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Abstract: Porous materials can be characterized by well-trained neural networks. In this study, 1

fibrous paper-type gas diffusion layers were trained with artificial data created by a stochastic 2

geometry model. The features of the data were calculated by means of transport simulations using 3

the Lattice–Boltzmann method based on stochastic micro-structures. A convolutional neural network 4

was developed that can predict the permeability and tortuosity of the material, through-plane and 5

in-plane. The characteristics of real data, both uncompressed and compressed, were predicted. The 6

data was represented by reconstructed images of different sizes and image resolutions. Image artifacts 7

are also a source of potential errors in the prediction. The Kozeny–Carman trend was used to evaluate 8

the prediction of permeability and tortuosity of compressed real data. Using this method, it was 9

possible to decide if the predictions on compressed data were appropriate. 10

Keywords: PEFCs; Lattice–Boltzmann Method; stochastic modeling; machine learning 11

PACS: 88.30gg;88.30M-;88.30pj 12

1. Introduction 13

Gas diffusion layers (GDLs) are porous transport layers that are used in fuel cells to 14

allow the transport of fluids from the flow channels to the membrane. This requires good 15

gas permeability in the through-plane (TP) direction. For transport under the ribs of a 16

flow field, a good permeability in the in-plane (IP) direction is also desired. Ye et al. [1] 17

investigated the effect of GDL compression on the bypass of gases below the ribs of the flow 18

field. A critical review of mesoscale modeling in electrochemical devices was presented 19

by Ryan and Mukherjee [2]. Holzer et al. [3] evaluated the permeability of dry GDLs and 20

several other properties of the micro-structure. The porosity and shape of the pores was 21

investigated by Zenyuk et al. [4]. They used X-ray tomography for the analysis of structural 22

properties of a GDL under compression. Meanwhile, Bao et al. [5] reconstructed fiber-based 23

GDLs, calculated the impact of compression on the micro-structure by means of the finite 24

element method (FEM), and then analyzed the compressed GDL using computational fluid 25

dynamics (CFD). The relevance of compression on the properties of GDLs was shown by 26

Bosomoiu et al. [6], who investigated the micro-structure of paper-type GDLs via X-ray 27

tomography. They analyzed GDLs under ribs and under the channels of a flow field, 28

and also analyzed them in fresh and aged states. Permeability and tortuosity were some 29

of the features addressed in their studies. Mukherjee et al. [7] measured the TP and IP 30

permeability of GDLs, with and without polytetrafluorethylene (PTFE), and with and 31

without micro-porous layer (MPL). In order to reduce costs, GDLs from novel materials 32

were developed by Leonard et al. [8]. Zhang et al. [9] analyzed GDL properties using 33

Lattice–Boltzmann (LB) simulations based on reconstructed micro-structures. Artificial 34

intelligence (AI) enters the picture when machine learning (ML) or the deep learning 35

(DL) methods are applied in the field of electrochemical research. Ding et al. [10] recently 36

presented an overview of the application of ML in the field of fuel cell research, in particular 37
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for polymer electrolyte fuel cells (PEFCs). However, the use of AI methods is still growing 38

and is beyond of the scope of this extensive review article. In previous investigations, 39

the suitability of convolutional neural networks (CNN) was demonstrated by Froning 40

et al. [11] for the prediction of the TP permeability of paper-type GDLs. The data were 41

previously generated via LB simulations. In a similar manner, a CNN was developed by 42

Cawte and Bazylak [12], predicting the permeability of fibrous GDLs. In their study they 43

used the pore network modeling (PNM) method to generate their data. The accuracy of 44

predicting the permeabilities of porous media using CNNs in the context of LB simulations 45

was shown by Wang et al. [13]. In turn, the relevance of investigations in the GDL micro- 46

structure was pointed out by Pan et al. [14], who summarized the mechanics, techniques 47

and modeling approaches for GDL degradation. Using similar ML methods, Jafarizadeh et 48

al. [15] coupled their ML application with CFD and applied it to a variety of metal foams. 49

Yeh et al. [16] presented a CNN in the field of signal processing that is robust against 50

noise added to datasets for prediction. The performance prediction of PEFCs by a neural 51

network (NN) was coupled to flow channel optimization by Li et al. [17]. Applied to X-ray 52

tomography, Shum et al. [18] used ML algorithms for the water segmentation in GDLs 53

of PEFCs. For high-temperature PEFCs, Zhu et al. utilized a NN to predict performance 54

for a variety of parameters [19], achieving a percentage accuracy compared to numerical 55

methods. Buchaniec et al. [20] investigated the accuracy of gray-box models and applied 56

this technique to the triple-phase boundaries (TPBs) in the micro-structure of a solid oxide 57

fuel cell (SOFC) anode. Meanwhile, Yasuda et al. [21] presented a data-driven framework 58

for the characterization of porous materials, coupling ML methods with genetic algorithms. 59

The permeability was in the focus of their recent studies. In the field of geoscience, ML and 60

DL methods are well established. Arigbe et al. [22] used DL for the prediction of relative 61

permeability in real-time. However, there are also pitfalls in the use of AI. As reported by 62

Hurtz [23], an AI program that declassified world-class Go players was recently defeated 63

by an amateur Go player, underlining the fact that any AI code is bounded by the scope of 64

its training data. 65

Previous work [11] was extended in order to apply its previously-developed CNN 66

to real image data. Although the training and classical validation was performed on 67

artificial data, real data from image sources can suffer from image errors, which are caused 68

by several factors. In section 2, methods, both AI-related and physics-based, are briefly 69

summarized. Furthermore, several groups of image data are introduced. The preparation 70

of the data for the training process and the subsequent prediction is described in section 3. 71

The validation in section 4 addresses not only the validation of the artificial geometry data 72

but also aspects that occurred in real data obtained from image sources. The results are 73

presented in section 5. After discussing them in section 6, the work is summarized in 74

section 7. 75

2. Methods and data 76

Fibrous GDLs of the Toray type are characterized with the ML method, in particular 77

using a CNN presented by Froning et al. [11], as shown in sections 2.1 and 2.2. The 78

image data of the micro-structure is labeled by post-processing LB simulations, as is briefly 79

described in section 2.3. Subsequently, sections 2.4 and 2.5 provide an overview on the 80

data in the study. Finally, section 2.6 introduces the physical interpretation of the results 81

predicted by the CNN. 82

2.1. An overview on the machine learning model 83

As outlined in section 2.2, a CNN was developed in order to predict characteristics of 84

porous structures, namely the permeability and tortuosity. The geometry of the structures 85

is specified using black/white (BW) images. The CNN was trained using the same micro- 86

structures as published earlier [24]. Each data point was data point was given by 65 images, 87

having dimensions of 512x512. The resolution of them was 1.5 µm/px. The section 2.4 88

summarizes the details. 89
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Finally, the ML model was applied to real micro-structures introduced in section 2.5. 90

This data has different sizes and image resolutions than the training data. Furthermore, 91

imaging errors are present that were not contained in the training data. 92

The high performance computer CLAIX at RWTH Aachen University was used for 93

the training phase. Each of the graphic nodes of this system has two graphics processing 94

units (GPUs) of the kind ‘Tesla V100 SXM2 32 GB’. 95

2.2. Convolutional neural network model 96

The Python-based framework TensorFlow [25] was used to implement a CNN for 97

the prediction of the characteristics of a GDL with its fiber-based micro-structure. Its 98

architecture, as in previous work [11], is illustrated in Figure 1. The red-shaped layers 99

are also analyzed in detail. The first layer, marked as ‘0/Input’, contains the input micro- 100

structure of 512x512x65 dimensions. The parameters of the convolution layers were chosen 101

to reduce the flat shape of the 3D filters to a more regular one, from 512x512x65 on the input 102

layer, down to, e.g., 8x8x8 in the eighth layer. Layer ‘1/Convolution’ is the first hidden layer 103

of the CNN. The structure shrank in both the x and y directions. The layer ‘3/Convolution’ 104

also shrank in two dimensions. The third dimension was not reduced because of its flat 3D 105

shape. The architecture shown in Figure 1 was already used earlier [11] to predict the TP 106

permeability of Toray GDL. The same architecture – predicting one feature out of a stack of 107

images – was trained separately to four features, namely TP permeability, TP tortuosity, IP 108

permeability, and IP tortuosity. All of these the features were simulated earlier by means of 109

the LB method [24]. 110

2.3. Lattice–Boltzmann simulations 111

Material characteristics have been previously obtained from fiber-based GDLs using 112

the technique of LB simulations [24,26,27]. The micro-structure of a porous GDL is specified 113

by a stack of BW images. Using a stochastic geometry model, several representations of 114

a paper-type GDL were constructed, being analyzed by Froning et al. [24,26]. This work 115

employs this method to obtain the permeability and tortuosity of Toray GDL given by a 116

stack of images, both TP and IP. Because of the layer-wise construction of the fibers in the 117

plane, the IP characteristics only needed to be determined for one direction. Another kind 118

of GDL, represented by a stochastic model and also as a reconstruction of real data, was 119

investigated by Froning et al. [27]. 120

Transport simulations of gas flow through the porous micro-structure were calculated 121

in a domain defined by a series of BW images. A small free space buffer was added up- 122

stream and downstream of the porous media to allow for physically meaningful boundary 123

conditions. As was described in more detail in Froning et al. [24], a velocity boundary 124

was applied at the input and a constant pressure condition at the output. Wall boundary 125

conditions were specified at the other four sides of the simulation domain. As before, the 126

permeability was calculated from the resulting flow field using Darcy’s law. 127

κ = − q · µ

∇P
(1)

In equation (1) the permeability κ is a function of the flux q, the dynamic viscosity µ, 128

and the pressure drop ∇P. The tortuosity τ was calculated by equation (2). 129

τ =
⟨|v|⟩
⟨vx⟩

(2)

This is the simplest variant of a set of equations presented by Koponen et al. [28] 130

for the estimation of the flow-based tortuosity in porous structures. The tortuosity was 131

calculated as the ratio between the average values of the absolute velocity and of the x 132

component. The transport simulations were run on JURECA [29]. 133
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2.4. Basic data 134

The training data for the ML model is referred to as basic data in this section. Each 135

data point consists of a stack of images constructed by a geometry model developed by 136

Thiedmann et al. [30] and Wang et al. [31]. They developed a fiber model of the micro- 137

structure of Toray 090 GDL. Their studies are based on the stochastic analysis of real fibers. 138

In order to achieve the porosity of the real material they added binder material, again 139

using a stochastic approach. The binder model of Thiedmann et al. [30] is represented by a 140

width br of binder covering parts of the fibers [30]. Figure 2 illustrates the this approach in 141

selected images. 142

The data in Figure 2 A—D were published by Froning et al. [24], both uncompressed 143

and compressed. The total number of available data points is given by 144

• the number of the realizations of the fiber geometry: 25, 145

• the number of parameters used for different binder distributions: four, 146

• and the number of compression levels - six steps from 0% (uncompressed) to 50% – in 147

steps of 10% – were used. 148

In this way, a total number of 25 · 4 · 6 = 600 geometries could be available. It was already 149

stated by Froning et al. [24] that not all of the LB simulations did converge. This was 150

especially the case for the higher compressed micro-structures. From this reason, only 541 151

data points were available for training. 152

Based on Thiedmann et al. [30], the underlying fibers were also the subject of a high- 153

accuracy LB simulation by Lintermann and Schröder [32]. They used periodic boundary 154

conditions and a circular cross section of the fibers, whereas in this work wall boundary 155

conditions were used, with coarser mesh based on a quadratic cross-section of the fibers. 156

The reason was to obtain a better comparison with real data from X-ray tomography [30,31]. 157

2.5. Real data 158

The ML model was applied to real data from different sources. 159

R1 One image series of Toray GDL was reconstructed from the BESSY synchrotron, the 160

image source from which the GDL model of Thiedmann et al. [30] was validated. 161

R2 Two image series were obtained from a Nano CT Zeiss Xradia Versa 420 at the IEK-14 162

at the Forschungszentrum Jülich, allowing a minimal voxel size of 0.5 µm. Hoppe 163

[33] investigated Toray TGP-H-060 GDL, one series with labels (Figure 5), and 164

R3 one without (Figure 6). 165

In 2011, series R1 was obtained from the BESSY synchrotron for validation of the 166

Thiedmann geometry model [30]. The gray level images were segmented into binary BW 167

images, but their quality was not sufficient for LB simulations. Figure 3 shows two of the 168

200 images of dimensions 1250x1250. The images have a resolution of 1.5 µm/px. That 169

defines a square section with a side length of 1.875 mm. The porosity of the image stack – 170

calculated by counting pixels – is 0.782. 171

The resolution of the images in Figure 3 is the same as in the training data, but the 172

images are larger and are more than 130. This led to the opportunity to randomly select a 173

number of 3D sections of dimensions 130x512x512 out of the image stack of 200x1250x1250. 174

The resulting permeabilities (TP and IP) predicted by the CNN show a statistical variation, 175

changing with the position of the 3D subset. 176

The difference between Toray 060 and 090 is only the thickness: according to the 177

data sheet, Toray 060 has a thickness of 190 µm, whereas Toray 090 has one of 280 µm. 178

Hoppe [33] experimnentally analyzed the micro-structure of GDLs of different types, one 179

of them being Toray GDL under compression. Figure 4 (A) displays schematically the 180

membrane electrode assembly (MEA) with a GDL on both sides in the experimental setup 181

of a compression device. The images of the R2 and R3 series were obtained from a Nano 182

CT Zeiss Xradia Versa 420. Figure 4 (B) shows an example. 183

GDLs were compressed by different levels of compression. Series R2 was from the 184

channel side of a punch with a 1.0 mm slit, representing the 1.0 mm channel of a flow field. 185
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Series R3 was from the block side, i.e., the flat punch vis-à-vis a punch with a 0.8 mm slit. 186

The images of both the R2 and R3 series spanned a region from one rib across the channel 187

to the other rib in the scheme of Figure 4 (A). Hoppe [33] observed that the entire MEA 188

deformed under compression, and therefore affected both GDLs. The GDL on the channel 189

side also intruded into the channel. 190

The gray level images were segmented to black/white (BW) ones in order to provide 191

binary micro-structures for the LB simulations as introduced by Froning et al. [24]. The 192

BW images in figures 5 and 6 display similar segmentation artifacts as those from the X-ray 193

synchrotron in Figure 3. BW images of series R2 and R3 could only be created in thin slices 194

– no more than 40 images per sample – due to the low quality of the images. Because this 195

is too small for robust LB simulations [24], the image packs were stacked one above each 196

other until at least 120 images were achieved. Regarding the transport simulations, an 197

unrealistic periodicity was introduced into the micro-structure. Care must be taken at these 198

inner breaking faces, as they can possibly cause unpredictable side effects. The dimensions 199

of the image series are summarized in Table 1. 200

Table 1. Dimensions of the images series R1, R2, and R3.

Series No. Comp. No. of Dimensions
% images

R1 1 0 200 1250x1250
R2 1 6 40 694x670

2 8 22 671x688
3 11 27 697x661
4 13 40 684x673
5 16 22 682x682
6 18 40 673x687
7 19 21 685x680
8 21 40 688x677
9 24 40 670x685

10 29 40 670x685
R3 1 7 40 760x310

2 10 40 760x310
3 11 40 760x310
4 14 40 760x310
5 18 40 760x310
6 19 40 760x310
7 24 40 760x310
8 28 40 760x310
9 30 40 760x310

10 31 40 760x310

2.6. Evaluation of the predictions 201

In particular, the predictions of the real data from section 2.5 are interpreted according 202

to established relationships known in the characterization of porous material. 203

Based on the work of Tomadakis and Robertson [34], the Kozeny–Carman trend was 204

already successfully used by Froning et al. [24] in the description of porous material. 205

κ =
ε

Kc

(
Vp

Sp

)2
(3)

With the Kozeny–Carman equation (3), the permeability κ of a porous material is 206

related to morphological characteristics of the micro-structure, namely the total volume Vp 207

and the inner surface of the solid structure Sp. Kc is the Kozeny constant, representing the 208
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shape of the micro-structure. Furthermore, it is known that the product of the permeability 209

κ and tortuosity τ is related to the fraction of the total volume and the inner surface 210

κ · τ ∼ ε ·
(

Vp

Sp

)2
(4)

– as long as the shape of the micro-structure does not change under compression. That 211

allows a Kozeny–Carman (KC) trend to be defined. 212

κ · τ|x% = κ · τ|ref · ε

(
Vp

Sp

)2
∣∣∣∣∣
x%

/
ε

(
Vp

Sp

)2
∣∣∣∣∣
ref

(5)

The subscript ‘ref’ in equation (5) denotes a reference value of compression. In [24], a 213

value of 0% was used. With this relationship, the consistency of κ · τ, calculated for com- 214

pressed material (x%), can be justified. The training data (from [24]) consists of ensembles 215

of 25 stochastic micro-structures for each pair of binder type and compression level. When 216

the Kozeny–Carman trend (equation (5)) was applied to the LB simulations, the trend was 217

applied with ‘ref’ being the average values of 25 realizations of 0% compression for each 218

binder type. 219

3. Data preparation 220

3.1. Domain size normalization 221

The training data from previous investigations [24] were also used in this study. The 222

micro-structures are represented by series of images of the dimensions 512x512 each. The 223

number of images is related to the amount of compression. They are ranging from 65 in 224

case of 50% compression up to 130 for uncompressed micro-structures. Because a fixed 225

size is needed for the CNN, the data must be transformed to this domain size. Based 226

on the given data, the target size was chosen to be 65x512x512. For each fiber layer, the 227

geometry model defines five BW images in the uncompressed state [24], all of them being 228

identical. Compressing the images from 130 to 65 creates gray level images in which 229

intermediate gray levels where different images are merged by the compression routine. 230

Figure 7 illustrates intermediate gray levels on image triples after compression, exemplarily 231

on two image series. The labels in figures 7 and 2 – (B) and (D) – are corresponding to each 232

other. 233

3.2. Real data 234

The image stack R1 has images larger than those of the training dataset. The image 235

resolution of both the training data and the R1 series is the same: 1.5 µm/px. For the 236

prediction, 50 sections of dimensions 130x512x512 at random positions were cut out of the 237

images stack of 200x1250x1250. Random positions were chosen to avoid any systematic 238

influence. As a consequence, a set of 50 geometries were available for the prediction. 239

The real data of series R2 and R3 introduced in section 2.5 has images with a resolution 240

of 1.797 µm/px, whereas the CNN was trained with image resolutions of 1.5 µm/px. In 241

a first step, the images were re-scaled – a correction step in the x and y directions, which 242

was easily done with the tools of ImageMagick [35]. In the z-direction, this re-scaling must 243

be overlaid with the compression algorithm introduced in section 3.1. The R2 series has 244

images larger than 512x512. For the prediction, a section of 512x512 was cut out of each 245

of the R2 images. The images of R3 are smaller than 512 pixels in y direction, even after 246

re-scaling. The images are first doubled, introducing a break in the center of the images, 247

and then a 512x512 section was cut out, like in R2. 248

4. Validation 249

As in previous work [11], the data was validated using five-fold cross-validation. Fold 250

no. 4 was selected for presenting detailed results. 251
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The CNN was trained using 244 iterations with different labels, all of them from fold 252

no. 4: 253

A) permeability κTP / µm2
254

B) tortuosity 10 · τTP 255

C) permeability κIP / µm2
256

D) tortuosity 10 · τIP 257

It was necessary to train the tortuosity features with 10 · τ instead of τ. Five folds 258

were trained, each of them randomly splitting the data into training and test data in the 259

ratio of 80:20. The development of the MSE during the training of fold no. 4 is displayed in 260

Figure 8. 261

The training history does not appear suspicious, but an overfitting effect was observed 262

in the IP tortuosity of the real material, series R3, where τIP < 1 was predicted. The training 263

was re-run with only 122 iterations, and was then used for the prediction of results. This is 264

also discussed in detail in section 5. 265

The three layers that were marked in red shapes in Figure 1 are visualized in Figure 9, 266

as suggested by Nguyen et al. [36]. The data in each layer is three-dimensional. For 267

visualization, only the first image of the image stack is shown. Figure 9 displays the 268

first image of the input data. Convolution layers, together with succeeding filters, help 269

to detect features of the input data. Typically, on top of the network, local features are 270

detected, whereas deeper in the network, more complex features are learned [37]. The 271

convolution creates smaller image stacks but several channels, eight in the case of the layer 272

‘1/Convolution’ and 16 in the case of the layer ‘3/Convolution’. In the diagram, only four 273

of each are displayed. The subsequent layers show the result of the convolution steps 274

that creates gray level images, although the visualization in Figure 9 displays different 275

colors. The gray level images become blurred as the size is reduced. The hidden layers 276

of the CNN represent parameters of the fitting procedure during the training. In the 277

prediction, they show a kind of shadow of the input data. With increasing depth in the 278

network, the shadows become increasingly blurred, mimicking more complex features of 279

the micro-structure. 280

5. Results 281

The CNN was trained separately with permeability κ and tortuosity 10 · τ to achieve 282

models to predict permeability and tortuosity. A training with τ was not successful, which 283

demonstrates the dependency of the method from the absolute range of the characteristics. 284

The accuracy of the predicted permeability and tortuosity is shown in Figure 10. The 285

diagrams contain the values of the uncompressed data of fold no. 4. The predictions were 286

obtained using separated CNN weights for permeability and tortuosity, TP and IP. 287

The symbols in Figure 10 (a)–(c) are close to the ideal line, representing a good 288

agreement between the predicted data and labeled data. The effect of the binder type 289

on the permeability and TP tortuosity, which was not explicitly trained, is represented by 290

the predicted values – the information is inherent in the trained data. The scale of Figure 10 291

(d) is different from Figure 10 (b), because the IP tortuosity varies in a closer range than the 292

TP tortuosity. This is in agreement with the original data calculated by LB simulations by 293

Froning et al. [24]. 294

The real data of Toray GDL consists of 50 sub-regions randomly cut out of the image 295

stack of series R1, and two series R2 and R3 taken from an channel/rib assembly. The 296

predicted data for the cut-outs of series R1 are summarized in Table 2. The product of the 297

permeability κ and tortuosity τ will be used later in this section in comparison with series 298

R2 and R3. 299

In Table 2, the min/max values of the product κ · τ are different from the product of 300

the separate min/max values of κ and τ, because low values for the tortuosity typically 301

correspond to high values for the permeability and vice versa. The average values in Table 2 302

are close to the medians for all features. This confirms the absence of skewness in the 303

distributions that could occur in the systematic selection of the positions from where the 304
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Table 2. Tortuosity and permeability of 50 sub-sections of real data of series R1, predicted by the
CNN, were trained with fold no. 4. The physical units of the variance are the square of the units in
the column headers. The lower section shows the characteristics of the training data.

TP IP
κ τ κ · τ κ τ κ · τ

µm2 µm2 µm2 µm2

min 8.89 1.17 11.73 17.44 1.07 19.23
max 11.94 1.36 15.18 19.82 1.14 22.02
average 10.54 1.27 13.43 18.83 1.10 20.80
median 10.54 1.28 18.85 1.10
std. deviation σ 0.62 0.038 0.75 0.56 0.014 0.69
variance σ2 0.38 1.5 · 10−3 0.32 1.9 · 10−4

var. coeff. 5.9 · 10−2 3.0 · 10−2 5.58 · 10−2 3.0 · 10−2 1.3 · 10−2 3.3 · 10−2

average (B) in [24] 11.18 1.27 17.98 1.11
average (C) in [24] 10.51 1.29 17.81 1.11
favored: C B B B, C

sub-sections were cut out of the R1 image stack. The average values of the predicted TP and 305

IP permeabilities and tortuosities are compared with the previously-published [24] values, 306

separated according to the inherent binder model as introduced in Figure 2. The predicted 307

values best fit to the published values of binder models B and C, representing binder 308

widths of 18 µm and 30 µm. The statistical spread can be expressed by the dimensionless 309

variation coefficient V = σ/x̄, σ being the standard deviation and x̄ the average value. The 310

variation coefficient of the permeability (TP and IP) is smaller than that of the training data 311

as published in [24]. The variation coefficient of the predicted tortuosities is close to that of 312

the predicted permeabilities. Within the training data, it was somewhat smaller. 313

The binder widths in variants A and D were extreme values in the original develop- 314

ment of the underlying binder model by Thiedmann et al. [38]. Manual measurements of 315

the binder width in the BW images as shown in Figure 3 are hardly representative because 316

of significant imaging errors. These imaging errors also inhibited a successful LB simulation 317

of this micro-structure. 318

In series R2, the GDL was embedded in an assembly with a 1.0 mm channel width 319

and a 0.8 mm channel width in series R3. The resolution of the images – 1.797 µm/px – 320

was adapted to the resolution of the training data in the pre-processing step (1.5 µm/px). 321

Table 3 summarizes the predicted permeability. 322

The LB simulations in the IP direction did not converge on meaningful physical values. 323

It is believed that the tight stacking of the images led to significant errors at the artificial 324

inner breaking faces. These breaking faces are closer than the minimum domain size (100 325

in each coordinate direction) for these kinds of LB simulations, as identified by Froning et 326

al. [24]. 327

The inner structure is characterized by the porosity and the relationship (Vp/Sp) which 328

is used in the Kozeny–Carman trend, equations (4) and (5). The values for (Vp/Sp) in the 329

table are related to the resolution of 1.797 µm/px of the original images (see section 3.2). 330

Mangal et al. [39] measured the TP permeability of Toray GDL as 10.9 ± 1.2 µm2, 331

which is closer to the results of the LB simulations in artificial structures by Froning et al. 332

[24] than to those from the segmentations of real data in Table 3. This indicates that the 333

image segmentation possibly caused larger errors than the LB ones and the ML predictions. 334

The IP permeability is systematically larger than the TP permeability, which is consis- 335

tent with systematic investigations into the artificial micro-structures of Toray GDLs [24]. 336

The permeability of series R2 along the compression of the material is depicted in Figure 11. 337

Series R3 is shown in Figure 12. 338

Feser et al. [40] measured the IP permeability of three kinds of GDL, one of them 339

being Toray 060, under mechanical compression. They observed a decrease in the IP 340
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Table 3. The tortuosity and permeability of real data, predicted by the CNN, trained with fold no. 4.
The series are annotated according to section 2.5.

Series No. Comp. Porosity Vp/Sp TP IP
τLB τML κLB κML τLB τML κLB κML

% µm µm2 µm2 µm2 µm2

R2 1 6 0.688 7.12 1.22 1.26 6.01 8.18 1.01 18.20
2 8 0.666 6.38 1.13 1.17 5.91 6.97 1.01 15.97
3 11 0.678 6.72 1.15 1.28 6.07 7.03 1.01 16.31
4 13 0.669 6.74 1.23 1.27 4.65 6.82 1.04 16.10
5 16 0.669 6.74 1.11 1.35 6.98 6.25 1.05 16.09
6 18 0.669 6.59 1.25 1.27 4.36 6.05 1.07 15.37
7 19 0.680 6.05 1.12 1.26 5.49 5.91 1.07 14.09
8 21 0.644 6.42 1.26 1.27 3.46 5.86 1.03 13.35
9 24 0.640 6.41 1.27 1.27 3.23 5.12 1.02 12.25
10 29 0.640 6.41 1.27 1.28 3.23 4.59 1.04 11.05

R3 1 7 0.685 7.61 1.18 1.13 7.46 7.65 1.08 16.23
2 10 0.709 7.91 1.15 1.19 9.46 7.21 1.09 16.19
3 11 0.669 7.02 1.20 1.13 5.39 6.94 1.07 15.08
4 14 0.666 6.86 1.20 1.16 5.01 6.46 1.09 14.18
5 18 0.678 6.91 1.18 1.20 5.68 6.08 1.08 14.13
6 19 0.685 6.89 1.18 1.22 6.54 1.11 14.45
7 24 0.597 4.61 1.08 5.15 1.04 10.79
8 28 0.555 4.84 0.98 3.75 1.04 7.97
9 30 0.570 6.69 1.19 3.80 1.12 7.38
10 31 0.592 8.87 1.25 4.09 1.17 8.68

permeability of Toray GDL by a factor of approximately two under compressions of up to 341

24%. Their experiments showed variances of only 10–15%. This behavior is consistent with 342

the predicted κML values in the IP columns of Table 3 and the corresponding symbols in 343

figures 11 and 12. 344

The IP permeability and tortuosity were calculated in only one direction – the x 345

coordinate – because the geometry model of Thiedmann et al. [30] was stochastically- 346

invariant in the plane. The real data from Hoppe [33], however, was not invariant in 347

its two IP directions because of the morphological changes of the micro-structure under 348

compression. The x coordinate is the transport direction in the IP simulations. According to 349

Figure 4, this direction is across the channel in the mechanical compression setup of Hoppe 350

[33]. This fact may affect the LB simulations presented in Table 3 and Figure 11. 351

The consistency of the predicted data was evaluated via the product κ · τ. According to 352

equation (4), a constant was fitted to match κ · τ with ε · (Vp/Sp)
2. The latter characterizes 353

the compression of the material, assuming an almost similar shape of the inner structure. 354

Series R3 shows some outliers of (Vp/Sp) in Table 3, namely for compression levels 24%, 355

28% and 31%. 356

The KC trend (equation (4)) was fitted to the predicted values for κ · τ for the real data 357

from series R2 and R3. According to equation (4), a constant factor was determined that 358

minimized the sum of the squared errors. The resulting factor was 0.91 for the TP values 359

and 1.77 for the IP ones. The κ · τ relationship of series R2 is shown in Figure 13. The data is 360

presented in relation to the compression. Therefore the straight line from the fit procedure 361

follows the irregular shape of the displayed abscissa ε · (Vp/Sp)
2. The predicted values 362

for κ · τ show a good agreement with the Karman-Cozeny trend ε · (Vp/Sp)
2 (equation(4)). 363

Although the LB simulations in the IP direction failed in most cases, the ML predictions are 364

also consistent in this case. The failing LB simulations may be a consequence of the fact that 365

the images needed to be stacked upon each other. In IP direction, the wrong shear layers 366

potentially led to a different type of error than in the TP direction. For comparison, the 367

average of the predicted κ · τ of the R1 series was also inserted in Figure 13, including a small 368
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error bar representing the standard deviation from Table 2. This entry for uncompressed 369

data does not conflict with an extrapolation of the R2 series of compressed geometries in 370

Figure 13. 371

The κ · τ relationship of series R3 is shown in Figure 14. The fitted factors for the KC 372

trend of this data were 0.65 for the TP direction and 1.32 for the IP one. In comparison to 373

Figure 13, the predicted κ · τ for the R3 series shows less agreement with ε · (Vp/Sp)
2 than 374

before, especially for higher compression levels. This is in accordance with the presence 375

of outliers in the (Vp/Sp) entries in Table 3. Also, the R1 value for κ · τ is further away 376

from a meaningful extrapolation of the corresponding values of the compressed R3 series 377

in Figure 14 than it was previously, in the R2 series. The sub-optimal agreement of the KC 378

trend with κ · τ along the compression indicates that the underlying micro-structure – in 379

this case its representation by BW images – changes its shape under compression. 380

The deviation in the KC trend in Figure 14 is in agreement with the observation that 381

the LB simulations of these micro-structures failed more often than for the R2 series. 382

6. Discussion 383

The prediction of the permeability and tortuosity of Toray GDL was successfully 384

applied to segmented images of the micro-structure of real data. A re-scale of different 385

image resolutions and domain sizes led to consistent results. 386

Applied to real image data with unknown errors in the segmentation, overfitting 387

effects were observed. In contrast to introductory examples [25], where the test dataset is 388

usually of the same image quality as the training dataset, overfitting was not detected in 389

the test data. Additional consistency checks were necessary in the case of the R3 series, 390

where meaningless values (τ < 1) were predicted for the IP tortuosity. 391

As in previous work [24], the Kozeny–Carman trend on the product κ · τ of both the 392

permeability and tortuosity characteristics was applied to judge the consistency of the 393

predicted results. 394

Using real data, re-sizing and re-scaling was applied to the micro-structure, because 395

the CNN requires a 3D input geometry of fixed size. For this purpose, two image series, R2 396

and R3, were available. 397

The re-scaling from 1.797 µm/px of the micro-structure to 1.5 µm/px of the training 398

data obviously did not hurt the accuracy: the features of the R2 series were satisfactorily 399

predicted. That was not the case with the R3 series though. 400

One difference between the R2 and R3 series is the small size of the sample in the 401

y direction. The images of both series must be stacked upon each other in direction z to 402

achieve the the training size. Only for the R3 series was this procedure applied also in 403

direction y. The inaccuracy of the R3 series was observed in both the TP and IP directions. 404

Moreover, the images of R2 were taken from the channel side of the compression device 405

setup. The R3 images were taken from the block side. Although it was observed by Hoppe 406

[33] that the complete MEA was deformed under the channel, the impact of deformation 407

on the GDL micro-structure is expected to be lower on the block side than on the channel 408

one. The high relevance of the GDL deformation under compressed flow fields was shown 409

by Hoppe et al. [41], who investigated the GDL compression under misaligned flow fields. 410

The IP characteristics of the training data were only available for one direction [24]. 411

This is absolutely sufficient, given of the stochastic nature of the underlying geometry model 412

[30]. The geometries of the training data were homogeneously compressed. In contrast, 413

the real data of the R2 and R3 series were in-homogeneously compressed [33]: according 414

to Figure 4, there are regions under the channel and under the rib. In the arrangement of 415

Figure 4, the IP characteristics differ, along and perpendicular, to the channel. However, 416

this cannot be distinguished by a model that was trained for homogeneous compression. 417

From the application’s view, the permeability of the GDL on the flow field side – R2 418

– is expected to be higher than that of the GDL on the block side – R3. This is indeed 419

predicted by the ML model, but it must be conceded that the predictions of the R3 series 420

possibly cannot be trusted because of the KC trend. 421
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Nevertheless, it must be noted that imaging errors could have occurred in different 422

degrees of severity in both series. In this work, the KC trend was used to justify the 423

consistency of the ML predictions. It may be that other methods are viable for evaluating 424

the accuracy of predictions in case an application were to suffer from other effects than the 425

training data. 426

7. Conclusions 427

The CNN architecture for the prediction of permeability developed in previous work 428

is also able to train and predict the tortuosity of paper-type GDLs. Applied to images from 429

a different source than those of the training set, the consistency of the prediction must be 430

verified by an additional criterion. The effect of compression on the characteristics of the 431

porous media was verified using the Kozeny-Carman trend. This relationship was also 432

used to identify the sub-optimal segmentation of the micro-structure, leading to a deviation 433

between the Kozeny–Carman equation and the product of the permeability and tortuosity. 434

For different situations, another criterion could possibly help justify the consistency of the 435

predictions. 436
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Figure 1. CNN architecture of the proposed ML model.
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Figure 2. Four different radii br of binder illustrated on selected representations of fibers; A) br =
6 µm; B) br = 18 µm; C) br = 30 µm; and D) br = ∞.

Figure 3. X-ray synchrotron images of dimensions 1250x1250 from Toray 090 material; A) image no.
56 of 200; B) image no. 163 of 200.
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Figure 4. Compressed images, taken from a Nano CT Zeiss Xradia Versa 420; A) Schematic arrange-
ment in the compression device with GDLs on the channel (R2) and block sides (R3), with BW image
samples (not in scale); B) sample image from a nano CT Zeiss Xradia Versa 420.

Figure 5. Images from real Toray data under a flow field with 1.0 mm channel width, series R2: A) 6%
compression, image No. 5 of 40; B) 6% compression, image No. 20 of 40; C) 6% compression, image
No. 24 of 40; D) 6% compression, image No. 26 of 40.

Figure 6. Images from real Toray data under a flow field with 0.8 mm channel width, series R3: A) 7%
compression, image No. 1 of 40; B) 7% compression, image No. 2 of 40; C) 7% compression, image
No. 13 of 40; D) 7% compression, image No. 18 of 40.
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Figure 7. Demonstration of image compression: 50% compression results in pairwise merging of
two BW images to one gray level one. Three gray level images were merged from six BW images; B)
images 23 to 28 of a stack with br = 18 µm; D) images 23 to 28 of a stack with br = ∞, annotation as in
Figure 2.
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Figure 9. Three layers of the CNN during the prediction of an image stack. The images are not to
scale.
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Figure 10. Accuracy of the predicted permeability κ and tortuosity τ for different binder widths br,
uncompressed; a) TP κ; b) IP κ; c) TP τ; and d) IP τ.
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Figure 11. Permeability of the compressed GDL, series R2, calculated with LB simulations and
predicted by the CNN.
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Figure 12. Permeability of the compressed GDL, series R3, calculated with LB simulations and
predicted by the CNN.
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Figure 13. Consistency of the predicted κ · τ values of the R2 data with the Kozeny–Carman (KC)
trend.
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Figure 14. Consistency of the predicted κ · τ values of the R3 data with the Kozeny–Carman (KC)
trend.
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