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Abstract: Diseases of the lung account for more than 5 million deaths worldwide and are a burden 
to healthcare. Improving clinical outcomes including mortality and quality of life involves a holistic 
understanding the etiopathogenesis, which can be provided by multi-omics integration of lung data. 
An enhanced understanding of large comprehensive datasets provides opportunities to mine those 
datasets for features that contribute to prevention and amelioration of disease. In this review, we 
evaluate lung disease models including animal models, organoids and single cell lines as 
mechanisms to study multiomics in lung health and disease. We provide examples of lung diseases 
where multi-omics investigations have provided a deeper insight into pathogenesis that has 
resulted in improved preventive and therapeutic interventions. 
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Introduction 

Respiratory diseases account for over 5 million deaths yearly and are a huge burden to health-
care systems worldwide [1]. Recent advances in high-throughput technologies have provided access 
to multiomics biological data including genomics, epigenomics, transcriptomics, proteomics, 
metabolomics and immunomics and provide a holistic view of pathophysiology in lung disease[2]. 
Biological insights gained from multi-omics can be integrated with clinical and social data and 
applied in the clinical setting for improved health outcomes. Single omics is limited by the only 
providing associations whereas multiomic integrations result in a clearer overall mechanistic 
picture-based overview and thus generates testable hypotheses. State-of-the-art machine-
learning methods can integrate these datasets resulting in the ability to predict short- and long-term 
health trajectories and enable early timely interventions that alters the health course towards better 
outcomes.  

High dimensional data from multiple sources can be integrated using machine learning tools 
including deep learning and neural networks to yield reliable holistic predictive models to predict 
mortality, morbidity or other complications in lung disease. Large datasets such as the omics dataset 
rely on ‘deep learning’ based on neural networks loosely modeled after neurons of the brain. The 
insights gained by deep learning of multi-omic datasets lead to personalized healthcare decision 
making (precision medicine) and biomarker discovery.  

The NIH defines precision medicine as ‘an innovative approach that takes into account 
individual differences in patients’ genes, environments, and lifestyles’[3] 
(https://www.nih.gov/about-nih/what-we-do/nih-turning-discovery-into-health/promise-
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precision-medicine). There is an urgent need to shift our current thinking on traditional reactive 
medicine based on prior literature/data to a more proactive precision medicine (PM) based approach 
where the trajectory towards health and disease can be predicted in advance, so interventions to 
improve survival or decrease morbidity can be instituted earlier to improve survival and decrease 
morbidity. Machine learning tools have already been enabled  in a holistic, systems biology 
approach in oncology fields for prediction of survival, disease severity and biomarker development. 
This proactive approach need to be adapted in other fields and disciplines. In this review, we will 
assess the multi-omics strategy as it is integrated into humans, animal and organoid models to 
provide insight into lung health and disease. 

Insights into cell biology using multi-omics  

Quantitative omics technologies enable cost-effective and high-throughput profiling of 
numerous properties of cell biology. Genomics can be profiled using whole-exome or whole-genome 
sequencing. Transcriptomics is assessed using RNA-Sequencing (RNA-Seq). Protein expression in its 
total form or as post-translational modifications is measured using mass-spectrometry or antibody-
based proteomics assays. Measurable epigenomic properties of the cells span DNA methylation, 
assessed via whole-genome bisulfite sequencing or probe-based micro-arrays, microRNAs, measured 
using smallRNA-Seq, histone modifications, measured using Chromatin Immunoprecipitation  and 
sequencing (ChIP-Seq), and open chromatin, measured using assay for transposase-accessible 
chromatin with sequencing (ATAC-Seq). Getting closer to cell biology, metabolomics and lipidomics can 
be measured using mass-spectrometry based techniques. Appreciating that humans live in symbiosis 
with a rich microbial and fungal community, microbiome or mycobiome can be measured using whole 
genome shotgun sequencing.  

The advent of single cell technologies, including single cell RNA-Seq (scRNA-Seq), single cell 
ATAC-Seq (scATAC-Seq) have provided further insight into cell biology in the last decade. A single-
cell multi-omics study CoV2 employed single nuclei RNA-Seq and single nuclei ATAC-Seq in 
phenotypically healthy lungs of donors with ages of 30 week gestation, 3 years, and 30 years[4]. It 
aimed to decipher the cell specific landscape of expression and  candidate cis-regulatory elements 
(cCREs) of key host entry genes for SARS-CoV2 infection, including ACE2 and TMPRSS2, and to 
further explore the changes with age, given the age-associated documented risks of SARS-CoV2 
infection and outcome. ACE2 transcript was found in under 100 cells, with almost half of them in 
AT2 cells. TMPRSS2 expression was detected particularly in AT1, AT2, club, ciliated, and goblet cells. 
ATAC signal, eg accessible chromatin, was found primarily in gene bodies for ACE2 and TMPRSS2 
in AT1, AT2, club, ciliated, and basal cells. cCREs are areas of ATAC peaks, determined within each 
cell type; cCRE association with a nearby gene is inferred by co-accessibility with promoters of nearby 
genes. Using the Cicero software, 15 cCREs co-accessible with the promoter were found for ACE2, 
whereas 73 were found for TMPRSS2[5]. Given the dramatic changes in SARS-CoV2 infection, 
symptoms, and outcome risk across the age spectrum, the study quantified the expression and cCREs 
for ACE2 and TMPRSS2 across neonate, infant, and adult lung. A larger proportion of AT2 cells 
expressed ACE2 and TMPRSS2 in adults compared to neonates and infants. Using the ATAC data, 
two  cCRE clusters for TMPRSS2 were in AT2 cells, comprising nine cCREs, showed enhanced 
accessibility with age. These clusters associated with genes involved in response to viral infection, 
immune response, and injury repair, and also overlapped with genes discovered in mouse models to 
associate with lung epithelial necrosis and chronic inflammation. Overall, this map of 
epigenomic/transcriptomic at SARS-CoV2 host genes can serve as a reference for studies using lungs 
from donors with SARS-CoV2 or animal models.  

A study utilizing single cell RNA-Seq, single cell ATAC-Seq, and spatial transcriptomics 
generated an atlas of human fetal lungs spanning 5-22 post conception weeks (PCW)[6]. This study 
identified 144 cell types. Overall, cell clusters are grouped by age groups, into 5-6, 9-11, and 15-22 
PCW. Many of the fetal cells were matched to their adult lung counterpart, such as fetal airway 
progenitors with adult secretory club cells, and proximal secretory fetal cells with adult goblet cells. 
Interestingly, fetal AT1 and AT2 cells had highly concordant transcriptomic profiles with the adult 
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cells. This study identified multiple cell types specific to the developing lung, such as progenitor of 
secretory cells and transition populations. Progenitor cells were further spatially localized. Epithelial 
progenitor cells were stratified into tip, stalk, airway progenitor, and proximal secretory progenitor, 
and using the spatial transcriptomics they were spatially localized and assigned on a trajectory of 
differentiation. The software CellPhoneDB was utilized to elucidate cell-cell communication in 
distinct lung niches[7]. The airway niche was comprised of airway fibroblasts, late airway SMCs, and 
airway epithelial cells. Cell-cell communication analysis between airway fibroblasts and airway 
epithelium included known signaling, such as via TGFB and BMP4, but also novel ones, such as 
FGF7/18 to FGFR2/3, and non-canonical WNT5A to FZD/ROR. These results were validated via tissue 
staining, but also by using distal tip based lung organoids; when grown in media with FGF, those 
organoids showed robust airway differentiation into secretory, basal, and ciliated cells.  Using 
scATAC-Seq, transcription regulation was assessed in each cell type; analysis recapitulated known 
results, such TCF21 in fibroblasts, KLF in secretory and AT1/AT2 cells, and TP63 in basal cells. A 
novel observation was of TCF4 enriched in pulmonary neuro-endocrine cells. Overall, this study 
showed how multi-omic lung profiling can provide rich references for diseases models, used for 
integration with and interpretation of data generated from human, in-vitro, or in-vivo models of lung 
disease. 

Integration of Multiomics Data 

Whereas substantial knowledge can be derived from applying a single omics at scale, in either 
human samples or model organisms, additional and refined insight can be obtained via multi-omics 
integration. Multi-omics data may be integrated via early, intermediate and late integration 
approaches (Figure 1)[8,9]. Early integration or early concatenation although not complicated, may 
have problems with vast number of features while the number of available data points is low, known 
as the "curse of dimensionality"[10]. Multi-omics datasets may contain > 50,000 features when the 
genome, transcriptome, and proteome are combined but available number of patient samples may 
be relatively small (hundreds or less). The heterogeneity of omics datasets may be a serious issue as 
omic data sets can have different distributions (e.g., numerical, categorical, continuous, discrete) and 
differ significantly in size (number of features). A necessary step in multi-omics analysis frequently 
is dimensionality reduction, which is the process of reducing the number of variables in order to 
decrease the dimensionality and noise of a dataset. It is an optional simplification step but some (early 
and iintermediate integration) often require prior dimensionality reduction to be more effective. The 
intermediate integration strategy works on transforming each omics dataset independently into a 
simpler representation, thus overcoming some issues with the early integration strategy. 
Transformation converts the data set to a less dimensional and less noisy one, which decreases 
heterogeneity, and facilitates integration and analysis. Late integration involves combination of the 
results from each omics layer or each omics dataset by machine learning tools (or manually) and the 
predictions combined at the end[8,11]. Since each omics dataset is analyzed by omic-specific machine 
learning tools, the problems of noise and heterogeneity found in other strategies are not present. 
However, the downside of the late integration strategy is that it cannot capture inter-omics 
interactions and the different machine learning models (for the different omics datasets) do not share 
knowledge or utilize the complementarity information between omics[11]. Combining predictions is 
simply not enough to accurately exploit multi-omics data and understand the underlying biological 
mechanisms of diseases. 
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Figure 1. -Multi-omics integration. 

The potential applications are endless; we will enumerate a subset of them that have been 
reported in the literature in lung-related disease models. Based on lessons from The Cancer Genome 
Atlas, molecular disease endotypes can be inferred for lung diseases. Disease drivers, disease 
presence or response to treatment biomarkers can be refined using multi-omics. Further, new 
therapeutic vulnerabilities can be determined and exploited by drug repurposing. Finally, multi-
omics can be extended to surrogate sites, such as blood, skin, gut, saliva, or nasal cavity. In addition 
to access to numerous technologies, researchers have access to a trove of public data, using either 
reference or disease model datasets, including repositories such as LungMap, ENCODE, NIH 
Epigenome Roadmap, or NCBI Gene Expression Omnibus (GEO), or the Clinical Proteomic Tumor 
Analysis Consortium (CPTAC)[12-15].  

Lung multiomics Models 

Respiratory disease is a common cause of morbidity and mortality worldwide[16]. With the 
global ongoing pandemic due to SARS-Covid19[17], respiratory diseases remain a  leading cause of 
death and disability. In almost all respiratory diseases, the epithelium, a monolayer of cells, which 
comprises the conducting and respiratory airways is damaged which in turn results in functional 
effects on the proximal airways’ ability to warm, humidify, and cleans inhaled air and on the distal 
airway to facilitate gas exchange. As a result, health and quality of life are severely impacted by the 
impaired lung function that occurs in respiratory disease. Human models, such as primary cells and 
organoids, and animal studies involving integrated multi-omics will allow differences in markers 
and biologic processes between disease and non-disease models to be elucidated (Figure 2). These 
differences will provide insight into lung disease including pathways that result in regeneration and 
repair. Understanding these pathways will be a critical factor in the development of preventive 
treatments and therapeutic modalities to treat lung diseases and can eventually be harnessed to 
develop a personalized approach to treating respiratory diseases. 
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Figure 2. Modelling multi-omics studies in the study of human lung disease. 

Primary cells and transformed or tumor cells lines have been used for the last half century to 
understand lung diseases. The cells in these models retain many of the donor tissue characteristics 
and recapitulate markers and functions that are present in vivo[18],[19],[20]. These models have the 
advantage that they are amenable to genetic engineering allowing the dissection of the role of 
individual molecules and pathways in disease[21]. Additionally, the ease of genetic engineering in 
these systems has allowed testing function via inducible gene expression[22]. Because of their wide 
use, many of these cell lines are well characterized, providing a foundation that can only enhance 
multi-omics studies in which they are used.  Studies in cell lines are well suited for high throughput 
drug screening and evaluation of drug response[23] and are particularly valuable in studying lung 
cancer[24],[25]. However, these models are not without limitations. First and foremost, they fall short at 
replicating the complex nature of many respiratory diseases. Many lack the multiple cell types and 
cellular polarity that are present in the proximal and distal respiratory epithelium and exhibit an 
absence of morphology and structural features that play a significant role in lung biology. 
Additionally, these cell lines also lack an immune cell component which plays a significant role in 
the etiology of many lung diseases[26]. Coupled with questions that now have arisen as to the 
relevance of findings using these models, technical issues including a requirement for tissue donors, 
a finite lifespan, and limited expansion capacity have contributed to a reduced focus on using multi-
omics in these models to study many respiratory diseases. 

More recently organoid models have come to the forefront of models in which the use of multi-
omics to understand respiratory disorders are being used. Organoids can be derived from either 
induced pluripotent stem cells or embryonic stem cells (hereafter referred to as iPSC organoids) or 
established from tissue derived multipotent stem cells (referred to as ASC organoids)[27]. 
Differentiation of iPSC organoids occurs in a multistep process that involves a definitive endoderm 
stage, anterior foregut stage, and then into NKX2-1+ lung epithelial progenitors[28],[29]. ASC organoids 
are established following mechanical and enzymatic isolation of either conducting airway or 
respiratory epithelium stem cells from lavage, small amounts of native tissue, or biopsy 
specimen[30],[31],[32],[33]. Both iPSC and ASC organoids rely heavily on manipulation of exogenously 
added growth factors to induce differentiation of the mature polarized airway epithelium and the 
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presence of extracellular matrix such as Matrigel®, synthetic matrices, or decellularized tissue 
scaffoldings. Both organoid models require cultivation on transwells under air-liquid interface 
conditions (ALI) where the basal side of the epithelium is in contact with media and the apical side 
is exposed to air to achieve maximum differentiation potential[32],[34]. iPSC and ASC organoids can 
give rise to alveolar organoid models that recapitulate respiratory epithelium, nasal, trachea, or 
bronchial organoids that recapitulate conducting airway epithelium, and lung organoids that are 
mixture[35],[36],[37]. Like primary and transformed cell models, organoids are amenable to genetic 
engineering and can be established from donors with genetic disorders that cause lung disease[38]. 
Organoids are well suited for drug screening and as models for infectious disease research[39],[40], [41],[42] 
and recapitulate many aspects of other chronic lung diseases such as idiopathic pulmonary fibrosis 
[43] and cancer[32]. However, iPSC derived airway cells do not seem to achieve the maturation levels 
observed in human lung[44] and although ASC organoids seem to contain mature epithelial cells, 
they lack stromal components such as the immune system that play a significant role in most lung 
diseases. However, the increased cellular complexity and the modeling of human epithelium 
combined with a forward-thinking multi-omics approach provide an area for advancement in 
information surrounding respiratory illness and significant translational potential. 

There are many animal models of lung diseases including chronic diseases such as cystic fibrosis 
[45], idiopathic pulmonary fibrosis[46], [47], viral and bacterial infections[48], and cancer [49]. Animal 
models of respiratory diseases offer several advantages including reproducibility, control of 
environmental factors, unlimited numbers of replicates, genetic phenotyping, and accessibility to 
lung tissue. Multi-omics approaches can be easily used to provide insight into the relationship 
between environmental stressors and the effect of the stressor on respiratory disease. Information 
gained can lead to detailed physiologic and pathologic pathways that contribute to disease 
pathogenesis. Animal models of lung disease are particularly useful in assessing the predisposition 
of genetic mutations in causing a specific disease and provide a model in which interactions between 
components of the whole system can also be examined[50]. Animal models are limited by the fact 
that in most cases, there are significant differences between human lung tissue and animal lung 
tissue[12],[51]. In addition, many human respiratory diseases are not recapitulated in animal models 
and clinical manifestations are difficult to assess.  However, comparisons between human and 
animal multi-omics analyses can provide validation for animal models and together multi-omic 
based approaches combining data collected from both human in vitro and animal in vivo models will 
provide robustness, rigor, and reproducibility to support drawn conclusions. 

Multiomics Insight Into Clinical Disease 

a. Cystic fibrosis 

Cystic fibrosis is a disease due to a mutation in the chloride transporter gene leading to thickened 
airway secretions [52,53]. The hallmark of the disease is chronic obstructive airway disease with 
infection and chronic inflammation[52,54]. However, persistent and heightened inflammation is seen 
without infection[55,56]. 

Microbiome studies have pointed to the presence of complex polymicrobial communities in the 
airways and the lungs of patients with cystic fibrosis [57-63]. Although microbiome evaluations using 
16S ribosomal RNA (rRNA) sequencing have pointed out bacterial communities in the airways 
(upper and lower and shifts with time[60,64-67], it does not provide information on the community 
functionalities or metabolism. Whole genome sequencing of the microbiome enhances our 
understanding of the metabolic potential of the bacterial communities[59]. The availability of high 
throughput multi-omics technology will help us understand the microbe-microbe and microbe- host 
interplay that may determine disease severity and progression [2]. Identification and profiling of the 
metabolites both host and microbial by metabolomics will provide a view of the metabolic landscape 
and may identify biomarkers for disease diagnosis and prognosis[68].  

Samples that have been evaluated in CF include upper airway secretions, sputum and 
bronchoalveolar fluid (BAL)[57,59,63] and exhaled breath[69,70]. Metabolites have been identified in 
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BAL associated with inflammation and disease pathogenesis in CF [71-73]. O’Connor et al compared 
CF patients’ BAL with control subjects to draw comparisons by network analysis[63].  

A holistic approach integrating multi-omics that include microbiome WGS, metabolome and the 
proteome and epigenome may provide a deep insight into the pathogenesis of the disease and aid in 
management and improve clinical outcomes in CF patients[59,74]. Sputum evaluations using 
multiomics [57,59,61,62,75] and found to have correlations between presence of pathogenic bacteria, 
metabolites and inflammation[58,75]. Twomey et al identified strong correlations identified between 
the presence of strict anaerobes in sputum and the abundance of putrescine, pyruvate, and lactate[57].  

a. Chronic obstructive pulmonary disease (COPD) 
COPD is one of the leading causes of death in the United States and could benefit from a multi-

omics approach to decipher complex pathways and networks of potential biomarkers[76]. Yan et al 
report airway microbe-host interactions in a study of 99 patients with COPD compared to 36 controls 
from China[77] for 2 endotypes, neutrophilic or eosinophilic inflammation. In neutrophil dominant 
COPD, altered tryptophan metabolism leads to decreased indole-3-acetic acid (IAA), which affects 
host interleukin-22 signaling and epithelial cell apoptosis pathways. Yan et al observed that airway 
microbiome-derived IAA mitigates neutrophilic inflammation, apoptosis, emphysema and lung 
function decline, via macrophage-epithelial cell cross-talk mediated by interleukin-22. Also, 
intranasal inoculation of two airway Lactobacilli restored IAA and recapitulated its protective effects 
in mice [77]. Multi-omic analysis in COPD also can help us understand the pathogenesis of 
pulmonary hypertension in COPD as it relates to heterogeneity and response to therapy[78], that may 
lead us to precision medicine- individualizing therapy and prognosis. Wang et al, using a multi-omic 
meta-analysis approach, used public COPD datasets (1640 16S evaluations and 26 samples from 
metagenomic sequencing) [79]. The investigators identified microbial shifts and established a global 
classifier for COPD using 12 microbial genera. Metabolic potentials of the airway microbiome was 
inferred and linked to host targets. 29.6% of differentially expressed human pathways were predicted 
to be targeted by microbiome metabolism[79].  

b. SARS-CoV-2 infection 

The Coronavirus Disease 2019 (COVID-19)is caused by Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2) and as a pandemic has pervaded our work, productivity and socio-
economic development. Xu et al in a multi-omics analysis showed that epithelial cells activated strong 
innate immune response, including interferon and inflammatory responses[80]. Ubiquitinomics 
showed SARS-CoV-2 proteins were ubiquitinated during infection despite the fact that SARS-CoV-2 
itself didn't code any E3 ligase, and that ubiquitination at three sites on the Spike protein could 
significantly enhance viral infection. Therefore SARS-CoV-2 not only modulates innate immunity, 
but also promotes viral infection, by hijacking ubiquitination-specific processes, highlighting 
potential antiviral and anti-inflammation targets[80]. Unterman et al in a single cell multiomics 
analysis, in patients with COVID 19 assessed the immunology (T and B cell responses) and their 
response to tocilizumab, report desynchrony of the innate and adaptive immune interactions in 
progressive COVID 19[81]. In a review Li et al summarize the multiomics integration-based 
molecular characterizations of COVID-19, which to date include the integration of transcriptomics, 
proteomics, genomics, lipidomics, immunomics and metabolomics to explore virus targets and 
developing suitable therapeutic solutions through systems biology tools[82]. Wu et al suing multi-
omic analysis report putative genes for covid severity (COVID-19 HGI using complementary CMO 
and S-PrediXcan methods), namely XCR1, CCR2, SACM1L, OAS3, NSF, WNT3, NAPSA, and 
IFNAR2 at 5 genomic loci[83]. Cantwell et al, in a hamster model infected with human SARS-CoV2 
report the dynamic changes in gene transcription and protein expression over the course of the 
infection in a multi-organ kinetic analysis[84]. In a multiomics study involving transcriptomic, 
epigenomic, and proteomic analyses, report dysfunction in innate immunity in sever and fatal 
COVID19 infection that included hyperactivation signatures in neutrophils and NK cells[85]. 
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c. Lung cancer 

Lung diseases cover a large spectrum; for this review we will focus on non-small cell lung cancer 
including Lung Adenocarcinoma (LUAD) and Lung Squamous Carcinoma (LUSC),  Idiopathic 
Pulmonary Fibrosis (IPF), Chronic obstructive pulmonary disease (COPD), Broncho-pulmonary 
dysplasia (BPD), and tuberculosis (TB). 

Disease endotypes can be determined using transcriptomics then characterized with several omics. 
The TCGA LUSC study identified 4 endotypes, classical, primitive, basal, and secretory, with DNA 
hypermethylation associated with the classical expression endotype[86]. The TCGA LUAD project 
identified 3 endotypes: the proximal proliferative, with high rates of KRAS mutations, proximal 
inflammatory, with co-mutations of NF1 and TP53, and terminal respiratory unit, characterized by 
EGFR mutations and better prognosis[87]. In TB, transcriptomic profiling of the blood identified two 
major endotypes, further characterized using proteomics as hyper- and hypo-inflammatory, with the 
hyper-inflammatory exhibiting worse clinical outcomes; drug repurposing analysis indicated that 
HDAC inhibitors might have opposite effects depending on the patient endotype[88].  

microRNA/mRNA networks identify a subset of transcriptomic response that can be attributed to 
one mechanism of epigenomic dysregulation. microRNA targets can be inferred using several 
prediction engines, including TargetScan, mirDB, DIANA-TarBase; miRNA/mRNA networks [89-
91]can be inferred using algorithm such as SigTerms. miRNA/mRNA[89] were identified in LUAD, 
[92]including hub miRNAs such as miR-539-5p, miR-656-3p, miR-2110, let-7b-5p, and miR-92b-3p; 
interestingly, other studies found further associations between LUAD, LUSC, miRNAs such as hsa-
miR-195, hsa-miR-26b, and hsa-miR-126, and exercise[93]. An analysis of PanSCC cancers identified 
over-expressed miRNAs miR-205-5p and miR-944 across multiple squamous cancers including 
LUSC, and further determined an association of their targets with epithelial-mesenchymal transition 
(EMT)[94].  A study using RNA-Seq transcriptomics and Mass-Spectrometry metabolomics in 
LUAD derived a 28-gene signature with prognosis capability and also led to the identification of a 
novel lung cancer drug,  AZD-6482, a PI3Kβ inhibitor. [95] 

COPD is a risk factor for lung cancer and Sandri et al report multi-omic analysis of the lung 
stroma in patients with COPD who developed cancer compared to those who did not, testing the 
hypothesis that lung stroma in COPD has upregulated molecular mechanisms that support 
carcinogenesis[96]. Predictive variables for cancer compared to adjacent stroma, were mainly 
represented in the transcriptomic data, whereas predictive variables associated with adjacent tissue, 
compared to controls. Pathway analysis revealed extracellular matrix and phosphatidylinositol-4,5-
bisphosphate 3-kinase-protein kinase B signaling pathways as important signals in the tumor 
adjacent stroma[96].  

Ho et al in combined mass cytometry, immunohistochemistry, and RNA sequencing identified 
the tumor microenvironment (TME) of lung metastases of pancreatic ductal adenocarcinomas 
(PDAC)[97]. The investigators report that the lung TME exhibits higher levels of immune infiltration, 
immune activation, and pro-immune signaling pathways, whereas multiple immune-suppressive 
pathways are emphasized in the liver TME. Sun 2021 et al report integration of extensive multiomics 
data sources, utilizing a total of 40 genome-wide functional annotations to prioritize and characterize 
single nucleotide polymorphisms (SNPs) that increase risk of squamous cell lung cancer through the 
inflammatory and immune responses[98] including reanalysis of the ILCCO data. Their work 
highlights SNPs of genes associated with nuclear factor-κB signaling pathway genes and major 
histocompatibility complex mediated variation in immune responses[98]. In a multi-omics 
investigation involving whole exome sequencing (WES), RNA sequencing, methylation microarray, 
and immunohistochemistry (IHC) on 8 pairs of non-small cell lung cancer (NSCLC) primary tumors 
and matched distant metastases [99] suggests that metastasis is a molecularly late event, and 
immunosuppression driven by different molecular events, including somatic copy number 
aberration, may be a common characteristic of tumors with metastatic plasticity [99].  

d. Bronchopulmonary dysplasia in preterm infants 
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Bronchopulmonary dysplasia (BPD) is lung disease in preterm infants defined by oxygen 
requirements at 36 weeks post menstrual age. Jensen et al reported that the best BPD definition out 
of 18 prespecified evaluated definitions to predict death or serious respiratory morbidity through 18 
to 26 months of corrected age was based on the mode of respiratory support administered at 36 weeks 
PMA, regardless of whether supplemental oxygen was used [100]. The conclusions were based on 
evaluation of a prospective study from the National Institute of Child Health and Development 
(NICHD) network of 2677 preterm infants (GA <32 weeks, 90 percent of the cohort were extremely 
preterm (EPT) with GA <27 weeks) born between 2011 and 2015. BPD results from multi-factorial 
etiology including disordered alveolar and microvascular development and inflammation leading to 
airway injury, inflammation and parenchymal fibrosis. Multiomics may provide a holistic view on 
the molecular changes in BPD and may provide clues towards prevention or amelioration of the 
disease. The development of a molecular atlas of the developing lung (LungMAP) has been funded by the  
National Heart, Lung, and Blood Institute (NHLBI)[12,101]. This proposal will endeavor to create a molecular 
atlas of the developing lung (LungMAP), which will aid research and public education. Using multi-omics and 
other resources the research will study lung development including interactive gene networks and dynamic 
cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, 
differentiation, migration, morphogenesis, and injury repair. The information will benefit preterm infants with 
appropriate interventions to improve clinical outcomes including survival and neurodevelopment. 

Lal et al, in a study evaluating the functional metagenome of tracheal aspirates in preterm infants 
from 16srDNA data and metabolomics, reported differences in preterm infants who develop 
BPD[102]. The airway metabolome was enriched for metabolites involved in fatty acid activation and androgen 
and estrogen biosynthesis in BPD infants[102]. The role of exosomal microRNAs (miRNA) in BPD has 
been investigated and found that BPD susceptible infants had reduced miR-876-3p in their tracheal 
aspirates[103]. A gain of function of miR-876-3p restores lung architecture in an animal model of BPD. 
Addition of lipopolysaccharide (LPS) in animal models leads to a decrease in miR-876-3p[103]. These results 
in combination of the finding of increased abundances of Proteobacteria in tracheal aspirates of BPD outlines 
the importance of lung dysbiosis and inflammation in the etiopathogenesis of BPD[104,105]. Hyperoxia 
exposure of newborn mice serves as a model for BPD development in premature born human babies; integration 
of RNA-Seq transcriptomics with miRNA targets revealed miR-30a as a potential driver for the reported sex 
disparity between males and females with respect to BPD risk [106,107].  In a mouse model of BPD,  a study 
of lung microbiome and metabolome in 1-14 days old mice in response to exposure to hyperoxia and 
lipopolysaccharide (LPS) revealed that hyperoxia increased Intestinimonas abundance, whereas LPS decreased 
Clostridiales, Dorea, and Intestinimonas; further integration with a published lung transcriptomics signature of 
hyperoxia derived a gene signature with biomarkers potential for risk of BPD development[108]. The 
importance and relevance of lung T-cell multi-omic interactions with the genome, epigenome and microbiome 
has been reviewed in the context of BPD in preterm infants[109]. 

e. Pulmonary hypertension 

Chen 2022 et al studied association between gut microbiota composition and host metabolome 
signatures in a left pulmonary artery ligation (LPAL)-induced PH rat model and report significant 
gut dysbiosis in LPAL-PH rats, characterized by altered gut microbiota composition, in association 
with specific changes in gut and lung metabolome profiles[110]. In another multiomic study 
Konigsberg 2021 et al studied molecular signatures in an idiopathic pulmonary fibrosis model[111] 
and Titz et al investigated the multiomics of toxic effects of aerosols in mouse models[112]. Hong et 
al performed co-expression analysis by RNA sequencing 96 disease and 52 control, samples from the 
lung biobank[113]. The investigators report a co-expression module of 266 genes that were associated 
with PAH severity such as increased PVR and intimal thickness, but also with compensated PAH 
such as lower number of hospitalizations, WHO functional class and NT-proBNP. A pharmaco-
transcriptomic screen discovered ubiquitin-specific peptidases (USPs) as potential therapeutic 
targets[113].  
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Table 1. Omics Definitions and Descriptions (adapted from Pammi et al[114]. 

“Omic” 
technology 

Description 

Genome The basic template of DNA. Technologies can identify genetic (DNA) variants 
associated with diseases. 

Microbiome Allows for accurate quantitative determination of microbial taxa, their 
abundance and diversity that can be associated with healthy and diseased 
states.  

Transcriptome Examines RNA levels transcribed from DNA template. A small amount of 
RNA is transcribed for protein synthesis, a much larger amount is 
encoded for other purposes, which may be implicated in disease.   

Proteome Quantifies peptides which may be used as disease biomarkers.  
Metabolome Detects and quantifies small molecules which include carbohydrates, amino 

and fatty acids, and other products of cellular metabolism.   Abnormally 
high or low levels may predict disease. 

Epigenome Characterizes modifications of DNA or DNA associated proteins.  
 

Summary  

The availability and accessibility of high-throughput multi-omics technologies including 
microbiome evaluation of polymicrobial communities in the airway and the lung, transcriptomics, 
metabolomics, proteomics and genome wide evaluation approaches have increased our 
understanding in systems biology approach. These technologies are contributing to a better 
understanding of etiopathogenesis of many respiratory diseases. Ultimately, this knowledge will 
open avenues for novel preventative and therapeutic strategies to treat airway diseases and 
contribute to novel and innovative research areas that continue to improve human health and well-
being.  
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