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Article
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Abstract: Sign Language Recognition (SLR) aims to bridge speech-impaired and general communities 
by recognizing signs from given videos. Researchers still face challenges developing efficient SLR 
systems because of the video’s complex background, light illumination, and subject structures. 
Recently many researchers developed a skeleton-based sign language recognition system to overcome 
the subject and background variation of hand gesture signs. However, skeleton-based SLR is 
still under exploration due to the lack of information and annotations on hand key points. More 
recently, researchers included body and face information with the hand gesture for the SLR, but 
their performance and efficiency a re u nsatisfactory. We p roposed a  M ulti-Stream Graph-based 
Deep Neural Network (SL-GDN) for a skeleton-based SLR system to overcome the problems. The 
main purpose of the proposed SL-GDN approach is to improve the efficiency and performance of 
the SLR system with a low computational cost based on the human body pose in the form of 2D 
landmark locations. In the procedure, firstly, we constructed a skeleton graph based on the selected 
27 whole-body key points among 67 key points to solve the inefficiency problems. Then we proposed 
multi-stream SL-GDN to extract features from the whole-body skeleton graph for four streams. 
Finally, we concatenated the four different features and applied a classification module to refine the 
feature and recognize corresponding sign classes. Our data-driven and graph construction method 
increases the system’s flexibility and brings high generability to adapt various data samples. We used 
three large-scale benchmark SLR datasets to evaluate the proposed model: WLASL, AUTSL and CSL. 
The demonstrated performance accuracy table proved the superiority of the proposed model, and we 
believe this will be considered a great invention in the SLR domain.

Keywords: sign language recognition (SLR); large scale dataset; American sign language; Turkey 
sign language; Chinese sign language; AUTSL; CSL

1. Introduction

Sign language is a spatial kind of visual language based on dynamic gesture movement including

hand, body and facial gesture expression [1–7]. This is the language for those community who does not

speak or hear anything spatially for the deaf and speech-impaired people. Because of the difficulties

and various complexity of sign language, such as considerable time for understanding and utilizing

general people are not eager to learn this language to establish communication with those specialized

disabled people. In addition, teaching this language to the general people to communicate with

the minor community is not practical and feasible. Moreover, there are no international common

versions of this langue but it is affected by people’s several languages such as Bangla [3], Turkey [8],

Chinese [9], English [10], and culture [1,4,11]. To establish effective communication between the general
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people and the deaf community it is needed a language translator but it is rare to find expert sign,

language interpreters. Researchers think automatic sign language recognition(SLR) can only solve this

problem [3–6]. Researchers have been working to develop an SLR system with the help of computer

vision [3,4,12] sensor-based methods [5,6,12–15] and artificial intelligence to ease communication

way for deaf and hearing impaired people. Many researchers performed well with conventional

hand gestures and action recognition [1–3,8]. However, there have major differences between the

conventional hand gesture and SLR where the main difference is that SLR is more challenging to

recognise. The main difficulty in the SLR is that it requires delicate and global hand gestures to carry

the specific meaning and express the emotion of the person. In addition, right-hander, left-hander,

body shape, localism, and speed can change the meaning of the gesture sign. Similar signs can produce

different meanings because of their complexity. Collecting a large number of data from many signers

can be solved this problem, but it will be highly expensive. Many researchers used various handcraft

feature extraction methods with machine learning to classify sign language images. Most of them

used SIFT [16] and HOG [17] hand-crafted feature extraction and then employed SVM and KNN

to classify them [9,18,19]. Many researchers employed segmentation and semantic detection-based

model to recognize the SLR by following two stages [20–22]. The main drawback of this method is

that they may face difficulties in producing a good performance for the video or large-scale dataset.

Due to the updated device and storage capacity most of the researchers are interested to work with

time series and general large video datasets. The deep learning-based approach achieved significant

improvement in overcoming the large-scale time series and general video datasets. Researchers focus

on the deep learning-based model and applied RNN, LSTM and 3D CNNS to recognize pixel-based

SLR [23–26]. Also, this method produced a good performance, but the spatial and temporal features

combination is more efficient than this. To achieve this recently, many researchers employed an

attention-based model to recognize actions and hand gestures [1,2]. To improve the performance some

researchers combine the attention module with the local motion information [27,28]. Also, image-based

sign language recognition can be generated good performance but still faces difficulties because of

the computational complexity, complex background, light illumination, and partial occlusions. To

overcome these challenges more recently, many researchers proposed a skeleton-based SLR system that

mainly uses specific skeleton points instead of the pixels of the images [29–33]. The main advantage

of the skeleton-based SLR system is that it can increase attention and has strong adaptability to

complicated backgrounds and dynamic circumstances. However, there are still some deficiencies in

extracting the skeleton points for the SLR because of the inefficiency of the ground truth skeleton

annotation. Also, many motion capture systems such as Microsoft kinetic, Microsoft Oak-D, Intel RealS

sense and other systems only provide the main body coordinates and their skeleton annotation but it is

difficult to get the skeleton annotation for the gestures [34]. Shin et al. extracted the 21 hand key points

with the mediapipe system from the American sign language dataset. After extracting the distance

and angular features, they apply SVM for recognition [35]. The only hand skeleton information is

sometimes insufficient to correctly carry the exact meaning of the sign because of the lackings of

emotion and expression of the body. More recently, researchers have thought that a full-body skeleton

is more efficient for SLR systems [36]. Xia et al. extracted the hand skeleton and body skeleton with

different approaches, and they achieved good performance with the RNN-based model [37]. This

work’s main problem is the unreliable hand key points, and RNN can not produce a performance

for the dynamics skeletons. Perez et al. extracted 67 key points, including the face, body and hand

gestures, using a special camera, and finally, they achieved good performance with the LSTM [38].

Jiang et al. applied a different approach with a multimodal dataset, including full-body skeleton points

and achieved a good performance accuracy [8]. They also think of reducing the number of skeletons to

increase the model’s efficiency. The main problem is that their method did not seem able to achieve

good performance and the generalization property for the SLR compared to the existing systems.

In addition, researchers focused on the skeleton-based SLR because of the high complexity of the

pixel-based system. With the full-body skeleton, we face almost the same computational complexity
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problems. We proposed Multi-Stream Graph-based Deep Neural Networks (SL-GDN) to recognize

sign language using potential skeleton points of whole body information to overcome the challenges.

In the study, we designed a new skeleton graph for SLR, which included the spatial and temporal

features using the graph and neural network to model the dynamics embedded.

Our major contributions to the work are given below:

• We constructed a skeleton graph for Large Scale SLR with selected 27 key points among the whole

body key points. The main purpose of this graph is to construct a unified graph to dynamically

optimize the nodes and edges based on the different actions. Due to the minimum number of the

skeleton key points being selected among the whole body, the computational complexity can be

solved to increase the model’s efficiency.
• We extracted the hybrid feature by combining the Graph-based SL-GDN and Generale Neural

network features from the multiple streams. After concatenating the feature, we used a

classification module to refine the concatenated feature and prediction.
• To evaluate the model, we used three large-scale datasets with four modalities: joint, joint, bone

and bone. Our model generated a high performance compared to the existing system.

The presented work is organized as follows: Section 2 summarizes the existing research

work and problems related to the presented work, Section 3 describes the benchmark and

proposed Korean sign language datasets, and Section 4 describes the architecture of the proposed

system—Section 5 evaluation performance. In Section 6, draw the conclusion and future work.

2. Related Work

Sign Language Recognition (SLR) has achieved significant progress using various deep

learning-based models which achieved good performance with the allowable computational

power [1–4,21,22,26,39–43]. The existing SLR systems are still facing many difficulties in achieving good

performance because of the inefficiency of the potential information, consider-able gesture for SLR and

potential features. One of the common challenges is to capture global body motion skeleton and local

arm, hand, and facial expressions simultaneously. Neverova et al. employed a ModDrop framework

for initializing individual and gradual fusion modalities for capturing spatial information [39]. They

achieved good performance for spatial and temporal information for multiple modalities. One of

the drawbacks of their ideas is that they applied an augmented with audio which is not good for all

time. Pu et al. employed connectionist temporal classification (CTC) for sequence modelling and a 3D

convolutional residual network (3D-ResNet) for feature learning [26]. The employed LSTM and CTC

decoder with jointly trained by a soft Dynamic Time Warping (soft-DTW) alignment constraint. Finally,

they employed 3D-ResNet for training labels with lass and validated with RWTHPHOENIX-Weather

and CSL datasets with 36.7% and 32.7-word error rate (WER) sequentially. Koller et al. employed a

hybrid CNN-HMM model for combining the two kinds of features, such as the discriminative features

of the CNN with the sequence features of Hid-den-Markov-Models (HMMs) [21]. They claimed they

achieved good recognition accuracy for the three benchmark sign language datasets, which reduced

20% WER. Huang et al. proposed an attention-based 3D-convolutional neural net-works (3D-CNNs)

for SLR aiming to extract the spatial-temporal feature and selected highlighted information with

an attention mechanism [27]. Finally, they evaluated their model with the CSL and ChaLearn 14

benchmark dataset, where they achieved 95.30% accuracy with the ChaLearn dataset. Pigou et al.

proposed a simple temporal feature pooling-based method that proved temporal information is more

important as discriminative features for video classification-related research work [44]. They also

focus on the recurrence information with temporal convolution, which can improve the significants

of the video classification task. SINCAN et al. proposed a hybrid method combining an LSTM,

Feature pooling and CNN method to recognize isolated sign language [24]. They included the VGG-16

pre-trained model with the CNN part and two parallel architectures for learning RGB and Depth

information. Finally, they achieved 93.15% accuracy with Montalbano Italian sign language dataset.
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Huang et al. applied a continuous sign language recognition approach to eliminate the preprocessing

of temporal segmentation, namely Hierarchical Attention Network with Latent Space (LS-HAN) [28].

They mainly included two-stream CNN, LS and a HAN for video feature extraction, semantic gap

bridging and latent space-based recognition, respectively. The main drawback of their work is that

they mainly extracted pure-visual features, which are not good for capturing hand gestures and body

movements. Zhou et al. proposed a holistic visual appearance-based approach and a 2D human

pose-based method to improve the performance with large-scale sign language recognition [23]].

They also applied pose-based temporal graph convolution networks (Pose-TGCN) to extract the pose

trajectories’ temporal dependencies and achieved 66% accuracy for the 2000 words glosses. Liu et

al. applied a feature extraction approach based on the deep CNN with stack temporal fusion layers

with a sequence learning model Bidirectional RNN [45]. Guo et al. employed a hierarchical LSTM

approach with word embedding, including visual content for SLR [46]. Firstly, spatial-temporal

information is extracted by 3D CNN and then compacted into a visemes with the help of an online key

based on the adaptive variable length. Their approach is not so much efficient for capturing motion

information. The main drawback of image and video pixel-based work is to high computational

complexity To overcome these drawbacks, researchers are thinking about the joint point instead of

the full image pixels for the hand gesture and action recognition [47–49]. Various models have been

used in skeleton-based gesture recognition among LSTM [33] and RNN [50] among them. Yan et a.

applied a graph-based method, namely ST-GCN, for building a dynamics pattern for skeleton-based

action recognition with Graph convolutional network(GCN) [33]. By following the previous task,

many researchers have employed some modified versions of the ST-GCN to improve the performance

accuracy for Hand Gesture and Hu-man activity recognition work. Li et all; employed an encoder and

a decoder for extracting action-specific latent information [49]. They included two links to do this and

finally employed GCN-based action structured GCN to learn temporal and spatial information. Shi et

al. employed a two-stream-based GCN for action recognition [51], and a multi-stream GCN for action

recognition [30]. In the multi-stream GCN, they integrated the GCN with a spatial temporal-based

network to extract the more important joints and features from the all features. Zhang et al. proposed

a decoupling GCN to recognize skeleton-based action recognition [29]. Song et al. proposed ResGCN

integrating with Part-wise Attention (PartAtt) to improve the performance and computational cost

of the skeleton-based action recognition [31]. But their main drawback is their performance is not

so much higher than the existing ResNet performance. Amorin et al. proposed a human skeleton

movement-based sign language recognition using ST-GCN, where they proposed to select the potential

key points from the whole body key points. Finally, they achieved 85.0% accuracy with their dataset

name ASLLVD [52]. The disadvantage of this work is that they consider only one hand with the body

key point. Perez et al. extracted 67 key points, including the face, body and hand gestures, using a

special camera, and finally, they achieved good performance with the LSTM [38]. In the same way,

many researchers considered 133 points from the whole body to recognize sign language [8]. Jiang et

al. applied a different approach with a multimodal dataset, including full-body skeleton points and

achieved a good performance accuracy [8]. They also think of reducing the number of skeletons to

increase the model’s efficiency. The main problem is that their method did not seem able to achieve

good performance and the generalization property for the SLR compared to the existing systems.

In addition, researchers focused on the skeleton-based SLR because of the high complexity of the

pixel-based system. With the full-body skeleton, we face almost the same computational complexity

problems.

3. Dataset

We used three large-scale datasets in this study, which are shown in Table 1. Section 3.1, AUtSL

Dataset, in Section 3.2 described the CSL dataset and in Section 3.3 described the WLASL dataset.
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Table 1. Evaluated Dataset Description in the Study

Dataset Name Language Name Year Signes Subjects Total Sample Sample Sign

WLASL [53] Amercian 2020 2000 119 21089 10.5
AUTSL [54] Turkish 2020 226 43 38336 169.6
CSL [23] Chines 2019 500 50 125000 250

3.1. AUTSL Dataset

Another sign language dataset is the Turkish Sign Language dataset (AUTSL), collected from

diverse, challenging backgrounds, including real-life scenarios. To record the dataset, they used

Microsoft Kinect V2, including RGB, depth and skeleton modalities [54]. This dataset was collected

from 43 people considering 226 signs. They recorded 38336 video clips in total for the 226 signs with

30 frame speed, and they collected this from 20 different challenging backgrounds. In the background,

they considered the camera field-of-view, increasing or decreasing the appearance by adding a new

object or removing an object in the background. In addition, moving trees, various lighting conditions,

sunlight, artificial light, people passing behind the signer, and some bright-dark areas or shadowed. In

the selected signs, they considered the most used word in the turkey language, like push, wait, shoe,

face, wait, help, danger, doctor, hospitals, building, and signs. Figure 1 shows the sample sign of the

AUTSL Dataset.

Figure 1. Sample of AUTSL Dataset.

3.2. CSL Dataset

CSL in the context of a large-scale Chinese Sign Language dataset, refers to a collection of

videos and/or images of people signing in Chinese Sign Language, along with their corresponding

transcriptions and annotations. There are 50 subjects that give the data with Depth, RGB and Skeleton

modality. The video had 30 PFS and 1280*720 RGB resolution and 2 to 4 seconds duration videos [23].

They selected 500 different words for the labels and recorded 2 to 4 videos for each word. In total, they

recorded 125000 total videos from 50 people with 30 FPS. These datasets are often used for training and

evaluating machine learning models for sign language recognition, translation, and other tasks CSL,

in the context of a large-scale Chinese Sign Language (CSL) dataset, refers to a collection of videos

or images of people signing in CSL, along with their corresponding transcriptions and annotations.

These datasets are important resources for research and development in sign language processing,

including sign language recognition, translation, and other tasks. A large-scale CSL dataset typically

includes many sign language samples recorded from a diverse group of signers, covering a wide

range of signs and variations in signing styles. This diversity ensures that machine learning models

trained on the dataset can generalize to real-world signing scenarios. The annotations in a CSL dataset
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can include information such as the signs being performed, each sign’s start and end times, and the

signing posture and movement patterns. This information trains and evaluates machine learning

models that aim to recognize and transcribe sign language. Large-scale CSL datasets are crucial

in advancing sign language processing technology and making it more accessible to the deaf and

hard-of-hearing community. These datasets provide a foundation for building more accurate and

effective sign language recognition and translation systems, which can help bridge the communication

gap between the hearing and non-hearing worlds. Figure 2 shows the sample sign of the CSL dataset.

Figure 2. Sample of CSL Dataset.

3.3. WLASL Dataset

WLASL is one of the SLR’s large-scale video datasets from the Word Level American Sign

Langauge dataset (WLASL). This dataset was made by the University of Central Florida sign language

re-searchers team, collecting 21089 individual videos with 200 unique signs of ASL [53]. There were

200 people who participated in the recording process as a subject. During the collecting dataset, only

one sign was collected from one signer with some repetition and in most cases, it was a frontal view

but included diverse, complex backgrounds. After collecting data, it was labelled using the English

glosses, where each gloss annotation contained only one word. If an individual gloss contains more

than one word, it will select only one word by discarding the others using unique rules. The aim of

selecting only one word for a gloss is to ensure sufficient samples in the training and test sets. The

video was collected with a camera known as Microsoft Kinect, and the signer gave the dataset from in

front of the camera view where signers performed multiple times for unique signs for capturing the

divers signing style and camera angles. After that, the sort gloss in descending order for the prepared

sample number of gloss yields a better understanding formate for the word level scalability of the

sign recognition method and sign recognition tasks. The dataset also contained a different number

of glosses like 100, 300, 1000, and 2000, which is the defined as four subsets, namely WLASL100,

WLASL300, WLASL1000 and WLASL2000, respectively. The WLASL dataset is an important resource

for developing and evaluating computer vision and machine learning algorithms for sign language

recognition. It has been used in several research papers and is freely available for non-commercial

research purposes.

4. Proposed Methodology

In the study, we developed Multi-Stream Graph-based Deep Neural Networks (SL-GDN) to

recognize sign language using potential skeleton points of whole body information. This idea we

generated from the concept of Jiang [8]. The key idea is applying a Neural network(NN) with a
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fully connected layer to construct a fully connected graph from the selected whole-body key points.

The objective is to edge and node features dynamically learned via a sequential graph and general

convolutional network, which is performed in both spatial and temporal information. Our graph is

mainly constructed with a spatial-temporal model for recognizing hand gestures based on human

body skeleton information dynamics. We also adopt a multi-stream approach for various information

to improve performance further. Although, many researchers developed an SLR system with the 21

key points extracted using a media pipe [35]. Researchers found that only hand information cannot

express the sign’s exact meaning and emotion. After that, researchers think a full-body skeleton is

more efficient for the SLR systems [36]. To do this, some researchers think about the body with hand

because this aims to localize the key points or joints of human bodies from a single image or video.

Besides the traditional approach, such as pictorial structures [25] and probabilistic model [38] for

estimating the single-person poses, many researchers develop their system using the ground truth

skeleton, which is come from the motion capture device such as Kinect version 2 [55]. Nowadays,

many deep learning-based techniques extract the whole body’s key points. Although these deep

learning-based pose estimations generated body key points, this is insufficient because it needs the

spatial dependencies on the extracted key points. One of the researchers [8] extracted 133 key points

for the whole body, including the body, face and two using oppose [12], where 42 key points come

from the left and right hand and the rest of the key points come from the upper body [8,9]. Among

the 133 we worked with, we selected the 27 most potential key points using the graph reduction

approach, considering 20 key points from both the left and right hand and seven from the upper

body. Figure 3 shows the detailed working flow architecture of the proposed model where we first

took the 27 whole body joint keypoint then extracted joint motion, bone and bone motion key points

stream from this based on the formula [8]. In each of the skeleton streams, we applied a NN with a

fully connected layer which helps to make a fully connected graph where node and edges feature

learn with the graph convolution and deep neural network. We extracted spatial features with the

Graph convolutional network. We fed them to the convolutional neural network layer through bach

normalization, relu and dropout layer and produced a feature vector. In the same way, we extracted

features from the four streams and concatenated them to produce the final feature vector. We fed the

final feature vector into the classification module to refine the final feature, and after converting the

matrix feature into a vector, we used a classification layer. Figure 3 shows the working flowgraph of

the proposed study, and 4 shows the NN, SL-GDN and classification modules separately.

Figure 3. Working Flow Architecture

Figure 4. (a) Neural Network (NN) (b) SL-GDN (c) Classification Module
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4.1. Key points Selection and Graph Construction

A sequence of vectors comes from the single frame, considered a raw skeleton where individual

vectors represent 2D coordinates of the human joints. Moreover, a full hand gesture sign consists

of multiple frames based on the number of frames and samples. We constructed a spatial-temporal

graph by considering the natural connection among the adjacent skeleton points. We assumed a set of

the node set V = v(i, t)|i = 1, . . . , N, t = 1, . . . , T, which is mainly body, face and hand pose skeleton

points. To construct the adjacent matrix for the graph, we used the following formulas Equation 1.

f (x) =

{

1 1 if there is adjacent

0 if there is no adjacent.
(1)

Where if there is adjacent denoted the calculation minimum distance or shortest path between two

nodes. As mentioned, 133 key points in our pose, including body, face, and hand, are many nodes.

Because of the large number of nodes and edges, there may be unnecessary noise. In addition, in

any case, if their two nodes are far from each other, then it isn’t easy to extract the relation between

the two nodes. Because of the complexity, all key points produce noise, and hard to improve the

performance accuracy [8,56]. After that, based on the visualization of the spatial-temporal graph, we

selected 27 nodes based on the graph reduction algorithms. The selected 27 nodes included ten nodes

for individual hands and seven key points from the upper body parts demonstrated in Figure 1 as an

SLR graph. In the graph, we visualize the essential key points of the body to construct an SLR graph.

Because of the reduction, the performance and efficiency of the system are increased.

4.2. Neural Network (NN)

In our study, we constructed a graph from the whole body skeleton and then extracted features

from a skeleton-based graph using graph convolution and a general neural network. To increase the

ability to modify the unified graph dynamically based on the different actions, we employed NN on

the skeleton. The main purpose of the NN is to achieve generalizability property for making skeleton

graphs, which is not depending on the number of skeleton points. We employed the NN to produce

the initial feature from the skeleton points, where we first employed a fully connected layer along with

the relu function, then normalised with layer normalization and dropout layer to reduce the overfitting

and produced the initial feature F1 [1].

4.3. Graph Convolution

We are considering the spatial-temporal graph based on the spatial partitioning strategy to the

dynamic skeleton models to extract the potential pattern embedded with the whole body skeleton

graph [8,33]. To construct the spatial graph for the whole body point can be used following Equation 2.

Gout = D−(1/2)(A + I)D−(1/2)xW (2)

Where A, I, D, W have denoted the intr-body connection, self-connection or an identity matrix,

diagonal degrees of (A + I) and trainable weight matrix of the convolution, respectively. In the

implementation of the graph convolutional, we performed 2d convolutional and multiplied it with

the DD−(1/2)(A + I)D−(1/2), which is assumed as a spatial graph convolution. We also used a 2D

convolution with the kt × 1 kernel size to implement the temporal graph convolution. We adopted

a Neural network (NN) architecture consisting of a fully connected network to boost the network’s

capacity. The fully connected results of the NN are fed to the SL-GDN network to produce the final

features.
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4.4. SL-GDN Architecture Block

The proposed SL-GDN took the output of NN as an input which performed the kt × 1 convolution

on the C × T × N initial feature map where NTC denoted the number of vertexes, temporal length

and the number of channels, respectively. Here SL-GDN architecture is mainly constructed with a

graph convolution layer and batch normalization (BN) layer and relies on a convolutional layer, relu

layer and dropout layer. After that, we concatenated this temporal feature with the initial feature

and produced the final feature. Finally, we employed a classification module that included the NN

concerning refining the final feature. After averaging the refined feature, we average them to convert

the matrix into a vector and employ a fully connected layer based on the number of classes denoted by

C in Figure 4(c).

4.5. Four-stream Approach

To overcome the inefficient feature problems of the skeleton-based SLR system, we employed

the first and 2nd order representation of the skeleton points, namely joints coordinates and bone

coordinates with their motion vector [11,48,49]. Figure 3 shows the multi-four stream SL-GDN uses

joint, joint, bone, and bone motion. Joint data in a vector form indicated from source to target joints

produced the Bone data based on the natural connection of the human body. Here we consider the

nose a zero-number joint known as a root joint of the human body, and bone data for the nose is 0.

Assume the source and target joint can be expressed as vJ
p,t = (xp,t, yp,t, Sp,t) and vJ

q,t = (xq,t, yq,t, Sq,t)

where the x − y score and confidence score are represented by x,y and S. The bone vectors can be

calculated by subtracting the source joint and target joint as vB
p,t = (xp,t − xq,t, yp,t − yq,t, Sp,t) here

(p, q) is the set of keypoint joint for face, body, and hand pose. The difference between adjacent frames

produces the motion data for both joint and bone motion [8]. Based on the mentioned formula, we can

calculate the joint motion as follows vJ,M
p,t = (xp,t − xp,t+1, yp,t − yp,t+1, Sp,t). In the same bone motion

can be calculated as vB,M
p,t = vB

p,t − vB
p,t+1. We trained each stream with individual data and produced

the feature, and finally, we concatenated all four features to produce the final feature vector [29,30]

4.6. Classification Module

After concatenating the four stream feature, we made a final feature vector and applied a

classification module for the prediction. In the classification module, there are two parts; where

first part includes a fully connected layer with relue and dropout layer to refine the final feature vector,

and finally, we average the matrix into a vector and employ a fully connected layer with several classes

and ready for classification.

5. Experimental result

Conducting experiments on sign language classification with three large-scale datasets, we

investigate the proposed model’s superiority and effectiveness in this section. We extracted the

proposed model’s performance accuracy first, then reported the state-of-the-art comparison.

5.1. Environmental Setting

To evaluate the model, we used three large-scale datasets, namely WLASL, CSL and AUTSL,

with predefined training sets and tests of their dataset. Each dataset has four types of the stream:

joint, bone, joint motion, and bone motion. Each stream produced individual features using the

SL-GDN model, and we concatenated the 4 four features. Finally, we refined and classified the final

feature with the classification module. To implement the proposed system, we used here google colab

environment and python programming language. For the framework, we used here Pytorch [57]

python programming language framework in the Google Colab Pro edition environment, which

provided us Tesla 100 machine with 25GB GPU processing power [58]. Pytorch is one kind of a boon

to the attention, transformer and deep learning model. This is because an open source requires a
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minimum computational cost and high compatibility and adaptability properties with minimum

resources. In addition, we used here OpenCV package, open pose, pickle and csv for the initial

processing [59,60]. The main goal of the pickle package is to convert the dataset into a byte stream

for portable storage. We used the Numpy and Pandas packages that increase flexibility in matrix

multiplication and other operations to process the statistical and mathematical procedures. We use

initial learning here to reduce the high fluctuation rate to fasten the convergence of the training and

testing with the Adam optimizer [60]. We used the 1000 epochs for tuning the model with various

parameter tuning operations for the learning rate and optimizer for the multi classes of the study.

5.2. Performance Accuracy with the Three dataset

Table 2 demonstrates the performance of the proposed model, which includes the performance of

the AUTSL, CSL and WLASL datasets. We visualize the performance for the individual four streams

and the multi-stream of the proposed model. Table 1 reported 96.00% accuracy for the AUTSL data

with Joint information and 95.00%, 94.00%, 93.00% and 96.00% for the joint motion, bone, bone motion,

and multi-stream keypoint, respectively. In the same way, CSL showed 26.00%,27.00%, 26.00%, and

25.00%26.12% accuracy for the joint, joint motion, bone, bone motion, and multi-stream keypoint,

respectively. We also included the WLASL dataset, which showed 50.00%,49.00%,48.00%,48.00%, and

50.00% accuracy for the joint, joint motion, bone, bone motion, and multi-stream keypoint, respectively.

Figure 5. Proposed Model Performance for 3 Dataset.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 May 2023                   doi:10.20944/preprints202305.0467.v1

https://doi.org/10.20944/preprints202305.0467.v1


11 of 14

Table 2. Proposed Model Performance for 3 Dataset.

Stream AUTSL CSL WLASL

Joint 96.00 88.70 50.00

Joint Motion 95.00 87.00 49.00

Bone 94.00 86.00 48.00

Bone Motion 93.00 86.50 48.00

Multi-Stream 96.00 89.45 50.00

5.3. State of the art comparison of the proposed model with AUTSL Dataset

Table 3 shows the state-of-the-art comparison of the proposed model with Jiang [8]. The proposed

model showed 96.00% accuracy for the Multi-Stream modal, whereas the existing model produced

95.54% accuracy. Jiang et al. proposed various models with various criteria and key points based

on one method they used [8]. They also employed various models, and one of the models reported

95.02%,94.70%,93.10%,92.49% and 95.45% accuracy for the joint, joint motion, bone, bone motion, and

multi-stream key point, respectively.

Table 3. State of the art comparison for the AUTSL datasets.

Dataset Types Method Name Performance

RGB+Depth CNN+FPM+LSTM+Attention [54] 83.93

Skeleton Joint Jiang[8] 95.02

Skeleton Joint Motion Jiang [8] 94.70

Skeleton Bone Jiang [8] 93.10

Skeleton Bone Motion Jiang [8] 92.49

Skeleton Multi-Stream Jiang [8] 95.45

Skeleton Joint Proposed Model 96.00

Skeleton Joint Motion Proposed Model 95.00

Skeleton Bone Proposed Model 94.00

Skeleton Bone Motion Proposed Model 93.00

Skeleton Multi-Stream Proposed Model 96.45

5.4. State of the art comparison of the proposed model with CSL Dataset

Table 4 shows the state-of-the-art comparison for the CSL dataset, which reported 88.70% accuracy

for the proposed model where the existing model 3D-CNN [27] achieved88.70% accuracy.

Table 4. State of the art comparison for the CSL datataset.

Dataset Name Dataset Types Methodology Performance [%]

CSL RGB-D+Skeleton 3D-CNN [27] 88.70

Proposed Model Skeleton SL-GDN 89.45

6. Conclusions

In our work, we proposed a Multi-Stream Graph-based Deep Neural Network (MSL-GDN) for a

skeleton-based SLR system where we consider the four streams of the skeleton-based sign language

dataset. Specifically, we made a graph that is known as a skeleton graph for the whole body pose

key points and then applied MSL-GDN to compute the spatial and temporal features. We extracted

individual features from each stream, and finally, we concatenated and applied the classification

module to refine the feature vector and classification. The performance table proved the superiority

and efficiency of the proposed model because of the high accuracy with WLASL, AUTSL and CSL

large-scale datasets. The reason for the high efficiency of the proposed model is that we selected 27

whole-body key points among the 133 body pose key points. We plan to combine the skeleton’s final

feature with the other modal dataset like the RGB and Depth. In addition, we will work to calculate

the inverse dynamic from the video with different pose models and then apply the MSL-GDN model

to the inverse dynamic features.
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