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Abstract: When there is uncertainty in the value of parameters of the input random components
of a stochastic simulation model, two-level nested simulation algorithms are used to estimate the
expectation of performance variables of interest. In the outer level of the algorithm (1) observations
are generated for the parameters, and in the inner level (im) observations of the simulation model
are generated with the value of parameters fixed at the value generated in the outer level. In this
article, we consider the case in which the observations at both levels of the algorithm are independent,
showing how the variance of the observations can be decomposed into the sum of a parametric
variance and a stochastic variance. Next, we derive central limit theorems that allow us to compute
asymptotic confidence intervals to assess the accuracy of the simulation-based estimators for the point
forecast and the variance components. Under this framework, we derive analytical expressions for
the point forecast and the variance components of a Bayesian model to forecast sporadic demand; and
we use these expressions to illustrate the validity of our theoretical results by performing simulation
experiments using this forecast model.
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1. Introduction and Notation

Simulation is widely recognized as an effective technique to produce forecasts, evalu-
ate risk (see, e.g., [1]), animate and illustrate the performance of a system over time (see,
e.g., [2]). When there is uncertainty in a component of a simulation model, it is said to be a
random component, and it is modeled using a probability distribution and/or a stochastic
process that is generated during the simulation run, to produce a stochastic simulation.
Random component typically depends on the value of certain parameters, and we will
denote by 6 a particular value for the vector of parameters of the random components
of a stochastic simulation, and ® will denote the random vector that corresponds to the
parameter values when there is uncertainty on the value of these parameters.

In general, the output of a stochastic (dynamic) simulation can be regarded as a
stochastic process {Y(s) : s > 0;©}, where Y (s) is a random vector (of arbitrary dimension
d) representing the state of the simulation at time s > 0. The term transient simulation
applies to a dynamic simulation that has a well-defined termination time, so that the output
of a transient simulation can be viewed as a stochastic process {Y(s) : 0 <s < T;®}, where
T is a stopping time (may be deterministic), see, e.g., [3] for a definition of stopping time.
Note that this notation includes the case of a discrete-time output Zy, Zy, .. ., if we assume
that Y(s) = Z|;| , where |s] denotes the integer part of s.

A performance variable W in transient simulation is a real-valued random variable
(r.v.) that depends on the simulation output up to time T,ie., W = f(Y(s),0 <s > T;0),
and the expectation of a performance variable W is a performance measure that we usually
estimate through experimentation with the simulation model. When there is no uncertainty
in the parameters of the random components, the standard methodology that is used to
estimate a performance measure in transient simulation is the method of independent
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replications, that consists on running the simulation model to produce n replications
Wi, Wy, ..., W, that can be regarded as independent and identically distributed (i.i.d.)
random variables (see Figure 1) .

Fori=1ton
1. Run a simulation experiment with ® = 8 to obtain an independent
replication
W; =g(Y;(s),0<=s<T;0)
End Loop

. . . ~ 1
Compute a point estimator and an ACI for the expectation a.: @(n) = EE?=1 W;.

Figure 1. Algorithm for the method of independent replications with parameter fixed at the value 6.

Under the method of independent replications, a point estimator for the expectation

« = E[W;] is the average &(n) = M If E[[W;]] < o0, it follows from the classical Law of
Large Numbers (LLN), that &(n) is consistent, i.e., it satisfies &(n) = a , as n — oo (where
= denotes weak convergence of random variables), see, e.g., [3] for a proof. Consistency
guarantees that the estimator approaches the parameter as the number of replications n
increases, and the accuracy of the simulation-based estimator &(n) is typically assessed by
an asymptotic confidence interval (ACI) for the parameter. The expression for an ACI for a
parameter of a stochastic simulation is usually obtained through a Central Limit Theorem
(CLT) for the estimator (see, for example, chapter 3 of [4]). For the case of the expectation «
in the algorithm of Figure 1, if E[W?] < oo, the classical CLT implies that

M = N(0,1), (1)

o

as n — oo, where 0 = E[(W; — «)?] and N(0, 1) denotes a r.v. distributed as normal with
mean 0 and variance 1. Then, if E[W?] < oo, it follows from (1) and Slutsky’s Theorem (see

the Appendix) that
M = N(0,1),
o(n)
n A 2
as n — oo, where &(n) denotes the sample standard deviation, i.e., 62 (n) = %
This CLT implies that

Jim Plli(n) o] < zp0(n)/ Vi = 1§,

for 0 < B < 1, where zg denotes the (1 — $/2)-quantile of a N(0,1), which is sufficient to
establish a (1 — B)100% ACI for a with halfwidth

HW,, = 250(n)/ /1. @)

A halfwidth in the form of (2) is the typical measure used in simulation software (e.g.,
Simio, see [2]) to assess the accuracy of &(n) for the estimation of expectation «.

In contrast to the estimation of (output) performance measures, parameters of (input)
random components of a simulation model are usually estimated from real-data observa-
tions (x) and, while most applications covered in the relevant literature assume that no
uncertainty exists in the value of these parameters, the uncertainty can be significant when
little data is available. In these cases, Bayesian statistics can be used to incorporate this
uncertainty in the output analysis of simulation experiments via the use of a posterior
distribution p(6|x). A methodology currently proposed for the analysis of simulation
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Fori=1ton
Generate (independently) a value 8; from p(8|x)
For j=1tom:
Run a simulation experiment with ® = 6; to obtain an independent replication
Wi = g(Yij(s),0 <s < T;6;)
End Loop
End Loop

n
P P . P A A i=1 Wij
Compute a point estimator and an ACI for the expectation o: &(n) = %E’Ll @, @; = LWy

m

Figure 2. Two-level algorithm for calculating a point estimator using stochastic simulation under
parameter uncertainty.

experiments under parameter uncertainty, is a two-level nested simulation algorithm (see,
e.g., [6-8]. In the outer level, we simulate () observations for the parameters from a
posterior distribution p(6|x), while in the inner level we simulate (1) observations for the
performance variable with the parameters fixed at the value (0) generated in the outer level
(see Figure 2). In this paper, we focus on the output analysis of two-level simulation experi-
ments, for the case where the observations at the inner level are independent, showing how
the variance of a simulated observation can be decomposed into parametric and stochastic
variance components. Afterwards, we derive a CLT for both the estimator of the point
forecast and the estimators of the variance components. Our CLTs allow us to compute
an ACI for each estimator. Our results are validated through experiments with a forecast
model for sporadic demand reported in [10]. This paper is an extended version of results
initially reported in [11] and the missing proofs in [11] are provided.

Following this introduction, we present the proposed methodology for the construc-
tion of an ACI for the point forecast and the variance components in a two-level simulation
experiment. Afterwards, we present an illustrative example that has an analytical solution
for the parameters of interest in this paper. This example is used in the next section to
illustrate the application and validity of our proposed methodologies for the construction
of an ACI. Finally, in the last section, we present conclusions and directions for future
research.

2. Theoretical Results

To identify the variance components in each observation W;; of the algorithm illus-
trated in Figure 2, let 4(®) = E[W;|@©], and ¢?(©) = E[W|0] — #?(®). Under this
notation, the point forecast is « = E[;(®)], and the variance of each W;; is:

E[WF] — E[W;j]* = E[E[WZ|®] — u(©)*] + E[4(®)*] — E[u(®)]* = 0§ + 03, (3)

d
fori = 1,.,n; j = 1,..,m, where 03 = V[u(®)] & E[u(©)?] — E[u(®)]?, and 02 =
E[0?(®)]. It is worth mentioning that, in the relevant literature, 02 is commonly referred to
as stochastic variance and ¢ is commonly referred to as parametric variance.

2.1. Point estimators

In this paper, we are interested in both the estimation of the point forecast &« = E[p(©®)]
and the estimators of the variance components of every observations generated in the
algorithm of Figure 2 and defined in (3), thus we first consider the natural point estimators

1 &, ) 10
— l;(ai —&(n))?,08(n) = l; s2, )

a(n) = Ly &, 0% =
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where &; = m™! Z}-":l Wj, and §?=(m—1)" Z;-”:l(Wi' —&;)%,i = 1,...,m. Note that the

&;'s are i.i.d. with expectation E[&;] = « and variance
de n _
Y El(a = @) = m 2 (mE[(Why = a)?] + m(m — DE[(Wn - ) (Wiz - )
= mYo+op)+mt(m—1)0f =0 +m oh (5)

On the other hand, the S? are i.i.d. with expectation E[S?] = 03. Thus, the next proposition
follows from the classical LLN .

Proposition 1. Given m > 1, if E]W?] < oo then &(n) and 6 (n) are unbiased and consistent
(as n — oo) estimators for « and o2 (as defined in (5)), respectively. Furthermore, if m > 2 and
E[W2] < oo, then 63(n) is an unbiased and consistent (as n — oo) estimator for 0% (as defined in

(3)).

2.2. Accuracy of the point estimators

As we established in Proposition 1, under mild assumptions the point estimators
proposed in (4) are consistent, and thus converge to the corresponding parameter value
(as n — o0). Nonetheless, to establish the level of accuracy of these estimators, we must
establish a CLT for each estimator to derive a valid expression for the corresponding ACI.
Note that both &(n) and 63 (n) are averages of i.i.d observations, thus the next proposition
follows from the classical CLT for i.i.d. observations.

Proposition 2. Given m > 1, if E[|WZ] < oo then

M = N(0,1),

or
as n — oo. Furthermore, if m > 2 and E[W{;] < oo, then
V(3 (n) — of)

V'Vs

as n — oo, where 03 is defined in (3), 0% is defined in (5), &(n), 03(n), S are defined in (4), and
Vs = E[(S? — 03)?].

= N(0,1),

Since we have consistent estimators for (7% and Vs (under mild assumptions), the next
corollary follows from Proposition 1 and Slutsky’s Theorem, details of a proof are given in
the Appendix.

Corollary 1. Under the same notation and assumptions as in Proposition 2, for m > 1 we have
M = N(0,1),
o (n)
as n — oo, and for m > 2 we have
52 2
n(0s(n) — o,
Vi) —cd)

J N(0,1),
s(n)
as n — oo, where 63 (n) and 6% (n) are defined in (4), and

N 1 1
DI RS o
i=1 i
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In order to obtain a CLT for 6% (n), note that this estimator is the sample variance of a
set of i.i.d. observations, thus we can use the following Lemma. A proof using the Delta
Method (see, e.g., Proposition 2 of [9] for a proof) is provided in the Appendix.

Lemma 1. If Xq, Xy, ... is a sequence of i.i.d. random variables with E[X}] < oo, then

V() —ad)

2
)

(0,1),

asn — oo, where 0% = py — 42, 02 = Puy — 4ut — dpaps + pa — w3, pp = E[X5, k =1,2,3,4;
S2(n)=(n—1)""CL(X; — )% o =n" L X

Corollary 2. Under the same assumptions as in Lemma 1 we have

VS0 ) o
o3 (n)

as n — oo, where 6 = 8121y — 41F — 4z + fla — 3, i = n 1 1, XK.

Corollary 2 follows from the fact that /i is an unbiased and consistent estimator of iy,
and the next corollary follows from the fact that 62 (n) is the sample variance of the &;.

Corollary 3. Given m > 1,if E[W{,] < oo then

VRGN =0d) o
Vr(n)

as n — oo, where Vr(n) = 8&%112 — 4&‘11 —4q &3 + ay — Ec%, A =n"! Y 5(1.‘.

Let 0 < B < 1, and using corollaries 1 and 3 we can establish a 100(1 — B)% ACI
for the point forecast &, and variance components 02 and 0% = 0 + m~103; each ACl is
centered in the corresponding point estimator (&(), &g (n) or (T% (n)) and the corresponding
halfwidth is given by:

) s e
HW, UT(n),HW(% = zﬁM and HW > = M 6)

S Vi T

for a, 02 and 02, respectively, where 62 (n) is defined in (4), Vs(n) and Vr(n) are defined in
Corollary 1, and in Corollary 3, respectively.

Note that the ACIs proposed in (6) assume that the value of m in the algorithm of
Figure 2 is fixed and the accuracy of the estimator improves as # (the number of observations
in the outer level) increases (in turn, the halfwidth of the ACI gets smaller). Given that we
can build a valid ACI for any value of m, a relevant question is how to find an adequate
value of m to get an acceptable level of accuracy in a reasonable amount of running time.
In order to answer this question for the case of the point estimator of «, let us fix the
total number of iterations in the algorithm of Figure 2 to k = nm, and note from (5) and
Proposition 2 that the asymptotic variance of (&(n) — a) is

n~toz =k Y (moZ +o3), (7)
and takes its minimal value for m = 1, suggesting that the point estimator & (1) defined in
(4) is more accurate as m approaches the value of 1. Note that for m = 1, a fixed number
of iterations k = nm is convenient (from the point of view of running time), when the
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computation of W;; requires the same or more computation time as ©;, as suggested in the
relevant literature (see, for example, [6]). Furthermore, if we allow m to increase with n, we
can obtain the following proposition (a proof using Lindeberg-Feller Theorem is provided
in the Appendix).

Proposition 3. Given 0 < p < 1,ifm = {n*”l/”J and E[W2] < oo then

A

\/ﬁ(ﬁ((ﬂ) — D‘) = N(O,l),
o7
as n — oo, where o is defined in (5).

Note that the last proposition implies that the ACI defined in equation (6) for the
point forecast « is also valid under the assumptions of Proposition 3. If, once again, we
set the total number of iterations in the algorithm of Figure 2 to k = nm, we let n = k?,
m ~ k'~P, and nm =k, it follows from Proposition 3 that the asymptotic variance of &(n) is
n_la% ~ k‘P(kl_F’Ué + 012,) for every 0 < p < 1. Note that, for fixed k, n_la% reaches its
minimum value when p = 1, that is, when n = k and m = 1. However, note that we need
m > 2 in order to estimate ¢2. In the following section we report some empirical results
that confirm our theoretical results. It is worth mentioning that the case n = kand m =1
has been reported in the literature as the posterior sampling algorithm (see, e.g., [12,13])

3. An Example with Analytical Solution

The following model (reported in [10]) has been proposed to forecast sporadic demand
by incorporating data on times between arrivals and customer demand; where uncertainty
on the model parameters is incorporated using a Bayesian approach. For this model, we
will show analytical expressions for the performance measures defined in Section 2. These
expressions are used in the following section to illustrate the validity of the ACIs proposed
in the previous section.

Customer arrivals for a particular item in a shop follow a Poisson process, yet there
is uncertainty in the arrival rate @, so that given [@y = 6], interarrival times between
customers are i.i.d. with exponential density:

ety y >0,

f(yleo) = { 0: otherwise, ®)

where 6y € Sop = (0,00). Every client can order j units of this item with probability
. -1
@1]',] = 1,...,q, q 2 2. Let @1 = (@11,...@1(q_1)) and @m =1- 2]7:1 @1]', then ©® =
(g, ©1) is the parameter vector, and Sy = Spp ® So; is the parameter space, where Sy; =
71 .
{(611,..., Gl(q—l)) : Z?:l 91] S 1; 61] Z 0,] = 1,...,(] — l}
Total demand during a period of length T is

D= { Zili(lT) Ui, N(T)>0 )
0, otherwise,

where N(s) is the number of customer arrivals during the interval [0,s], s > 0, and Uy, Uy, ...

are the individual demands (conditionally independent relative to ®). The information

about © consists of i.i.d. observations v = (vy,...,vr), u = (uy, ..., u,) of past customers,

where v; is the interarrival time between customer i and customer (i — 1), and u; is the

number of units ordered by client i. By taking Jeffrey’s non-informative prior as the prior


https://doi.org/10.20944/preprints202305.0623.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 May 2023 d0i:10.20944/preprints202305.0623.v1

density for ®, we obtain the posterior density (see [10] for details) p(8|x) = p(6o|v)p(61|u),
where x; = (v;,u;),i=1,..,7,x = (x1,...,xr),0 = (6p,61) as

er 1( Lo ) 60 Y, v (1 _ Zq;ll elj)cq—l/ZHq 119;] 1/2
p(bolo) = p(Or]u) = ! L, 0
(r—1)! B(c1 +1/2,..,¢4+1/2)

where ¢; = YI_; I[u; = j|, and B(ay, ...aq) = H?zll"(aj)/l"(zyzl aj), for ay, ...,aq > 0. Using
this notation, we can show that (see [1] for details)

q
x = E[TOy] ij]-,
j=1

E[T?@3]
qo + 1

L, E[TO.P(go/m) ~ 1]
; G0+ 1) (2”’1

q
= E[T®] ) /°pj,
j=1
where E[TOg] = Tr(Lj_, v;) ', E[T?03] = T*r(1+r)(Li_1 vi) 2% pj = qi/q0, qj = ¢j +
1/2,j=1,..,9,q90 = ijl qjs and cjare defined in (10).

4. Empirical Results

To validate the ACIs proposed in (4), we conducted some experiments with the
Bayesian model of the previous section to illustrate the estimation of a, 03 and ¢2. We
considered the values T = 15,7 =20, };_,x; =10, =5,¢c1 =5,c0 =3,c3 =2,¢c4 =3,
05 = 7. With this data, the point forecast is & ~ 95.333, and the variance components are
02 ~ 380.667, 03 ~ 568.598. The empirical results that we report below illustrate a typical
behavior that we should experiment for any other feasible data set.

Inner loop (m)
2

Coverage Mean RMSE Mean

Tolal (nm) Tolal (nm) m4
20000 20000 ms

0.4
I lll--.

Average Halfwidth Mean St Dev Halfwidth Mean

Total (nm) Total(nm)
2000 20000 20000

12

10
N 08

. I
2

Figure 3. Performance of the estimation of point forecast « for nm fixed comparing different values of

Cauerage
RMSE

o

Av Hw
St Dev Hw

m.
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In all the experiments reported in this Section we considered 1000 independent repli-
cations of the algorithm of Figure 2 for different number of observations in the outer level
(n) and in the inner level (m); in each replication we computed the point estimators for
w, 02, and 07, and the corresponding halfwidths of 90% ACI's according to equations (6).
Since we know the value of the parameters we are estimating, we were able to report (for n
and m given), the empirical coverage (i.e., the fraction of independent replications that the
corresponding ACI covered the true parameter value), the average and standard deviation
of halfwidths, and the squared root of the empirical mean squared error defined by

18 .
RMSE = (| — ) (6; —0)?,
Mo i3

where 0; denotes the value obtained in the i-th replication for the estimation of a parameter
0,i=1,2,...,n9 (np = 1000 in our experiments).

In a first set of experiments we considered nm = 200,2000,20000, and m = 2,4,8
for each value of nm, to compare the effect of increasing the number of observations in
the inner level for a given value value of nm. The results of this set of experiments are
summarized in figures 3, 4 and 5. Note that we are not considering m = 1 in this set of
experiments to be able to construct an ACI for the stochastic variance o?2.

In Figure 3 we illustrate the performance measures for the quality of the estimation
procedure that we obtained for the estimation of the point forecast a. As we observe
from Figure 3, the coverages are acceptable (very close to the nominal value of 0.9, even
for n = 100). These results validate the ACI defined in (6) for the point forecast x. We
also observe from Figure 3 that the RMSE, average halfwidth and standard deviation of
halwidths improve (decrease) as the number of observations in the outer level (1) increases,
as suggested by Corollary 1. Note also from Figure 3 that a smaller value of m provides
smaller RMSE, average halfwidths and standard deviations of halwidths, validating our
theoretical results.

Inner loop (m)

Coverage Stochastic Variance RMSE Stochastic Variance m
Total (nm) Total (nm) b
200 2000 20000 200 2000 20000 Hs
10 0.90000
50
08
40
L 06
d 4 0
2 =
o =3
0.4 20
0.0 0 . - -
Average Halfwidth Stoch Var St Dev Halfwidth Stoch Var

Total (nm) Total (nm)
2000 20000

2000 20000

200 200
80 )
15
60
10
40
o HEmm [ 1 [

Figure 4. Performance of the estimation of stochastic variance (Tg for nm fixed comparing different

Av Hw
St Dev Hw

u

=}

values of m.

In Figure 4 we illustrate the performance measures for the quality of the estimation
procedure that we obtained for the estimation of the stochastic variance 3. As we observe
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from Figure 4, the coverages are acceptable (very close to the nominal value of 0.9, even for
n = 100). These results validate the ACI defined in (6) for the stochastic variance Ug. We
also observe from Figure 3 that the RMSE, average halfwidth and standard deviation of
halwidths improve (decrease) as the number of observations in the outer level (1) increases,
as suggested by Corollary 2. However, contrary to what we observe for the estimation of «,
a larger value of m provides smaller RMSE, average halfwidths and standard deviations
of halwidths, suggesting that, for a fixed value of nm, the quality of the estimation for the
stochastic variance 02 improves as the number of the observations in the inner loop ()
increases.

Inner loop (m)

Coverage Total Variance RMSE Total Variance u:
Total (nm) Total (nm) ma
200 2000 20000 200 2000 20000 ms3

1.0 200

0.9000

08
150
6 w
u
= 100
o
50
‘ 0 I I mmBE

Average Halfwidth Total Variance St Dev Halfwidth Total Variance

Total (nm) Total (nm)

c

Coverage
o S)
s >

o
[N}

o
o

200 2000 0000 0 | 20000

200
80
£ 150
= 5
<
100
40
. I I I . I
0 mmB 0 m . I

Figure 5. Performance of the estimation of total variance % for nm fixed comparing different values

St DevHw
@
S

of m.

For the estimation of the total variance 17% (illustrated n Figure 5) we obtained similar
results for the quality of the estimation as for the estimation of the point forecast «, except
that a larger values of # is required to obtain reliable coverages. As we observe from
Figure 3, the coverages are acceptable (very close to the nominal value of 0.9, for n = 1000
and 10000). These results validate the ACI defined in (6) for the total variance U%. We
also observe from Figure 3 that the RMSE, average halfwidth and standard deviation of
halwidths improve (decrease) as the number of observations in the outer level (1) increases,
as suggested by Corollary 3. Note also from Figure 5 that a smaller value of m provides
smaller RMSE, average halfwidths and standard deviations of halwidths, validating our
theoretical results.

In a second set of experiments we considered nm = 100, 1000, 10000, with m = 1 and
m = (nm)!/3 for each value of nm, to compare the quality of the estimation procedures
using the value of m that we suggest as optimal for the estimation of point forecast « with
the value of m suggested in [6] as an adequate choice for m in the case of biased estimators
in the inner level of the algorithm of Figure 2. The results of this set of experiments are
summarized in figures 6 and 7. Note that we are not considering the estimation of the
stochastic variance 2 in this set of experiments because m > 2 is required to construct an
ACI for the stochastic variance 2. Note also that we considered 100'/® ~ 5, 1000'/3 ~ 10,
and 10000!/3 = 20, and we are using the same color for m = 5,10, 20 in figures 6 and 7.

In Figure 6 we illustrate the performance measures for the quality of the estimation
procedure that we obtained for the estimation of the point forecast « in our second set of
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Figure 6. Performance of the estimation of point forecast « for nm fixed comparing m = 1 and
m =~ (nm)1/3,

experiments . As we observe from Figure 6, the coverages are acceptable (very close to
the nominal value of 0.9, even for n = 100). These results validate the ACI defined in (6)
for the point forecast a, and the ACI suggested by Proposition 3. We also observe from
Figure 6 that the RMSE, average halfwidth and standard deviation of halwidths are worse
for m ~ (nm)'/3, confirming our finding that, for the same number of replications nm,
m = 1 produces better point estimators for & than m ~ (nm)!/3 confirming the result of
Proposition 3.
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Figure 7. Performance of the estimation of total variance ¢2 for nm fixed comparing m = 1 and
m =~ (nm)1/3,
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Finally, in Figure 7 we show the results of our second set of experiments for the
estimation of the total variance (T%. We found similar resulta as for the case of the estimation
of the point forecast «, coverages are very good (even for n = 100), and all performance
measure for the ACI (RMSE, average and standard deviation of halfwidths) are worse for
m = (nm)'/3, suggesting that, for the same number of replications nm, m = 1 produces
better point estimators for ¢2 than m = (nm)!/3.

5. Conclusions

In this paper, we propose methodologies to calculate point estimators (and their
corresponding halfwidths), for both the point forecast and the variance components in
two-level nested stochastic simulation experiments, for the case where the observations
at both levels of the algorithm are independent. These methods can be applied to the
construction of Bayesian forecasts based on experiments using a simulation model under
parameter uncertainty.

Both our theoretical and our experimental results confirm that the proposed point
estimators and their corresponding halfwidths are asymptotically valid, i.e., the point
estimators converge to the corresponding parameter values and the halfwidths converge to
the nominal coverage as the number of replications () of the outer level increases.

Furthermore, given a fixed number of total observations (1), we show that the choice
of only one replication in the inner level (m = 1) provides more accurate estimators for
both the point forecast («), and the variance of the point forecast ((T%). However, m > 2 is
required for the estimation of ¢2.

Directions for future research on this topic includes experimentation with other point
estimators, such as, quasi Monte Carlo or Simpson integration, with the objective of finding
more accurate point estimators for the parameters considered in this paper.
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Appendix A

For completeness, we first write three well known theorems. Proofs of Theorem Al
and Theorem A2 can be found, e.g., in [5], and a proof of Theorem A3 can be found, e.g., in
[9]. In what follows, we write = for weak converge (as n — co without explicit mention).

Theorem A1l. (Slutsky). Let X, Y, X1, X, ..., Y1, Ya, ... be random variables and c be a real constant.
If Xy, = X, and Y, = c, then:

(i) Xn + Yn = X+c

(i) X,Y,=cX

(iii)) Xu/Yn = X/c, ifc #0

Theorem A2. (Continuous mapping). Let X, Xy, X, ... be Rk -valued random vectors, and let
g+ R* — R be a function such that P[X € D(g)] = 0, where D(g) = {x : g(x) is not continuous
at x}, then g(Xn) = g(X).

Theorem A3. (Delta method). Let Y1, Y, ... be RE-valued random vectors, and let g:]Rk — Rbea
function that is differentiable in a vecinity of u € R¥. If there exists a k x k matrix G such that the
TLC

VnlY(n) — u] = GNi(0,1)
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is satisfied, where Y(n) = n=1 Y1, Y;, and Ni(0,I) denotes a (k -variate) normal distribution
with mean 0 and variance I (the identity), then

Vnlg(Y(n)) —g(p)] = oN(0,1),

where o = \/Vg(u)TGGTVg(u)).

Proof of Corollary 1. Since oy, d, ... are i.i.d. with E [&%] < 00, it follows from the Law of
Large Numbers that n 1 (X1, 42, Y11 &;) = (E[42], E[&1]). Therefore, by taking g(x1, x2) =

\/x1 — x3, for x; — x3 > 0 in Theorem A2, we have \/(n — 1)62(n)/n = /02, so that
Y, = 1/02(n)/ /0% = 1. Finally, by taking X,, = v/n(&(n) — a)//0% in Theorem A1, it
follows from Proposition 2 that
M = N(0,1)
o3 (n)

Similarly, since S%, 53, ... are i.i.d. with E[S}] < oo, it follows from Theorem Al and

Proposition 2 that
V@A)~ )

Vs(n)

N(0,1).

O

Proof of Lemma 1. Letk = 2,Y; = (X;, X?), 4 = (p1, i2), then the TLC of Theorem A3 is
satisfied for )
GGT = [ H2 — 1 VS_Vllzlz
M3 — HiM2 M4 — M3
By taking g(j) = p2 — i3 = 0%, we have g(¥(n)) = (n — 1)S*(n) /n, Vg(u)T = (~21,1),
and
V) GGV f(u) = 8tz — 4t — dpapis + pa — 3 = 3.

Then, it follows from Theorem A3 that
\/ﬂ(n —1)S%(n)/n — U%J = 7»N(0,1),

and the final conclusion follows from Theorem A1l. [

Proof of Proposition 3. In this proof we follow the notation of Lindeberg-Feller Theorem
as in Theorem 7.2.1 of [3].

Forn=1,2,..,letm, = {n’”l/PJ and aj(n) = (2™ Wij)/ttn, j = 1,...,n. Then

a1(n),az(n), ...,y (n) are independent, and for X,,; = (a;(n) — a)//no? we also have that

X1, Xn2, ... Xnn are independent.

Then if Y,,; = («;(n) — a)/or, we have E[Y,;] = 0 and E[Y,fj] =1,sothat givene >0
there exists 70 > 0 such that f‘quo y2dFy,i(y) <e.

Therefore, given 57 > 0, for n > max{1, (10/7n)*} we have

n n 1
2 . < - 2 ,
]; /\XI<'7 F AP () < ]; n /\y|<ﬂo Yy ) <<

so that (1) of Theorem 7.2.1 of [? ] is satisfied, and it follows from this Theorem that
Sy = N(0,1), where
Vi) —a)

2

n
Su=1) Xpj=
j=1 0%
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