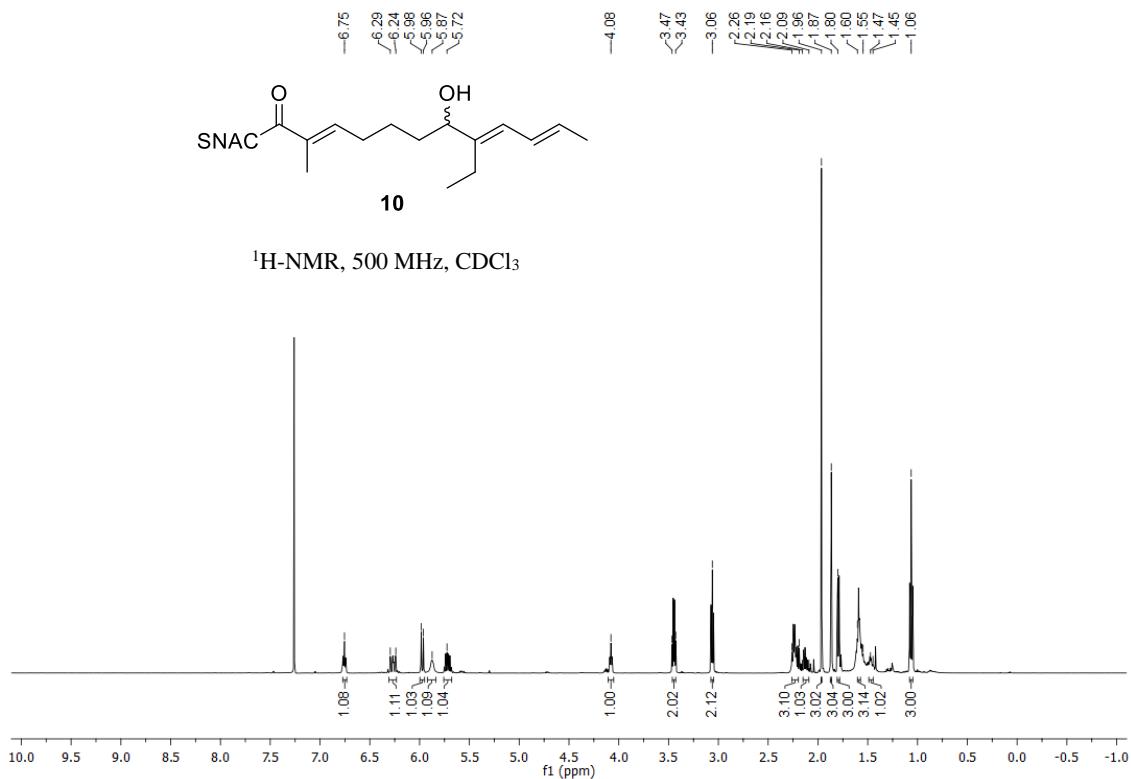


Figure S27: ¹H-NMR-spectrum of α,β -unsaturated thioester **10** in CDCl₃.

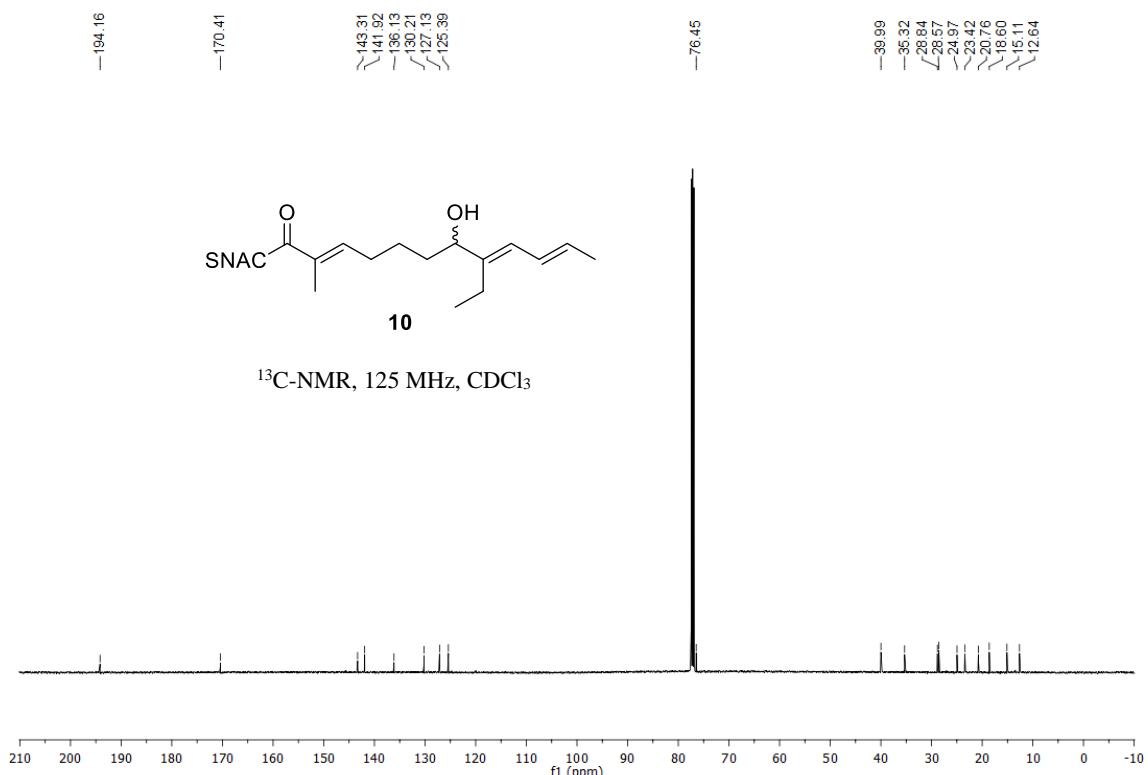


Figure S28: ¹³C-NMR-spectrum of α,β -unsaturated thioester **10** in CDCl₃.

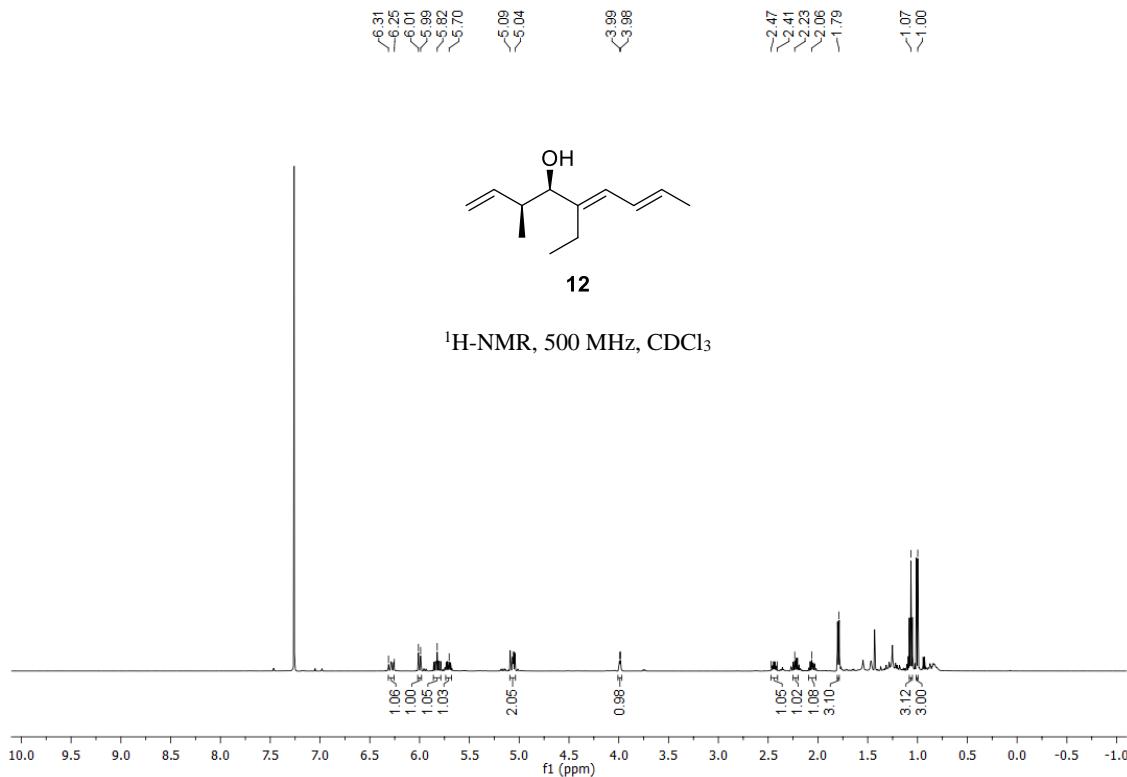


Figure S29: ¹H-NMR-spectrum of secondary alcohol **12** in CDCl₃.

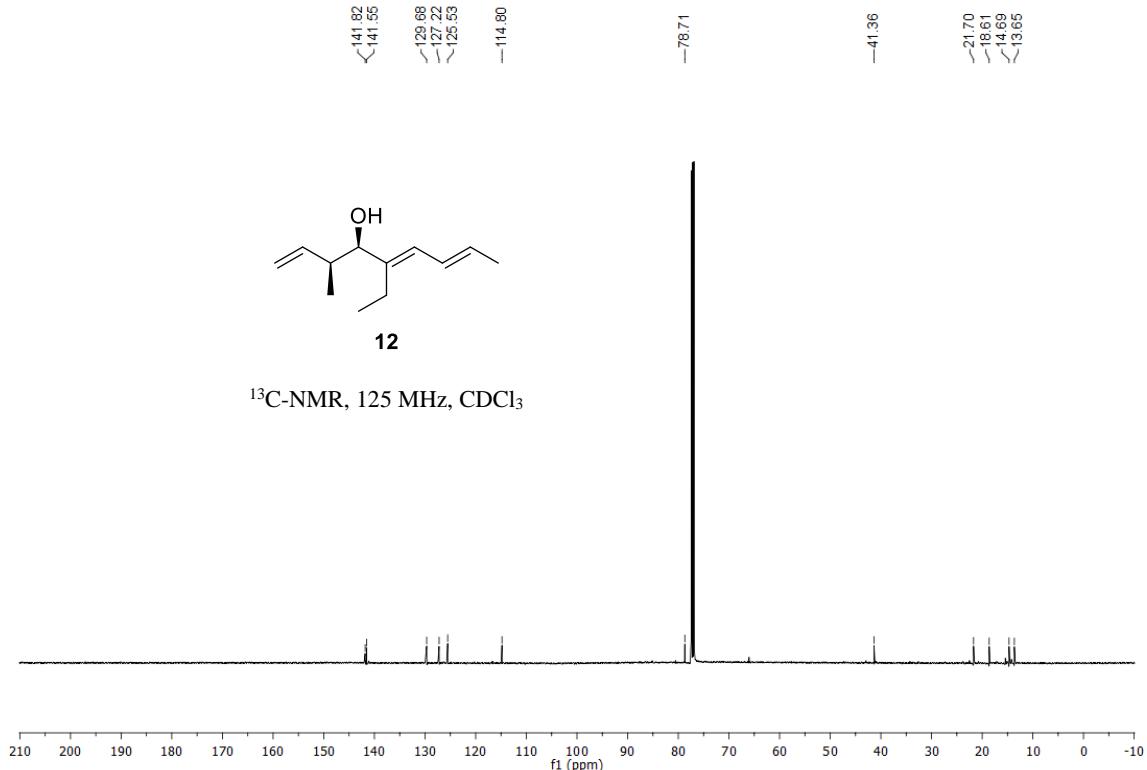


Figure S30: ¹³C-NMR-spectrum of secondary alcohol **12** in CDCl₃.

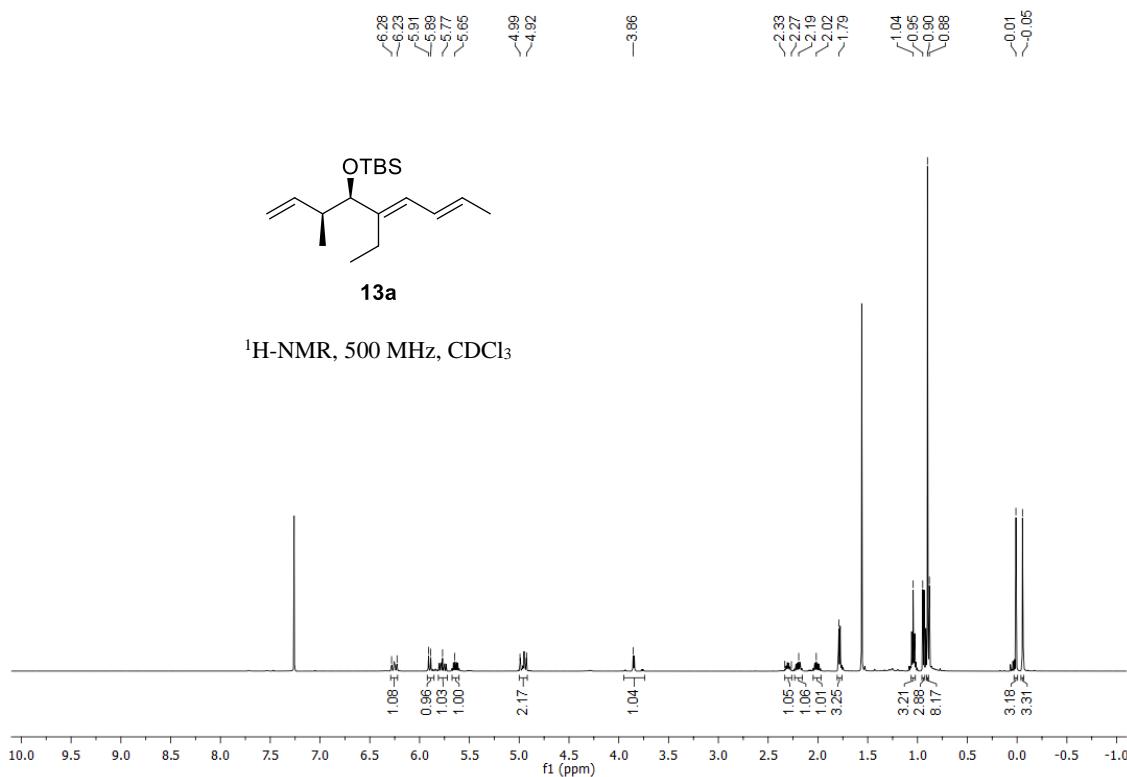


Figure S31: $^1\text{H-NMR}$ -spectrum of silyl ether **13a** in CDCl_3 .

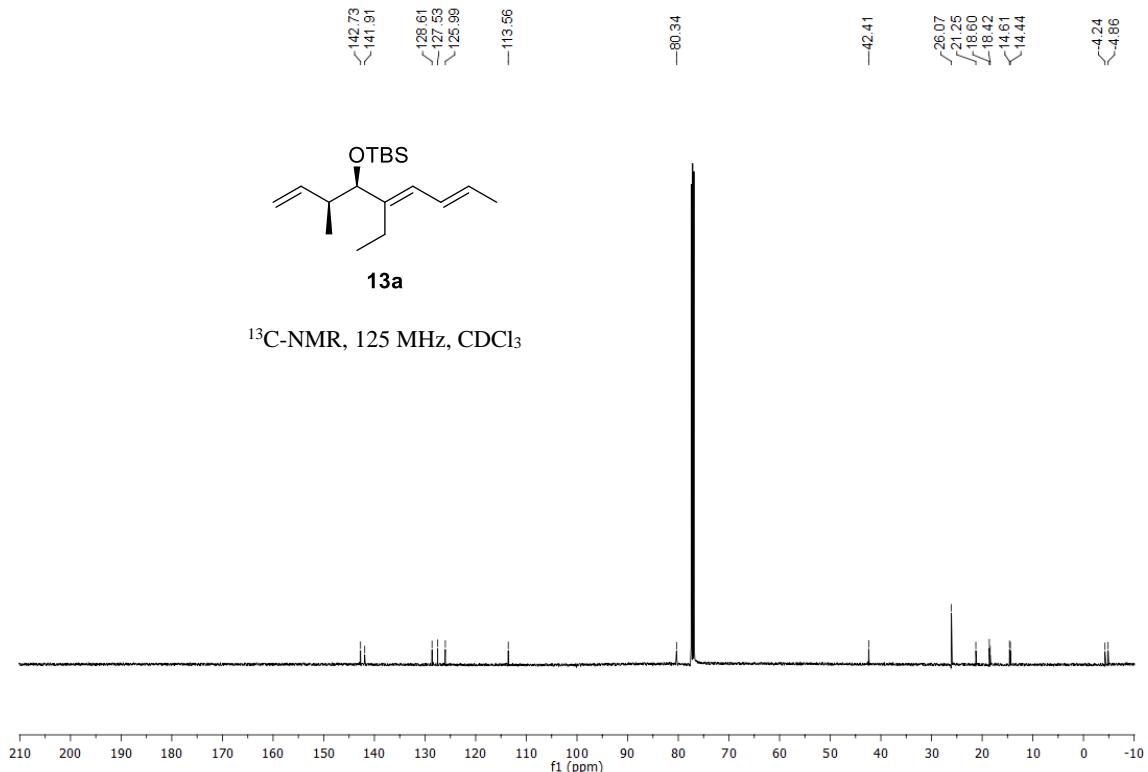


Figure S32: $^{13}\text{C-NMR}$ -spectrum of silyl ether **13a** in CDCl_3 .

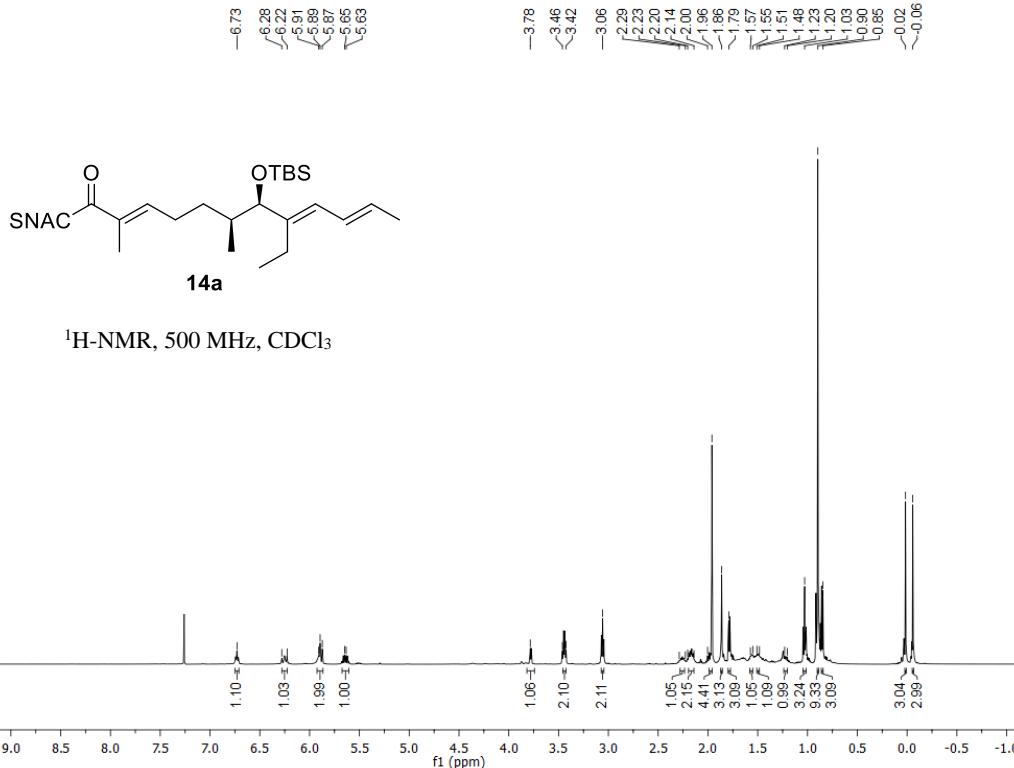


Figure S33: ^1H -NMR-spectrum of α,β -unsaturated thioester **14a** in CDCl_3 .

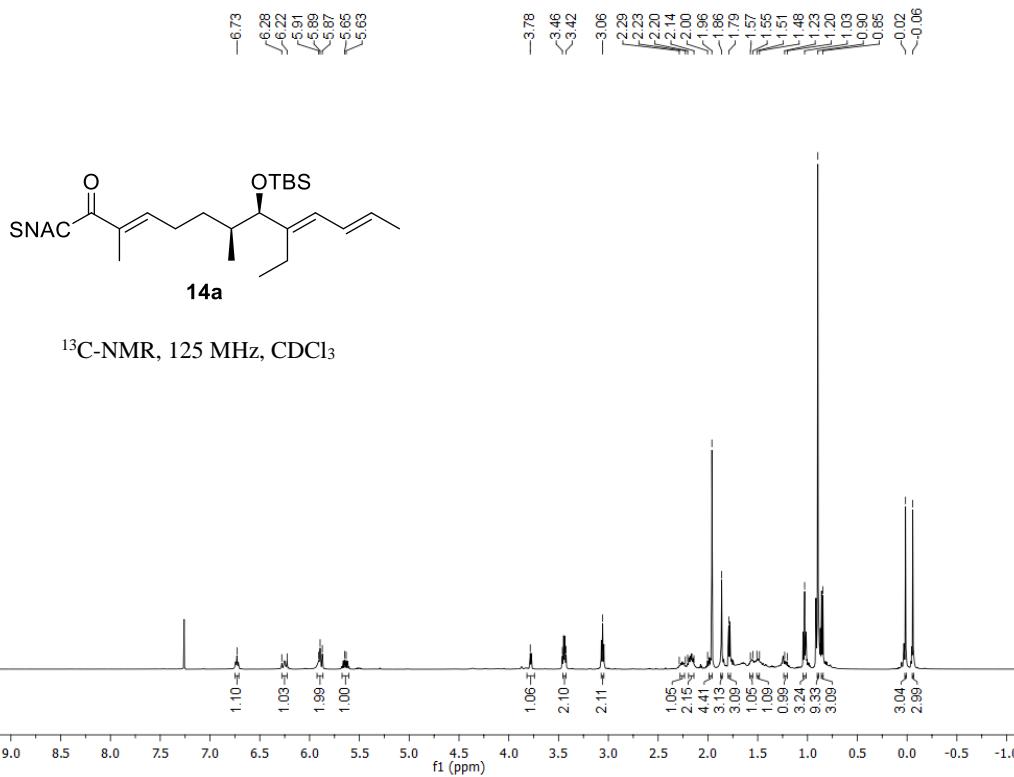


Figure S34: ^{13}C -NMR-spectrum of α,β -unsaturated thioester **14a** in CDCl_3 .

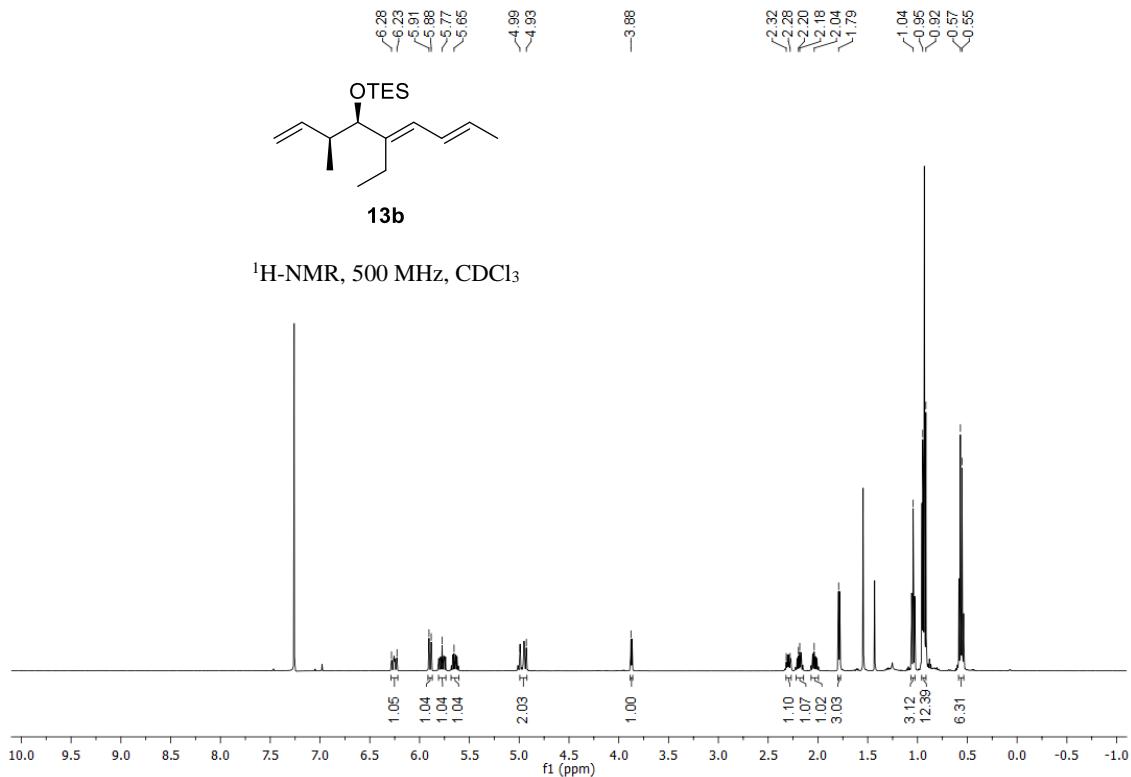


Figure S35: ¹H-NMR-spectrum of silyl ether **13b** in CDCl₃.

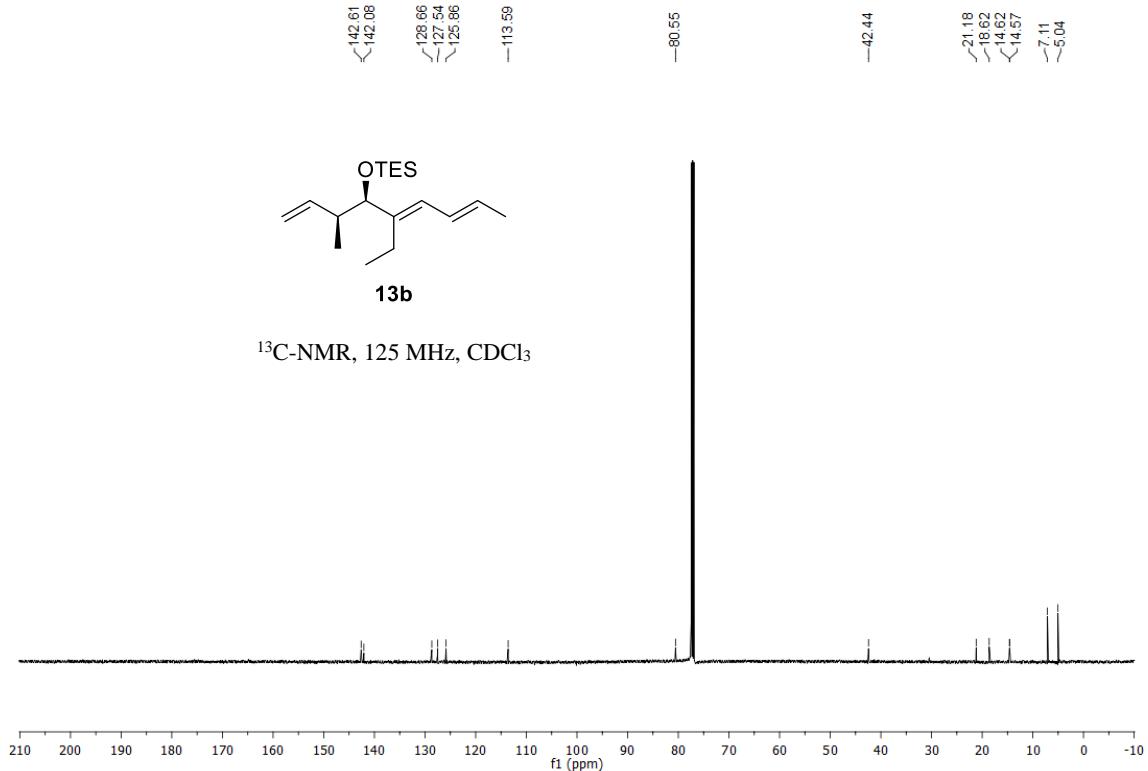


Figure S36: ¹³C-NMR-spectrum of silyl ether **13b** in CDCl₃.

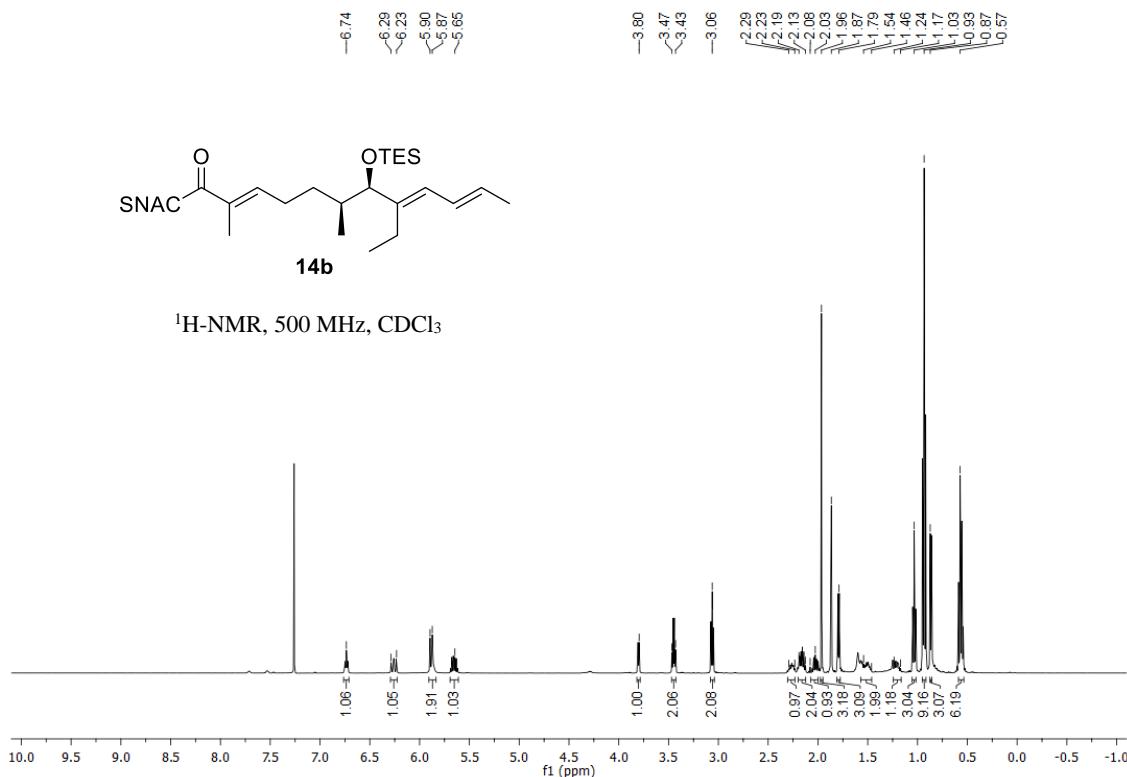


Figure S37: ¹H-NMR-spectrum of α,β -unsaturated thioester **14b** in CDCl₃.

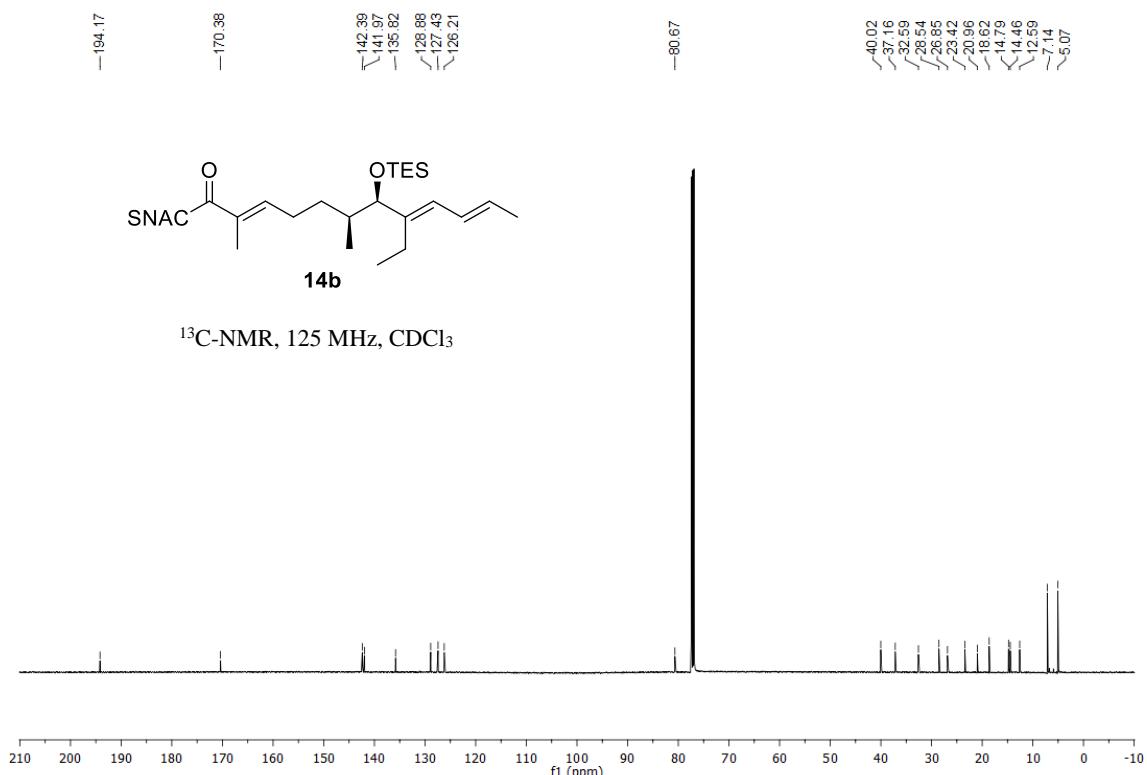


Figure S38: ¹³C-NMR-spectrum of α,β -unsaturated thioester **14b** in CDCl₃.

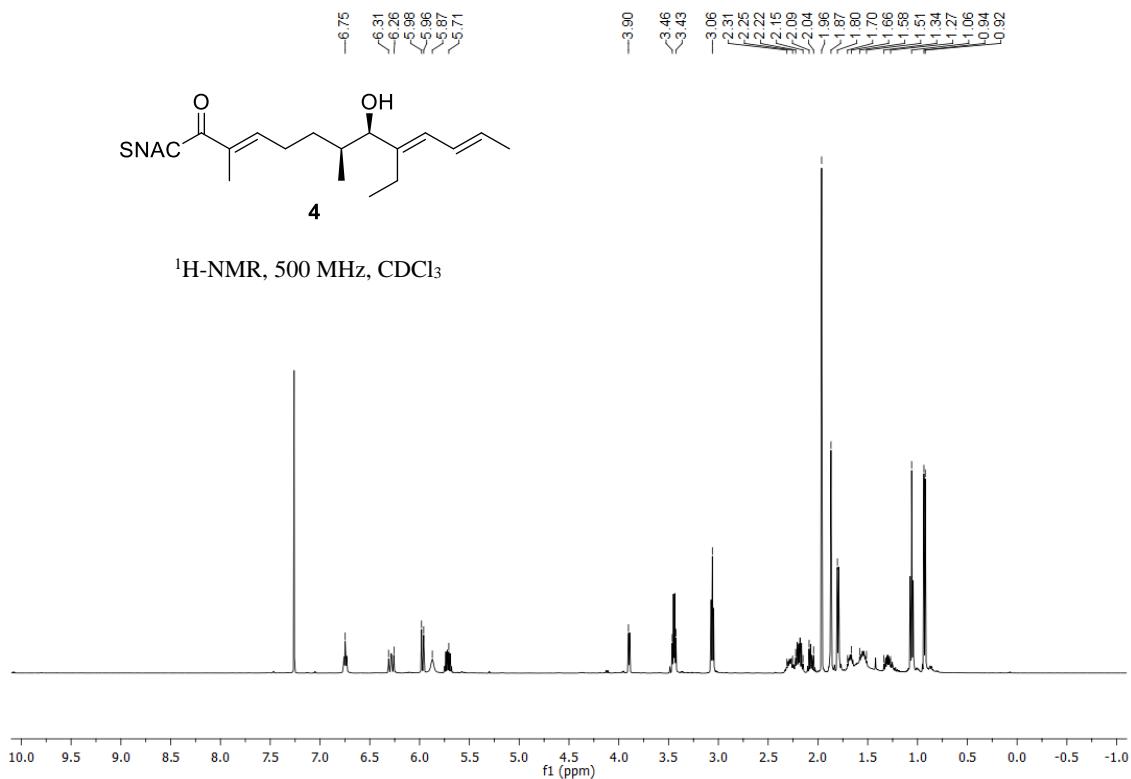


Figure S39: ¹H-NMR-spectrum of α,β -unsaturated thioester **4** in CDCl₃.

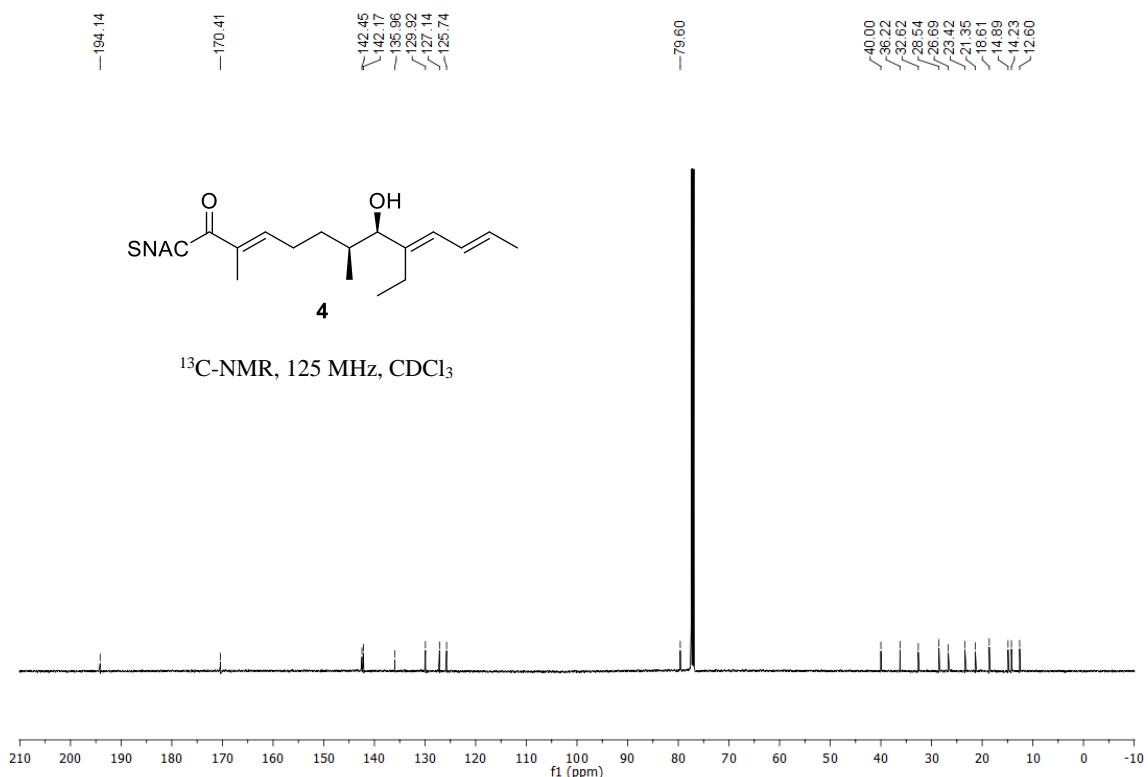


Figure S40: ¹³C-NMR-spectrum of α,β -unsaturated thioester **4** in CDCl₃.