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Article

Local Stability and Bifurcation Analysis of Onchocerciasis
Transmission Dynamics with Nonlinear Incidence
Functions in Two Interacting Populations

Adeyemo K. M.

Department of Mathematics, Hallmark University [jebu-Itele, Ogun State, Nigeria

Abstract: A deterministic compartmental model for the transmission dynamics of onchocerciasis with
nonlinear incidence functions in two interacting populations is studied. The model is qualitatively analyzed
to investigate its local asymptotic behavior with respect to disease-free and endemic equilibria. It is shown,
using Routh-Hurwitz criteria, that the disease-free equilibrium is locally asymptotically stable when the
associated basic reproduction number, Ry < 1. When the basic reproduction number, Ry > 1, we prove the
existence of a locally asymptotically stable endemic equilibrium. Furthermore, bifurcation analysis was done
by investigating the possibility of the co-existence of the equilibria of the model at Ry < 1 but near Ry = 1 by
Center Manifold Theory.

Keywords: Bifurcation analysis; Centre manifold theory; Onchocerciasis epidemic model; Nonlinear incidence

function

1. Introduction

Onchocerciasis is one of the neglected tropical diseases caused by the parasite Onchocerca Volvulus, a
filarial nematode [2]. The disease is transmitted from one person to another by repeated bites of black flies. The
disease is endemic in Sub-saharan Africa. Many researchers have worked on many ways to reduce the spread
of the disease. For instance, Remme et al. [11] used skin snip survey in West Africa to investigate the impact of
controlling black flies by larviciding. Plaisier et al. [10] used micro simulation model to determine the period
required for combining annual ivermectin treatment and vector control in the onchocerciasis Control Programme
in West Africa. Alley et al. [1] used a computer simulation model to study prevention of onchocerciasis by using
macrofilaricide which kills the adult worms. Asha Hassan & Nyimvua Shaban [3] investigated the effects of
four control strategies on the spread of the disease.

In this paper, we consider onchocerciasis transmission dynamics with nonlinear incidence functions. The
human population is sub-divided into four compartments and the vector population is sub-divided into three
compartments. We show local asymptotic behaviour in disease-free and endemic equilibria and also the
bifurcation analysis examined. The rest of the paper is organized as follows: the description of the model and
theorems on positivity of solutions are given in section 2 while section 3 is devoted to the proof local stability

theorems and the bifurcation analysis of the model is done in section 4.

2. Model Description

Two interacting populations are considered; the humans and the black-flies populations. The human
population is partitioned into four compartments: the susceptible human compartment; Sj,,, the exposed

compartment; Ej, the infectious human compartment; I, and the recovered human compartment; R;. The

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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black-fly population is partitioned into three compartments: susceptible vector; S,, the exposed vector
compartment; E; and the infective vector compartment. The total human and vector populations at any
given time, t, are respectively given by; N = Sy, (t) + E,(t) + I,(t) + R, (t) and V = Sy(t) + Eo(t) + L, (t). We
assume that the transmission of onchocerciaisis in susceptible hosts is only through contact with infectious vector.
We also assume that susceptible vector becomes infectious as a result of contact with infectious hosts during
blood meal. The population under study is assumed to be large enough to be modelled deterministically. The
following system of non-linear ordinary differential equations, with non-negative initial conditions, describes

the dynamics of onchocerciaisis epidemics.
d P i)tv
) — ), () — Tk 2B IL —y (x)8), + w(xi) Ra(t, ;)

Y W (o (xi) + b (xi) ) En (£, xi)

'ﬂh tx = Yr o (xi) Ep — (r(x;) + v (xi) + pn (%)) I (8, x;)

dRh tx’ = Yo r(xi) Iy — (un(xi) + w(xi)) Ry (t, x7) 21
P 0 R 00

G = PR — o+ p)Ea()

%} = apEp(t) — (.uv + 7o) In(t)

subject to the following initial conditions:
Su(0,x:) = Son(x:), En(0, xi) = Eon(xi),

2.2
15(0,%) = Ton(1), Ri(0,%) = Ron(x)5m(0) = Somy Ene(0) = Eoms Tn(0) = I 22

Symbols  Definitionss

Su(t,x;)  Number of susceptible humans at time t and discrete age x;
En(t,x;)  Number of exposed humans at time t and discrete age x;

I(t,
Ry (t,

x;)  Number of infectious humans at time t and discrete age x;
i) Number of recovered humans at time t and discrete age x;
Number of susceptible black-flies at time ¢

a
)
f) Number of exposed black-flies at time ¢

) Number of infectious black-flies at time ¢

So

EU(

I(t
Yi(

x;)  Recruitment term of the susceptible humans at discrete age x;

Yo Recruitment term of the susceptible vectors
) Biting rate of the vector
() Probability that a bite by an infectious vector results in transmission of disease to human at discrete
age x;
Ay Probability that a bite results in transmission of parasite to a susceptible vector

up(x;)  Per capita death rate of humans at discrete age x;
Ho Per capita death rate of vector

Yr(x;) Disease-induced death rate of humans at discrete age x;
Yo Disease-induced death rate of vectors

ay(x;)  Per capita rate of progression of humans from the exposed state to the infectious state at discrete age x;

oy Per capita rate of progression of vectors from the exposed state to the infectious state
Per capita recovery rate for humans from the infectious state to the recovered state due to treatment at
r(x) discrete age x;
w(x;) Per capita transition rate of recovered humans to the susceptible state at discrete age x;

v (x;) Humans disease-inhibiting factor at discrete age x;

Vp Vectors disease-inhibiting factor



https://doi.org/10.20944/preprints202305.0588.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 May 2023 d0i:10.20944/preprints202305.0588.v1

3of 14

Model assumptions

The formulation of the compartmental model is based on the following assumptions:

That all humans are born susceptible. That is, humans are liable to contract the disease.
That the susceptible humans, when infected, becomes exposed humans who are not yet infectious.
That the exposed humans progress to become infectious only.

Ll

That the infectious humans may either die naturally or as a result of the disease, and if not, they become
recovered humans due to treatment.

That the recovered humans become susceptible again.

All black-flies are born susceptible.

That the susceptible black-flies, when infected, becomes exposed black-flies who are not yet infectious.
That the exposed black-flies progress to become infectious only.

0 ® N>

That the infectious black-flies remain infectious for life. That is, there is no recovered class for black-fly

population.

2.1. Existence and Positivity of Solutions

In this section, we analyse the general properties of the system (2.1) with positive initial conditions. It
describes the population dynamics both in human and black-fly populations. The system is biologically relevant

in the set given by

L .
Q= (Sh(t,xi),Eh(t,xi),Ih(t,xi),Rh(t,xi)) € Ri_ : Nh S Z ;I::((;C'l)),(Sv(t),Ev(t),lv(t)) S Ri_ : Nv S ;I:U
i=0 ! v

Here, the following results are provided which guarantee that the model governed by system (2.1) is
mathematically well-posed in a feasible region () defined by:

QO=0,x0, CR*xR?

Theorem 1: There exists a domain Q in  which the solution set
Su(t, xi), En(t, x;), In(t, x;), Ry (t, xi), Su(t), Eo(t), In(t) is contained and bounded.

Proof If the total human population size is given by N, = Sj,(t, x;) + Ej,(t, x;) + I (t,x;) + Ry(t, x;), and the
total size of black-fly population is N, = Sy (t) + Eo(t) + I,(t). From model (2.1), we have that

_ L
) < ) — 3 )Nt ) @3)
i=0
and N
dt” <Yy — Ny (24)
It follows from (2.3) and (2.4) that
¥ (xi) 1 (x; e ()t
N, tx;) < 1—e H (x;) ] +Np, (0,x;)e ]
Wt xi) < #h(xi)[

and -
Ny < —2[1 —e "' + N, (0)e #o!

Ho
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Taking the limsup as t — oo gives N, < % and N, < ;%’ This shows that all solutions of the

humans population only are confined in the solution set (); and all solutions of the black- ﬂy population

¥ (xi)

are confined in Q). It also suffices to say that () is positively invariant as Nj,(t,x;) < YL ”h( 3 whenever
Nu(0,x;) < ;I:]h((j:’)) and Ny(t) < % if Ny (0) < %, Therefore the solution set for the model (2.1) exists and is

givenby Q =0, x Q, CRY xR% O

It remains to show that the solutions of system (2.1) are nonnegative in () for any time ¢ > 0 since the variables
represent human and black-fly populations.

Theorem 2: The solutions, Sy (t x;), En(t, x;), In(t,x;), Ry(t, x;), So(t), Eu(t), L(t), of model (2.1) with
nonnegative initial conditions in (), remain nonnegative in () for all ¢t > 0.

Proof: Given that the initial conditions, Soy(x;), Eon(x;), Ion(x;), Ron(xi), Sov, Eov, Ioy, are non-negative and
from (2.1),

dsh (t, x, bA (x;)In(t)

L
; |:1+Vh()1v() —l—yh(x,')] Sh(t,xi) >0

so that

d | & b obA(xi) (1)
T [Z Sn(t, xi)exp (/0 md’? +7/‘h(xi)t> >0, (2.5)

Integrating (2.5), we have

ZSh (t,x;) ;OSOh x; exp{ (/Ot mdiy+yh(xi)tﬂ >0,

which implies that for all t > 0 and for all 4 € R, we have

Su(t, x;) ZSOh x;)exp [ (/Ot mdiy—kyh(xi)t)} > 0.

Hence, Sy (t,x;) > 0 for any arbitrary x;. Also, we have

% + i((“h(xi) + mp(x:)))En(t, x;) > 0
i=0

so that
dt ZEI« i))exp(an(xi) + p(x:)t) | =0 2.6)

Integrating (2.6), we have for all t > 0 and for all a € mathbbR_, that

L
Ep(t,a) > ;}EOh(xi)exp [— (o (i) + () )]

Hence, Ej,(t, x;) > 0 for any arbitrary x; Also we have

) L
% > ;)(r(xi) + v (xi) + pn (%)) In (1)
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so that p
7 In(®)exp(r(xi) +yu(xi) + pn(xi))t] 2 0 (27)
Similarly, (2.7) becomes
L
In(t,a) > Y Iopexp [—(r(x;) + yu(xi) + pp(x;))t] > Oforall t > 0 foralla € Ry
i=0
Hence, I;,(t, x;) > 0 for any arbitrary x;. Also from (2.1), we have
dRy, (t, x; L
% + Y (un(xi) + w(x3)) Ry, x;) > 0
i=0
and we have
d L
— | Y Rt xp)exp((pn (xi) + w(x;))t| >0 (2.8)
i=0
Integrating (2.8), we have, forall t > 0 and a € R, that
L
Ry(t,a) > Y Rop(xi)exp(—(pn(xi) + w(x;))t) >0
i=0
Hence, Ry, (t, x;) > 0 for any arbitrary x;. In a similar manner, we have
ds, bAvlh( ))
—_— >
ar [Z 1 —i—vah(t) v| Solt) 20
so that p C bk ()
oip\1]
il ANV > 2.
pr [Sv(t)exp (/o 1 +Vv1h(77)d(77) + yvtﬂ >0 (2.9)
Integrating (2.9), we have
E Ao (1))
> — ORI
So(t) > Sgvexp { (/0 7 +Vv1h(77)d(11) Fupt )| >0VE>0
Also we have
tv > —(ap + po) Eo(t)
which on integration gives
Ey(t) > Ep(0)exp [—(ap + po)t] >0V £ >0 (2.10)
And finally, we have
dI
— + (po + 7o) Io(t)
so that p
7 Lo(Bexp(po +70)t] 2 0 .11)

And we have
I(t) > I,(0)exp [—(po + 70)t] >0, V>0
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This completes the proof O

3. Existence and stability of the equilibrium points

3.1. Disease-free equilibrium

The disease-free equilibrium (DFE) points are steady state solutions that depict the absence of infection
in both the human host and black-fly vector populations, i.e, onchocerciasis does not exist in the population.
Thus, the disease-free equilibrium point, Eg, for the model (2.1) implies that S*(x;), # 0, Ej(x;) = I =

0(x;) = R}j(x;) =0, S5 #0, E; = I, = 0 and putting these into (2.1), we have §*(x;), = ‘:"((xl)) and S} = %

Y (x )

A key notion in the analysis of infectious disease models is the basic reproduction number Ry , an

Consequently we obtain Ej as

epidemiological threshold that determines whether disease dies out or persists in the population.The basic
reproduction number Rg of the system (2.1) is computed using the next generation matrix method and is given
by

Ro = VRyRo

— o A (i) ¥ (x7) — SapAy Yo 3 ;
where Ry = Lo eyttt Gt 204 Re = fi it The basic reproduction

number R, determines whether onchocerciasis dies out or persists in the population. Therefore, R}, describes

the number of humans that one infectious black-fly infects over its expected infectious period in a completely
susceptible humans population, while R is the number of blac-flies infected by one infectious human during

the period of infectiousness in a completely susceptible black-fly population.

3.2. Local Stability of the Disease-free Equilibrium Point E

Using the basic reproduction number obtained for the model (2.1), we analyse the stability of the
equilibrium point in the following result.
Theorem 3:The disease-free equilibrium point, Ey, is locally asymptotically stable if Ry < 1, and unstable if
Ro > 1.

Proof: The Jacobian matrix of the system (2.1) evaluated at the disease-free equilibrium point Ey, is obtained as

My 0 0 My 0 0 My
0 My 0 0 0 0 My
0 Mz Ms; 0 0 0 0
ME)=| 0 0 Mg My 0 0 0
0 0 Ms 0O Mss 0 0
0 0 M3 0 0 Mg 0
0 0 0 0 0 My Mzy
where My = —py(x;), My = w(ay), My = —Y¥F %, My = —(ap(x;) + pn(xi)), Moz =
i Mh}f;‘ij’j() Mz = ay(x;), Maz = —(r(x;) +yu(xi) + pn(xi)), Maz = r(x;), Maa = —(pn(xi) + w(x;)),
Mssz = ;71; 2, Mss = — o, Mgz = Mﬁfz’, Mgs = — (a0 + o), Myzg = a0y, My7 = — (4o + vo) We need to show

that all the eigenvalues of M(Ey) are negative. As the first and fifth columns form the two negative eigenvalues,
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—p,(x;) and —py, the other five eigenvalues can be obtained from the sub-matrix, M'(Ey), formed by excluding

the first and fifth rows and columns of M(E). Hence

My, 0 0 0 M
ap(x;) My, 0 0 0
MY (Eg) = 0 r(x) M, 0 0 0
0 L 0 —(ay+po) 0
0 0 0 &y —(Ho + Av)

In the same way, the third column of M!(Ey) contains only the diagonal term which forms a negative eigenvalue,

—(pp(x;) + w(x;)). The remaining four eigenvalues are obtained from the sub-matrix M?(Ey) given by

My, 0 0 M;,
"
2 . mh(xl-) M22 0 0
MAED) = | 707 oo (g 4 ) 0
iy v T Ho
0 0 Ay —(po + Ap)

Thus, the eigenvalues of the matrix M?(E) are the roots of the characteristic equation of the form

L 52 . . .
R R R

=0 (3.2)

If welet Y1 = oy, (x;) + pp (), Yo = r(x;) + v (%) + pp (%), Ya = ap + po, and Yq = pip + 70, then (3.2) becomes

X484 X38° + X8 + X18 + X0 = 0, (33)
where
Xy =1
X3=YV1+Yo+Y3+Y,
Xo= (Y1 +Y2)(Ya+Yy) + V1Yo + Y3Yy (3.4)

Xi=(M+Y)v3Y+ (Y3 + Y)YV Yo

Xo=Y1Y2Y3Yy — Yk, (Szah(Xi))\;;f:(ia)c?;;ixj)%)\v%

Expressing Xy in terms of reproduction number R, we have
Xo = Y12 Y34 (1 — RY) (3.5)

We can see from (3.4) that X; > 0, X; > 0, X3 > 0, X4 > 0, since all Y;s are positive. Moreover, if Ry < 1, it
follows from (3.5) that Xy > 0. Thus, using the Routh-Hurwitz criterion, we have H; = X3 > 0

X3 X4

H> =
2 (Xlx2

=Y1(YVa+Ys+Yy) (Y1 +Yo+Ys+Yy)+ (Ya+ Y3)(Yo+ Yg)(Ys+Yy) >0
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Similarly we have H3 > 0 and Hy > 0 where

X; X4 0 0

X; X4 0 o e x
Hy=(| X; Xo X3 |andHy = ( X X X3 X
0 X0 X1 X

0 Xo X3

0 0 0 X

Therefore, all the eigenvalues of the Jacobian matrix M(Ey) have negative real parts when Ry < 1 and the
disease-free equilibrium point is locally asymptotically stable. However, when Ry > 1, we see that Xy < 0 and

there is one eigenvalue with positive real part and therefore the disease-free equilibrium point is unstable O

3.3. Endemic Equilibrium Point E,

We shall show that the formulated model (2.1) has an endemic equilibrium point, E.. The endemic
equilibrium point is a positive steady state solution where the disease persists in the population.
Theorem 4: The model (2.1) has a unique endemic equilibrium E, whenever R > 1.

Proof: Let E, = (SZ( Xi), h( i) 1 (xi), RZ(xZ-), S.,E,, I,) be a nontrivial equilibrium of the model (2.1). That is,

all components of E, are positive. Then the onchocerciasis model (2.1) at steady-state becomes

¥y (x) g (‘W ~ ()8 (x) + (xR, <xi>> 0 6)
> (‘w () + mxi»E;;(x») - 6
ié(th(xi)fs;: (x1) = ((xi) + (i) + 9 (x0)) T (x1)) = 0 (3.8)
i_iodxiﬂ,;’(xi) — (n (%) + (%)) Ry (x1) = 0 (3.9)

¥, — _OhaSoli(xi) 1Sy =0 (3.10)

1+ vo () T, (x;)

"

A0Sy I (x;)

07020 (4 ) E =0 3.11
toEy — (Ho + Yo) Iy =0 (3.12)
From the last three equations, we have
" E,
[ = oo (3.13)
Ho + Yo
E = OAuSy Iy(i) (3.14)
14 vy (x) I (x) (a0 + o)
and -
" _ v
Sy, = s (3.15)

TrnGp () T
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Substituting (3.14) and (3.15) into (3.13) yields
" I (x;
- Ropol, (x;) § (3.16)
Ho + (0Ao + povo) I, (x;)
From (3.8) and (3.9), we have
" (r(xi) + pn(xi) + 0 (xi) ) I (x7)
E. (x:) = 3.17
h ( l) l;@ ay, (xl) ( )
and .
xz (xi)
) 3.18
; xz + w(xl) ( )
If we put (3.16) and (3,17) in (3.7) in terms of Ry, we have
SZ(xi) _ Yico Wi (xi) [o + (8A0 + provo ‘;‘Vh(xi).”vRv)IZ (x:)] (3.19)
,”h(xi)vao
Finally, using (3.16), (3.18) and (3.19) in (3.7), we have
" L (R3—-1)
Ly (xi) = ) pn (i) pro ¥ (i) (e (1) + w(xi))T (3.20)
i=0

where

L
p= Z(Vh(xi) + w(x;)) [0A4 (x7) po R + ¥ (xipn (x7) (6A0 + povo + vy (X)) o) R )] Z 1 () procw ()7 () R,
= (3.21)
If in (3.20), w(x;) = 0 then p > 0. From this, one sees that model (2.1) has no positive solution when Ry < 1.
However, with w(x;) = 0, a unique endemic equilibrium exists when Ry > 1. This completes the proof. O
Remark 1:It is important to have a remark that positive solution exists for the model (2.1) in a case where p < 0
and Ry < 1. This implies that the disease-free equilibrium co-exists with the endemic equilibrium state when

Ry is slightly less than unity resulting into a phenomenon of subcritical (backward) bifurcation.

4. Bifurcation Analysis

The mathematical examination of changes in the qualitative behaviour of a dynamical system as its

parameter passes through a critical value called a bifurcation point is referred to as bifurcation analysis.

Theorem 5(Castillo-Chavez and Song (2004):
Consider the following general system of ordinary differential equations with a parameter ¢:

Y o fy.9) f R xR — Rand f € C(R" x ) (1)
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where 0 is an equilibrium point of the system (that is, f(0,¢) = 0 for all ¢) and we have the following

assumptions:

1. A=D,f(0,0) = (Dyf(0,0),) is the linearization matrix of the system (4.1) around the equilibrium 0 with
@ evaluated at 0. Zero is a simple eigenvalue of A and other eigenvalues of A have negative real parts;
2. Matrix A has a nonnegative right eigenvector x and a left eigenvector # corresponding to the zero

eigenvalue.

Let f; be the kth component of f and

82f
Z NkKiK; (0,0),
k,i,j=1 Z ]ay ay

& fi
n= K; 0,0
’]Zlﬁk aya(P( )

The local dynamics of the system around 0 is totally determined by the signs of m and n.

(i) m > 0,n > 0. When ¢ < 0 with |¢ << 1, 0is locally asymptotically stable and there exists a positive
unstable equilibrium; when 0 < ¢ << 1, 0is unstable and there exists a negative, locally asymptotically
stable equilibrium;

(i) m < 0,n < 0. When ¢ < 0 with |¢|1, 0 is unstable; when 0 < ¢ <<1, 0is locally asymptotically stable,
and there exists a positive unstable equilibrium;

(iii) m > 0,n < 0. When ¢ < 0 with |¢| << 1, 0 is unstable, and there exists a locally asymptotically stable
negative equilibrium; when 0 < ¢ << 1, 0 is stable, and a positive unstable equilibrium appears;

(iv) m < 0,n > 0. When ¢ changes from negative to positive, 0 changes its stability from stable to unstable.
Correspondingly a negative unstable equilibrium becomes positive and locally asymptotically stable. In

particular, if m > 0 and n > 0, then there exists a backward bifurcation.

To demonstrate the possibility of the co-existence of the equilibria of model (2.1) at Rg < 1butnear Rg =0,
the Center Manifold Theory described by Castillo-Chavez and Song (2004). Let the onchocerciasis model (2.1)

be written in the vector form iy
— =F(Y
i (Y)

where Y = (y1,Y2,Y3,Y4,Y5,Y6,y7) " and F = (f1, f2, f3, fa, f5, fe, f7) " so that so that Sh(t; x;) = y1; Ej(t;x;) = y;
Th(t;x;) = y3; Ry (£ x;) = ya; So(t) = ys5; Eu(t) = ye; and I, (t) = y7: Then model (2.1) becomes

d .
T ="Yn(x) - % — un(xi)y1 + w(xi)ys = f1

=
Zdjf = % = (ap(xi) + pn(xi))y2 = f2

7 = any2 — (r(xi) + pn (i) + 70 (xi))ys = f

G = rlxi)ys — (uexo) + wh<xi>>y4 - fi 42)
R e

& = Ty (%Jrﬂv)ye = fo

Gt = %0 = (ho + 70)x7 = f7
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Let Aj,(x;) be a bifurcation parameter such that A, (x;) = Aj(x;) when Rg = 1. Then

pin (X)) po (o (x:) + pn (x3)) (r (xi) + (i) + vn (%)) (o +7) (@0 + o)
0 0% (x;) ¥ (xi)ap Ao ¥y

M=

Ay(xi) =

The linearization matrix M(Eg; A};(x;)) of the model (2.1), evaluated at the disease-free equilibrium Ey and the

bifurcation parameter A} (x;), is given

—up(x;) 0 0 w(x;) 0 0 A

0 B 0 0 0 0 C

0 ay (%) 0 0 0 0

M(Eg; Aj(x;)) = 0 0 r(xj) E 0 0 0
0 0 G 0 —up 0 0

0 0 0 0 L 0

0 0 0 0 0 ay M

SAF (x,) ¥ (x; SAF (x,) ¥ (x;
where A = — Y[ W, B = —(ay(x;) + mn(x:)), C = Lig %, D = —(r(xi) + 7 (xi) +
un(xi)), E = —(pun(xi) + w(x)), G = —Mﬁ%/ K= Mﬁ%/ L= —(a0 + o), M = = (pto + 70)

The eigenvalues of M(Ep, A;(x;)) can be obtained by solving the characteristic equation

(& + pn(xi)) (& + p) (G + pn(x;) + w(x))P1() = 0,

where P;({) is a polynomial of degree four. Consequently, M(Ey, A*(x;)) has a zero eigenvalue which is simple
and other eigenvalues are real and negative. Let the right eigenvector corresponding to this zero eigenvalue be

denoted by « = (7,2, k3, ks, k5, K, K7)7 so that M(Eg, A (x;))x = 0. Then we have

—pn(xi)r1 + w(x;)ky + Axz =0
Bxy — Axy =0

ap(x;)x2 + D3 =0

r(x;)x3 + Exg =0 4.3)
Gz — pyks =0
—Gr3+ L'kg =0
aykeg + Mxy =0

From (4.2), the components of the right eigenvector « are given by

K1 = UK6
1o = )7 () i (x0) (ot ito) poks
2 5Ay Yo (x;)
K3 = (“v})ﬁ}zii)fl:vK6
Ky = M AWy (juy (1) + (7)) (44
Ky = — (“v";};v)’(é
Ke = *T%
— _&oKe
k7 = Hot+70
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L (2o + po) pho

- z;) SN Yoy (x7) i (i) (pn () + w (x;
+ (rn(xi) + pn(x0)) (r (i) + v (x0) + pn (x3)) (pn () + w(x7))  (4.5)

U:

) (r (i )oup (1) (aep () + pn (%) + w (7))

and

Ty = ao[(ao + po) (Ho + 70) (r(x;) + pn(xi) + v (x:) + po(an (x;) + pn(xi)))
L
+ Y () + pn(x3)) (r(x0) + p(33) + 70 (x3)) o + 70 + a0)] - (4.6)

i=0

Further, M(Ey, A*(x;)) has a left eigenvector, 7 = (171, 112, 113, 1, 115, Y6, 1j7), associated with the zero eigenvalue,
which can be obtained from y M(Ey, A*(x;)) = 0 as follows: = —(ah(ai) + ph(ai))(r(ai) + ph(ai) + oh(ai) ) (am +
pm) (pm + 6m)

71 =20
— Ivapay (x;)¥Yoitz
12 = G+ s ) (r (i) -+ i (k) + 7 () (@ i)

— vy Tol7
3 = Gl () +7n (%)) (o o)
74 =0 4.7)
15 =10

e = %27 + Mo
17 = —(an(x;) + p(a;)) (r(x;) + p (xi) + v (x3)) (20 + 70)

We see from (4.1) that all the second-order partial derivatives at Eyg and A(x;) are zero except the following:

PhH_ Ph
dy19y7  9y79y1

= —0A;(xi),

P’ fa 9 f2
= = oA} Xi
dy10y7 Y79y h( )

0% fs 0% fs 0% fe 9% fe
= — = —5)\0’ = — (S)\
9Yy39Ys5 9Y59y3 dy3dys  9Y59y3
Pf_ i 200, (i) vy (x:) ¥ (xi) 0%fo _ i 20 Ay (i) () ¥ ()
dy; 5 pn(xi) Tdy; S pn(x7)
%fs  200¥y Pfe  26A, Yo
o3 po " 0y3 o
tegether with
Pf _ ¥a(x)

970, (x;) p(x;)
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and
Pfo (i)
970, (x;)  pn(xi)

If we let the bifurcation coefficients m and n of Theorem be 1 and 7, respectively, it then follows from the

above partial derivatives that

7 aZ
m= 3 s 2 gy (Eo, A ()
i,jk=
2f, 92 92
= 2171K1K7ay g +m 782;(1 +2172K1K7ay f]z/
9f2 dfs *fs
+ k3 == + 215K3K + K
T2 7 o3 TR S ysdys 10 * oy}
d 92
+ 216 K3Ks fo 2i (4.8)

+ ek
aysays e 362]/3

Substituting the appropriate right eigenvector (4.3), the left eigenvector (4.6) and the second-order partial

derivatives obtained earlier into m; yields

i 827 (i) Aoy (x;) Yor7e2U
=5 (an(xi) + (i) (r (xi) 4 pn(x3) + vn) (@0 + po) (4o + 70)
i 2 Ao, (xi) ¥orj7ig
) A pn(xi) ) (r(x2) + (i) + v (x3)) (20 + po) (o + 70)?
*25/\Z(xi)vh(xi)‘1’h(xi) - 200(@o + po)ifrkg  Aopho(to + po)VoljrKe

my =

4.9
‘uh(xi) ‘Yy (5)\va ( )
Similarly, we obtain
0 fi Pfi 0’fy

K; Eo, A (x;)) = 211K + 2Ky ——2=—

kz_:oﬂ" iy o M) = BTy R )
ZL: ZCSZIXh(xi)DC%AU\PU\Ph(Xi)ﬂ7K6 (4 10)

25 (o + o) (o (i) (x2)) (r(xi) + e (i) + v (xi) (@0 + pio) pn (1))

The signs of my and nl are important in determining the direction of bifurcation at mathcalR = 1

(Castillo-Chavez and Song, 2004). One sees that m; > 0 and n; > 0 and by item(iv) of Theorem 5, the
model (2.1) is capable of exhibiting a backward bifurcation phenomenon. Thus, we have the following result:

Theorem 6: The onchocerciasis model given by (2.1) undergoes a phenomenon of backward bifurcation at E
and Rg = 1.

References

1. W.S. Alley, B.A.B. Boatin, N.J.D.N. Nagelkerke, Macrofilaricides and onchocerciasis control, mathematical modelling
of the prospects for elimination. BMC Public Health 1(1) (2001), p. 12

2. U. Amazigo, M. Noma, J. Bump, B. Bentin, B. Liese, L. Yameogo, H. Zouré, and A. Seketeli, Onchocerciasis Disease
and Mortality in Sub Saharan Africa, Chapter 15, World Bank, Washington, DC, 2006


https://doi.org/10.20944/preprints202305.0588.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 May 2023 d0i:10.20944/preprints202305.0588.v1

10.

11.

12.

13.

14 of 14

Asha Hassan & Nyimvua Shaban (2020) Onchocerciasis dynamics: modelling the effects of treatment, education and
vector control, Journal of Biological Dynamics, 14:1, 245-268, DOI: 10.1080/17513758.2020.1745306

Castillo-Chavez, C. and Song, B. 2004. Dynamical models of tuberculosis and their applications. Mathematical
Biosciences and Engineering 1.2: 361-404.

Eric M Poolman and Alison P Galvani. Modeling targeted ivermectin treatment for controlling river blindness. The
American Journal of Tropical Medicine and Hygiene, 75(5):921-927, 2006

Jimmy P Mopecha and Horst R Thieme. Competitive Dynamics in a Model for Onchocerciasis with Cross-Immunity.
Canadian Applied Mathematics Quarterly, 11(4):339-376, 2003.

Marfa-Gloria Baséfez and Michel Boussinesq. Population biology of human onchocerciasis. Philosophical Transactions
of the Royal Society of London B: Biological Sciences, 354(1384):809-826, 1999.

Marfa-Gloria Basafiez and Jorge Ricdrdez-Esquinca. Models for the population biology and control of human
onchocerciasis. Trends in Parasitology, 17(9):430-438, 2001.

Murray, J. D. 2002. Mathematical biology I., an introduction. 3rd ed. Heidelberg: Springer-Verlag Berlin.

A'P. Plaisier, E.S. Alley, G.J. van Oortmarssen, B.A. Boatin, and J.D.F Habbema, Required duration of combined annual
ivermectin treatment and vector control program in west africa, Bull. World Health Organ. 75(3) (1997), pp. 237

J. Remme, G. De Sole, and G.J. van Oortmarssen, The predicted and observed decline in onchocerciasis infection
during 14 years of successful control of black flies in West Africa, Bull. World Health Organ.68(3) (1990), pp. 331-339.
Shaib Ismail Omade, Adeyemi Tajudeen Omotunde, and Akinyemi Seye Gbenga. Mathematical Modeling of River
Blindness Disease with Demography Using Euler Method. Mathematical Theory and Modeling, 5(5):75-85, 2015
World Health Organization, African programme for onchocerciasis control: Meeting of national onchocerciasis task
forces, September 2012, Weekly Epidemiol. Record 87(49-50) (2012), pp. 494-502.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the
individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim

responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in

the content.


https://doi.org/10.20944/preprints202305.0588.v1

	Introduction
	 Model Description
	Existence and Positivity of Solutions

	Existence and stability of the equilibrium points
	 Disease-free equilibrium
	Local Stability of the Disease-free Equilibrium Point E0
	 Endemic Equilibrium Point Ee

	Bifurcation Analysis
	References

