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Abstract: Data-driven models based on artificial intelligence are efficiently used to solve complex
problems. The quality of groundwater is of utmost importance, as it directly impacts human health
and the environment. In major parts of the world groundwater is the main source of drinking water,
it is essential to periodically monitor water quality. Conventional water quality monitoring tech-
niques involve periodical collection of water samples and analysis in the laboratory. This process is
expensive, time consuming and involves lot of manual labor. The aim of our study is to build an ant
colony optimized neural network for predicting groundwater quality parameters. We have pro-
posed artificial neural network comprising of six hidden layers. The approach was validated using
our groundwater quality dataset of a hard rock region in the northern part of Karnataka, India.
Groundwater samples were collected by us periodically from March 2014 to October 2020 from 50
wells in this region. These samples where analysed for measuring the pH, Electrical Conductivity,
Nat, Ca*, Na*, Kt, Mg*, F, Cl- and U*. The temporal dataset was split for training, testing and vali-
dation of our model. Metrics such as R? (Coefficient of Determination), RMSE (Root Mean Squared
Error), NSE (Nash-Sutcliffe efficiencies) and MAE (Mean Absolute Error) were used to evaluate the
prediction error and model performance. These performance evaluation metrics indicated the effi-
ciency of our model in predicting the temporal variation in groundwater quality parameters. The
method proposed by us can be used for prediction and the temporal frequency of sample collection
can be reduced to save time and cost. The results also confirm that the combination of artificial
neural network with ACO is a promising tool to optimize weights while training the network, and
hence will help in reasonable prediction of groundwater quality parameters.
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1. Introduction

Machine learning (ML) has become increasingly popular in data science applications due to its
ability to analyze complex relationships automatically without explicit programming [1]. Artificial
neural networks (ANN), in particular, has gained attention for its capability to analyze large and
complex datasets that cannot be easily simplified using traditional statistical techniques [2,3]. ANN
has a long-established history in data science, and its wide range of applications makes it a powerful
tool in data analysis, prediction and decision-making. ANNs can detect non-linear relationships be-
tween input variables, extending their application to various fields like healthcare, climate and
weather, stock markets, transportation systems and more. ANNSs has also proved its applicability in
handling problems in agriculture, medical science, education, finance, cyber security, and trading
commodity. These neural networks have successfully found solutions to problems that could not be
solved by the computational ability of conventional procedures. ANN has been keenly used by re-
searchers in the field of water resources management such as estimation of evaporation losses, explo-
ration of association between groundwater and drought, the prediction of groundwater salinity,
groundwater quality forecasting, prediction of suspended sediment levels, determination of flow
friction factors in irrigation pipes, rainfall-runoff estimation, studying soil moisture using satellite
data, modeling of contaminant transport, mapping vulnerability of saltwater intrusion, and modeling
of irrigation water infiltration [4,5,6,7,8,9,10,11,12,13,14&15]. The applications of artificial intelligence
in predicting and monitoring groundwater quality and quantity are rapidly growing. ANN offers
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advantages in reducing the time needed for data sampling and its ability to identify the nonlinear
patterns of input and output makes it superior compared to other classical statistical methods. These
prediction models have the potential to be very accurate in predicting water quality parameters
[16,17, 18 & 19]. In the recent times, ANN, ANFIS and fuzzy logic are being widely used in predicting
and monitoring groundwater quality and quantity [20,21,22]. Nonlinear methods such as ANNSs,
which are suited for complex models, are used for the analysis of real world temporal data. Neural
networks provide a powerful inference engine for regression analysis, which stems from its ability to
map nonlinear relationships, which is more difficult and less successful while using conventional
time-series analysis [23].Since environmental data is inherently complex with data sets containing
nonlinearities; temporal, spatial, and seasonal trends; and non-gaussian distributions, neural net-
works are widely preferred [9, 24, 25 & 26].

One of the main advantages of ML is that, it helps in solving scaling issues from a data-driven
perspective and can also help to build uniform parameterization schemes. The new advances in ML
models present new openings to understand the network instead of perceiving it as a black box. These
models can be combined with other algorithms for optimization to yield better results and robust
models. Researchers combined the ability of nature-inspired optimization algorithm to optimize the
neural networks and help producing better prediction results. Ref. Lu et al.[27] adopted ant colony
optimization (ACO) model to train the perceptron and to predict the pollutant levels. The approach
was proved to be feasible and effective in solving real air quality problems and by comparing with
the simple back propagation (BP) algorithm [27]. A modified ACO in conjugation with simulated
annealing technique was aslo studied [28]. ACO-based neural network was used for the analysis of
outcomes of construction claims and found that the performance of ACO-based ANN is better than
BP [29].

Groundwater plays a significant role in satisfying global water demand. Globally, over 2 billion
people rely on groundwater as a primary source of water [30]. Several regions of the world depend
on the use of groundwater for various requirements. In India too, about 80% of the rural population
and 50% of the urban population uses groundwater for domestic purposes [31] . Overexploitation in
several parts of the country has resulted in groundwater contamination, declining groundwater lev-
els, drying of springs and shallow aquifers, and land subsidence in some cases [16,32,33]. Along with
declining water levels, deterioration of groundwater quality has also become a growing concern.
Groundwater quality depends on geological as well as the anthropogenic features of a region. Over
the past decades, many anthropogenic and geogenic contaminants in groundwater have emerged as
serious threats to human health when consumed orally. Ingestion of contaminated groundwater can
cause severe health effects and can also cause chronic health conditions like cancer [34,35]. Thus,
groundwater quality assessment and monitoring are necessary considering the potential risk of
groundwater contamination and its effects on suitability for human consumption [36,37,38 & 39].
Hence, water quality monitoring plays an important role in water resources management. Conven-
tional water quality monitoring techniques involve manual collection of water samples and analysis
in the laboratory. This process is expensive, time consuming and involves lot of manual labor. Data-
driven models based on artificial intelligence can efficiently be used to solve such problems and over-
come these difficulties especially when historic quality data is available. The conjunction of ACO
with ANN is a technique used successfully in optimizing parameters in other research areas. How-
ever, until now no one has explored the applicability of this technique to predict multiple groundwa-
ter quality parameters, although it has been used in several other domains in water resources man-
agement. Hence, the aim of our study is to build an ant colony optimized multiperceptron neural
network for predicting multiple groundwater quality parameters.

2. Methodology

2.1. Multilayer perceptron neural network (MLP-NN)

An MLP is a type of neural network that is widely used for forecasting applications. It comes
under the category of feedforward algorithms, since inputs are combined with the initial weights in
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a weighted sum and subjected to the activation function [40]. In an MLP-NN, each linear combination
of data is propagated to the next layer through a perceptron and multiple layers of interconnected
neurons process the input data to produce the output data. Backpropagation algorithms are used in
MLPs, to adjust the weights between the neurons and improve the accuracy of the network's predic-
tions [41]. In MLPs, generally unknown connection weights are adjusted to obtain the best match
between a historical set of model inputs and the corresponding outputs. The construction of a neural
network model involves three steps. i) Training stage is the priliminary step, in which the network is
exposed to a training set pertaining to the input—output patterns. ii) Testing stage is the second step
in which the network’s performance is evaluated. Consequently, the third step is the validation stage,
in which the network’s performance is evaluated. The expression for an output of an MLP is given
by equation 1.

Y, = fIZI0 Wej. o [Z0 WiXi + Wio] + Wio) (1)

In the equation, Wy is a weight in the output layer connecting the j* neuron in the hidden layer
and the k™ neuron in the output layer, Wi is the weight of the hidden layer connecting the i neuron
in the input layer and the j* neuron in the hidden layer, Wi is the bias for the j* hidden neuron, fn is
the activation function of the hidden neuron, W is the bias for the kth output neuron, ‘f’ is the acti-
vation function for the output neuron, Xiis i input variable for input layer and y is computed output
variable, Nn and M are the number of the neurons in the input and hidden layers. Neurons in each
layer are linked to neurons in the next layer with varying weights, and each neuron in a layer receives
input signals from the previous layer's neurons, which are multiplied by the corresponding connec-
tion weights. The model has been trained with appropriate number of epochs to reduce the error and
improve the learning rate of the model. One of the callbacks, Early Stopping has been used, so that
the model will terminate itself when the monitored quantity has finished improving based on the
weights. The backpropagation procedure decides the error value by computing the distinction be-
tween the predicted value and expected value, beginning from an output layer towards the input
layer. It is indicated by the symbol §(1)i, which is equivalent to the error of node i in layer 1.

S(Di=2z—y (2)

This is a repetitive process, and after modifications of the weights, the procedure is simulated
again until convergence of output.

2.2. ACO

Ant Colony Optimization (ACO) is a metaheuristic optimization algorithm inspired by the be-
havior of ants searching for food [42]. ACO is used to find optimal solutions to complex optimization
problems [43]. The algorithm involves a set of artificial ants that search for a solution by iteratively
constructing candidate solutions and evaluating their quality using a heuristic function and a phero-
mone trail. The pheromone trail represents the cumulative experience of the ants in finding good
solutions, and ants are more likely to select components with a higher pheromone level. Over time,
the pheromone trail is updated to reflect the quality of the solutions found by the ants. ACO has been
applied to a wide range of optimization problems and has the ability to handle complex, non-linear,
and non-differentiable objective functions. It has been successfully applied to optimizing weights in
ANNSs [44,45,46]. In Fig. 1, the general ACO algorithm for optimizing weight is illustrated. The frame-
work of ACO is split into three components. The first component involves the initialization of the
pheromone trail. The second component involves each ant building a solution to the problem using
a probabilistic condition transition rule, which is subjected to the condition of the pheromone. The
third component is updating of the quantity of pheromone according to rules set. The first phase is
the evaporating of a part of the pheromone and the second phase is the addition of pheromones of
each ant. This process is proportional to the fitness of its solution. This step is iterated until the stop-
ping criterion is achieved .
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Figure 1. Algorithmic frame for the ACO algorithm for weight optimization.

2.3. MLPNN and ACO

In MLPNN, training the model is one of the most important steps. The ability of ants to search
for optimal food paths is combined with neural networks in order to optimize the weights and biases
of the network. [47,48,49].The algorithm works by simulating the behavior of ants as they search for
food. In this case, the "food" represents the optimal set of weights and biases that minimize the net-
work's error. The ants in the ACO algorithm search for the optimal set of weights and biases by de-
positing pheromones on the connections between neurons in the network. The strength of the pher-
omones is proportional to the fitness of the solution represented by that connection. Ants then use
these pheromone trails to guide their search for better solutions. As the ants continue to search, the
pheromone trails are updated based on the quality of the solutions found. This process allows the
algorithm to converge towards the optimal solution over time. The step-by-step procedure of build-
ing an ACO-MLPNN is described below.

Step 1. Initialize the parameters of ACO and ANN, including the weights and biases of the ANN

Step 2. Initialize a population of ants

Step 3. Evaluate the fitness of each ant using the ANN and the current weights

Step 4. Update the pheromone levels on the paths based on the fitness of the ants

Step 5. Choose the best ant as the global best solution

Step 6. Use the global best solution to update the weights and biases of the ANN

Step 7. Repeat steps 2-6 until a stopping condition is met

Step 8. Return the best solution found

ACO has several advantages for MLPNN weight optimization. First, it is a population-based
algorithm that has the ability to search a large weight space efficiently. Second, it can handle non-
convex and multimodal fitness landscapes, which can be challenging for other optimization algo-
rithms. Third, it can find good solutions even when the weight space has many local optima, which
can be difficult to escape for other optimization algorithms.In in a hydrological study, the temporal
and spatial variation of parameters play a greater role. Inorder to consider the interplay betwen the
parameters, and the time, the algorithm was constructed, and site-specific models were developed.
Though the base is equation 1, site specific models developed were different and based on the time-
series of multivariate dataset. Hence, we have combined the davnatges od ANN and ACO with

Is it not necessary to talk about time series? Multi parameter? Multi criteria
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2.4. Data acquisition and processing

In order to study the efficiency of this model, a real dataset of a study area located in the Yadgir
district of Karnataka, India (Figure 2). Groundwater samples were collected from 50 wells periodi-
cally from the year 2014 to 2020 [50,51]. The samples were collected in 250-ml polyethylene bottles
that were pre-washed with a 1:1 diluted HNOs solution and rinsed with in the water to be sampled
before each sampling event. In the field, parameters such as, pH, HCOs and EC, were analyzed and
Ca?, Mg?, Na*, K*, U?*and CI- were measured in the laboratory following the standard procedures
as explained in [51]. The ion balance error was calculated for analytical precision, which was within
+10%.
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Figure 2. Location of the study site and monitoring wells.

The collected quality parameters were saved in a .csv file, and were split as training data, testing
data and validation data. Convenience sampling was used to split the data for training, testing and
validation since it is a time series dataset [52]. 80% of the data was used for training, and the remain-
ing 20% for testing and validating. Table 1 describes the sample collection period and the distribution
of training, testing and validation data.

Table 1. Sample collection period and distribution for training, testing and validation.

Training data Testing
data
2014 2015 2016 2018 2019
January & L
February *
March *
April
May *
June * *
August o
September | * & =
October L
December | *
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2.5. Model performance evaluation

Performance evaluation of the trained artificial neural network model was carried out to have
an understanding of how good the developed model was. To evaluate the performance and error of
the artificial neural network model was measured with three different metrics such as, i) coefficient
of multiple determination (R?), ii) the root mean squared error (RMSE) and iii) Nash-Sutcliffe effi-
ciencies (NSE) given by Egs. (3), (4), (5) and (6), respectively.

Coefficient of Determination

The Coefficient of Determination, denoted as R?, is a statistical measure that evaluates how well
a linear regression model fits the data [41]. It is a value between 0 and 1 that represents the proportion
of the variation in the dependent variable that is explained by the independent variable in the model.
R? is calculated by taking the ratio of the sum of squares of the regression (SSR) to the total sum of

squares (SST).
2 _ (USSR)
R =gsn O

Root Mean Squared Error (RMSE)

The root-mean-square error (RMSE) measures the difference between the actual values of the
dependent variable and the predicted values of the dependent variable produced by the regression
model. RMSE is commonly used in various applications such as in finance, engineering, and envi-
ronmental studies to evaluate the accuracy of models used for forecasting and prediction. It is a meas-
ure of the average magnitude of the errors between the predicted and actual values of the dependent
variable. A lower value of RMSE indicates that the model has a better fit to the data and is more
accurate in its predictions.

RMSE = \/MSE = \/%2{;1(1@ —Y')2  (4)

Nash-Sutcliffe efficiencies (NSE)

NSE is a commonly used statistical measure to evaluate the performance of hydrological or en-
vironmental models. It is a measure of how well the simulated values from a model match the ob-
served values, and it is based on the ratio of the residual sum of squares (RSS) to the total sum of
squares (TSS) of the observed data. In equation (5), RSS is the residual sum of squares, which is the
sum of the squared differences between the observed and simulated values, and TSS is the total sum
of squares, which is the sum of the squared differences between the observed and mean observed

values.

NSE=1-22 " | -0 <NSE<1](5)
TSS

Mean absolute error (MAE)

MAE is a measure of the average magnitude of errors in a set of predictions or estimates. It is
used to evaluate the accuracy of prediction models by measuring the difference between predicted
values and actual values. MAE is calculated by taking the absolute difference between the predicted
and actual values and then taking the average of those differences. The formula for MAE is:

MAE = (1/n) * X |actual - predicted| (6)

3. Results and discussions

3.1. Statistical description of data

The descriptive statistics of groundwater quality parameters were computed and given in Table
2. The mean value of EC is 2227.78 uS/cm, Ca is 87.39 mg/l, Na is 270.7 mg/l. K is 7.31 mg/l, Mg is
57.43 mg/l, F is 1.20 mg/l, Clis 400.79 mg/l, U is 26.28 mg/l and HCO3 is 411.76 mg/I. Interpreting the
skewness values, it is observed that all selected parameters were positively skewed and ranged
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between 0.87 to 4.18. This indicated that indicated that their distributions have longer right tails and
are concentrated towards the left. In general, a kurtosis value greater than 3 indicates a distribution
that is more peaked and has heavier tails than a normal distribution, while a value less than 3 indi-
cates a flatter distribution with lighter tails (Westfall 1905). The kurtosis value for pH (4.81), K (7.62)
and F (7.44) is positive, and indicates that the distribution is more peaked than a normal distribution.
This means that there are more extreme values in the dataset than would be expected for a normal
distribution. The kurtosis value for EC (12.26), Ca (12.64), Mg (13.82), Cl (18.71), U (17.71) and Na
(15.43) is positive, and indicates that the distribution is highly peaked and has more extreme values
than a normal distribution. The kurtosis value for HCOs is very close to zero (0.05), which indicates
that the distribution is roughly similar in peakedness to a normal distribution.

Table 2. Descriptive statistics of groundwater physicochemical parameters.

Mean  Standard Devia- Variance Kurto-  Skew- Mini- Maxi-
Parameter i .
tion SIS ness mum mum
pH 7.51 7.41 54.85 4.81 2.31 6.36 10.97
ECin pS/em  2227.7 2464.82 6075317.8 12.26 3.35 27.90 15560.00
8 1
Cain mg/l 87.39 91.29 8334.71 12.64 3.27 9.70 765.30
Na in mg/I 270.70 441.80 195188.01 15.43 3.76 2.39 3246.00
K in mg/l 7.31 7.42 55.05 7.62 2.31 0.02 52.00
Mg in mg/l 57.43 76.39 5835.21 13.82 3.48 0.00 505.00
F in mg/l 1.20 0.61 0.37 7.44 1.67 0.10 5.80
Clin mg/l 400.79 777.55 604584.95 18.71 4.18 25.68 5083.00
U in mg/l 26.28 41.98 1762.72 17.71 3.91 0.07 302.00
HCOs in  411.76 180.01  32402.67 0.05 0.87 143.22 956.99
mg/l

3.2. ACO-MLPNN model formulation

In construction of an ANN model, training is the first step. The model is introduced to the input-
output patterns. Each layer contains nodes that have distinct classifications according to their loca-
tions. Nodes at the first layer are introduced as the input data. The second layer, which is also known
as the hidden section of model and constitutes the hidden layers, (neurons); and mathematical calcu-
lations are used to find relationships between parameters. Finally, the output of this system is pro-
vided at the third layer. The connection between inputs, hidden and output layers consist of weights
and biases that are considered parameters of the neural network. ACO has several advantages for
MLPNN weight optimization. The weighted output is then passed through a transfer function. After
trial and error, the hidden neurons were set to 6. After initializing the network weights and biases
during the training process, iterative adjustments of the weights and biases pertaining to the network
were carried out. We have predicted 10 different parameters, and the model for each parameter and
each well location is independent and does not have any connection with the models of other param-
eters and locations developed. Hence, we have 10 separate models for each parameter considered.The
most popular algorithm for training neural networks is the back-propagation method. Backpropaga-
tion is a first-order optimization method based on the steepest descent algorithm that requires a learn-
ing rate to be specified. In this study, we use the default training function ‘trainlm’ for training the
hybrid model: ‘trainlm’ is the Levenberg-Marquardt back-propagation training algorithm, which up-
dates the weight and bias values according to the Levenberg-Marquardt procedure. In ACO, the
weights of an ANN are represented as pheromone values, and ants, mimicking the foraging behavior
of real ants, select weights based on these pheromone values and heuristics. The ants then update the
pheromone values based on the quality of the solution found, and pheromone evaporation is applied
to encourage exploration and prevent stagnation. This process is repeated for a certain number of
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iterations, and the best solution found by the ants, which corresponds to the set of weights resulting
in the lowest error, is selected as the final solution for the ANN. However, due to the stochastic nature
of ACO, careful tuning of parameters and multiple runs may be necessary to achieve optimal results.
ACO can be a promising approach for optimizing ANN weights, but it requires careful experimen-
tation and parameter tuning to achieve the best performance. While selecting the best fitting MLPNN,
the number of neurons was set to be 20 with the constant learning rate and momentum of 0.1 and 0.9,
respectively. The workflow sequence of the ACO-MLPNN is shown in figure 3.

F-—————==x
1 Neural
network

15 v Training
AN . e N e
11
] Fitness
i functi ACO
Testing [ function |
—
o Optimizing
splittin :
CSV P ¢ ‘Assign input connection weights connection

weights
4’| Training

Trained model

!

Groundwater quality parameters
prediction

Figure 3. Workflow of ACO-MLPNN.

3.2.1. Predicting temporal variation

In the constructed ACO-MLPNN network, data from 2014, 2015 and 2016 are used for training.
Data from 2018 and 2019 are used to testing and 2020 data is used for validation. Figure 4 represents
the temporal variation of all the parameters considered for training and testing of the neural network.
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Figure 4. Time series data of groundwater quality parameters with red line indicating the commence-

ment of testing period.

The temporal observed and predicted data for the validation data set for January 2020, April

2020, June 2020 and October 2020 appears to be in reasonable acceptance with each other. As an ex-
figure 5 and 6 respectively. In well no. 10, except for F-, all other ions have a good prediction. In well

ample, the observed and predicted quality parameters of well no. 10 and well no.31 are shown in

no. 31, except pH and F, all other ions have a good prediction. This may be attributed to the fact that
pH and F-have considerably less variance and standard deviation as compared to the other parame-
ters. Also, when the range of values is within a small limit, the prediction appears to be poor.
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Figure 5. Temporal variation of predicted pH, EC, Na*, Ca*, Na*, K*, Mg?, F-, CI- and U+ in well 10.

In order to study the temporal variation of predicted parameters in a closer scale, well no.10 and
well no 31 were chosen (figure 5 and figure 6). It can be inferred that the prediction of F- and pH has
great variation from the observed concentration. As discussed, this could be attributed to the range
of parameter concentration and the variance. The ability of ACO-MLPNN to predict other parameters
such as HCOs and EC, were analyzed and Ca?, Mg?, Na*, K* U?>* and CI- have been reasonably good.
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Figure 6. Temporal variation of predicted pH, EC, Na*, Ca*, Na*, K*, Mg?, F-, CI- and U+ in well 10.

3.2.2. Predicting spatial variation

The spatial variability of the predicted concentration of parameters were studied. The spatial
distribution of the observed and predicted data for Na* and CI- for January 2020 are shown in figure
7. The results are based on the past data, and each prediction is a separate model and also, there is
not connection between any well. Although, the index variable for training the network is the “loca-
tion of the well”, all the wells lie within the same regions and the groundwater networks could be
interconnected. The network constructed by us does not consider that geological complexity, and
hence that could be a drawback.
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Figure 7. Spatial variation of observed CI- concentration, ii) predicted Cl- concentration, iii) Observed
Na* concentration, and iv) Predicted Na* concentration.

3.4. Performance measures for ACO-MLPNN model

To quantify the error between the observed and predicted values, various performance effi-
ciency parameters were used. R, RMSE, NSE and MAE (equations 3,4,5 and 6) are the efficiency
parameters that were chosen (Table 3). The utilization of four statistical indices to evaluate the per-
formance of the proposed model offers several advantages. Firstly, it ensures that the maximum error
obtained during the evaluation process is within an acceptable range for a forecasting model. A linear
correlation between the observed and predicted parameters are shown in figure 8. Except for pH, and
F-, all the other parameters appear to be in good acceptance with the observed values.
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The use of RMSE allows for a check on the sum of errors over the validation period, ensuring
that it is not too high. Furthermore, the use of other indices provides a consistent level of errors, which
is important in ensuring that the model's performance is reliable when applied to unseen data in the
testing period. Using multiple indices provides a more comprehensive evaluation of the model's per-
formance. Each index captures a different aspect of the model's accuracy, and together they can give
a more complete picture of the model's strengths and weaknesses. In this way, the combined use of
both R?, RMSE, NSE and MAE indices provides a great potential for maintaining a consistent level of
error throughout the model evaluation process. The

Table 3. Model performance during validation phase.

Parameter Statistical indices MPNN model

pH R? 0.04
RMSE 0.70

NSE 0.99

MAE 0.53

EC R? 0.75
RMSE 446.87
NSE -21.68
MAE 291.54

Ca R? 0.53
RMSE 51.13

NSE -0.12

MAE 28.34

Na R? 0.87
RMSE 150.59
NSE -23.34

MAE 64.54

K R? 0.59
RMSE 0.24
NSE -77.17

MAE 9.6

Mg R? 0.78
RMSE 29.41

NSE -0.51

MAE 24.34

F R? 0.09
RMSE 0.70

NSE 0.31

MAE 0.65

Cl R? 0.98
RMSE 114.62

NSE 0.91

MAE 57.73

U R? 0.91
RMSE 14.94

NSE -0.17

MAE 8.22

HCO3 R? 0.93

RMSE 66.39
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NSE 0.96
MAE 50.38

*R?:values range from 0 to 1, value closer to 0 indicates lesser fit, value closer to 1 indicates better fit,
RMSE: lower RMSE value indicates a better fit, higher RMSE value indicates a poorer fit, NSE: value
ranges from negative infinity to 1, 1 indicates a perfect match, 0 indicates that predictions are no better

than mean of the observed data, negative value indicates that predictions are worse than using the
mean of the observed data , value greater than 0.5 is considered to be a good fit, MAE: lower MAE
value indicates a better fit, higher MAE value indicates a poorer fit.

These statistical indices represent the performance of the built ACO-MLPNN model for predict-
ing various water quality parameters. Based on the given indices, the ACO-MLPNN model per-
formed well for some parameters such as NSE for pH, Cl, and HCOs, and R? for Na and U. However,
the model performance was not satisfactory for some parameters, such as NSE for EC, Na, and K,
and RMSE for EC and Na. For pH the R?value is 0.04. This indicates that the model's ability to predict
the variance in pH values is low, the RMSE value is 0.70, which indicates that the model's average
prediction error for pH is moderate for pH is 0.99, indicating that the model's predictions for pH are
very close to the observed values, with only a small difference. Whereas, the MAE for pH is 0.53
indicating that the model's predictions for pH is mostly accurate, with relatively low error. Similarly
based on the results, the model seems to perform well for some parameters such as Na*, Cl, HCOs;,
and U2 with relatively high R? values and low RMSE and MAE values. However, the model performs
poorly for some parameters such as EC, Ca%, K-, and Mg? with low R?values and high RMSE and
MAE values. In some cases, the NSE value is negative, indicating that the model performs lower than
the mean value.

4. Conclusion

Machine learning models are being extensively used for classification, regression and prediction
across different industries and applications. In the field of hydrogeology, they provide valuable in-
sights into groundwater quality, allowing for effective management and protection of this critical
resource. In order to study the efficiency of machine learning, an ant colony optimized multilayer
perceptron neural network was used on a real groundwater quality dataset collected from northern
Karnataka, India. This technique was used to predict pH, EC, Na*, Ca*, Na*, K*, Mg?, F-, Cl- and U+
from 50 selected wells in this region. The temporal variation of the predicted groundwater quality
was compared with the observed quality parameters. The model for each well location and each pa-
rameter is unique.Performance efficiency was checked using R?, RMSE, NSE and MAE pefomance
metrics. This model gave reasonable prediction accuracy for parameters whose standard deviation
was high.However, for parameters with a smaller range did not show great prediction results. The
network suggested by us utilizes the ACO algorithm for optimizing ANN weights, but it requires
careful experimentation and parameter tuning to achieve the best performance. The spatial prediction
also shows considerable correlation with the observed values. However, this cannot replace sampling
and analysis, and this will certainly help in reducing the temporal frequency of sample collection.
Another major advantage is that, we can constantly keep adding data as and when field data is avail-
able, and this will improve the model performance further. This technique can also be used in other
domains which deal with multi-variant, spatial and temporal datasets.The ACO-MLPNN model may
need further optimization and calibration to improve its performance for some parameters, however,
it predicts good results for other parameters. Hence, the ACO-MLPNN model developed by us can
be considered as a robust tool to predict groundwater quality parameters. This study will help in
forecasting the status of groundwater quality in a region and can save from quality detorioration.
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