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Abstract: The metro station ridership features are associated significantly with the built
environment factors of the pedestrian catchment area surrounding metro stations. The existing
studies have focused on the impact on total ridership at metro stations, ignoring the impact on
varying patterns of metro station ridership. Therefore, the reasonable identification of metro station
categories and built environment factors affecting the varying patterns of ridership in different
categories of stations is very important for metro construction. In this study, we developed a data-
driven framework to examine the relationship between varying patterns of metro station ridership
and built environment factors in these areas. By leveraging smart card data, we extracted the
dynamic characteristics of ridership and utilized hierarchical clustering and K-means clustering to
identify diverse patterns of metro station ridership, and finally identified six main ridership
patterns. We then developed a new built environment measurement framework and adopted
multinomial logistic regression analysis to explore the association between ridership patterns and
built environment factors. (1) The clustering analysis result revealed that six station types were
classified based on varying patterns of passenger flow, representing distinct functional
characteristics. (2) The regression analysis indicated that diversity, density, and location factors
were significantly associated with most station function types, while destination accessibility was
only positively associated with employment-oriented type station, and centrality was only
associated with employment-oriented hybrid type station. These results could inform the
coordinated development of rail transit and land use, and the renewal and enhancement of the built
environment in the pedestrian catchment area surrounding metro stations.

Keywords: metro station; varying pattern of ridership; pedestrian catchment area; built
environment; multinomial logistic regression analysis

1. Introduction

As a crucial component of the urban public transportation system, metro could effectively solve
the "big city problems" such as environmental pollution, carbon emission and traffic congestion, thus
promoting sustainable and healthy travel for residents [1-3]. In recent decades, Transit-oriented
development (TOD) has gradually become a cutting-edge model for urban community planning and
a new direction for urban sustainable development, but there still exists the phenomenon of
uncoordinated degree of integration between urban rail transit hubs and urban functional areas in
the process of urban development, causing a series of problems such as excessive flow during peak
periods, unbalanced ridership at incoming and outgoing stations, and unbalanced distribution of
ridership [4-6]. The varying patterns of metro station ridership have a strong correlation with the
built environment factors of the pedestrian catchment area surrounding metro stations [7,8], and the
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different types of metro stations with varying patterns of ridership are spatially heterogeneous due
to the driving effect of built environment factors. In this context, this study classifies the stations
based on the varying patterns of metro station ridership, and clarifies the supply and demand
situation and functional features of different types of metro stations. Besides, we further investigates
the influence of built environment factors on different types of metro stations and identifies the
strategies for optimizing the built environment of different types of metro stations. This study aims
to investigate the urban renewal strategy of coordinated interaction between rail transit planning and
urban planning, which will help to improve the efficiency of metro operation and station service
quality, and enhance the spatial vitality of the pedestrian catchment area surrounding metro stations
[9].

The intricate relationship between metro station ridership and built environment factors has
garnered significant attention from scholars in recent years. The advent of smart card data and open-
source databases has facilitated the examination of this relationship through big data analysis.
However, most studies have focused on the total ridership of metro stations [10,11], overlooking the
different ridership patterns of stations. Additionally, some important factors, such as station
centrality and location value have been ignored when evaluating the relationship between metro
station ridership and built environment factors. In this context, this study aimed to bridge research
gaps by investigating the relationship between the varying patterns of metro station ridership and
built environment factors based on smart card data in Tianjin, China. There are two crucial questions
in the present study: (1) What are the types of metro stations based on varying patterns of ridership
and what are their distinctive characteristics? (2) What is the association between the varying patterns
of metro station ridership and built environment factors? The answers to these questions can offer
valuable insights for rail transit planning and urban renewal.

The remaining sections are structured as follows. Section 2 provides a review of related
literature, including identifying the varying patterns of metro station ridership, the evaluation
dimensions of built environment factors, and the relationship between metro station ridership and
built environment. In Section 3, the methodology and smart card data used in this study are
presented. The results of the study are analyzed in Section 4. Finally, Section 5 provides discussions
based on these findings.

2. Literature Review

2.1. Identification the varying patterns of metro station ridership

The role of mobility in shaping urban morphology and function partition has been recognized
by urban scholars [12]. Smart card data, containing detailed information on passenger trip
transactions, has been utilized to investigate resident trip characteristics and to describe
transportation supply and demand [13], providing strategies for public transportation system
operation and management [14]. The dynamic features of ridership in smart card data have been
analyzed using clustering methods to identify the varying patterns of metro station ridership [15,16].
For example, researchers have adopted methods such as K-means clustering, two-stage clustering,
and self-organizing maps (SOM) to classify metro stations [17-19]. Among these methods, K-means
clustering was one of the most widely used clustering methods due to its high computational
efficiency and interpretability [17]. However, K-means method cannot effectively choose the initial K
value. To address this issue, we developed a new method which combining the hierarchical
clustering with K-means clustering to classify the different patterns of metro station passengers.

2.2. Measurements of built environment factors

Studies have shown that built environment factors have a significantly heterogeneous impact on
metro station ridership [20]. The '3Ds' framework developed by Cervero and Kockelman was widely
used to describe built environment factors, namely diversity, density, and design [21]. Among them,
diversity includes indicators such as land-use mix entropy, percentage of land use type, and POI
functional mix, density usually includes indicators such as population density, employment density,
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and floor area ratio, and design usually includes road network density and intersection density.
Ewing and Cervero later expanded the framework to include distance to transit and destination
accessibility, forming the “5Ds” framework [22], which has been widely used for its effectiveness in
TOD studies [23,24]. Moreover, new indicators have been gradually introduced into the “5Ds”
framework as the research deepen, including fine-scale land use types [25], architectural features [26],
and visual enclosure of the street [27].

In terms of evaluating the built environment of metro station area, some researchers also utilized
complex networks theory and location theory to investigate the spatial characteristics of metro
networks [28,29], and the commonly adopted indicators include network betweenness centrality,
network closeness centrality, and location value. In order to provide a comprehensive evaluation of
the built environment's impact on the varying patterns of metro station ridership, this study
introduced the centrality and location factors to form the "5D+C+L" framework.

2.3. Association between metro station ridership and built environment

In recent years, several studies have analyzed built environment factors affecting metro station
ridership [30-33]. Most studies focused on investigating the association between built environment
factors and total ridership of metro stations. For example, the dependent variables in previous studies
usually contained average daily inbound and outbound ridership [30], morning-peak and evening-
peak ridership on weekdays [31], average weekday boardings [32], and station-to-station ridership
[33]. These studies usually adopted global or local regression models to analyze the multiple linear
regression relationship between built environment factors and total ridership of metro stations [34—
39]. For example, in terms of global regression model applications, Loo [34] utilized the Ordinary
least squares (OLS) model to investigate the influencing factors of rail transit ridership in New York
City and Hong Kong, and Sohn [35] utilized the Structural equation model (SEM) to investigate the
influencing factors of rail transit ridership in the Seoul metropolitan area. In terms of local regression
model applications, Zhou [38] utilized the Multiscale geographically weighted regression (MGWR)
model to investigate the spatial heterogeneity of built environment factors on "bike-subway scenario”
usage, while Fu [37] and Liu [39] utilized Geographically and temporally weighted regression
(GTWR) model explored the spatiotemporal heterogeneity of metro ridership by built environment
factors.

Overall, existing studies mainly investigated metro station ridership as a continuous variable,
lacking investigation of the relationship between the varying patterns of ridership and built
environment factors. To fill this gap, we adopted multinomial logistic regression analysis in this
study to explore the association between the varying patterns of metro station ridership and built
environment factors.

3. Materials and Methods

3.1. Study area

The study area for this research is Tianjin, one of the four municipalities directly under the
Central Government of China, covering a total area of 1100 km? and having a resident population of
more than 13 million. Tianjin's metro system was established in 1970, making it the second Chinese
city to build a metro system after Beijing. As of December 2020, Tianjin metro system had six lines
and 143 operational stations.

In previous studies, researcher usually utilized an 800 m buffer zone as the pedestrian catchment
areas (PCA) of metro stations [32]. However, the 800 m distance could result in overlapping
catchment areas, especially in the central urban area. To resolve this issue, the Thiessen polygon
method was adopted [31], as illustrated in Figure 1, to define the pedestrian catchment areas (PCA)
of metro stations without any overlap. The study area's relevant built environment factors were
assessed within this range.
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Figure 1. Research areas.

3.2. Research framework

Figure 2 presents the methodological framework of this study, which includes four primary
steps: (1) extracting dynamic features of metro ridership, (2) classifying the varying patterns of metro
ridership using K-means clustering and hierarchical clustering methods, (3) selecting
multidimensional built environment factors, and (4) estimating the relationship between built
environment factors and varying patterns of metro station ridership based on multinomial logistic
regression analysis.
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Figure 2. Workflow of this study.
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3.2.1. The measurement of dynamic features of metro ridership

The smart card data used in this study were obtained from the Tianjin Metro Group and spanned
from December 12 to 16, 2020. The raw ridership data of the metro stations were segregated into two
datasets, namely inflows and outflows, during the operational period of 6 a.m. to 24 p.m. To ensure
comparability among various stations, we standardized the average hourly inflows and outflows
using the z-score method [40]. The dynamic feature index of metro ridership was derived from the
datasets, encompassing time series feature and ridership intensity feature. This study utilized various
indicators, including the number of peaks, skewness, kurtosis, peak hour factor, morning peak hour
factor, evening peak hour factor, and equilibrium coefficient of ridership, as proposed in previous
studies [41]. The calculation formulas and explanation of each indicator are presented in Table 1.

Table 1. Dynamic ridership features indicators explanation.

Indicator Explanation Calculation formula Formula description
Number of peaks The peék is the vertex on a
(KD certain segment of the —— ——

ridership time series.
Describe the symmetry of
Skewness y y 1

n
(K2) the overall distribution of K, = —7 Z (x; —w)?3/a® viis the Hme series
the ridership time series. i=1 ! » 1

is the sample mean, o
is the standard

Describe the steepness of ,
Z (x; —w)*/o* =3 deviation.
i=1

Kurtosis the overall value K= 1
(K3 distribution pattern of the 3T
ridership time series.
Ratio of peak hour

n—1

Peak hour factor . . Q:
dership to full d Ky =—
(K4 " ersri;ir;)hiu ay 7 Qq Qris the peak hour
. P ridership, @mand Qe
. Ratio of the average hourly
Morning peak . . . are the average hourly
ridership at the morning QOm . .
hour factor (K5 Ks =— ridership at the
peak to the full day Qa .
) . . morning peak or
ridership .
. evening peak
. Ratio of the average hourly . .
Evening peak . . . respectively, Qqis the
hour factor (K6 ridership at the evening K¢ = Q full day ridership
) peak to the full day 7 Qu '
ridership
Equilibrium Ratio of the average
Cociz fficient of morning peak and evening Qris the average
ridershi peak hour factor to the K; = Ks + Kg/2Qy hourly ridership at the
(K7) P average hourly ridership at flat peak.
the flat peak

Note: The morning peak is between 7:00 and 9:00, the evening peak is between 17:00 and 19:00, the
flat peak is between10:00 and 16:00.

Principal component analysis was used to reduce the dimensionality of the indicators in order
to eliminate the strong correlation between them. The datasets contained inflows and outflows,
resulting in a total of 14 indicators (X1 to Xus) after standardization. The principal component analysis
result shown that there were 4 latent roots greater than 1 in the model (1:=4.667, 1:=4.271, A5=1.712,
A4+=1.039). The cumulative contribution rate of the four principal components was 83.492%
(w1=33.34%, w2=30.51%, w3=12.23%, ws=7.42%). The composite score of the ith principal component
can be calculated as follows:

Yi = wilayiXy + aziXa + -+ 4 14iX14), )
where Yirefers to the composite score of the ith principal component, wi denotes the contribution rate
of the ith principal component, ani is the score coefficient of the nth index of the ith principal
component. The principal component score coefficient matrix is shown in Supplementary Table S1.
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3.2.2. Hierarchical clustering method and K-means clustering method

The composite score of the extracted principal components was used to classify the varying
patterns of metro station ridership using a combination of hierarchical clustering and K-means
clustering. Firstly, hierarchical clustering was employed to assess the differences in the varying
patterns of station ridership, and the appropriate number of clusters was determined. Next, the
initially determined number of clusters was set as the K value of K-means clustering. Finally, the final
classification results of the stations were determined using K-means clustering.

Hierarchical clustering is a method that involves sorting and grading nodes by measuring their
correlation and creating a tree hierarchy of network nodes using single or complete link clustering
[42]. In this study, the inter-group association method was used for hierarchical clustering, and the
square Euclidean distance was used as the metric. The square Euclidean distance can be calculated
using the following formula:

d(x,y) = i (e — vi)% (2)

where d(x, y) refers to the distance between the two cluster of x(x1, x2, -+, xx) and y (y1, y2, -, yn). xx and
y« are the kth index of x and y respectively.

K-means clustering is an iterative clustering analysis algorithm that involves randomly selecting
k objects as the initial clustering center, calculating the distance between each object and each initial
clustering center, and assigning each object to the nearest clustering center [43]. In this study, the
square of the error was used as the standard measure function, and the Euclidean distance was used
as the metric standard. The calculation formulas for the error and Euclidean distance are shown as
follows:

SSE = X1 Xpep,lx — %1%, 3)

d(x,y) =2z G = )%, O

where SSE represents the error squared sum of all objects in the set and the center of its subset, x is a
point in the object, xi is the mean of cluster D.. d(x, y) donates the distance between the two cluster of
x(x1, x2, -+, xn) and y(y1, yz, -, yn), xx and yx are the kth index of x and y respectively.

3.2.3. The measurement of built environment factors

In this study, the diversity dimension was evaluated using the entropy score of the land-use mix
[44] and the proportion of land-use type [45]. The land use data were obtained from the third land
use survey in Tianjin, where eight land-use categories were identified, including residential,
commercial services facilities, public services facilities, industrial and logistics warehouse, green
space, transport facilities, other construction land, and unsuitable construction land.

We adopted population density, employment density, building coverage ratio, and floor area
ratio as proxies for density in this study [46—48]. Population distribution data of Tianjin were sourced
from WorldPop Project, while job-related POI data and building footprint data were obtained
through Baidu Map API (http://map.baidu.com).

Two indicators of road density and intersection density, which were retrieved from
OpenStreetMap, were adopted as design dimensionality [49]. The destination accessibility dimension
was evaluated using the density of bus stops and the number of entrances and exits of metro stations.
Distance to transit was assessed using the average distance from bus stops [23,50]. The data of bus
stops were obtained through Baidu Map (http://map.baidu.com), and metro station data were
sourced from the Tianjin rail transit website(http://www.tjgdjt.com).

Additionally, this study introduced three external influencing factors, namely network
betweenness centrality, network closeness centrality, and location value. According to the previous
literature, location is considered as a main determinant to estimate housing price [51]. In this study,
we adopted the average house price to measure the location value. The house pricing data were
crawled through https://tj.lianjia.com/. These data were first aggregated to the station catchment
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areas and then calculated as indicators. Table 2 summarizes the built environment indicators used in

this study.
Table 2. Built environment indicators explanation.
Dimension Indicator Explanation
_ —Z?=1PilnPi . .
. E= BTG where Piis the proportion of
Land-use mix entropy the land use type i, 1 is the number of land
types, n=8.
Proportion of residential area Ratio of residential area to PCA
Diversity Proportion of commercial services Ratio of commercial services facilities area to
facilities area PCA
Proportion of public services facilities . ers
P P v Ratio of public services facilities area to PCA
area
Proportion of industrial and logistics- Ratio of industrial and logistics-warehouse area
warehouse area to PCA
Population density Ratio of persons to PCA
Densi Employment density Ratio of POIs to PCA
ensi
ty Building coverage ratio Ratio of building footprint to PCA
Floor area ratio Ratio of total gross floor area to PCA
Desi Road density Ratio of road length to PCA
esi
n Intersection density Ratio of intersection number to PCA
L Bus stops density Ratio of bus stops number to PCA
Destination L.
. . The number of entrances and exits in each
accessibility Number of entrances and exits

metro station

Distance to
transit

Average route distance from the metro
station to bus stops

Average walking route distance from metro
station to bus stops

Centrality

Network betweenness centrality

Network closeness centrality

diyg . .
B = Yissstev ﬁ"'st, Biis the ratio between the

number db;, s of shortest paths that run
through node i and the total number d,,;;, s+ of
the shortest paths between two nodes.

C; = ﬁ, N is the total number of nodes, dij
j=1,i%j “ij

is the distance between node i and ;.

Location

Location value

Average price of all housing within PCA

Note: PCA means the pedestrian catchment areas of rail stations.

d0i:10.20944/preprints202305.0646.v1

The study conducted a multicollinearity test on all the independent variables before the
regression analysis to ensure that the variance inflation factor (VIF) of the independent variables was
less than 5. As a result, indicators such as employment density, floor area ratio, and road density
were eliminated from the analysis.

3.2.4. Multinomial logistic regression model

To measure the correlation between the built environment and different ridership patterns at
metro stations, we utilized a multinomial logistic regression (MLR) model. The model had built
environment factors as independent variables and metro station cluster results as the dependent
variable. Prior research has established that the MLR model is a reliable approach for analyzing multi-
category issues concerning public transportation [52,53]. The MLR model requires one basic category
to be identified among all categories to enable comparisons with the other categories. The parameters
of each independent variable are relative to the basic category. The probability (P) of a metro station
being classified into a particular ridership pattern is expressed as follows:
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e XiBjlb

P(y; = jlX;) = W’ ®)

where yi = j indicates the metro station i being classified into category j in comparison with the basic
category b, X is the independent variables, and g is the maximum likelihood coefficient.

4. Results

4.1. The clustering result of varying patterns of metro station ridership

The hierarchical clustering analysis produced a clustering diagram as shown in Figure 3(a). It is
evident that the frequency variation in the number of clusters slowed down when the number of
clusters reached 7, with an increase in Euclidean square distance. The curve flattened out when the
number of clusters reached 5 or 3. However, when the clustering coefficient was 3, the classification
of groups was not detailed enough. Therefore, the number of clusters was preliminarily selected as
5, 6, and 7 in sequence. The K value of K-means clustering analysis was set to the preliminarily
selected cluster number. The clustering result was better when the cluster number was 6, and the
feature difference between different patterns was obvious. The details of the metro station
classification are presented in Supplementary Table S2, and the clustering results of varying patterns
of metro station ridership are shown in Figure 3(b). Group 1 has the largest number of stations,
accounting for 33%, while group 6 only contains 4 stations.

25 r 50 - 47
520 40|
v =
: e
515 - g 30 | 28 28
kS kS 19
510 F 5 20 - 17
E E
2 5+ 2 10 4
0 0 |
0 10 20 30 1 2 3 4 5 6
Squared Euclidean distance Group
(a) (b)

Figure 3. (a) Number of hierarchical clusters at different squared Euclidean distances; (b) Clustering
results of metro stations. This reflects that the maximum number of stations are residential-oriented
type stations, providing direct evidence for the backbone effect played by TOD in terms of resident
activities.

The study presented the characteristics of six varying patterns of metro station ridership
corresponding to six station function types, as shown in Figure 4. Cluster 1 exhibited single-wave
type distribution, with inbound and outbound ridership demonstrating obvious tidal characteristics
in time distribution. The morning peak was dominated by inbound ridership, while the evening peak
was dominated by outbound ridership. Based on this tidal characteristic, we named Cluster 1 as
residence-oriented type (ROT). Cluster 2 also demonstrated single-wave type distribution, but with
a different peak distribution from Cluster 1. The morning peak was mainly outbound ridership, while
the evening peak was mainly inbound ridership. We category Cluster 2 as employment-oriented type
(EOT). Cluster 3 demonstrated a double-peak distribution, with inbound ridership slightly higher in
the morning peak than in the evening peak, while outbound ridership in the morning peak was
slightly lower than that in the evening peak. It belonged to the residence-oriented hybrid type
(ROHT). Following the above naming pattern, we named Cluster 4 as the employment-oriented
hybrid type (EOHT).


https://doi.org/10.20944/preprints202305.0646.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 May 2023 d0i:10.20944/preprints202305.0646.v1

Cluster 5 exhibited relatively average peak ridership in the morning and evening, with inbound
and outbound ridership being bimodal, and with no obvious tidal characteristics. It belonged to the
residence-employment mixed type (REMT). Finally, Cluster 6 exhibited an irregular, continuous
multiband feature, with no obvious peak ridership. The stations belonged to Cluster 6 generally
served as urban transport hubs and convention center service stations, and we named Cluster 6 as
special functional type.
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Figure 4. The varying patterns of metro ridership. (a) The variation of incoming and outcoming
passengers of residence-oriented type (ROT) station. (b) The variation of incoming and outcoming
passengers of employment-oriented type (EOT) station. (c) The variation of incoming and outcoming
passengers of residence-oriented hybrid type (ROHT) station. (d) The variation of incoming and
outcoming passengers of employment-oriented hybrid type (EOHT) station. (e) The variation of
incoming and outcoming passengers of residence-employment mixed type (REMT) station. (f) The
variation of incoming and outcoming passengers of special functional type station. Using standard
deviation metric to quantitative the intensity of metro station ridership.

As illustrated in Figure 5, the stations classified under Cluster 1 and 3 were predominantly
located in the urban periphery, indicating a spatial relationship between ROT station and the
suburbanization process. In contrast, the stations in Cluster 2 were primarily situated in the urban
core, which reflected the concentration of EOT station in the central business district. Furthermore,
the stations in Cluster 4 and 5 were dispersed throughout the main urban area, which was consistent
with EOHT station, and REMT station, respectively.
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Figure 5. Geographic distribution of different clusters.

4.2. The result of multinomial logistic regression

The MLR analysis set cluster 1 (i.e., ROT) as the reference cluster. The MLR results showed that
the Pseudo R? is 0.78, indicating the model had excellent goodness-of-fit (Table 3) and strong
explanatory ability.

Table 3. The result of multinomial logistic regression model.

EOT ROHT EOHT REMT SFT
B Wald B Wald B Wald B Wald B Wald
Constant term -15.40  4.57 -11.46 5.50 -17.91 7.57 4.27 1.51 1.54 0.00
Land-use mix 4.40 0.57 5.71 1.88 -2.40 034 -883* 5.14 -21.68 0.00
entropy
Proportion of - 6.65 0.05 1.83 -0.03 046  -0.06* 2.29 -1.00 0.00
residential area  0.20***
Proportion of 0.44*** 15.81 0.31** 11.19 0.44*** 1757 0.39*** 17.09 1.00 0.00
commercial
services facilities
area
Proportion of 0.10 215 011 596 0.12** 440 0.04 0.67 -1.45 0.00
public services
facilities area
Proportion of 0.18*** 810  0.18*** 12.04 0.20** 12.84 0.13*** 6.94 -0.56 0.00
industrial and

Variable

logistics-
warehouse area
Population 0.78* 294 0.62* 355  1.18%* 948 1.00%* 851 -2.50 0.00
density
Building - 5.10 - 13.00 - 13.87 - 335 161.77  0.00
coverage ratio  29.64** 27.89%** 40.01%** 14.78%
Intersections -0.02 0.28 -0.04 111 -0.06 1.46 -0.06 1.98 -0.72 0.00
density
Bus stops density ~ 0.46*  2.38 -0.01 0.00 0.02 001 -0.18 0.88 3.61 0.00
Number of 0.55* 1.29 -0.04 0.01 0.43 125  -0.51 1.69 5.17 0.00

entrances and
exits
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Average route 0.00 1.07 0.00 0.84 0.01 6.34 0.00 0.34 -0.02 0.00
distance from the
metro station to
bus stops
Network -22.84 257 -7.67 1.05  -22.24* 333 4.01 0.33 86.17 0.00
betweenness
centrality
Network 35.20 0.50 23.70 053  93.69*  4.10 -5.21 0.03  -140.89
closeness
centrality
Average housing  3.34*** 11.25 1.39"* 657  2.37** 9.38  1.53**  6.57 -8.35 0.00
prices
Pseudo R%0.78
InL(0):464.94
InL(B):247.96
LR: —433.96

Note: *Significant at 0.1 level; **Significant at 0.05 level; ***Significant at 0.01 level; B is the regression

coefficient; Wald is the chi-square value.

Table 3 presented the MLR results of various metro stations, revealing significant associations
between built environment factors and varying types of station clusters, except for special functional
station clusters. Regrading diversity, land-use mix was negatively associated with REMT station. The
proportion of residential area was negatively associated with EOT station and REMT station.
However, the proportion of commercial services facilities area exhibited a positive association with
various types of stations, with the largest regression coefficients for EOT station and EOHT station.
The proportion of public services facilities area was positively associated with ROHT station and
EOHT station. Finally, the proportion of industrial and logistics-warehouse area was positively
associated with EOT station and REMT station.

In terms of density, population density exhibited a positive association with various types of
stations, with EOHT station showing the highest regression coefficients, followed by REMT station,
EOT station, and ROHT station. Building coverage ratio was negatively associated with various types
of stations, with the lowest regression coefficients observed for EOT station and EOHT station.
Notably, there is no significant association between intersections density and station types. Bus stops
density and the number of entrances and exits exhibited a positive association with EOT station.

Regarding centrality, network betweenness centrality was negatively associated with EOHT
station, while network closeness centrality exhibited a positive association. Moreover, location value
showed a positive association with all station types except for special function, with the regression
coefficients in descending order of EOT station, EOHT station, REMT station, and ROHT station.

5. Discussion Conclusions

5.1. Classification of urban rail transit stations

Previous research has predominantly examined the correlation between the built environment
and the overall ridership of metro stations [32,52], limited studies have been conducted on the
association between the built environment and the diverse patterns of ridership. In this study, we
established a data-driven analysis framework that integrated smart card data and built environment
data to investigate the relationship between the built environment and varying patterns of metro
station ridership.

The present study employed a combination method of hierarchical clustering and K-means
clustering to identify different clusters according to the ridership of metro stations. All stations were
divided into six clusters, i.e., residence-oriented type (ROT), employment-oriented type (EOT),
residence-oriented hybrid type (ROHT), employment-oriented hybrid type (EOHT), residence-
employment mixed type (REMT), and special functional type (SFT). The findings were in line with
earlier research conducted by Zhang [17] and Li [41], which indicated that the thematic functional


https://doi.org/10.20944/preprints202305.0646.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 May 2023 doi:10.20944/preprints202305.0646.v1

12

categories of metro stations can be evaluated not only by analyzing the environmental factors around
them, such as land use types [54], POI types [53], and pedestrian accessibility [43], but also by
considering the different ridership patterns.

5.2. Differences in impact of built environment factors

Furthermore, the study revealed that stations of the same cluster exhibited similar features in
geospatial distribution, while stations in different clusters display heterogeneous features, which is
consistent with the findings of previous studies [19,53]. These findings have implications for shaping
the thematic patterns of urban functions, such as creating commercial and financial centers in the
core of the city through the distribution of EOT stations [24,55], and evacuating the population to the
peripheral areas through the distribution of ROT and ROHT stations [56].

To further investigate the relationship between built environment factors and the varying
patterns of station ridership, this study employed multinomial logistic regression analysis. The
findings suggested that built environments can partially explain the heterogeneous features of
varying patterns of ridership, with a more significant relationship observed between most station
clusters and built environment factors [19]. Specifically, (1) the proportion of land-use types was
closely related to the thematic function of the station. Research by Woo [43] and Liu [54] supported
this finding. For instance, commercial service facility, industrial and logistics storage land were found
to be positively associated with EOT stations, EOHT stations, and REMT stations when compared to
ROT stations [53]. (2) Population density was positively associated with most station types, mainly
because most ROT stations are distributed in the suburbs. Residents usually prioritized factors such
as residence location, surrounding services and facilities, and house price when choosing dwellings,
as these factors were directly related to commuting time, medical facilities services, and income level
[57]. (3) The factors of the destination accessibility were only positively associated with EOT stations,
primarily because such stations were located in areas that provide numerous commercial, financial,
and office jobs. These areas required more transportation services to improve accessibility and
walkability [24,55]. (4) The location value was positively associated with most station types, and the
regression coefficient magnitude was related to the geographic distribution of stations, which was a
common phenomenon in large cities [58], i.e., house prices showed a significant decreasing trend
with distance from the CBD. (5) Network betweenness centrality was only negatively associated with
EOHT stations, and network closeness centrality was only positively associated with such stations,
primarily because these stations were mostly distributed at the periphery of the core and were closer
to other stations. Moreover, these stations were rarely located on network shortcuts where metro
stations were interconnected [53]. Overall, compared to other dimensions of built environment
factors, the factors of diversity, density, and location had more significant association with the
varying patterns of metro station ridership.

5.3. Policy implications

Urban rail transit stations serve as the pivotal nodes of urban public transportation systems, and
the pedestrian catchment areas around metro stations are high-density zones of urban socioeconomic
activities where residents and workplaces congregate [31,32]. Our study in Tianjin, China, reveals
that distinct patterns of ridership can be linked to different station thematic functions, and there are
variations in land use structure, population density, and accessibility among various station types.
Investigating the connection between ridership patterns and built environment factors can provide
valuable insights for urban renewal and transit planning. For instance, in the peripheral regions of
major cities, ROT and ROHT stations typically have a relatively single land-use function, which
impedes the formation of comprehensive regional centers or town centers. In this regard, these
stations should focus on developing integrated communities and compound commerce at the station
core, which can enhance the livability of the areas by creating a regional center. This strategy could
attract more residents from the city center to migrate to the suburbs [56], and further optimize the
urban land-use layout.
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5.4. Limitations

Future studies should address the limitations of this study. Firstly, the lack of smart card data
for weekends prevented the analysis of varying patterns of ridership of metro stations during
weekends. Therefore, future studies should incorporate weekend smart card data to provide a more
comprehensive description of station type features and assess the impact of weekends on the
correlation between station type and the built environment. Secondly, the absence of longitudinal
data acquisition limited existing studies to cross-sectional data analysis, which can only show the
correlation between the built environment and varying patterns of metro station ridership. Future
research should collect longitudinal data to better understand the cause-and-effect relationship.

6. Conclusions

This study identifies six types of metro stations based on their ridership patterns, each with
unique functional characteristics. Various built environment factors have different associations with
these ridership patterns. Residential-oriented (ROT) stations were used as the reference point for
comparison. The proportion of commercial service facilities, industrial and logistics-warehouse areas,
population density, and location value have significant positive effects on employment-oriented type
(EOT) stations, residence-oriented hybrid type (ROHT) stations, employment-oriented hybrid type
(EOHT) stations, and residence-employment mixed type (REMT) stations. However, building
coverage ratio has a significant negative effect on these stations. Notably, different built environment
indicators have varying degrees of effect on different types of stations. Density of bus stations and
number of station entrances and exits have a significant positive effect only on employment-oriented
type stations. Network betweenness centrality and network closeness centrality have a significant
effect only on employment-oriented hybrid type (EOHT) stations.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org, Table S1: Principal component score coefficient matrix; Table 52: Results of metro
station classification.
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