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Abstract: Data-driven models based on artificial intelligence are efficiently used to solve complex 

problems. The quality of groundwater is of utmost importance, as it directly impacts human health 

and the environment. In major parts of the world groundwater is the main source of drinking water, 

it is essential to periodically monitor water quality. Conventional water quality monitoring tech-

niques involve periodical collection of water samples and analysis in the laboratory. This process is 

expensive, time consuming and involves lot of manual labor. The aim of our study is to build an ant 

colony optimized neural network for predicting groundwater quality parameters. We have pro-

posed artificial neural network comprising of six hidden layers. The approach was validated using 

our groundwater quality dataset of a hard rock region in the northern part of Karnataka, India. 

Groundwater samples were collected by us periodically from March 2014 to October 2020 from 50 

wells in this region.  These samples where analysed for measuring the pH, Electrical Conductivity, 

Na+, Ca+, Na+, K+, Mg2+, F-, Cl- and U+. The temporal dataset was split for training, testing and vali-

dation of our model. Metrics such as R2 (Coefficient of Determination), RMSE (Root Mean Squared 

Error), NSE (Nash–Sutcliffe efficiencies) and MAE (Mean Absolute Error) were used to evaluate the 

prediction error and model performance. These performance evaluation metrics indicated the effi-

ciency of our model in predicting the temporal variation in groundwater quality parameters.  The 

method proposed by us can be used for prediction and the temporal frequency of sample collection 

can be reduced to save time and cost. The results also confirm that the combination of artificial 

neural network with ACO is a promising tool to optimize weights while training the network, and 

hence will help in reasonable prediction of groundwater quality parameters. 
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1. Introduction 

Machine learning (ML) has become increasingly popular in data science applications due to its 

ability to analyze complex relationships automatically without explicit programming [1]. Artificial 

neural networks (ANN), in particular, has gained attention for its capability to analyze large and 

complex datasets that cannot be easily simplified using traditional statistical techniques [2,3]. ANN 

has a long-established history in data science, and its wide range of applications makes it a powerful 

tool in data analysis, prediction and decision-making. ANNs can detect non-linear relationships be-

tween input variables, extending their application to various fields like healthcare, climate and 

weather, stock markets, transportation systems and more. ANNs has also proved its applicability in 

handling problems in agriculture, medical science, education, finance, cyber security, and trading 

commodity. These neural networks have successfully found solutions to problems that could not be 

solved by the computational ability of conventional procedures. ANN has been keenly used by re-

searchers in the field of water resources management such as estimation of evaporation losses, explo-

ration of association between groundwater and drought, the prediction of groundwater salinity, 

groundwater quality forecasting, prediction of suspended sediment levels, determination of flow 

friction factors in irrigation pipes, rainfall-runoff estimation, studying soil moisture using satellite 

data, modeling of contaminant transport, mapping vulnerability of saltwater intrusion, and modeling 

of irrigation water infiltration [4,5,6,7,8,9,10,11,12,13,14&15]. The applications of artificial intelligence 

in predicting and monitoring groundwater quality and quantity are rapidly growing. ANN offers 
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advantages in reducing the time needed for data sampling and its ability to identify the nonlinear 

patterns of input and output makes it superior compared to other classical statistical methods. These 

prediction models have the potential to be very accurate in predicting water quality parameters 

[16,17, 18 & 19]. In the recent times, ANN, ANFIS and fuzzy logic are being widely used in predicting 

and monitoring groundwater quality and quantity [20,21,22]. Nonlinear methods such as ANNs, 

which are suited for complex models, are used for the analysis of real world temporal data. Neural 

networks provide a powerful inference engine for regression analysis, which stems from its ability to 

map nonlinear relationships, which is more difficult and less successful while using conventional 

time-series analysis [23].Since environmental data is inherently complex with data sets containing 

nonlinearities; temporal, spatial, and seasonal trends; and non-gaussian distributions, neural net-

works are widely preferred [9, 24, 25 & 26].  

One of the main advantages of ML is that, it helps in solving scaling issues from a data-driven 

perspective and can also help to build uniform parameterization schemes. The new advances in ML 

models present new openings to understand the network instead of perceiving it as a black box. These 

models can be combined with other algorithms for optimization to yield better results and robust 

models. Researchers combined the ability of nature-inspired optimization algorithm to optimize the 

neural networks and help producing better prediction results. Ref. Lu et al.[27] adopted ant colony 

optimization (ACO) model to train the perceptron and to predict the pollutant levels. The approach 

was proved to be feasible and effective in solving real air quality problems and by comparing with 

the simple back propagation (BP) algorithm [27]. A modified ACO in conjugation with simulated 

annealing technique was aslo studied [28]. ACO-based neural network was used for the analysis of 

outcomes of construction claims and found that the performance of ACO-based ANN is better than 

BP [29]. 

Groundwater plays a significant role in satisfying global water demand. Globally, over 2 billion 

people rely on groundwater as a primary source of water [30]. Several regions of the world depend 

on the use of groundwater for various requirements. In India too, about 80% of the rural population 

and 50% of the urban population uses groundwater for domestic purposes [31] . Overexploitation in 

several parts of the country has resulted in groundwater contamination, declining groundwater lev-

els, drying of springs and shallow aquifers, and land subsidence in some cases [16,32,33]. Along with 

declining water levels, deterioration of groundwater quality has also become a growing concern. 

Groundwater quality depends on geological as well as the anthropogenic features of a region. Over 

the past decades, many anthropogenic and geogenic contaminants in groundwater have emerged as 

serious threats to human health when consumed orally. Ingestion of contaminated groundwater can 

cause severe health effects and can also cause chronic health conditions like cancer [34,35]. Thus, 

groundwater quality assessment and monitoring are necessary considering the potential risk of 

groundwater contamination and its effects on suitability for human consumption [36,37,38 & 39]. 

Hence, water quality monitoring plays an important role in water resources management. Conven-

tional water quality monitoring techniques involve manual collection of water samples and analysis 

in the laboratory. This process is expensive, time consuming and involves lot of manual labor. Data-

driven models based on artificial intelligence can efficiently be used to solve such problems and over-

come these difficulties especially when historic quality data is available. The conjunction of ACO 

with ANN is a technique used successfully in optimizing parameters in other research areas. How-

ever, until now no one has explored the applicability of this technique to predict multiple groundwa-

ter quality parameters, although it has been used in several other domains in water resources man-

agement. Hence, the aim of our study is to build an ant colony optimized multiperceptron neural 

network for predicting multiple groundwater quality parameters.  

2. Methodology 

2.1. Multilayer perceptron neural network (MLP-NN) 

An MLP is a type of neural network that is widely used for forecasting applications. It comes 

under the category of feedforward algorithms, since inputs are combined with the initial weights in 
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a weighted sum and subjected to the activation function [40]. In an MLP-NN, each linear combination 

of data is propagated to the next layer through a perceptron and multiple layers of interconnected 

neurons process the input data to produce the output data. Backpropagation algorithms are used in 

MLPs, to adjust the weights between the neurons and improve the accuracy of the network's predic-

tions [41]. In MLPs, generally unknown connection weights are adjusted to obtain the best match 

between a historical set of model inputs and the corresponding outputs. The construction of a neural 

network model involves three steps. i) Training stage is the priliminary step, in which the network is 

exposed to a training set pertaining to the input–output patterns. ii) Testing stage is the second step 

in which the network’s performance is evaluated. Consequently, the third step is the validation stage, 

in which the network’s performance is evaluated. The expression for an output of an MLP is given 

by equation 1.  

𝑌𝑡 = 𝑓[∑ 𝑊𝑡𝑗 . 𝑓ℎ
𝑀𝑛
𝐼=1 [∑ 𝑊𝑗𝑖𝑋𝑖 + 𝑊𝑗0

𝑁𝑛
𝑖=1 ] + 𝑊𝑡0]          (1)  

In the equation, Wtj is a weight in the output layer connecting the jth neuron in the hidden layer 

and the kth neuron in the output layer, Wji is the weight of the hidden layer connecting the ith neuron 

in the input layer and the jth neuron in the hidden layer, Wj0 is the bias for the jth hidden neuron, fh is 

the activation function of the hidden neuron, Wt0 is the bias for the kth output neuron, ‘f’ is the acti-

vation function for the output neuron, Xi is ith input variable for input layer and yt is computed output 

variable, Nn and Mn are the number of the neurons in the input and hidden layers. Neurons in each 

layer are linked to neurons in the next layer with varying weights, and each neuron in a layer receives 

input signals from the previous layer's neurons, which are multiplied by the corresponding connec-

tion weights. The model has been trained with appropriate number of epochs to reduce the error and 

improve the learning rate of the model. One of the callbacks, Early Stopping has been used, so that 

the model will terminate itself when the monitored quantity has finished improving based on the 

weights. The backpropagation procedure decides the error value by computing the distinction be-

tween the predicted value and expected value, beginning from an output layer towards the input 

layer. It is indicated by the symbol 𝛿(𝑙)𝑖, which is equivalent to the error of node i in layer l. 

𝛿(𝑙)𝑖 = 𝑧𝑖 − 𝑦𝑖        (2) 

This is a repetitive process, and after modifications of the weights, the procedure is simulated 

again until convergence of output. 

2.2. ACO 

Ant Colony Optimization (ACO) is a metaheuristic optimization algorithm inspired by the be-

havior of ants searching for food [42]. ACO is used to find optimal solutions to complex optimization 

problems [43]. The algorithm involves a set of artificial ants that search for a solution by iteratively 

constructing candidate solutions and evaluating their quality using a heuristic function and a phero-

mone trail. The pheromone trail represents the cumulative experience of the ants in finding good 

solutions, and ants are more likely to select components with a higher pheromone level. Over time, 

the pheromone trail is updated to reflect the quality of the solutions found by the ants. ACO has been 

applied to a wide range of optimization problems and has the ability to handle complex, non-linear, 

and non-differentiable objective functions. It has been successfully applied to optimizing weights in 

ANNs [44,45,46]. In Fig. 1, the general ACO algorithm for optimizing weight is illustrated. The frame-

work of ACO is split into three components. The first component involves the initialization of the 

pheromone trail. The second component involves each ant building a solution to the problem using 

a probabilistic condition transition rule, which is subjected to the condition of the pheromone. The 

third component is updating of the quantity of pheromone according to rules set. The first phase is 

the evaporating of a part of the pheromone and the second phase is the addition of pheromones of 

each ant. This process is proportional to the fitness of its solution. This step is iterated until the stop-

ping criterion is achieved . 
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Figure 1. Algorithmic frame for the ACO algorithm for weight optimization. 

2.3. MLPNN and ACO 

In MLPNN, training the model is one of the most important steps. The ability of ants to search 

for optimal food paths is combined with neural networks in order to optimize the weights and biases 

of the network. [47,48,49].The algorithm works by simulating the behavior of ants as they search for 

food. In this case, the "food" represents the optimal set of weights and biases that minimize the net-

work's error. The ants in the ACO algorithm search for the optimal set of weights and biases by de-

positing pheromones on the connections between neurons in the network. The strength of the pher-

omones is proportional to the fitness of the solution represented by that connection. Ants then use 

these pheromone trails to guide their search for better solutions. As the ants continue to search, the 

pheromone trails are updated based on the quality of the solutions found. This process allows the 

algorithm to converge towards the optimal solution over time. The step-by-step procedure of build-

ing an ACO-MLPNN is described below.  

Step 1. Initialize the parameters of ACO and ANN, including the weights and biases of the ANN 

Step 2. Initialize a population of ants 

Step 3. Evaluate the fitness of each ant using the ANN and the current weights 

Step 4. Update the pheromone levels on the paths based on the fitness of the ants 

Step 5. Choose the best ant as the global best solution 

Step 6. Use the global best solution to update the weights and biases of the ANN 

Step 7. Repeat steps 2-6 until a stopping condition is met 

Step 8. Return the best solution found 

ACO has several advantages for MLPNN weight optimization. First, it is a population-based 

algorithm that has the ability to search a large weight space efficiently. Second, it can handle non-

convex and multimodal fitness landscapes, which can be challenging for other optimization algo-

rithms. Third, it can find good solutions even when the weight space has many local optima, which 

can be difficult to escape for other optimization algorithms.In in a hydrological study, the temporal 

and spatial variation of parameters play a greater role. Inorder to consider the interplay betwen the 

parameters, and the time, the algorithm was constructed, and site-specific models were developed. 

Though the base is equation 1, site specific models developed were different and based on the time-

series of multivariate dataset.  Hence, we have combined the davnatges od ANN and ACO with  

Is it not necessary to talk about time series? Multi parameter? Multi criteria 
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2.4. Data acquisition and processing 

In order to study the efficiency of this model, a real dataset of a study area located in the Yadgir 

district of Karnataka, India (Figure 2). Groundwater samples were collected from 50 wells periodi-

cally from the year 2014 to 2020 [50,51]. The samples were collected in 250-ml polyethylene bottles 

that were pre-washed with a 1:1 diluted HNO3 solution and rinsed with in the water to be sampled 

before each sampling event. In the field, parameters such as, pH, HCO3 and EC, were analyzed and 

Ca2+, Mg2+, Na+, K+ , U2+ and Cl−  were measured in the laboratory following the standard procedures 

as explained in [51]. The ion balance error was calculated for analytical precision, which was within 

± 10%. 

 

Figure 2. Location of the study site and monitoring wells. 

The collected quality parameters were saved in a .csv file, and were split as training data, testing 

data and validation data. Convenience sampling was used to split the data for training, testing and 

validation since it is a time series dataset [52]. 80% of the data was used for training, and the remain-

ing 20% for testing and validating. Table 1 describes the sample collection period and the distribution 

of training, testing and validation data.  

Table 1. Sample collection period and distribution for training, testing and validation. 
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2.5. Model performance evaluation 

Performance evaluation of the trained artificial neural network model was carried out to have 

an understanding of how good the developed model was. To evaluate the performance and error of 

the artificial neural network model was measured with three different metrics such as , i) coefficient 

of multiple determination (R2), ii) the root mean squared error (RMSE) and iii) Nash–Sutcliffe effi-

ciencies (NSE) given by Eqs. (3), (4), (5) and (6), respectively. 

Coefficient of Determination 

The Coefficient of Determination, denoted as R², is a statistical measure that evaluates how well 

a linear regression model fits the data [41]. It is a value between 0 and 1 that represents the proportion 

of the variation in the dependent variable that is explained by the independent variable in the model. 

R² is calculated by taking the ratio of the sum of squares of the regression (SSR) to the total sum of 

squares (SST).  

𝑅2 =
(∑ SSR)

(∑ SST)
  (3) 

Root Mean Squared Error (RMSE) 

The root-mean-square error (RMSE) measures the difference between the actual values of the 

dependent variable and the predicted values of the dependent variable produced by the regression 

model. RMSE is commonly used in various applications such as in finance, engineering, and envi-

ronmental studies to evaluate the accuracy of models used for forecasting and prediction. It is a meas-

ure of the average magnitude of the errors between the predicted and actual values of the dependent 

variable. A lower value of RMSE indicates that the model has a better fit to the data and is more 

accurate in its predictions. 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑖 − 𝑌′𝑖)2𝑛

𝑖=1    (4) 

Nash–Sutcliffe efficiencies (NSE) 

NSE is a commonly used statistical measure to evaluate the performance of hydrological or en-

vironmental models. It is a measure of how well the simulated values from a model match the ob-

served values, and it is based on the ratio of the residual sum of squares (RSS) to the total sum of 

squares (TSS) of the observed data. In equation (5), RSS is the residual sum of squares, which is the 

sum of the squared differences between the observed and simulated values, and TSS is the total sum 

of squares, which is the sum of the squared differences between the observed and mean observed 

values. 

𝑁𝑆𝐸 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
   |−∞ < NSE < 1| (5) 

Mean absolute error (MAE)  

MAE is a measure of the average magnitude of errors in a set of predictions or estimates. It is 

used to evaluate the accuracy of prediction models by measuring the difference between predicted 

values and actual values. MAE is calculated by taking the absolute difference between the predicted 

and actual values and then taking the average of those differences. The formula for MAE is: 

MAE = (1/n) * Σ |actual - predicted|                                (6) 

3. Results and discussions 

3.1. Statistical description of data 

The descriptive statistics of groundwater quality parameters were computed and given in Table 

2. The mean value of EC is 2227.78 μS/cm, Ca is 87.39 mg/l, Na is 270.7 mg/l. K is 7.31 mg/l, Mg is 

57.43 mg/l, F is 1.20 mg/l, Cl is 400.79 mg/l, U is 26.28 mg/l and HCO3 is 411.76 mg/l. Interpreting the 

skewness values, it is observed that all selected parameters were positively skewed and ranged 
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between 0.87 to 4.18. This indicated that indicated that their distributions have longer right tails and 

are concentrated towards the left. In general, a kurtosis value greater than 3 indicates a distribution 

that is more peaked and has heavier tails than a normal distribution, while a value less than 3 indi-

cates a flatter distribution with lighter tails (Westfall 1905). The kurtosis value for pH (4.81), K (7.62) 

and F (7.44) is positive, and indicates that the distribution is more peaked than a normal distribution. 

This means that there are more extreme values in the dataset than would be expected for a normal 

distribution. The kurtosis value for EC (12.26), Ca (12.64), Mg (13.82), Cl (18.71), U (17.71) and Na 

(15.43) is positive, and indicates that the distribution is highly peaked and has more extreme values 

than a normal distribution. The kurtosis value for HCO3 is very close to zero (0.05), which indicates 

that the distribution is roughly similar in peakedness to a normal distribution. 

Table 2. Descriptive statistics of groundwater physicochemical parameters. 

Parameter 
Mean Standard Devia-

tion 

Variance Kurto-

sis 

Skew-

ness 

Mini-

mum 

Maxi-

mum 

pH 7.51 7.41 54.85 4.81 2.31 6.36 10.97 

EC in μS/cm 2227.7

8 

2464.82 6075317.8

1 

12.26 3.35 27.90 15560.00 

Ca in mg/l 87.39 91.29 8334.71 12.64 3.27 9.70 765.30 

Na in mg/l 270.70 441.80 195188.01 15.43 3.76 2.39 3246.00 

K in mg/l 7.31 7.42 55.05 7.62 2.31 0.02 52.00 

Mg in mg/l 57.43 76.39 5835.21 13.82 3.48 0.00 505.00 

F in mg/l 1.20 0.61 0.37 7.44 1.67 0.10 5.80 

Cl in mg/l 400.79 777.55 604584.95 18.71 4.18 25.68 5083.00 

U in mg/l 26.28 41.98 1762.72 17.71 3.91 0.07 302.00 

HCO3 in 

mg/l 

411.76 180.01 32402.67 0.05 0.87 143.22 956.99 

 

3.2. ACO-MLPNN model formulation 

In construction of an ANN model, training is the first step. The model is introduced to the input–

output patterns. Each layer contains nodes that have distinct classifications according to their loca-

tions. Nodes at the first layer are introduced as the input data. The second layer, which is also known 

as the hidden section of model and constitutes the hidden layers, (neurons); and mathematical calcu-

lations are used to find relationships between parameters. Finally, the output of this system is pro-

vided at the third layer. The connection between inputs, hidden and output layers consist of weights 

and biases that are considered parameters of the neural network. ACO has several advantages for 

MLPNN weight optimization. The weighted output is then passed through a transfer function. After 

trial and error, the hidden neurons were set to 6. After initializing the network weights and biases 

during the training process, iterative adjustments of the weights and biases pertaining to the network 

were carried out. We have predicted 10 different parameters, and the model for each parameter and 

each well location is independent and does not have any connection with the models of other param-

eters and locations developed. Hence, we have 10 separate models for each parameter considered.The 

most popular algorithm for training neural networks is the back-propagation method. Backpropaga-

tion is a first-order optimization method based on the steepest descent algorithm that requires a learn-

ing rate to be specified. In this study, we use the default training function ‘trainlm’ for training the 

hybrid model: ‘trainlm’ is the Levenberg–Marquardt back-propagation training algorithm, which up-

dates the weight and bias values according to the Levenberg–Marquardt procedure. In ACO, the 

weights of an ANN are represented as pheromone values, and ants, mimicking the foraging behavior 

of real ants, select weights based on these pheromone values and heuristics. The ants then update the 

pheromone values based on the quality of the solution found, and pheromone evaporation is applied 

to encourage exploration and prevent stagnation. This process is repeated for a certain number of 
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iterations, and the best solution found by the ants, which corresponds to the set of weights resulting 

in the lowest error, is selected as the final solution for the ANN. However, due to the stochastic nature 

of ACO, careful tuning of parameters and multiple runs may be necessary to achieve optimal results. 

ACO can be a promising approach for optimizing ANN weights, but it requires careful experimen-

tation and parameter tuning to achieve the best performance. While selecting the best fitting MLPNN, 

the number of neurons was set to be 20 with the constant learning rate and momentum of 0.1 and 0.9, 

respectively. The workflow sequence of the ACO-MLPNN is shown in figure 3. 

 

 

Figure 3. Workflow of ACO-MLPNN. 

3.2.1. Predicting temporal variation  

In the constructed ACO-MLPNN network, data from 2014, 2015 and 2016 are used for training. 

Data from 2018 and 2019 are used to testing and 2020 data is used for validation. Figure 4 represents 

the temporal variation of all the parameters considered for training and testing of the neural network. 
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Figure 4. Time series data of groundwater quality parameters with red line indicating the commence-

ment of testing period. 

The temporal observed and predicted data for the validation data set for January 2020, April 

2020, June 2020 and October 2020 appears to be in reasonable acceptance with each other. As an ex-

ample, the observed and predicted quality parameters of well no. 10 and well no.31 are shown in 

figure 5 and 6 respectively. In well no. 10, except for F-, all other ions have a good prediction. In well 

no. 31, except pH and F-, all other ions have a good prediction. This may be attributed to the fact that 

pH and F- have considerably less variance and standard deviation as compared to the other parame-

ters. Also, when the range of values is within a small limit, the prediction appears to be poor. 
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Figure 5. Temporal variation of predicted pH, EC, Na+, Ca+, Na+, K+, Mg2+, F-, Cl- and U+ in well 10. 

In order to study the temporal variation of predicted parameters in a closer scale, well no.10 and 

well no 31 were chosen (figure 5 and figure 6). It can be inferred that the prediction of F- and pH has 

great variation from the observed concentration. As discussed, this could be attributed to the range 

of parameter concentration and the variance. The ability of ACO-MLPNN to predict other parameters 

such as HCO3 and EC, were analyzed and Ca2+, Mg2+, Na+, K+, U2+ and Cl− have been reasonably good. 
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Figure 6. Temporal variation of predicted pH, EC, Na+, Ca+, Na+, K+, Mg2+, F-, Cl- and U+ in well 10. 

3.2.2. Predicting spatial variation 

The spatial variability of the predicted concentration of parameters were studied. The spatial 

distribution of the observed and predicted data for Na+ and Cl- for January 2020 are shown in figure 

7. The results are based on the past data, and each prediction is a separate model and also, there is 

not connection between any well. Although, the index variable for training the network is the “loca-

tion of the well”, all the wells lie within the same regions and the groundwater networks could be 

interconnected. The network constructed by us does not consider that geological complexity, and 

hence that could be a drawback. 
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Figure 7. Spatial variation of observed Cl- concentration, ii) predicted Cl- concentration, iii) Observed 

Na+ concentration, and iv) Predicted Na+ concentration. 

3.4. Performance measures for ACO-MLPNN model 

To quantify the error between the observed and predicted values, various performance effi-

ciency parameters were used. R2, RMSE, NSE and MAE (equations 3,4,5 and 6) are the efficiency 

parameters that were chosen (Table 3). The utilization of four statistical indices to evaluate the per-

formance of the proposed model offers several advantages. Firstly, it ensures that the maximum error 

obtained during the evaluation process is within an acceptable range for a forecasting model. A linear 

correlation between the observed and predicted parameters are shown in figure 8. Except for pH, and 

F-, all the other parameters appear to be in good acceptance with the observed values.  
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Figure 8. Linear correlation between observed and predicted concentrations of quality parameters for 

all the wells in 2020. 
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The use of RMSE allows for a check on the sum of errors over the validation period, ensuring 

that it is not too high. Furthermore, the use of other indices provides a consistent level of errors, which 

is important in ensuring that the model's performance is reliable when applied to unseen data in the 

testing period. Using multiple indices provides a more comprehensive evaluation of the model's per-

formance. Each index captures a different aspect of the model's accuracy, and together they can give 

a more complete picture of the model's strengths and weaknesses. In this way, the combined use of 

both R2, RMSE, NSE and MAE indices provides a great potential for maintaining a consistent level of 

error throughout the model evaluation process. The  

Table 3. Model performance during validation phase. 

Parameter Statistical indices MPNN model 

pH R2 0.04 

RMSE 0.70 

NSE 0.99 

MAE 0.53 

EC R2 0.75 

RMSE 446.87 

NSE -21.68 

MAE 291.54 

Ca R2 0.53 

RMSE 51.13 

NSE -0.12 

MAE 28.34 

Na R2 0.87 

RMSE 150.59 

NSE -23.34 

MAE 64.54 

K R2 0.59 

RMSE 0.24 

NSE -77.17 

MAE 9.6 

Mg R2 0.78 

RMSE 29.41 

NSE -0.51 

MAE 24.34 

F R2 0.09 

RMSE 0.70 

NSE 0.31 

MAE 0.65 

Cl R2 0.98 

RMSE 114.62 

NSE 0.91 

MAE 57.73 

U R2 0.91 

RMSE 14.94 

NSE -0.17 

MAE 8.22 

HCO3 R2 0.93 

RMSE 66.39 
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NSE 0.96 

MAE 50.38 

*R2 : values range from 0 to 1 , value closer to 0 indicates lesser fit , value closer to 1 indicates better fit, 

RMSE: lower RMSE value indicates a better fit, higher RMSE value indicates a poorer fit, NSE: value 

ranges from negative infinity to 1, 1 indicates a perfect match, 0 indicates that predictions are no better 

than mean of the observed data, negative value indicates that predictions are worse than using the 

mean of the observed data , value greater than 0.5 is considered to be a good fit, MAE: lower MAE 

value indicates a better fit, higher MAE value indicates a poorer fit. 

These statistical indices represent the performance of the built ACO-MLPNN model for predict-

ing various water quality parameters. Based on the given indices, the ACO-MLPNN model per-

formed well for some parameters such as NSE for pH, Cl, and HCO3, and R2 for Na and U. However, 

the model performance was not satisfactory for some parameters, such as NSE for EC, Na, and K, 

and RMSE for EC and Na. For pH the R2 value is 0.04. This indicates that the model's ability to predict 

the variance in pH values is low, the RMSE value is 0.70, which indicates that the model's average 

prediction error for pH is moderate for pH is 0.99, indicating that the model's predictions for pH are 

very close to the observed values, with only a small difference. Whereas, the MAE for pH is 0.53 

indicating that the model's predictions for pH is mostly accurate, with relatively low error. Similarly 

based on the results, the model seems to perform well for some parameters such as Na+, Cl-, HCO3-, 

and U2+ with relatively high R2 values and low RMSE and MAE values. However, the model performs 

poorly for some parameters such as EC, Ca2+, K-, and Mg2+ with low R2 values and high RMSE and 

MAE values. In some cases, the NSE value is negative, indicating that the model performs lower than 

the mean value.  

4. Conclusion 

Machine learning models are being extensively used for classification, regression and prediction 

across different industries and applications. In the field of hydrogeology, they provide valuable in-

sights into groundwater quality, allowing for effective management and protection of this critical 

resource. In order to study the efficiency of machine learning, an ant colony optimized multilayer 

perceptron neural network was used on a real groundwater quality dataset collected from northern 

Karnataka, India. This technique was used to predict pH, EC, Na+, Ca+, Na+, K+, Mg2+, F-, Cl- and U+ 

from 50 selected wells in this region. The temporal variation of the predicted groundwater quality 

was compared with the observed quality parameters. The model for each well location and each pa-

rameter is unique.Performance efficiency was checked using R2, RMSE, NSE and MAE pefomance 

metrics. This model gave reasonable prediction accuracy for parameters whose standard deviation 

was high.However, for parameters with a smaller range did not show great prediction results. The 

network suggested by us utilizes the ACO algorithm for optimizing ANN weights, but it requires 

careful experimentation and parameter tuning to achieve the best performance. The spatial prediction 

also shows considerable correlation with the observed values. However, this cannot replace sampling 

and analysis, and this will certainly help in reducing the temporal frequency of sample collection. 

Another major advantage is that, we can constantly keep adding data as and when field data is avail-

able, and this will improve the model performance further. This technique can also be used in other 

domains which deal with multi-variant, spatial and temporal datasets.The ACO-MLPNN model may 

need further optimization and calibration to improve its performance for some parameters, however, 

it predicts good results for other parameters. Hence, the ACO-MLPNN model developed by us can 

be considered as a robust tool to predict groundwater quality parameters. This study will help in 

forecasting the status of groundwater quality in a region and can save from quality detorioration.  
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