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Abstract: When there is uncertainty in the value of parameters of the input random components 1

of a stochastic simulation model, two-level nested simulation algorithms are used to estimate the 2

expectation of performance variables of interest. In the outer level of the algorithm (n) observations 3

are generated for the parameters, and in the inner level (m) observations of the simulation model 4

are generated with the value of parameters fixed at the value generated in the outer level. In this 5

article, we consider the case in which the observations at both levels of the algorithm are independent, 6

showing how the variance of the observations can be decomposed into the sum of a parametric 7

variance and a stochastic variance. Next, we derive central limit theorems that allow us to compute 8

asymptotic confidence intervals to assess the accuracy of the simulation-based estimators for the point 9

forecast and the variance components. Under this framework, we derive analytical expressions for 10

the point forecast and the variance components of a Bayesian model to forecast sporadic demand; and 11

we use these expressions to illustrate the validity of our theoretical results by performing simulation 12

experiments using this forecast model. 13

Keywords: Bayesian forecasting; stochastic simulation; parameter uncertainty; two-level simulation 14

1. Introduction and Notation 15

Simulation is widely recognized as an effective technique to produce forecasts, evalu- 16

ate risk (see, e.g., [1]), animate and illustrate the performance of a system over time (see, 17

e.g., [2]). When there is uncertainty in a component of a simulation model, it is said to be a 18

random component, and it is modeled using a probability distribution and/or a stochastic 19

process that is generated during the simulation run, to produce a stochastic simulation. 20

Random component typically depends on the value of certain parameters, and we will 21

denote by θ a particular value for the vector of parameters of the random components 22

of a stochastic simulation, and Θ will denote the random vector that corresponds to the 23

parameter values when there is uncertainty on the value of these parameters. 24

In general, the output of a stochastic (dynamic) simulation can be regarded as a 25

stochastic process {Y(s) : s ≥ 0; Θ}, where Y(s) is a random vector (of arbitrary dimension 26

d) representing the state of the simulation at time s ≥ 0. The term transient simulation 27

applies to a dynamic simulation that has a well-defined termination time, so that the output 28

of a transient simulation can be viewed as a stochastic process {Y(s) : 0 ≤ s ≤ T; Θ}, where 29

T is a stopping time (may be deterministic), see, e.g., [3] for a definition of stopping time. 30

Note that this notation includes the case of a discrete-time output Z0, Z1, . . . , if we assume 31

that Y(s) = Z⌊s⌋ , where ⌊s⌋ denotes the integer part of s. 32

A performance variable W in transient simulation is a real-valued random variable 33

(r.v.) that depends on the simulation output up to time T, i.e., W = f (Y(s), 0 ≤ s ≥ T; Θ), 34

and the expectation of a performance variable W is a performance measure that we usually 35

estimate through experimentation with the simulation model. When there is no uncertainty 36

in the parameters of the random components, the standard methodology that is used to 37

estimate a performance measure in transient simulation is the method of independent 38
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replications, that consists on running the simulation model to produce n replications 39

W1, W2, . . . , Wn that can be regarded as independent and identically distributed (i.i.d.) 40

random variables (see Figure 1) . 41

Figure 1. Algorithm for the method of independent replications with parameter fixed at the value θ.

Under the method of independent replications, a point estimator for the expectation 42

α = E[W1] is the average α̂(n) = ∑n
i=1 Wi

n . If E[|W1|] < ∞, it follows from the classical Law of 43

Large Numbers (LLN), that α̂(n) is consistent, i.e., it satisfies α̂(n) ⇒ α , as n → ∞ (where 44

⇒ denotes weak convergence of random variables), see, e.g., [3] for a proof. Consistency 45

guarantees that the estimator approaches the parameter as the number of replications n 46

increases, and the accuracy of the simulation-based estimator α̂(n) is typically assessed by 47

an asymptotic confidence interval (ACI) for the parameter. The expression for an ACI for a 48

parameter of a stochastic simulation is usually obtained through a Central Limit Theorem 49

(CLT) for the estimator (see, for example, chapter 3 of [4]). For the case of the expectation α 50

in the algorithm of Figure 1, if E[W2
1 ] < ∞, the classical CLT implies that 51

√
n(α̂(n)− α)

σ
⇒ N(0, 1), (1)

as n → ∞, where σ2 = E[(W1 − α)2] and N(0, 1) denotes a r.v. distributed as normal with 52

mean 0 and variance 1. Then, if E[W2
1 ] < ∞, it follows from (1) and Slutsky’s Theorem (see 53

the Appendix) that 54√
n(α̂(n)− α)

σ̂(n)
⇒ N(0, 1),

as n → ∞, where σ̂(n) denotes the sample standard deviation, i.e., σ̂2(n) = ∑n
i=1(Wi−α̂(n))2

n−1 . 55

This CLT implies that 56

lim
n→∞

P[|α̂(n)− α| ≤ zβσ̂(n)/
√

n] = 1 − β,

for 0 < β < 1, where zβ denotes the (1 − β/2)-quantile of a N(0,1), which is sufficient to 57

establish a (1 − β)100% ACI for α with halfwidth 58

HWα = zβσ̂(n)/
√

n. (2)

A halfwidth in the form of (2) is the typical measure used in simulation software (e.g., 59

Simio, see [2]) to assess the accuracy of α̂(n) for the estimation of expectation α. 60

In contrast to the estimation of (output) performance measures, parameters of (input) 61

random components of a simulation model are usually estimated from real-data observa- 62

tions (x) and, while most applications covered in the relevant literature assume that no 63

uncertainty exists in the value of these parameters, the uncertainty can be significant when 64

little data is available. In these cases, Bayesian statistics can be used to incorporate this 65

uncertainty in the output analysis of simulation experiments via the use of a posterior 66

distribution p(θ|x). A methodology currently proposed for the analysis of simulation 67
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Figure 2. Two-level algorithm for calculating a point estimator using stochastic simulation under
parameter uncertainty.

experiments under parameter uncertainty, is a two-level nested simulation algorithm (see, 68

e.g., [6–8]. In the outer level, we simulate (n) observations for the parameters from a 69

posterior distribution p(θ|x), while in the inner level we simulate (m) observations for the 70

performance variable with the parameters fixed at the value (θ) generated in the outer level 71

(see Figure 2). In this paper, we focus on the output analysis of two-level simulation experi- 72

ments, for the case where the observations at the inner level are independent, showing how 73

the variance of a simulated observation can be decomposed into parametric and stochastic 74

variance components. Afterwards, we derive a CLT for both the estimator of the point 75

forecast and the estimators of the variance components. Our CLTs allow us to compute 76

an ACI for each estimator. Our results are validated through experiments with a forecast 77

model for sporadic demand reported in [10]. This paper is an extended version of results 78

initially reported in [11] and the missing proofs in [11] are provided. 79

Following this introduction, we present the proposed methodology for the construc- 80

tion of an ACI for the point forecast and the variance components in a two-level simulation 81

experiment. Afterwards, we present an illustrative example that has an analytical solution 82

for the parameters of interest in this paper. This example is used in the next section to 83

illustrate the application and validity of our proposed methodologies for the construction 84

of an ACI. Finally, in the last section, we present conclusions and directions for future 85

research. 86

2. Theoretical Results 87

To identify the variance components in each observation Wij of the algorithm illus- 88

trated in Figure 2, let µ(Θ) = E[W11|Θ], and σ2(Θ) = E[W2
11|Θ] − µ2(Θ). Under this 89

notation, the point forecast is α = E[µ(Θ)], and the variance of each Wij is: 90

V[Wij]
de f
= E[W2

ij]− E[Wij]
2 = E[E[W2

ij|Θ]− µ(Θ)2] + E[µ(Θ)2]− E[µ(Θ)]2 = σ2
S + σ2

P, (3)

for i = 1, ..., n; j = 1, ..., m, where σ2
P = V[µ(Θ)]

de f
= E[µ(Θ)2] − E[µ(Θ)]2, and σ2

S = 91

E[σ2(Θ)]. It is worth mentioning that, in the relevant literature, σ2
S is commonly referred to 92

as stochastic variance and σ2
P is commonly referred to as parametric variance. 93

2.1. Point estimators 94

In this paper, we are interested in both the estimation of the point forecast α = E[µ(Θ)] 95

and the estimators of the variance components of every observations generated in the 96

algorithm of Figure 2 and defined in (3), thus we first consider the natural point estimators 97

α̂(n) =
1
n

n

∑
i=1

α̂i, σ̂2
T(n) =

1
n − 1

n

∑
i=1

(α̂i − α̂(n))2, σ̂2
S(n) =

1
n

n

∑
i=1

S2
i , (4)
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where α̂i = m−1 ∑m
j=1 Wij, and S2

i = (m − 1)−1 ∑m
j=1(Wij − α̂i)

2, i = 1, ..., m. Note that the 98

α̂i’s are i.i.d. with expectation E[α̂1] = α and variance 99

σ2
T

de f
= E[(α̂1 − α)2] = m−2(mE[(W11 − α)2] + m(m − 1)E[(W11 − α)(W12 − α)])

= m−1(σ2
S + σ2

P) + m−1(m − 1)σ2
S = σ2

S + m−1σ2
P. (5)

On the other hand, the S2
i are i.i.d. with expectation E[S2

1] = σ2
S . Thus, the next proposition 100

follows from the classical LLN . 101

Proposition 1. Given m ≥ 1, if E[W2
11] < ∞ then α̂(n) and σ̂2

T(n) are unbiased and consistent 102

(as n → ∞) estimators for α and σ2
T (as defined in (5)), respectively. Furthermore, if m ≥ 2 and 103

E[W2
11] < ∞, then σ̂2

S(n) is an unbiased and consistent (as n → ∞) estimator for σ2
S (as defined in 104

(3)). 105

2.2. Accuracy of the point estimators 106

As we established in Proposition 1, under mild assumptions the point estimators 107

proposed in (4) are consistent, and thus converge to the corresponding parameter value 108

(as n → ∞). Nonetheless, to establish the level of accuracy of these estimators, we must 109

establish a CLT for each estimator to derive a valid expression for the corresponding ACI. 110

Note that both α̂(n) and σ̂2
S(n) are averages of i.i.d observations, thus the next proposition 111

follows from the classical CLT for i.i.d. observations. 112

Proposition 2. Given m ≥ 1, if E[W2
11] < ∞ then

√
n(α̂(n)− α)

σT
⇒ N(0, 1),

as n → ∞. Furthermore, if m ≥ 2 and E[W4
11] < ∞, then

√
n(σ̂2

S(n)− σ2
S)√

VS
⇒ N(0, 1),

as n → ∞, where σ2
S is defined in (3), σ2

T is defined in (5), α̂(n), σ̂2
S(n), S2

1 are defined in (4), and 113

VS = E[(S2
1 − σ2

S)
2]. 114

Since we have consistent estimators for σ2
T and VS (under mild assumptions), the next 115

corollary follows from Proposition 1 and Slutsky’s Theorem, details of a proof are given in 116

the Appendix. 117

Corollary 1. Under the same notation and assumptions as in Proposition 2, for m ≥ 1 we have
√

n(α̂(n)− α)√
σ̂2

T(n)
⇒ N(0, 1),

as n → ∞, and for m ≥ 2 we have
√

n(σ̂2
S(n)− σ2

S)√
V̂S(n)

⇒ N(0, 1),

as n → ∞, where σ̂2
S(n) and σ̂2

T(n) are defined in (4), and

V̂s(n) =
1

n − 1

n

∑
i=1

(S2
i − S2)2, S2 =

1
n

n

∑
i=1

S2
i

118
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In order to obtain a CLT for σ̂2
T(n), note that this estimator is the sample variance of a 119

set of i.i.d. observations, thus we can use the following Lemma. A proof using the Delta 120

Method (see, e.g., Proposition 2 of [9] for a proof) is provided in the Appendix. 121

Lemma 1. If X1, X2, ... is a sequence of i.i.d. random variables with E[X4
1 ] < ∞, then

√
n(S2(n)− σ2

1 )√
σ2

2

⇒ N(0, 1),

as n → ∞, where σ2
1 = µ2 − µ2

1, σ2
2 = µ2

1µ2 − 4µ4
1 − 4µ1µ3 + µ4 − µ2

2, µk = E[Xk
1], k = 1, 2, 3, 4; 122

S2(n) = (n − 1)−1 ∑n
i=1(Xi − µ̂1)

2, µ̂1 = n−1 ∑n
i=1 Xi. 123

Corollary 2. Under the same assumptions as in Lemma 1 we have
√

n(S2(n)− σ2
S)√

σ̂2
2 (n)

⇒ N(0, 1),

as n → ∞, where σ̂2
2 = 8µ̂2

1µ̂2 − 4µ̂4
1 − 4µ̂1µ̂3 + µ̂4 − µ̂2

2, µ̂k = n−1 ∑n
i=1 Xk

i . 124

Corollary 2 follows from the fact that µ̂k is an unbiased and consistent estimator of µk, 125

and the next corollary follows from the fact that σ̂2
T(n) is the sample variance of the α̂i. 126

Corollary 3. Given m ≥ 1, if E[W4
11] < ∞ then

√
n(σ̂2

T(n)− σ2
T)√

V̂T(n)
⇒ N(0, 1),

as n → ∞, where V̂T(n) = 8ᾱ2
1ᾱ2 − 4ᾱ4

1 − 4ᾱ1ᾱ3 + ᾱ4 − ᾱ2
2, ᾱk = n−1 ∑n

i=1 α̂k
i . 127

Let 0 < β < 1, and using corollaries 1 and 3 we can establish a 100(1 − β)% ACI 128

for the point forecast α, and variance components σ2
S and σ2

T = σ2
S + m−1σ2

P; each ACI is 129

centered in the corresponding point estimator (α̂(n), σ̂2
S(n) or σ̂2

T(n)) and the corresponding 130

halfwidth is given by: 131

HWα = zβ

√
σ̂2

T(n)√
n

, HWσ2
S
= zβ

√
V̂S(n)√

n
, and HWσ2

T
= zβ

√
V̂T(n)
√

n
, (6)

for α, σ2
2 and σ2

T , respectively, where σ̂2
T(n) is defined in (4), V̂S(n) and V̂T(n) are defined in 132

Corollary 1, and in Corollary 3, respectively. 133

Note that the ACIs proposed in (6) assume that the value of m in the algorithm of 134

Figure 2 is fixed and the accuracy of the estimator improves as n (the number of observations 135

in the outer level) increases (in turn, the halfwidth of the ACI gets smaller). Given that we 136

can build a valid ACI for any value of m, a relevant question is how to find an adequate 137

value of m to get an acceptable level of accuracy in a reasonable amount of running time. 138

In order to answer this question for the case of the point estimator of α, let us fix the 139

total number of iterations in the algorithm of Figure 2 to k = nm, and note from (5) and 140

Proposition 2 that the asymptotic variance of (α̂(n)− α) is 141

n−1σ2
T = k−1(mσ2

S + σ2
P), (7)

and takes its minimal value for m = 1, suggesting that the point estimator α̂(n) defined in 142

(4) is more accurate as m approaches the value of 1. Note that for m = 1, a fixed number 143

of iterations k = nm is convenient (from the point of view of running time), when the 144
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computation of Wij requires the same or more computation time as Θi, as suggested in the 145

relevant literature (see, for example, [6]). Furthermore, if we allow m to increase with n, we 146

can obtain the following proposition (a proof using Lindeberg-Feller Theorem is provided 147

in the Appendix). 148

Proposition 3. Given 0 < p ≤ 1, if m =
⌊

n−1+1/p
⌋

and E[W2
11] < ∞ then

√
n(α̂(n)− α)√

σ2
T

⇒ N(0, 1),

as n → ∞, where σ2
T is defined in (5). 149

Note that the last proposition implies that the ACI defined in equation (6) for the 150

point forecast α is also valid under the assumptions of Proposition 3. If, once again, we 151

set the total number of iterations in the algorithm of Figure 2 to k = nm, we let n ≈ kp, 152

m ≈ k1−p, and nm = k, it follows from Proposition 3 that the asymptotic variance of α̂(n) is 153

n−1σ2
T ≈ k−p(k1−pσ2

S + σ2
P) for every 0 ≤ p ≤ 1. Note that, for fixed k, n−1σ2

T reaches its 154

minimum value when p = 1, that is, when n = k and m = 1. However, note that we need 155

m ≥ 2 in order to estimate σ2
S . In the following section we report some empirical results 156

that confirm our theoretical results. It is worth mentioning that the case n = k and m = 1 157

has been reported in the literature as the posterior sampling algorithm (see, e.g., [12,13]) 158

3. An Example with Analytical Solution 159

The following model (reported in [10]) has been proposed to forecast sporadic demand 160

by incorporating data on times between arrivals and customer demand; where uncertainty 161

on the model parameters is incorporated using a Bayesian approach. For this model, we 162

will show analytical expressions for the performance measures defined in Section 2. These 163

expressions are used in the following section to illustrate the validity of the ACIs proposed 164

in the previous section. 165

Customer arrivals for a particular item in a shop follow a Poisson process, yet there 166

is uncertainty in the arrival rate Θ0, so that given [Θ0 = θ0], interarrival times between 167

customers are i.i.d. with exponential density: 168

f (y|θ0) =

{
θ0e−θ0y, y > 0,

0, otherwise,
(8)

where θ0 ∈ S00 = (0, ∞). Every client can order j units of this item with probability 169

Θ1j, j = 1, ..., q, q ≥ 2. Let Θ1 = (Θ11, ...Θ1(q−1)) and Θ1q = 1 − ∑
q−1
j=1 Θ1j, then Θ = 170

(Θ0, Θ1) is the parameter vector, and S0 = S00
⊗

S01 is the parameter space, where S01 = 171

{(θ11, ..., θ1(q−1)) : ∑
q−1
j=1 θ1j ≤ 1; θ1j ≥ 0, j = 1, ..., q − 1}. 172

Total demand during a period of length T is 173

D =

{
∑

N(T)
i=1 Ui, N(T) > 0

0, otherwise,
(9)

where N(s) is the number of customer arrivals during the interval [0, s], s ≥ 0, and U1, U2, ... 174

are the individual demands (conditionally independent relative to Θ). The information 175

about Θ consists of i.i.d. observations v = (v1, ..., vr), u = (u1, ..., ur) of past customers, 176

where vi is the interarrival time between customer i and customer (i − 1), and ui is the 177

number of units ordered by client i. By taking Jeffrey’s non-informative prior as the prior 178
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density for Θ, we obtain the posterior density (see [10] for details) p(θ|x) = p(θ0|v)p(θ1|u), 179

where xi = (vi, ui), i = 1, ..., r , x = (x1, ..., xr), θ = (θ0, θ1) as 180

p(θ0|v) =
θr−1

0 (∑r
i=1 vi)

re−θ0 ∑r
i=1 vi

(r − 1)!
, p(θ1|u) =

(1 − ∑
q−1
j=1 θ1j)

cq−1/2Πq−1
j=1 θ

cj−1/2
1j

B(c1 + 1/2, ..., cq + 1/2)
, (10)

where cj = ∑r
i=1 I[ui = j], and B(a1, ...aq) = Πq

j=1Γ(aj)/Γ(∑
q
j=1 aj), for a1, ..., aq > 0. Using

this notation, we can show that (see [1] for details)

α = E[TΘ0]
q

∑
j=1

jpj,

σ2
P =

E[T2Θ2
0]

(q0 + 1)

q

∑
j=1

j2 pj +
E[TΘ0]

2[(q0/n)− 1]
(q0 + 1)

(
q

∑
j=1

jpj)
2,

σ2
S = E[TΘ0]

q

∑
j=1

j2 pj,

where E[TΘ0] = Tr(∑r
i=1 vi)

−1, E[T2Θ2
o ] = T2r(1 + r)(∑r

i=1 vi)
−2, pj = qj/q0, qj = cj + 181

1/2, j = 1, ..., q, q0 = ∑
q
j=1 qj, and cj are defined in (10). 182

4. Empirical Results 183

To validate the ACIs proposed in (4), we conducted some experiments with the 184

Bayesian model of the previous section to illustrate the estimation of α, σ2
S and σ2

T . We 185

considered the values T = 15, r = 20, ∑r
i=1 xi = 10, q = 5, c1 = 5, c2 = 3, c3 = 2, c4 = 3, 186

c5 = 7. With this data, the point forecast is α ≈ 95.333, and the variance components are 187

σ2
S ≈ 380.667, σ2

P ≈ 568.598. The empirical results that we report below illustrate a typical 188

behavior that we should experiment for any other feasible data set. 189

Figure 3. Performance of the estimation of point forecast α for nm fixed comparing different values of
m.
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In all the experiments reported in this Section we considered 1000 independent repli-
cations of the algorithm of Figure 2 for different number of observations in the outer level
(n) and in the inner level (m); in each replication we computed the point estimators for
α, σ2

S , and σ2
T , and the corresponding halfwidths of 90% ACI’s according to equations (6).

Since we know the value of the parameters we are estimating, we were able to report (for n
and m given), the empirical coverage (i.e., the fraction of independent replications that the
corresponding ACI covered the true parameter value), the average and standard deviation
of halfwidths, and the squared root of the empirical mean squared error defined by

RMSE =

√
1
n0

n0

∑
i=1

(θ̂i − θ)2,

where θ̂i denotes the value obtained in the i-th replication for the estimation of a parameter 190

θ, i = 1, 2, . . . , n0 (n0 = 1000 in our experiments). 191

In a first set of experiments we considered nm = 200, 2000, 20000, and m = 2, 4, 8 192

for each value of nm, to compare the effect of increasing the number of observations in 193

the inner level for a given value value of nm. The results of this set of experiments are 194

summarized in figures 3, 4 and 5. Note that we are not considering m = 1 in this set of 195

experiments to be able to construct an ACI for the stochastic variance σ2
S . 196

In Figure 3 we illustrate the performance measures for the quality of the estimation 197

procedure that we obtained for the estimation of the point forecast α. As we observe 198

from Figure 3, the coverages are acceptable (very close to the nominal value of 0.9, even 199

for n = 100). These results validate the ACI defined in (6) for the point forecast α. We 200

also observe from Figure 3 that the RMSE, average halfwidth and standard deviation of 201

halwidths improve (decrease) as the number of observations in the outer level (n) increases, 202

as suggested by Corollary 1. Note also from Figure 3 that a smaller value of m provides 203

smaller RMSE, average halfwidths and standard deviations of halwidths, validating our 204

theoretical results. 205

Figure 4. Performance of the estimation of stochastic variance σ2
S for nm fixed comparing different

values of m.

In Figure 4 we illustrate the performance measures for the quality of the estimation 206

procedure that we obtained for the estimation of the stochastic variance σ2
S . As we observe 207
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from Figure 4, the coverages are acceptable (very close to the nominal value of 0.9, even for 208

n = 100). These results validate the ACI defined in (6) for the stochastic variance σ2
S . We 209

also observe from Figure 3 that the RMSE, average halfwidth and standard deviation of 210

halwidths improve (decrease) as the number of observations in the outer level (n) increases, 211

as suggested by Corollary 2. However, contrary to what we observe for the estimation of α, 212

a larger value of m provides smaller RMSE, average halfwidths and standard deviations 213

of halwidths, suggesting that, for a fixed value of nm, the quality of the estimation for the 214

stochastic variance σ2
S improves as the number of the observations in the inner loop (m) 215

increases. 216

Figure 5. Performance of the estimation of total variance σ2
T for nm fixed comparing different values

of m.

For the estimation of the total variance σ2
T (illustrated n Figure 5) we obtained similar 217

results for the quality of the estimation as for the estimation of the point forecast α, except 218

that a larger values of n is required to obtain reliable coverages. As we observe from 219

Figure 3, the coverages are acceptable (very close to the nominal value of 0.9, for n = 1000 220

and 10000). These results validate the ACI defined in (6) for the total variance σ2
T . We 221

also observe from Figure 3 that the RMSE, average halfwidth and standard deviation of 222

halwidths improve (decrease) as the number of observations in the outer level (n) increases, 223

as suggested by Corollary 3. Note also from Figure 5 that a smaller value of m provides 224

smaller RMSE, average halfwidths and standard deviations of halwidths, validating our 225

theoretical results. 226

In a second set of experiments we considered nm = 100, 1000, 10000, with m = 1 and 227

m ≈ (nm)1/3 for each value of nm, to compare the quality of the estimation procedures 228

using the value of m that we suggest as optimal for the estimation of point forecast α with 229

the value of m suggested in [6] as an adequate choice for m in the case of biased estimators 230

in the inner level of the algorithm of Figure 2. The results of this set of experiments are 231

summarized in figures 6 and 7. Note that we are not considering the estimation of the 232

stochastic variance σ2
S in this set of experiments because m ≥ 2 is required to construct an 233

ACI for the stochastic variance σ2
S . Note also that we considered 1001/3 ≈ 5, 10001/3 ≈ 10, 234

and 100001/3 ≈ 20, and we are using the same color for m = 5, 10, 20 in figures 6 and 7. 235

In Figure 6 we illustrate the performance measures for the quality of the estimation 236

procedure that we obtained for the estimation of the point forecast α in our second set of 237
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Figure 6. Performance of the estimation of point forecast α for nm fixed comparing m = 1 and
m ≈ (nm)1/3.

experiments . As we observe from Figure 6, the coverages are acceptable (very close to 238

the nominal value of 0.9, even for n = 100). These results validate the ACI defined in (6) 239

for the point forecast α, and the ACI suggested by Proposition 3. We also observe from 240

Figure 6 that the RMSE, average halfwidth and standard deviation of halwidths are worse 241

for m ≈ (nm)1/3, confirming our finding that, for the same number of replications nm, 242

m = 1 produces better point estimators for α than m ≈ (nm)1/3 confirming the result of 243

Proposition 3. 244

Figure 7. Performance of the estimation of total variance σ2
T for nm fixed comparing m = 1 and

m ≈ (nm)1/3.
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Finally, in Figure 7 we show the results of our second set of experiments for the 245

estimation of the total variance σ2
T . We found similar resulta as for the case of the estimation 246

of the point forecast α, coverages are very good (even for n = 100), and all performance 247

measure for the ACI (RMSE, average and standard deviation of halfwidths) are worse for 248

m ≈ (nm)1/3, suggesting that, for the same number of replications nm, m = 1 produces 249

better point estimators for σ2
T than m ≈ (nm)1/3. 250

5. Conclusions 251

In this paper, we propose methodologies to calculate point estimators (and their 252

corresponding halfwidths), for both the point forecast and the variance components in 253

two-level nested stochastic simulation experiments, for the case where the observations 254

at both levels of the algorithm are independent. These methods can be applied to the 255

construction of Bayesian forecasts based on experiments using a simulation model under 256

parameter uncertainty. 257

Both our theoretical and our experimental results confirm that the proposed point 258

estimators and their corresponding halfwidths are asymptotically valid, i.e., the point 259

estimators converge to the corresponding parameter values and the halfwidths converge to 260

the nominal coverage as the number of replications (n) of the outer level increases. 261

Furthermore, given a fixed number of total observations (nm), we show that the choice 262

of only one replication in the inner level (m = 1) provides more accurate estimators for 263

both the point forecast (α), and the variance of the point forecast (σ2
T). However, m ≥ 2 is 264

required for the estimation of σ2
S . 265

Directions for future research on this topic includes experimentation with other point 266

estimators, such as, quasi Monte Carlo or Simpson integration, with the objective of finding 267

more accurate point estimators for the parameters considered in this paper. 268
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Appendix A 274

For completeness, we first write three well known theorems. Proofs of Theorem A1 275

and Theorem A2 can be found, e.g., in [5], and a proof of Theorem A3 can be found, e.g., in 276

[9]. In what follows, we write ⇒ for weak converge (as n → ∞ without explicit mention). 277

Theorem A1. (Slutsky). Let X, Y, X1, X2, ..., Y1, Y2, ... be random variables and c be a real constant. 278

If Xn ⇒ X, and Yn ⇒ c, then: 279

(i) Xn + Yn ⇒ X + c 280

(ii) XnYn ⇒ cX 281

(iii) Xn/Yn ⇒ X/c, if c ̸= 0 282

Theorem A2. (Continuous mapping). Let X, X1, X2, ... be ℜk-valued random vectors, and let 283

g : ℜk → ℜ be a function such that P[X ∈ D(g)] = 0, where D(g) = {x : g(x) is not continuous 284

at x}, then g(Xn) ⇒ g(X). 285

Theorem A3. (Delta method). Let Y1, Y2, ... be ℜk-valued random vectors, and let g:IRk → ℜ be a
function that is differentiable in a vecinity of µ ∈ ℜk. If there exists a k × k matrix G such that the
TLC √

n[Ȳ(n)− µ] ⇒ GNk(0, 1)
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is satisfied, where Ȳ(n) = n−1 ∑m
i=1 Yi, and Nk(0, I) denotes a (k -variate) normal distribution

with mean 0 and variance I (the identity), then
√

n[g(Ȳ(n))− g(µ)] ⇒ σN(0, 1),

where σ =
√
∇g(µ)TGGT∇g(µ)). 286

Proof of Corollary 1. Since α̂1, α̂2, ... are i.i.d. with E[α̂2
1] < ∞, it follows from the Law of

Large Numbers that n−1(∑n
i=1 α̂2

i , ∑n
i=1 α̂i) ⇒ (E[α̂2

1], E[α̂1]). Therefore, by taking g(x1, x2) =√
x1 − x2

2, for x1 − x2
2 ≥ 0 in Theorem A2, we have

√
(n − 1)σ̂2

T(n)/n ⇒
√

σ2
T , so that

Yn =
√

σ̂2
T(n)/

√
σ2

T ⇒ 1. Finally, by taking Xn =
√

n(α̂(n)− α)/
√

σ2
T in Theorem A1, it

follows from Proposition 2 that
√

n(α̂(n)− α)√
σ̂2

T(n)
⇒ N(0, 1)

Similarly, since S2
1, S2

2, ... are i.i.d. with E[S4
1] < ∞, it follows from Theorem A1 and

Proposition 2 that √
n(σ̂2

S(n)− σ2
S)√

V̂S(n)
⇒ N(0, 1).

287

Proof of Lemma 1. Let k = 2, Yi = (Xi, X2
i ), µ = (µ1, µ2), then the TLC of Theorem A3 is

satisfied for

GGT =

[
µ2 − µ2

1 µ3 − µ1µ2
µ3 − µ1µ2 µ4 − µ2

2

]
By taking g(µ) = µ2 − µ2

1 = σ2
1 , we have g(Ȳ(n)) = (n − 1)S2(n)/n, ∇g(µ)T = (−2µ1, 1),

and
∇ f (µ)TGGT∇ f (µ) = 8µ2

1µ2 − 4µ4
1 − 4µ1µ3 + µ4 − µ2

2 = σ2
2 .

Then, it follows from Theorem A3 that

√
n
⌊
(n − 1)S2(n)/n − σ2

1

⌋
⇒ σ2N(0, 1),

and the final conclusion follows from Theorem A1. 288

Proof of Proposition 3. In this proof we follow the notation of Lindeberg-Feller Theorem 289

as in Theorem 7.2.1 of [3]. 290

For n = 1, 2, ..., let mn =
⌊

n−1+1/p
⌋

and αj(n) = (∑mn
i=1 Wij)/mn, j = 1, ..., n. Then 291

α1(n), α2(n), ..., αn(n) are independent, and for Xnj = (αj(n)− α)/
√

nσ2
T we also have that 292

Xn1, Xn2, ...Xnn are independent. 293

Then if Ynj = (αj(n)− α)/σT , we have E[Ynj] = 0 and E[Y2
nj] = 1, so that given ϵ > 0 294

there exists η0 > 0 such that
∫
|y|<η0

y2dFynj(y) < ϵ. 295

Therefore, given η > 0, for n ≥ max{1, (η0/η)2} we have

n

∑
j=1

∫
|x|<η

x2dFxnj(x) ≤
n

∑
j=1

1
n

∫
|y|<η0

y2dFynj(y) < ϵ,

so that (1) of Theorem 7.2.1 of [? ] is satisfied, and it follows from this Theorem that
Sn ⇒ N(0, 1), where

Sn =
n

∑
j=1

Xnj =

√
n(α̂(n)− α)√

σ2
T

.
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