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Article 
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Abstract: The metro station ridership features are associated significantly with the built 

environment factors of the pedestrian catchment area surrounding metro stations. The existing 

studies have focused on the impact on total ridership at metro stations, ignoring the impact on 

varying patterns of metro station ridership. Therefore, the reasonable identification of metro station 

categories and built environment factors affecting the varying patterns of ridership in different 

categories of stations is very important for metro construction. In this study, we developed a data-

driven framework to examine the relationship between varying patterns of metro station ridership 

and built environment factors in these areas. By leveraging smart card data, we extracted the 

dynamic characteristics of ridership and utilized hierarchical clustering and K-means clustering to 

identify diverse patterns of metro station ridership, and finally identified six main ridership 

patterns. We then developed a new built environment measurement framework and adopted 

multinomial logistic regression analysis to explore the association between ridership patterns and 

built environment factors. (1) The clustering analysis result revealed that six station types were 

classified based on varying patterns of passenger flow, representing distinct functional 

characteristics. (2) The regression analysis indicated that diversity, density, and location factors 

were significantly associated with most station function types, while destination accessibility was 

only positively associated with employment-oriented type station, and centrality was only 

associated with employment-oriented hybrid type station. These results could inform the 

coordinated development of rail transit and land use, and the renewal and enhancement of the built 

environment in the pedestrian catchment area surrounding metro stations. 

Keywords: metro station; varying pattern of ridership; pedestrian catchment area; built 

environment; multinomial logistic regression analysis 

 

1. Introduction 

As a crucial component of the urban public transportation system, metro could effectively solve 

the "big city problems" such as environmental pollution, carbon emission and traffic congestion, thus 

promoting sustainable and healthy travel for residents [1–3]. In recent decades, Transit-oriented 

development (TOD) has gradually become a cutting-edge model for urban community planning and 

a new direction for urban sustainable development, but there still exists the phenomenon of 

uncoordinated degree of integration between urban rail transit hubs and urban functional areas in 

the process of urban development, causing a series of problems such as excessive flow during peak 

periods, unbalanced ridership at incoming and outgoing stations, and unbalanced distribution of 

ridership [4–6]. The varying patterns of metro station ridership have a strong correlation with the 

built environment factors of the pedestrian catchment area surrounding metro stations [7,8], and the 
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different types of metro stations with varying patterns of ridership are spatially heterogeneous due 

to the driving effect of built environment factors. In this context, this study classifies the stations 

based on the varying patterns of metro station ridership, and clarifies the supply and demand 

situation and functional features of different types of metro stations. Besides, we further investigates 

the influence of built environment factors on different types of metro stations and identifies the 

strategies for optimizing the built environment of different types of metro stations. This study aims 

to investigate the urban renewal strategy of coordinated interaction between rail transit planning and 

urban planning, which will help to improve the efficiency of metro operation and station service 

quality, and enhance the spatial vitality of the pedestrian catchment area surrounding metro stations 

[9]. 

The intricate relationship between metro station ridership and built environment factors has 

garnered significant attention from scholars in recent years. The advent of smart card data and open-

source databases has facilitated the examination of this relationship through big data analysis. 

However, most studies have focused on the total ridership of metro stations [10,11], overlooking the 

different ridership patterns of stations. Additionally, some important factors, such as station 

centrality and location value have been ignored when evaluating the relationship between metro 

station ridership and built environment factors. In this context, this study aimed to bridge research 

gaps by investigating the relationship between the varying patterns of metro station ridership and 

built environment factors based on smart card data in Tianjin, China. There are two crucial questions 

in the present study: (1) What are the types of metro stations based on varying patterns of ridership 

and what are their distinctive characteristics? (2) What is the association between the varying patterns 

of metro station ridership and built environment factors? The answers to these questions can offer 

valuable insights for rail transit planning and urban renewal. 

The remaining sections are structured as follows. Section 2 provides a review of related 

literature, including identifying the varying patterns of metro station ridership, the evaluation 

dimensions of built environment factors, and the relationship between metro station ridership and 

built environment. In Section 3, the methodology and smart card data used in this study are 

presented. The results of the study are analyzed in Section 4. Finally, Section 5 provides discussions 

based on these findings. 

2. Literature Review 

2.1. Identification the varying patterns of metro station ridership 

The role of mobility in shaping urban morphology and function partition has been recognized 

by urban scholars [12]. Smart card data, containing detailed information on passenger trip 

transactions, has been utilized to investigate resident trip characteristics and to describe 

transportation supply and demand [13], providing strategies for public transportation system 

operation and management [14]. The dynamic features of ridership in smart card data have been 

analyzed using clustering methods to identify the varying patterns of metro station ridership [15,16]. 

For example, researchers have adopted methods such as K-means clustering, two-stage clustering, 

and self-organizing maps (SOM) to classify metro stations [17–19]. Among these methods, K-means 

clustering was one of the most widely used clustering methods due to its high computational 

efficiency and interpretability [17]. However, K-means method cannot effectively choose the initial K 

value. To address this issue, we developed a new method which combining the hierarchical 

clustering with K-means clustering to classify the different patterns of metro station passengers. 

2.2. Measurements of built environment factors 

Studies have shown that built environment factors have a significantly heterogeneous impact on 

metro station ridership [20]. The '3Ds' framework developed by Cervero and Kockelman was widely 

used to describe built environment factors, namely diversity, density, and design [21]. Among them, 

diversity includes indicators such as land-use mix entropy, percentage of land use type, and POI 

functional mix, density usually includes indicators such as population density, employment density, 
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and floor area ratio, and design usually includes road network density and intersection density. 

Ewing and Cervero later expanded the framework to include distance to transit and destination 

accessibility, forming the “5Ds” framework [22], which has been widely used for its effectiveness in 

TOD studies [23,24]. Moreover, new indicators have been gradually introduced into the “5Ds” 

framework as the research deepen, including fine-scale land use types [25], architectural features [26], 

and visual enclosure of the street [27].  

In terms of evaluating the built environment of metro station area, some researchers also utilized 

complex networks theory and location theory to investigate the spatial characteristics of metro 

networks [28,29], and the commonly adopted indicators include network betweenness centrality, 

network closeness centrality, and location value. In order to provide a comprehensive evaluation of 

the built environment's impact on the varying patterns of metro station ridership, this study 

introduced the centrality and location factors to form the "5D+C+L" framework. 

2.3. Association between metro station ridership and built environment 

In recent years, several studies have analyzed built environment factors affecting metro station 

ridership [30–33]. Most studies focused on investigating the association between built environment 

factors and total ridership of metro stations. For example, the dependent variables in previous studies 

usually contained average daily inbound and outbound ridership [30], morning-peak and evening-

peak ridership on weekdays [31], average weekday boardings [32], and station-to-station ridership 

[33]. These studies usually adopted global or local regression models to analyze the multiple linear 

regression relationship between built environment factors and total ridership of metro stations [34–

39]. For example, in terms of global regression model applications, Loo [34] utilized the Ordinary 

least squares (OLS) model to investigate the influencing factors of rail transit ridership in New York 

City and Hong Kong, and Sohn [35] utilized the Structural equation model (SEM) to investigate the 

influencing factors of rail transit ridership in the Seoul metropolitan area. In terms of local regression 

model applications, Zhou [38] utilized the Multiscale geographically weighted regression (MGWR) 

model to investigate the spatial heterogeneity of built environment factors on "bike-subway scenario" 

usage, while Fu [37] and Liu [39] utilized Geographically and temporally weighted regression 

(GTWR) model explored the spatiotemporal heterogeneity of metro ridership by built environment 

factors. 

Overall, existing studies mainly investigated metro station ridership as a continuous variable, 

lacking investigation of the relationship between the varying patterns of ridership and built 

environment factors. To fill this gap, we adopted multinomial logistic regression analysis in this 

study to explore the association between the varying patterns of metro station ridership and built 

environment factors. 

3. Materials and Methods 

3.1. Study area 

The study area for this research is Tianjin, one of the four municipalities directly under the 

Central Government of China, covering a total area of 1100 km² and having a resident population of 

more than 13 million. Tianjin's metro system was established in 1970, making it the second Chinese 

city to build a metro system after Beijing. As of December 2020, Tianjin metro system had six lines 

and 143 operational stations. 

In previous studies, researcher usually utilized an 800 m buffer zone as the pedestrian catchment 

areas (PCA) of metro stations [32]. However, the 800 m distance could result in overlapping 

catchment areas, especially in the central urban area. To resolve this issue, the Thiessen polygon 

method was adopted [31], as illustrated in Figure 1, to define the pedestrian catchment areas (PCA) 

of metro stations without any overlap. The study area's relevant built environment factors were 

assessed within this range. 
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Figure 1. Research areas. 

3.2. Research framework 

Figure 2 presents the methodological framework of this study, which includes four primary 

steps: (1) extracting dynamic features of metro ridership, (2) classifying the varying patterns of metro 

ridership using K-means clustering and hierarchical clustering methods, (3) selecting 

multidimensional built environment factors, and (4) estimating the relationship between built 

environment factors and varying patterns of metro station ridership based on multinomial logistic 

regression analysis. 

 

Figure 2. Workflow of this study. 
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3.2.1. The measurement of dynamic features of metro ridership 

The smart card data used in this study were obtained from the Tianjin Metro Group and spanned 

from December 12 to 16, 2020. The raw ridership data of the metro stations were segregated into two 

datasets, namely inflows and outflows, during the operational period of 6 a.m. to 24 p.m. To ensure 

comparability among various stations, we standardized the average hourly inflows and outflows 

using the z-score method [40]. The dynamic feature index of metro ridership was derived from the 

datasets, encompassing time series feature and ridership intensity feature. This study utilized various 

indicators, including the number of peaks, skewness, kurtosis, peak hour factor, morning peak hour 

factor, evening peak hour factor, and equilibrium coefficient of ridership, as proposed in previous 

studies [41]. The calculation formulas and explanation of each indicator are presented in Table 1. 

Table 1. Dynamic ridership features indicators explanation. 

Indicator Explanation Calculation formula Formula description 

Number of peaks

（K1） 

The peak is the vertex on a 

certain segment of the 

ridership time series. 

—— —— 

Skewness 

（K2） 

Describe the symmetry of 

the overall distribution of 

the ridership time series. 

𝐾ଶ = 1𝑛 − 1 ෍ (𝑥௜ − 𝜇)ଷ 𝜎ଷ⁄௡
௜ୀଵ  

xi is the time series, μ 

is the sample mean, σ 

is the standard 

deviation. 
Kurtosis 

（K3） 

Describe the steepness of 

the overall value 

distribution pattern of the 

ridership time series. 

𝐾ଷ = 1𝑛 − 1 ෍ (𝑥௜ − 𝜇)ସ 𝜎ସ⁄௡
௜ୀଵ − 3 

Peak hour factor

（K4） 

Ratio of peak hour 

ridership to full day 

ridership 

𝐾ସ = 𝑄௜𝑄ௗ Qi is the peak hour 

ridership, Qm and Qe 
are the average hourly 

ridership at the 

morning peak or 

evening peak 

respectively, Qd is the 

full day ridership. 

Morning peak 

hour factor（K5

） 

Ratio of the average hourly 

ridership at the morning 

peak to the full day 

ridership 

𝐾ହ = 𝑄௠𝑄ௗ  

Evening peak 

hour factor（K6

） 

Ratio of the average hourly 

ridership at the evening 

peak to the full day 

ridership 

𝐾଺ = 𝑄௘𝑄ௗ 

Equilibrium 

coefficient of 

ridership 

（K7） 

Ratio of the average 

morning peak and evening 

peak hour factor to the 

average hourly ridership at 

the flat peak 

𝐾଻ = 𝐾ହ + 𝐾଺ 2𝑄௙⁄  

Qf is the average 

hourly ridership at the 

flat peak. 

Note：The morning peak is between 7:00 and 9:00, the evening peak is between 17:00 and 19:00, the 

flat peak is between10:00 and 16:00. 

Principal component analysis was used to reduce the dimensionality of the indicators in order 

to eliminate the strong correlation between them. The datasets contained inflows and outflows, 

resulting in a total of 14 indicators (X1 to X14) after standardization. The principal component analysis 

result shown that there were 4 latent roots greater than 1 in the model (λ1=4.667, λ2=4.271, λ3=1.712, 

λ4=1.039). The cumulative contribution rate of the four principal components was 83.492% 

(w1=33.34%, w2=30.51%, w3=12.23%, w4=7.42%). The composite score of the ith principal component 

can be calculated as follows: 𝑌௜ = 𝑤௜(𝑎ଵ௜𝑋ଵ + 𝑎ଶ௜𝑋ଶ + ⋯ + 𝑎ଵସ௜𝑋ଵସ), 
(1)

where Yi refers to the composite score of the ith principal component, wi denotes the contribution rate 

of the ith principal component, ani is the score coefficient of the nth index of the ith principal 

component. The principal component score coefficient matrix is shown in Supplementary Table S1. 
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3.2.2. Hierarchical clustering method and K-means clustering method 

The composite score of the extracted principal components was used to classify the varying 

patterns of metro station ridership using a combination of hierarchical clustering and K-means 

clustering. Firstly, hierarchical clustering was employed to assess the differences in the varying 

patterns of station ridership, and the appropriate number of clusters was determined. Next, the 

initially determined number of clusters was set as the K value of K-means clustering. Finally, the final 

classification results of the stations were determined using K-means clustering.  

Hierarchical clustering is a method that involves sorting and grading nodes by measuring their 

correlation and creating a tree hierarchy of network nodes using single or complete link clustering 

[42]. In this study, the inter-group association method was used for hierarchical clustering, and the 

square Euclidean distance was used as the metric. The square Euclidean distance can be calculated 

using the following formula: 𝑑(𝑥, 𝑦) = ∑ (𝑥௞ − 𝑦௞)ଶ௞௜ୀଵ , (2)

where d(x, y) refers to the distance between the two cluster of x(x1, x2, ···, xn) and y (y1, y2, ···,yn). xk and 

yk are the kth index of x and y respectively. 

K-means clustering is an iterative clustering analysis algorithm that involves randomly selecting 

k objects as the initial clustering center, calculating the distance between each object and each initial 

clustering center, and assigning each object to the nearest clustering center [43]. In this study, the 

square of the error was used as the standard measure function, and the Euclidean distance was used 

as the metric standard. The calculation formulas for the error and Euclidean distance are shown as 

follows: SSE = ∑ ∑ |𝑥 − 𝑥̅௜|ଶ௣∈஽೔௞௜ୀଵ , (3)𝑑(𝑥, 𝑦) = ඥ∑ (𝑥௞ − 𝑦௞)ଶ௡௞ୀଵ , 
(4)

where SSE represents the error squared sum of all objects in the set and the center of its subset, x is a 

point in the object, xi is the mean of cluster Di. d(x, y) donates the distance between the two cluster of 

x(x1, x2, ···, xn) and y(y1, y2, ···,yn), xk and yk are the kth index of x and y respectively. 

3.2.3. The measurement of built environment factors 

In this study, the diversity dimension was evaluated using the entropy score of the land-use mix 

[44] and the proportion of land-use type [45]. The land use data were obtained from the third land 

use survey in Tianjin, where eight land-use categories were identified, including residential, 

commercial services facilities, public services facilities, industrial and logistics warehouse, green 

space, transport facilities, other construction land, and unsuitable construction land. 

We adopted population density, employment density, building coverage ratio, and floor area 

ratio as proxies for density in this study [46–48]. Population distribution data of Tianjin were sourced 

from WorldPop Project, while job-related POI data and building footprint data were obtained 

through Baidu Map API (http://map.baidu.com).  

Two indicators of road density and intersection density, which were retrieved from 

OpenStreetMap, were adopted as design dimensionality [49]. The destination accessibility dimension 

was evaluated using the density of bus stops and the number of entrances and exits of metro stations. 

Distance to transit was assessed using the average distance from bus stops [23,50]. The data of bus 

stops were obtained through Baidu Map (http://map.baidu.com), and metro station data were 

sourced from the Tianjin rail transit website(http://www.tjgdjt.com).  

Additionally, this study introduced three external influencing factors, namely network 

betweenness centrality, network closeness centrality, and location value. According to the previous 

literature, location is considered as a main determinant to estimate housing price [51]. In this study, 

we adopted the average house price to measure the location value. The house pricing data were 

crawled through https://tj.lianjia.com/. These data were first aggregated to the station catchment 
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areas and then calculated as indicators. Table 2 summarizes the built environment indicators used in 

this study. 

Table 2. Built environment indicators explanation. 

Dimension Indicator Explanation 

Diversity 

Land-use mix entropy 

𝐸 = ି ∑ ௉೔ ୪୬ ௉೔೙೔సభ୪୬(௡) , where Pi is the proportion of 

the land use type i, n is the number of land 

types, n=8. 

Proportion of residential area Ratio of residential area to PCA 

Proportion of commercial services 

facilities area 

Ratio of commercial services facilities area to 

PCA 

Proportion of public services facilities 

area 
Ratio of public services facilities area to PCA 

Proportion of industrial and logistics-

warehouse area 

Ratio of industrial and logistics-warehouse area 

to PCA 

Density 

Population density Ratio of persons to PCA 

Employment density Ratio of POIs to PCA 

Building coverage ratio Ratio of building footprint to PCA 

Floor area ratio Ratio of total gross floor area to PCA 

Design 
Road density Ratio of road length to PCA 

Intersection density Ratio of intersection number to PCA 

Destination 

accessibility 

Bus stops density Ratio of bus stops number to PCA 

Number of entrances and exits 
The number of entrances and exits in each 

metro station 

Distance to 

transit 

Average route distance from the metro 

station to bus stops 

Average walking route distance from metro 

station to bus stops 

Centrality 

Network betweenness centrality 

𝐵௜ = ∑ ୢౣ౟౤,౩౪೔ୢౣ౟౤,౩౪௜ஷ௦ஷ௧∈௏ , Bi is the ratio between the 

number 𝑑௠௜௡,௦௧௜  of shortest paths that run 

through node i and the total number 𝑑௠௜௡,௦௧ of 

the shortest paths between two nodes. 

Network closeness centrality 
𝐶௜ = ேିଵ∑ ௗ೔ೕೕಿసభ,೔ಯೕ , N is the total number of nodes, dij 

is the distance between node i and j. 

Location Location value Average price of all housing within PCA 

Note: PCA means the pedestrian catchment areas of rail stations. 

The study conducted a multicollinearity test on all the independent variables before the 

regression analysis to ensure that the variance inflation factor (VIF) of the independent variables was 

less than 5. As a result, indicators such as employment density, floor area ratio, and road density 

were eliminated from the analysis. 

3.2.4. Multinomial logistic regression model 

To measure the correlation between the built environment and different ridership patterns at 

metro stations, we utilized a multinomial logistic regression (MLR) model. The model had built 

environment factors as independent variables and metro station cluster results as the dependent 

variable. Prior research has established that the MLR model is a reliable approach for analyzing multi-

category issues concerning public transportation [52,53]. The MLR model requires one basic category 

to be identified among all categories to enable comparisons with the other categories. The parameters 

of each independent variable are relative to the basic category. The probability (P) of a metro station 

being classified into a particular ridership pattern is expressed as follows: 
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𝑃(𝑦௜ = 𝑗|𝑋௜) = ௘೉೔ഁೕ|್∑ ௘೉೔ഁೕ|್ೕ , (5)

where yi = j indicates the metro station i being classified into category j in comparison with the basic 

category b, X is the independent variables, and β is the maximum likelihood coefficient. 

4. Results 

4.1. The clustering result of varying patterns of metro station ridership 

The hierarchical clustering analysis produced a clustering diagram as shown in Figure 3(a). It is 

evident that the frequency variation in the number of clusters slowed down when the number of 

clusters reached 7, with an increase in Euclidean square distance. The curve flattened out when the 

number of clusters reached 5 or 3. However, when the clustering coefficient was 3, the classification 

of groups was not detailed enough. Therefore, the number of clusters was preliminarily selected as 

5, 6, and 7 in sequence. The K value of K-means clustering analysis was set to the preliminarily 

selected cluster number. The clustering result was better when the cluster number was 6, and the 

feature difference between different patterns was obvious. The details of the metro station 

classification are presented in Supplementary Table S2, and the clustering results of varying patterns 

of metro station ridership are shown in Figure 3(b). Group 1 has the largest number of stations, 

accounting for 33%, while group 6 only contains 4 stations. 

  
(a) (b) 

Figure 3. (a) Number of hierarchical clusters at different squared Euclidean distances; (b) Clustering 

results of metro stations. This reflects that the maximum number of stations are residential-oriented 

type stations, providing direct evidence for the backbone effect played by TOD in terms of resident 

activities. 

The study presented the characteristics of six varying patterns of metro station ridership 

corresponding to six station function types, as shown in Figure 4. Cluster 1 exhibited single-wave 

type distribution, with inbound and outbound ridership demonstrating obvious tidal characteristics 

in time distribution. The morning peak was dominated by inbound ridership, while the evening peak 

was dominated by outbound ridership. Based on this tidal characteristic, we named Cluster 1 as 

residence-oriented type (ROT). Cluster 2 also demonstrated single-wave type distribution, but with 

a different peak distribution from Cluster 1. The morning peak was mainly outbound ridership, while 

the evening peak was mainly inbound ridership. We category Cluster 2 as employment-oriented type 

(EOT). Cluster 3 demonstrated a double-peak distribution, with inbound ridership slightly higher in 

the morning peak than in the evening peak, while outbound ridership in the morning peak was 

slightly lower than that in the evening peak. It belonged to the residence-oriented hybrid type 

(ROHT). Following the above naming pattern, we named Cluster 4 as the employment-oriented 

hybrid type (EOHT). 
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Cluster 5 exhibited relatively average peak ridership in the morning and evening, with inbound 

and outbound ridership being bimodal, and with no obvious tidal characteristics. It belonged to the 

residence-employment mixed type (REMT). Finally, Cluster 6 exhibited an irregular, continuous 

multiband feature, with no obvious peak ridership. The stations belonged to Cluster 6 generally 

served as urban transport hubs and convention center service stations, and we named Cluster 6 as 

special functional type. 

 

Figure 4. The varying patterns of metro ridership. (a) The variation of incoming and outcoming 

passengers of residence-oriented type (ROT) station. (b) The variation of incoming and outcoming 

passengers of employment-oriented type (EOT) station. (c) The variation of incoming and outcoming 

passengers of residence-oriented hybrid type (ROHT) station. (d) The variation of incoming and 

outcoming passengers of employment-oriented hybrid type (EOHT) station. (e) The variation of 

incoming and outcoming passengers of residence-employment mixed type (REMT) station. (f) The 

variation of incoming and outcoming passengers of special functional type station. Using standard 

deviation metric to quantitative the intensity of metro station ridership. 

As illustrated in Figure 5, the stations classified under Cluster 1 and 3 were predominantly 

located in the urban periphery, indicating a spatial relationship between ROT station and the 

suburbanization process. In contrast, the stations in Cluster 2 were primarily situated in the urban 

core, which reflected the concentration of EOT station in the central business district. Furthermore, 

the stations in Cluster 4 and 5 were dispersed throughout the main urban area, which was consistent 

with EOHT station, and REMT station, respectively. 
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Figure 5. Geographic distribution of different clusters. 

4.2. The result of multinomial logistic regression 

The MLR analysis set cluster 1 (i.e., ROT) as the reference cluster. The MLR results showed that 

the Pseudo R² is 0.78, indicating the model had excellent goodness-of-fit (Table 3) and strong 

explanatory ability. 

Table 3. The result of multinomial logistic regression model. 

Variable 
EOT ROHT EOHT REMT SFT 

B Wald B Wald B Wald B Wald B Wald 

Constant term -15.40  4.57  -11.46  5.50  -17.91 7.57  4.27  1.51  1.54  0.00  

Land-use mix 

entropy 

4.40  0.57  5.71  1.88  -2.40  0.34  -8.83* 5.14  -21.68  0.00  

Proportion of 

residential area 

-

0.20*** 

6.65  0.05  1.83  -0.03  0.46  -0.06* 2.29  -1.00  0.00  

Proportion of 

commercial 

services facilities 

area 

0.44*** 15.81  0.31*** 11.19  0.44*** 17.57  0.39*** 17.09  1.00  0.00  

Proportion of 

public services 

facilities area 

0.10  2.15  0.11*** 5.96  0.12** 4.40  0.04 0.67  -1.45  0.00  

Proportion of 

industrial and 

logistics-

warehouse area 

0.18*** 8.10  0.18*** 12.04  0.20*** 12.84  0.13*** 6.94  -0.56  0.00  

Population 

density 

0.78* 2.94  0.62* 3.55  1.18*** 9.48  1.00*** 8.51  -2.50  0.00  

Building 

coverage ratio 

-

29.64** 

5.10  -

27.89*** 

13.00  -

40.01*** 

13.87  -

14.78* 

3.35  161.77 0.00 

Intersections 

density 

-0.02  0.28  -0.04  1.11  -0.06  1.46  -0.06  1.98  -0.72  0.00  

Bus stops density 0.46* 2.38  -0.01  0.00  0.02  0.01  -0.18  0.88  3.61  0.00  

Number of 

entrances and 

exits 

0.55* 1.29  -0.04  0.01  0.43 1.25  -0.51  1.69  5.17  0.00  
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Average route 

distance from the 

metro station to 

bus stops 

0.00  1.07  0.00  0.84  0.01 6.34  0.00  0.34  -0.02  0.00  

Network 

betweenness 

centrality 

-22.84  2.57  -7.67 1.05  -22.24* 3.33  4.01  0.33  86.17  0.00  

Network 

closeness 

centrality 

35.20  0.50  23.70  0.53  93.69** 4.10  -5.21  0.03  -140.89  

Average housing 

prices 

3.34*** 11.25  1.39*** 6.57  2.37*** 9.38  1.53*** 6.57  -8.35  0.00  

Pseudo R²:0.78 ln 𝐿(0) : 464.94 ln 𝐿(𝛽መ) : 247.96 𝐿𝑅: −433.96 

          

Note: *Significant at 0.1 level; **Significant at 0.05 level; ***Significant at 0.01 level; B is the regression 

coefficient; Wald is the chi-square value. 

Table 3 presented the MLR results of various metro stations, revealing significant associations 

between built environment factors and varying types of station clusters, except for special functional 

station clusters. Regrading diversity, land-use mix was negatively associated with REMT station. The 

proportion of residential area was negatively associated with EOT station and REMT station. 

However, the proportion of commercial services facilities area exhibited a positive association with 

various types of stations, with the largest regression coefficients for EOT station and EOHT station. 

The proportion of public services facilities area was positively associated with ROHT station and 

EOHT station. Finally, the proportion of industrial and logistics-warehouse area was positively 

associated with EOT station and REMT station. 

In terms of density, population density exhibited a positive association with various types of 

stations, with EOHT station showing the highest regression coefficients, followed by REMT station, 

EOT station, and ROHT station. Building coverage ratio was negatively associated with various types 

of stations, with the lowest regression coefficients observed for EOT station and EOHT station. 

Notably, there is no significant association between intersections density and station types. Bus stops 

density and the number of entrances and exits exhibited a positive association with EOT station. 

Regarding centrality, network betweenness centrality was negatively associated with EOHT 

station, while network closeness centrality exhibited a positive association. Moreover, location value 

showed a positive association with all station types except for special function, with the regression 

coefficients in descending order of EOT station, EOHT station, REMT station, and ROHT station. 

5. Discussion Conclusions 

5.1. Classification of urban rail transit stations 

Previous research has predominantly examined the correlation between the built environment 

and the overall ridership of metro stations [32,52], limited studies have been conducted on the 

association between the built environment and the diverse patterns of ridership. In this study, we 

established a data-driven analysis framework that integrated smart card data and built environment 

data to investigate the relationship between the built environment and varying patterns of metro 

station ridership. 

The present study employed a combination method of hierarchical clustering and K-means 

clustering to identify different clusters according to the ridership of metro stations. All stations were 

divided into six clusters, i.e., residence-oriented type (ROT), employment-oriented type (EOT), 

residence-oriented hybrid type (ROHT), employment-oriented hybrid type (EOHT), residence-

employment mixed type (REMT), and special functional type (SFT). The findings were in line with 

earlier research conducted by Zhang [17] and Li [41], which indicated that the thematic functional 
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categories of metro stations can be evaluated not only by analyzing the environmental factors around 

them, such as land use types [54], POI types [53], and pedestrian accessibility [43], but also by 

considering the different ridership patterns. 

5.2. Differences in impact of built environment factors 

Furthermore, the study revealed that stations of the same cluster exhibited similar features in 

geospatial distribution, while stations in different clusters display heterogeneous features, which is 

consistent with the findings of previous studies [19,53]. These findings have implications for shaping 

the thematic patterns of urban functions, such as creating commercial and financial centers in the 

core of the city through the distribution of EOT stations [24,55], and evacuating the population to the 

peripheral areas through the distribution of ROT and ROHT stations [56]. 

To further investigate the relationship between built environment factors and the varying 

patterns of station ridership, this study employed multinomial logistic regression analysis. The 

findings suggested that built environments can partially explain the heterogeneous features of 

varying patterns of ridership, with a more significant relationship observed between most station 

clusters and built environment factors [19]. Specifically, (1) the proportion of land-use types was 

closely related to the thematic function of the station. Research by Woo [43] and Liu [54] supported 

this finding. For instance, commercial service facility, industrial and logistics storage land were found 

to be positively associated with EOT stations, EOHT stations, and REMT stations when compared to 

ROT stations [53]. (2) Population density was positively associated with most station types, mainly 

because most ROT stations are distributed in the suburbs. Residents usually prioritized factors such 

as residence location, surrounding services and facilities, and house price when choosing dwellings, 

as these factors were directly related to commuting time, medical facilities services, and income level 

[57]. (3) The factors of the destination accessibility were only positively associated with EOT stations, 

primarily because such stations were located in areas that provide numerous commercial, financial, 

and office jobs. These areas required more transportation services to improve accessibility and 

walkability [24,55]. (4) The location value was positively associated with most station types, and the 

regression coefficient magnitude was related to the geographic distribution of stations, which was a 

common phenomenon in large cities [58], i.e., house prices showed a significant decreasing trend 

with distance from the CBD. (5) Network betweenness centrality was only negatively associated with 

EOHT stations, and network closeness centrality was only positively associated with such stations, 

primarily because these stations were mostly distributed at the periphery of the core and were closer 

to other stations. Moreover, these stations were rarely located on network shortcuts where metro 

stations were interconnected [53]. Overall, compared to other dimensions of built environment 

factors, the factors of diversity, density, and location had more significant association with the 

varying patterns of metro station ridership. 

5.3. Policy implications 

Urban rail transit stations serve as the pivotal nodes of urban public transportation systems, and 

the pedestrian catchment areas around metro stations are high-density zones of urban socioeconomic 

activities where residents and workplaces congregate [31,32]. Our study in Tianjin, China, reveals 

that distinct patterns of ridership can be linked to different station thematic functions, and there are 

variations in land use structure, population density, and accessibility among various station types. 

Investigating the connection between ridership patterns and built environment factors can provide 

valuable insights for urban renewal and transit planning. For instance, in the peripheral regions of 

major cities, ROT and ROHT stations typically have a relatively single land-use function, which 

impedes the formation of comprehensive regional centers or town centers. In this regard, these 

stations should focus on developing integrated communities and compound commerce at the station 

core, which can enhance the livability of the areas by creating a regional center. This strategy could 

attract more residents from the city center to migrate to the suburbs [56], and further optimize the 

urban land-use layout. 
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5.4. Limitations 

Future studies should address the limitations of this study. Firstly, the lack of smart card data 

for weekends prevented the analysis of varying patterns of ridership of metro stations during 

weekends. Therefore, future studies should incorporate weekend smart card data to provide a more 

comprehensive description of station type features and assess the impact of weekends on the 

correlation between station type and the built environment. Secondly, the absence of longitudinal 

data acquisition limited existing studies to cross-sectional data analysis, which can only show the 

correlation between the built environment and varying patterns of metro station ridership. Future 

research should collect longitudinal data to better understand the cause-and-effect relationship. 

6. Conclusions 

This study identifies six types of metro stations based on their ridership patterns, each with 

unique functional characteristics. Various built environment factors have different associations with 

these ridership patterns. Residential-oriented (ROT) stations were used as the reference point for 

comparison. The proportion of commercial service facilities, industrial and logistics-warehouse areas, 

population density, and location value have significant positive effects on employment-oriented type 

(EOT) stations, residence-oriented hybrid type (ROHT) stations, employment-oriented hybrid type 

(EOHT) stations, and residence-employment mixed type (REMT) stations. However, building 

coverage ratio has a significant negative effect on these stations. Notably, different built environment 

indicators have varying degrees of effect on different types of stations. Density of bus stations and 

number of station entrances and exits have a significant positive effect only on employment-oriented 

type stations. Network betweenness centrality and network closeness centrality have a significant 

effect only on employment-oriented hybrid type (EOHT) stations. 
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