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Article

Local Stability and Bifurcation Analysis of Onchocerciasis

Transmission Dynamics with Nonlinear Incidence

Functions in Two Interacting Populations

Adeyemo K. M.

Department of Mathematics, Hallmark University Ijebu-Itele, Ogun State, Nigeria

Abstract: A deterministic compartmental model for the transmission dynamics of onchocerciasis with

nonlinear incidence functions in two interacting populations is studied. The model is qualitatively analyzed

to investigate its local asymptotic behavior with respect to disease-free and endemic equilibria. It is shown,

using Routh-Hurwitz criteria, that the disease-free equilibrium is locally asymptotically stable when the

associated basic reproduction number, R0 < 1 . When the basic reproduction number, R0 > 1, we prove the

existence of a locally asymptotically stable endemic equilibrium. Furthermore, bifurcation analysis was done

by investigating the possibility of the co-existence of the equilibria of the model at R0 < 1 but near R0 = 1 by

Center Manifold Theory.

Keywords: Bifurcation analysis; Centre manifold theory; Onchocerciasis epidemic model; Nonlinear incidence

function

1. Introduction

Onchocerciasis is one of the neglected tropical diseases caused by the parasite Onchocerca Volvulus, a

filarial nematode [2]. The disease is transmitted from one person to another by repeated bites of black flies. The

disease is endemic in Sub-saharan Africa. Many researchers have worked on many ways to reduce the spread

of the disease. For instance, Remme et al. [11] used skin snip survey in West Africa to investigate the impact of

controlling black flies by larviciding. Plaisier et al. [10] used micro simulation model to determine the period

required for combining annual ivermectin treatment and vector control in the onchocerciasis Control Programme

in West Africa. Alley et al. [1] used a computer simulation model to study prevention of onchocerciasis by using

macrofilaricide which kills the adult worms. Asha Hassan & Nyimvua Shaban [3] investigated the effects of

four control strategies on the spread of the disease.

In this paper, we consider onchocerciasis transmission dynamics with nonlinear incidence functions. The

human population is sub-divided into four compartments and the vector population is sub-divided into three

compartments. We show local asymptotic behaviour in disease-free and endemic equilibria and also the

bifurcation analysis examined. The rest of the paper is organized as follows: the description of the model and

theorems on positivity of solutions are given in section 2 while section 3 is devoted to the proof local stability

theorems and the bifurcation analysis of the model is done in section 4.

2. Model Description

Two interacting populations are considered; the humans and the black-flies populations. The human

population is partitioned into four compartments: the susceptible human compartment; Sh„ the exposed

compartment; Eh, the infectious human compartment; Ih and the recovered human compartment; Rh. The
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black-fly population is partitioned into three compartments: susceptible vector; Sv, the exposed vector

compartment; Ev and the infective vector compartment. The total human and vector populations at any

given time, t, are respectively given by; N = Sh(t) + Eh(t) + Ih(t) + Rh(t) and V = Sv(t) + Ev(t) + Iv(t). We

assume that the transmission of onchocerciaisis in susceptible hosts is only through contact with infectious vector.

We also assume that susceptible vector becomes infectious as a result of contact with infectious hosts during

blood meal. The population under study is assumed to be large enough to be modelled deterministically. The

following system of non-linear ordinary differential equations, with non-negative initial conditions, describes

the dynamics of onchocerciaisis epidemics.

dSh(t,xi)
dt = Ψh(xi)− ∑

L
i=0

δλh(xi)Sh(t,xi)Iv(t)
1+νh(xi)Iv(t)

− µh(xi)Sh + w(xi)Rh(t, xi))
dEh(t,xi)

dt = ∑
L
i=0

δλh(xi)Sh(t,xi)Iv(t)
1+νh(xi)Iv(t)

− (αh(xi) + µh(xi))Eh(t, xi)
dIh(t,xi)

dt = ∑
L
i=0 αh(xi)Eh − (r(xi) + γh(xi) + µh(xi))Ih(t, xi)

dRh(t,xi)
dt = ∑

L
i=0 r(xi)Ih − (µh(xi) + w(xi))Rh(t, xi)

dSv
dt = Ψv −

δλv(xi)Sv(t)Ih(xi ,t)
1+νv Ih(xi ,t)

− µvSv(t)
dEv
dt = δλv(xi)Sv(t)Ih(xi ,t)

1+νv Ih(xi ,t)
− (αv + µv)Ev(t)

dIv
dt = αvEv(t)− (µv + γv)Iv(t)



























































(2.1)

subject to the following initial conditions:

Sh(0, xi) = S0h(xi), Eh(0, xi) = E0h(xi),

Ih(0, xi) = I0h(xi), Rh(0, xi) = R0h(xi)Sm(0) = S0m, Em(0) = E0m, Im(0) = I0m

(2.2)

Symbols Definitionss

Sh(t, xi) Number of susceptible humans at time t and discrete age xi

Eh(t, xi) Number of exposed humans at time t and discrete age xi

Ih(t, xi) Number of infectious humans at time t and discrete age xi

Rh(t, ai) Number of recovered humans at time t and discrete age xi

Sv(t) Number of susceptible black-flies at time t

Ev(t) Number of exposed black-flies at time t

Iv(t) Number of infectious black-flies at time t

Ψh(xi) Recruitment term of the susceptible humans at discrete age xi

Ψv Recruitment term of the susceptible vectors

δ Biting rate of the vector

λh(xi)
Probability that a bite by an infectious vector results in transmission of disease to human at discrete

age xi

λv Probability that a bite results in transmission of parasite to a susceptible vector

µh(xi) Per capita death rate of humans at discrete age xi

µv Per capita death rate of vector

γh(xi) Disease-induced death rate of humans at discrete age xi

γv Disease-induced death rate of vectors

αh(xi) Per capita rate of progression of humans from the exposed state to the infectious state at discrete age xi

αv Per capita rate of progression of vectors from the exposed state to the infectious state

r(xi)
Per capita recovery rate for humans from the infectious state to the recovered state due to treatment at

discrete age xi

ω(xi) Per capita transition rate of recovered humans to the susceptible state at discrete age xi

νh(xi) Humans disease-inhibiting factor at discrete age xi

νv Vectors disease-inhibiting factor

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2023                   doi:10.20944/preprints202305.0588.v1

https://doi.org/10.20944/preprints202305.0588.v1


3 of 14

Model assumptions

The formulation of the compartmental model is based on the following assumptions:

1. That all humans are born susceptible. That is, humans are liable to contract the disease.

2. That the susceptible humans, when infected, becomes exposed humans who are not yet infectious.

3. That the exposed humans progress to become infectious only.

4. That the infectious humans may either die naturally or as a result of the disease, and if not, they become

recovered humans due to treatment.

5. That the recovered humans become susceptible again.

6. All black-flies are born susceptible.

7. That the susceptible black-flies, when infected, becomes exposed black-flies who are not yet infectious.

8. That the exposed black-flies progress to become infectious only.

9. That the infectious black-flies remain infectious for life. That is, there is no recovered class for black-fly

population.

2.1. Existence and Positivity of Solutions

In this section, we analyse the general properties of the system (2.1) with positive initial conditions. It

describes the population dynamics both in human and black-fly populations. The system is biologically relevant

in the set given by

Ω = (Sh(t, xi), Eh(t, xi), Ih(t, xi), Rh(t, xi)) ∈ R
4
+ : Nh ≤

L

∑
i=0

Ψh(xi)

µh(xi)
, (Sv(t), Ev(t), Iv(t)) ∈ R

3
+ : Nv ≤

Ψv

µv

Here, the following results are provided which guarantee that the model governed by system (2.1) is

mathematically well-posed in a feasible region Ω defined by:

Ω = Ωh × Ωv ⊂ R
4 ×R

3

Theorem 1: There exists a domain Ω in which the solution set

Sh(t, xi), Eh(t, xi), Ih(t, xi), Rh(t, xi), Sv(t), Ev(t), Iv(t) is contained and bounded.

Proof If the total human population size is given by Nh = Sh(t, xi) + Eh(t, xi) + Ih(t, xi) + Rh(t, xi), and the

total size of black-fly population is Nv = Sv(t) + Ev(t) + Iv(t). From model (2.1), we have that

dNh(t, xi)

dt
≤ Ψh(xi)−

L

∑
i=0

µh(xi)Nh(t, xi) (2.3)

and
dNv

dt
≤ Ψv − µvNv (2.4)

It follows from (2.3) and (2.4) that

Nh(t, xi) ≤
Ψh(xi)

µh(xi)
[1 − e1−µh(xi)t]+Nh(0,xi)e

−µh(xi)t ]

and

Nv ≤
Ψv

µv
[1 − e−µvt] + Nv(0)e

−µvt
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Taking the lim sup as t → ∞ gives Nh ≤ Ψh(xi)
µh(xi)

and Nv ≤ Ψv
µv

. This shows that all solutions of the

humans population only are confined in the solution set Ωh and all solutions of the black-fly population

are confined in Ωv. It also suffices to say that Ω is positively invariant as Nh(t, xi) ≤ ∑
L
i=0

Ψh(xi)
µh(xi)

whenever

Nh(0, xi) ≤
Ψh(xi)
µh(xi)

and Nv(t) ≤
Ψv
µv

if Nv(0) ≤
Ψv
µv

, Therefore the solution set for the model (2.1) exists and is

given by Ω = Ωh × Ωv ⊂ R4
+ ×R3

+ ✷

It remains to show that the solutions of system (2.1) are nonnegative in Ω for any time t > 0 since the variables

represent human and black-fly populations.

Theorem 2: The solutions, Sh(t, xi), Eh(t, xi), Ih(t, xi), Rh(t, xi), Sv(t), Ev(t), Iv(t), of model (2.1) with

nonnegative initial conditions in Ω, remain nonnegative in Ω for all t > 0.

Proof: Given that the initial conditions, S0h(xi), E0h(xi), I0h(xi), R0h(xi), S0v, E0v, I0v, are non-negative and

from (2.1),

dSh(t, xi)

dt
+

L

∑
i=0

[

bλh(xi)Iv(t)

1 + νh(xi)Iv(t)
+ µh(xi)

]

Sh(t, xi) ≥ 0

so that
d

dt

[

L

∑
i=0

Sh(t, xi)exp

(

∫ t

0

bλh(xi)Iv(η)

1 + νh(xi)Iv(η)
dη + µh(xi)t

)

]

≥ 0, (2.5)

Integrating (2.5), we have

L

∑
i=0

Sh(t, xi) ≥
L

∑
i=0

S0h(xi)exp

[

−

(

∫ t

0

bλh(xi)Iv(η)

1 + νh(xi)Iv(η)
dη + µh(xi)t

)]

≥ 0,

which implies that for all t > 0 and for all a ∈ R+, we have

Sh(t, xi) ≥
L

∑
i=0

S0h(xi)exp

[

−

(

∫ t

0

bλh(xi)Iv(η)

1 + νh(xi)Iv(η)
dη + µh(xi)t

)]

≥ 0.

Hence, Sh(t, xi) > 0 for any arbitrary xi. Also, we have

dEh(t, xi)

dt
+

L

∑
i=0

((αh(xi) + µh(xi)))Eh(t, xi) ≥ 0

so that
d

dt

[

L

∑
i=0

Eh(t, (xi))exp(αh(xi) + µh(xi)t)

]

≥ 0 (2.6)

Integrating (2.6), we have for all t > 0 and for all a ∈ mathbbR+, that

Eh(t, a) ≥
L

∑
i=0

E0h(xi)exp [−(αh(xi) + µh(xi))t]

Hence, Eh(t, xi) > 0 for any arbitrary xi Also we have

dIh(t, xi)

dt
≥ −

L

∑
i=0

(r(xi) + γh(xi) + µh(xi))Ih(t)
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so that
d

dt
[Ih(t)exp(r(xi) + γh(xi) + µh(xi))t] ≥ 0 (2.7)

Similarly, (2.7) becomes

Ih(t, a) ≥
L

∑
i=0

I0hexp [−(r(xi) + γh(xi) + µh(xi))t] > 0for all t > 0 for all a ∈ R+

Hence, Ih(t, xi) > 0 for any arbitrary xi. Also from (2.1), we have

dRh(t, xi)

dt
+

L

∑
i=0

(µh(xi) + w(xi))Rh(t, xi) ≥ 0

and we have
d

dt

[

L

∑
i=0

Rh(t, xi)exp((µh(xi) + w(xi))t

]

≥ 0 (2.8)

Integrating (2.8), we have, for all t > 0 and a ∈ R, that

Rh(t, a) ≥
L

∑
i=0

R0h(xi)exp(−(µh(xi) + w(xi))t) > 0

Hence, Rh(t, xi) > 0 for any arbitrary xi. In a similar manner, we have

dSv

dt
+

[

L

∑
i=0

bλv Ih(t))

1 + νv Ih(t)
+ µv

]

Sv(t) ≥ 0

so that
d

dt

[

Sv(t)exp

(

∫ t

0

bλv Ih(η))

1 + νv Ih(η)
d(η) + µvt

)]

≥ 0 (2.9)

Integrating (2.9), we have

Sv(t) ≥ S0vexp

[

−

(

∫ t

0

bλv Ih(η))

1 + νv Ih(η)
d(η) + µvt

)]

> 0 ∀ t > 0

Also we have
dEv

dt
≥ −(αv + µv)Ev(t)

which on integration gives

Ev(t) ≥ Ev(0)exp [−(αv + µv)t] > 0 ∀ t > 0 (2.10)

And finally, we have
dIv

dt
+ (µv + γv)Iv(t)

so that
d

dt
[Iv(t)exp(µv + γv)t] ≥ 0 (2.11)

And we have

Iv(t) ≥ Iv(0)exp [−(µv + γv)t] > 0, ∀ t > 0
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This completes the proof ✷

3. Existence and stability of the equilibrium points

3.1. Disease-free equilibrium

The disease-free equilibrium (DFE) points are steady state solutions that depict the absence of infection

in both the human host and black-fly vector populations, i.e, onchocerciasis does not exist in the population.

Thus, the disease-free equilibrium point, E0, for the model (2.1) implies that S∗(xi)h 6= 0, E∗
h(xi) = I∗h =

0(xi) = R∗
h(xi) = 0, S∗

v 6= 0, Ev = Iv = 0 and putting these into (2.1), we have S∗(xi)h = Ψh(xi)
µh(xi)

and S∗
v = Ψv

µv
.

Consequently we obtain E0 as

E0 =

(

Ψh(xi)

µh(xi)
, 0, 0, 0,

Ψv

µv
, 0, 0

)

(3.1)

A key notion in the analysis of infectious disease models is the basic reproduction number R0 , an

epidemiological threshold that determines whether disease dies out or persists in the population.The basic

reproduction number R0 of the system (2.1) is computed using the next generation matrix method and is given

by

R0 =
√

RhRv

where Rh = ∑
L
i=0

δαhλh(xi)Ψh(xi)
µh(xi)(αh(xi)+µh(xi))(r(xi)+γh(xi)+µh(xi))

and Rv = δαvλvΨv
µv(αv+µv)(γv+µv)

. The basic reproduction

number R0, determines whether onchocerciasis dies out or persists in the population. Therefore, Rh describes

the number of humans that one infectious black-fly infects over its expected infectious period in a completely

susceptible humans population, while Rv is the number of blac-flies infected by one infectious human during

the period of infectiousness in a completely susceptible black-fly population.

3.2. Local Stability of the Disease-free Equilibrium Point E0

Using the basic reproduction number obtained for the model (2.1), we analyse the stability of the

equilibrium point in the following result.

Theorem 3:The disease-free equilibrium point, E0, is locally asymptotically stable if R0 < 1, and unstable if

R0 > 1.

Proof: The Jacobian matrix of the system (2.1) evaluated at the disease-free equilibrium point E0, is obtained as

M(E0) =





























M11 0 0 M14 0 0 M17

0 M22 0 0 0 0 M27

0 M32 M33 0 0 0 0

0 0 M43 M44 0 0 0

0 0 M53 0 M55 0 0

0 0 M63 0 0 M66 0

0 0 0 0 0 M76 M77





























where M11 = −µh(xi), M14 = w(a1), M17 = −∑
L
i=0

δλh(xi)Ψh(xi)
µh(xi)

, M22 = −(αh(xi) + µh(xi)), M27 =

∑
L
i=0

δλh(xi)Ψh(xi)
µh(xi)

, M32 = αh(xi), M33 = −(r(xi) + γh(xi) + µh(xi)), M43 = r(xi), M44 = −(µh(xi) + w(xi)),

M53 = − δλvΨv
µv

, M55 = −µv, M63 = δλvΨv
µv

, M66 = −(αv + µv), M76 = αv, M77 = −(µv + γv) We need to show

that all the eigenvalues of M(E0) are negative. As the first and fifth columns form the two negative eigenvalues,
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−µh(xi) and −µv, the other five eigenvalues can be obtained from the sub-matrix, M1(E0), formed by excluding

the first and fifth rows and columns of M(E0). Hence

M1(E0) =



















M′
11 0 0 0 M′

15

αh(xi) M′
22 0 0 0

0 r(xi) M′
33 0 0 0

0 δλvΨv
µv

0 −(αv + µv) 0

0 0 0 αv −(µv + λv)



















In the same way, the third column of M1(E0) contains only the diagonal term which forms a negative eigenvalue,

−(µh(xi) + w(xi)). The remaining four eigenvalues are obtained from the sub-matrix M2(E0) given by

M2(E0) =













M
′′

11 0 0 M
′′

14

αh(xi) M
′′

22 0 0

0 δλvΨv
µv

−(αv + µv) 0

0 0 αv −(µv + λv)













Thus, the eigenvalues of the matrix M2(E0) are the roots of the characteristic equation of the form

(ξ + αh(xi))(ξ + r(xi) + γh(xi) + µh(xi))(ξ + µv + γ)−
L

∑
i=0

δ2αh(xi)λh(xi)Ψh(xi)αvλvΨv

µh(xi)µv
= 0 (3.2)

If we let Y1 = αh(xi) + µh(xi), Y2 = r(xi) + γh(xi) + µh(xi), Y3 = αv + µv, and Y4 = µv + γv, then (3.2) becomes

X4ξ4 + X3ξ3 + X2ξ2 + X1ξ + X0 = 0, (3.3)

where
X4 = 1

X3 = Y1 + Y2 + Y3 + Y4

X2 = (Y1 + Y2)(Y2 + Y4) + Y1Y2 + Y3Y4

X1 = (Y1 + Y2)Y3Y4 + (Y3 + Y4)Y1Y2

X0 = Y1Y2Y3Y4 − ∑
L
i=0

δ2αh(xi)λh(xi)Ψh(xi)αvλvΨv

µh(xi)µv



































(3.4)

Expressing X0 in terms of reproduction number R0, we have

X0 = Y1Y2Y3Y4(1 −R2
0) (3.5)

We can see from (3.4) that X1 > 0, X2 > 0, X3 > 0, X4 > 0, since all Yis are positive. Moreover, if R0 < 1, it

follows from (3.5) that X0 > 0. Thus, using the Routh-Hurwitz criterion, we have H1 = X3 > 0

H2 = (

∣

∣

∣

∣

∣

X3 X4

X1 X2

∣

∣

∣

∣

∣

= Y1(Y2 + Y3 + Y4)(Y1 + Y2 + Y3 + Y4) + (Y2 + Y3)(Y2 + Y4)(Y3 + Y4) > 0
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Similarly we have H3 > 0 and H4 > 0 where

H3 = (

∣

∣

∣

∣

∣

∣

∣

∣

X3 X4 0

X1 X2 X3

0 X0 X1

∣

∣

∣

∣

∣

∣

∣

∣

andH4 = (

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

X3 X4 0 0

X1 X2 X3 X4

0 X0 X1 X2

0 0 0 X0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Therefore, all the eigenvalues of the Jacobian matrix M(E0) have negative real parts when R0 < 1 and the

disease-free equilibrium point is locally asymptotically stable. However, when R0 > 1, we see that X0 < 0 and

there is one eigenvalue with positive real part and therefore the disease-free equilibrium point is unstable ✷

3.3. Endemic Equilibrium Point Ee

We shall show that the formulated model (2.1) has an endemic equilibrium point, Ee. The endemic

equilibrium point is a positive steady state solution where the disease persists in the population.

Theorem 4: The model (2.1) has a unique endemic equilibrium Ee whenever R0 > 1.

Proof: Let Ee = (S
′′

h(xi), E
′′

h(xi), I
′′

h (xi), R
′′

h(xi), S
′′

v , E
′′

v , I
′′

v ) be a nontrivial equilibrium of the model (2.1). That is,

all components of Ee are positive. Then the onchocerciasis model (2.1) at steady-state becomes

Ψh(xi)−
L

∑
i=0

(

δλh(xi)S
′′

h(xi)Iv

1 + νh(xi)I
′′
v

− µh(xi)S
′′

h(xi) + ω(xi)R
′′

h(xi)

)

= 0 (3.6)

L

∑
i=0

(

δλh(xi)S
′′

h(xi)Iv

1 + νh(xi)I
′′
v

− (αh(xi) + µh(xi))E
′′

h(xi)

)

= 0 (3.7)

L

∑
i=0

(αh(xi)E
′′

h(xi)− (r(xi) + µh(xi) + γh(xi))I
′′

h (xi)) = 0 (3.8)

L

∑
i=0

r(xi)I
′′

h (xi)− (µh(xi) + ω(xi))R
′′

h(xi) = 0 (3.9)

Ψv −
δλvS

′′

v Ih(xi)

1 + νv(xi)I
′′

h (xi)
− µvS

′′

v = 0 (3.10)

δλvS
′′

v Ih(xi)

1 + νv(xi)I
′′

h (xi)
− (αv + µv)E

′′

v = 0 (3.11)

αvE
′′

v − (µv + γv)I
′′

v = 0 (3.12)

From the last three equations, we have

I
′′

v =
αvE

′′

v

µv + γv
(3.13)

E
′′

v =
δλvS

′′

v Ih(xi)

1 + νv(xi)I
′′

h (xi)(αv + µv)
(3.14)

and

S
′′

v =
Ψv

δλvS
′′
v Ih(xi)

1+νv(xi)I
′′
h (xi)

+ µv

(3.15)
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Substituting (3.14) and (3.15) into (3.13) yields

I
′′

v =
Rvµv I

′′

h (xi)

µv + (δλv + µvνv)I
′′

h (xi)
(3.16)

From (3.8) and (3.9), we have

E
′′

h(xi) =
L

∑
i=0

(r(xi) + µh(xi) + γh(xi))Ih(xi)

αh(xi)
(3.17)

and

R
′′

h(xi) =
L

∑
i=0

r(xi)I
′′
(xi)

µh(xi) + ω(xi)
(3.18)

If we put (3.16) and (3,17) in (3.7) in terms of R0, we have

S
′′

h(xi) =
∑

L
i=0 Ψh(xi)[µv + (δλv + µvνv + νh(xi)µvRv)I

′′

h (xi)]

µh(xi)µvR2
0

(3.19)

Finally, using (3.16), (3.18) and (3.19) in (3.7), we have

I
′′

h (xi) =
L

∑
i=0

µh(xi)µvΨh(xi)(µh(xi) + ω(xi))
(R2

0 − 1)

ρ
(3.20)

where

ρ =
L

∑
i=0

(µh(xi) + ω(xi))[δλh(xi)µvRv + Ψh(xiµh(xi)(δλv + µvνv + νh(xi)µv)Rm)]−
L

∑
i=0

µh(xi)µvω(xi)r(xi)R
2
0.

(3.21)

If in (3.20), ω(xi) = 0 then ρ > 0. From this, one sees that model (2.1) has no positive solution when R0 < 1.

However, with ω(xi) = 0, a unique endemic equilibrium exists when R0 > 1. This completes the proof. ✷

Remark 1:It is important to have a remark that positive solution exists for the model (2.1) in a case where ρ < 0

and R0 < 1. This implies that the disease-free equilibrium co-exists with the endemic equilibrium state when

R0 is slightly less than unity resulting into a phenomenon of subcritical (backward) bifurcation.

4. Bifurcation Analysis

The mathematical examination of changes in the qualitative behaviour of a dynamical system as its

parameter passes through a critical value called a bifurcation point is referred to as bifurcation analysis.

Theorem 5(Castillo-Chavez and Song (2004):

Consider the following general system of ordinary differential equations with a parameter ϕ:

dy

dt
= f (y, ϕ), f : Rn ×R −→ R and f ∈ C(Rn ×R) (4.1)
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where 0 is an equilibrium point of the system (that is, f (0, ϕ) ≡ 0 for all ϕ) and we have the following

assumptions:

1. A = Dy f (0, 0) =
(

Dy f (0, 0),
)

is the linearization matrix of the system (4.1) around the equilibrium 0 with

ϕ evaluated at 0. Zero is a simple eigenvalue of A and other eigenvalues of A have negative real parts;

2. Matrix A has a nonnegative right eigenvector κ and a left eigenvector η corresponding to the zero

eigenvalue.

Let fk be the kth component of f and

m =
n

∑
k,i,j=1

ηkκiκj
∂2 fk

∂yi∂yj
(0, 0),

n =
n

∑
i,j=1

ηkκi
∂2 fk

∂yi∂ϕ
(0, 0)

The local dynamics of the system around 0 is totally determined by the signs of m and n.

(i) m > 0, n > 0. When ϕ < 0 with |ϕ << 1, 0 is locally asymptotically stable and there exists a positive

unstable equilibrium; when 0 < ϕ << 1, 0 is unstable and there exists a negative, locally asymptotically

stable equilibrium;

(ii) m < 0, n < 0. When ϕ < 0 with |ϕ|1, 0 is unstable; when 0 < ϕ <<1, 0 is locally asymptotically stable,

and there exists a positive unstable equilibrium;

(iii) m > 0, n < 0. When ϕ < 0 with |ϕ| << 1, 0 is unstable, and there exists a locally asymptotically stable

negative equilibrium; when 0 < ϕ << 1, 0 is stable, and a positive unstable equilibrium appears;

(iv) m < 0, n > 0. When ϕ changes from negative to positive, 0 changes its stability from stable to unstable.

Correspondingly a negative unstable equilibrium becomes positive and locally asymptotically stable. In

particular, if m > 0 and n > 0, then there exists a backward bifurcation.

To demonstrate the possibility of the co-existence of the equilibria of model (2.1) at R0 < 1 but near R0 = 0,

the Center Manifold Theory described by Castillo-Chavez and Song (2004). Let the onchocerciasis model (2.1)

be written in the vector form
dY

dt
= F(Y)

where Y = (y1, y2, y3, y4, y5, y6, y7)
T and F = ( f1, f2, f3, f4, f5, f6, f7)

T so that so that Sh(t; xi) = y1; Eh(t; xi) = y2;

Ih(t; xi) = y3; Rh(t; xi) = y4; Sv(t) = y5; Ev(t) = y6; and Iv(t) = y7: Then model (2.1) becomes

dy1
dt = Ψh(xi)−

δλh(xi)y1y7

1+νh(xi)y7
− µh(xi)y1 + ω(xi)y4 = f1

dy2
dt = δλh(xi)y1y7

1+νh(xi)y7
− (αh(xi) + µh(xi))y2 = f2

dy3
dt = αhy2 − (r(xi) + µh(xi) + γh(xi))y3 = f3

dy4
dt = r(xi)y3 − (µ(xi) + ωh(xi))y4 = f4

dy5
dt = Ψv −

δλv(xi)y5y3

1+νh(xi)y3
− µv(xi)y5 = f5

dy6
dt = δλv(xi)y5y3

1+νh(xi)y3
− (αv + µv)y6 = f6

dy7
dt = αv − (µv + γv)x7 = f7



























































(4.2)
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Let λh(xi) be a bifurcation parameter such that λh(xi) = λ∗
h(xi) when R0 = 1. Then

λ∗
h(xi) =

L

∑
i=0

µh(xi)µv(αh(xi) + µh(xi))(r(xi) + µ(xi)h + γh(xi))(µv + γ)(αv + µv)

δ2αh(xi)Ψh(xi)αvλvΨv

The linearization matrix M(E0; λ∗
h(xi)) of the model (2.1), evaluated at the disease-free equilibrium E0 and the

bifurcation parameter λ∗
h(xi), is given

M(E0; λ∗
h(xi)) =





























−µh(xi) 0 0 ω(xi) 0 0 A

0 B 0 0 0 0 C

0 αh(xi) D 0 0 0 0

0 0 r(xi) E 0 0 0

0 0 G 0 −µv 0 0

0 0 K 0 0 L′ 0

0 0 0 0 0 αv M





























where A = −∑
L
i−0

δλ∗
h(xi)Ψh(xi)

µh(xi)
, B = −(αh(xi) + µh(xi)), C = ∑

L
i−0

δλ∗
h(xi)Ψh(xi)

µh(xi)
, D = −(r(xi) + γh(xi) +

µh(xi)), E = −(µh(xi) + ω(xi)), G = − δλvΨv
µv

, K = δλvΨv
µv

, L′ = −(αv + µv), M = −(µv + γv)

The eigenvalues of M(E0, λh(xi)) can be obtained by solving the characteristic equation

(ξ + µh(xi))(ξ + µh)(ξ + µh(xi) + ω(xi))P1(ξ) = 0,

where P1(ξ) is a polynomial of degree four. Consequently, M(E0, λ∗(xi)) has a zero eigenvalue which is simple

and other eigenvalues are real and negative. Let the right eigenvector corresponding to this zero eigenvalue be

denoted by κ = (κ1, κ2, κ3, κ4, κ5, κ6, κ7)
7 so that M(E0, λ∗

h(xi))κ = 0. Then we have

−µh(xi)κ1 + ω(xi)κ4 + Aκ7 = 0

Bκ2 − Aκ7 = 0

αh(xi)κ2 + Dκ3 = 0

r(xi)κ3 + Eκ4 = 0

Gκ3 − µvκ5 = 0

−Gκ3 + L′κ6 = 0

αvκ6 + Mκ7 = 0























































(4.3)

From (4.2), the components of the right eigenvector κ are given by

κ1 = Uκ6

κ2 = (r(xi)+γh(xi)+µh(xi))(αv+µv)µvκ6

δλvΨvα(xi)

κ3 = (αv+µv)µvκ6
δλvΨv

κ4 = r(xi)(αv+µv)µv
κ 6

δλvΨv(µh(xi) + ω(xi))

κ5 = − (αv+µv)κ6
µv

κ6 = − 1
T1

κ7 = αvκ6
µv+γv



























































(4.4)
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U = −
L

∑
i=0

(αv + µv)µv

δλvΨvαh(xi)µh(xi)(µh(xi) + ω(xi))
(r(xi)αh(xi)(αh(xi) + µh(xi) + ω(xi))

+ (γh(xi) + µh(xi))(r(xi) + γh(xi) + µh(xi))(µh(xi) + ω(xi)) (4.5)

and

T1 = αv[(αv + µv)(µv + γv)(r(xi) + µh(xi) + γh(xi) + µv(αh(xi) + µh(xi)))

+
L

∑
i=0

(αh(xi) + µh(xi))(r(xi) + µh(xi) + γh(xi))(2µv + γv + αv)] (4.6)

Further, M(E0, λ∗(xi)) has a left eigenvector, η = (η1, η2, η3, η4, η5, η6, η7), associated with the zero eigenvalue,

which can be obtained from ηM(E0, λ∗(xi)) = 0 as follows: = −(αh(ai)+ µh(ai))(r(ai)+ µh(ai)+ δh(ai))(αm+

µm)(µm + δm)

η1 = 0

η2 = δλvαvαh(xi)Ψvη7

(αh(xi)+µh(xi))(r(xi)+µh(xi)+γh(xi))(αv+µv)

η3 = δλvαvΨvη7

(r(xi)+µh(xi)+γh(xi))(αv+µv)

η4 = 0

η5 = 0

η6 = αvη7
αv

+ µv

η7 = −(αh(xi) + µh(ai))(r(xi) + µh(xi) + γh(xi))(αv + γv)























































(4.7)

We see from (4.1) that all the second-order partial derivatives at E0 and λ(xi) are zero except the following:

∂2 f1

∂y1∂y7
=

∂2 f1

∂y7∂y1
= −δλ∗

h(xi),

∂2 f2

∂y1∂y7
=

∂2 f2

∂y7∂y1
= δλ∗

h(xi)

,

∂2 f5

∂y3∂y5
= −

∂2 f5

∂y5∂y3
= −δλv,

∂2 f6

∂y3∂y5
=

∂2 f6

∂y5∂y3
= δλv

∂2 f1

dy2
7

=
L

∑
i=0

2δλh(xi)νh(xi)Ψh(xi)

µh(xi)
,

∂2 f2

dy2
7

= −
L

∑
i=0

2δλh(xi)νh(xi)Ψh(xi)

µh(xi)

∂2 f5

∂y2
3

=
2δλvΨv

µv
,

∂2 f6

∂y2
3

=
2δλvΨv

µv

tegether with

∂2 f1

∂7∂h(xi)
= −δ

Ψh(xi)

µh(xi)
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and
∂2 f2

∂7∂h(xi)
= b

Ψh(xi)

µh(xi)

If we let the bifurcation coefficients m and n of Theorem be m1 and n1 respectively, it then follows from the

above partial derivatives that

m1 =
7

∑
i,j,k=1

ηkκiκj
∂2 fk

∂yi∂yj
(E0, λ∗

h(xi))

= 2η1κ1κ7
∂2 f1

∂y1∂y7
+ η1κ2

7
∂2 f1

∂2yj
+ 2η2κ1κ7

∂2 f2

∂y1∂y7

+ η2κ2
7

∂ f2

∂y2
7

+ 2η5κ3κ5
∂ f5

∂y3∂y5
+ η5κ2

3
∂2 f5

∂y2
3

+ 2η6κ3κ5
∂ f6

∂y3∂y5
+ η6κ2

3
∂2 f6

∂2y3
(4.8)

Substituting the appropriate right eigenvector (4.3), the left eigenvector (4.6) and the second-order partial

derivatives obtained earlier into m1 yields

m1 =
L

∑
i=0

δ2λ∗
h(xi)λvα2

vαh(xi)Ψvη7κ2
6U

(αh(xi) + µh(xi))(r(xi) + µh(xi) + γh)(αv + µv)(µv + γv)

+
L

∑
i=0

δλvα2
vαh(xi)Ψvη7κ2

6

(αh(xi) + µh(xi))(r(xi) + µh(xi) + γh(xi))(αv + µv)(µv + γv)2

×

[

−2δλ∗
h(xi)νh(xi)Ψh(xi)

µh(xi)

]

−
2αv(αv + µv)η7κ2

6

Ψv
−

αvµv(αv + µv)νvη7κ2
6

δλvΨv
(4.9)

Similarly, we obtain

n1 =
7

∑
k,i=0

ηkκi
∂2 fk

∂yi∂λh
(E0, λ∗

h(xi)) = 2η1κ7
∂2 f1

∂y7∂λh
+ 2η2κ7

∂2 f2

∂y7∂λh(xi)

=
L

∑
i=0

2δ2αh(xi)α
2
vλvΨvΨh(xi)η7κ6

(µv + γv)(αh(xi)µh(xi))(r(xi) + µh(xi) + γh(xi)(αv + µv)µh(xi))
(4.10)

The signs of m1 and n1 are important in determining the direction of bifurcation at mathcalR = 1

(Castillo-Chavez and Song, 2004). One sees that m1 > 0 and n1 > 0 and by item(iv) of Theorem 5, the

model (2.1) is capable of exhibiting a backward bifurcation phenomenon. Thus, we have the following result:

Theorem 6: The onchocerciasis model given by (2.1) undergoes a phenomenon of backward bifurcation at E0

and R0 = 1.
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