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Abstract: The orthogonal matrix with cube be symmetric is a common class of matrices with 
important properties. We pay attention to this kind of matrices. By using the close relationship 
between the eigenvalues of a matrix and the trace of its power, we obtain the algorithm for its all 
possible different eigenvalues and multiplicities. The calculation formula is expressed only by the 
trace of a matrix and its power, avoiding solving the characteristic polynomial. The method is simple 
and practical. Furthermore, a new essential characterization for the sum of orthogonal matrix pairs 
being orthogonal is given as well.
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0. Introduction 9

A scalar λ is called an eigenvalue of an n × n complex matrix A if there is a nontrivial 10

solution x of Ax = λx[1]. The eigenvalues of a matrix A are the roots of the det(A−λE) = 0 11

and so are difficult to evaluate in general[2,3]. “ Computer software such as Mathematica 12

and Maple can use symbolic calculations to find the characteristic polynomial of a moderate- 13

sized matrix"[4]. But there is no formula or finite algorithm to solve the characteristic 14

equation of a general n × n matrix for n ≥ 5, and the best numerical methods for finding 15

eigenvalues avoid the characteristic polynomial entirely[4]. Is there a way to represent each 16

eigenvalue of a matrix by some simple numerical features, avoiding feature polynomials? 17

In this paper, we focus on the spectrum of the orthogonal matrix with cube be sym- 18

metric. It is a common matrix class, as it may not be symmetric, but its cube is. It is difficult 19

to get the eigenvalues by solving the roots of characteristic polynomial of an orthogonal 20

matrix. The trace is a useful tool. Smith O.K. have obtained the accurate eigenvalues of a 21

3 × 3 real symmetric matrix represented by trace[5]. Of course, the expression is somewhat 22

complicated. Lin et al.[6] discussed the solutions to the trace equation of orthogonal matri- 23

ces with all eigenvalues of real or pure imaginary numbers, whose square is symmetric. The 24

trace of a matrix is a simple but useful tool. Chen.et al.[7] obtained the spectrum of 3 × 3 25

orthogonal matrix with trace be an integer. Chen.et al.[8] showed the explict expression for 26

the spectrum of 3 × 3 orthogonal matrix by trace. 27

Inspired by the close relationship between all possible eigenvalues of a matrix and 28

the traces of its square power, we discuss the properties of orthogonal matrices with cube 29

be symmetric, and obtain the exact eigenvalues expressed by their square power trace in 30

Sect.2. The numerical examples in Sect.3 show that our calculation method is simple and 31

practical, it only uses the matrix trace and avoids solving characteristic polynomials. As 32

an application, we draw a conclusion on the judgment of matrix orthogonal similarity in 33

Sect.4 and obtain the condition for the sum of the orthogonal matrices be orthogonal. 34

Throughout this paper, we denote the transpose, determinant, and trace of a square 35

matrix A by AT , |A|, and tr(A) respectively. En represents the identity matrix of order n, 36
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sometimes represent it as E briefly. Denote the imaginary unit by i ∈ C , that is, i2 = −1. 37

Furthermore, On×n and SOn×n stand for the sets of n × n orthogonal matrices, symmetric 38

orthogonal matrices respectively. 39

1. Preliminary 40

As we know, the eigenvalues of an orthogonal matrix is always 1 or −1 or some pairs 41

of conjugate complex roots. Now let the multiplicities of eigenvalues 1 and −1 be s, t 42

respectively, and the pair of pairwise conjugate complex(non-real) roots be k. We shall first 43

introduce the standard form of an orthogonal matrix A, denoted it as OA. 44

Lemma 1. [1, inference 2.5.11 (c)] For an orthogonal matrix A of order n, there exists Q ∈ On×n
45

such that 46

Q−1 AQ = diag(Et,−Es, W1, · · · , Wk), t + s + 2k = n, (1)

and A ∈ SOn×n ⇔ k = 0, where Wj =

(
aj bj
−bj aj

)
, a2

j + b2
j = 1, −1 < aj < 1,aj, bj ∈ 47

R, j = 1, 2, · · · , k. 48

The set of eigenvalues of a matrix A is also called the spectrum of A, denoted as σ(A). 49

We have noticed details for the matrix F2 = 1
2

(
1

√
3

−
√

3 1

)
, and list it as as follows. It is 50

easy to prove by checking the calculation. 51

Lemma 2. Let F2 = 1
2

(
1

√
3

−
√

3 1

)
, then 52

(1) σ(F2) =
{

1
2 (1 ±

√
3i)
}

, and σ(−F2) =
{
− 1

2 (1 ±
√

3i)
}

; 53

54

(2) F2
2 = −FT

2 , F3
2 = −E2, (−F2)

3 = E2; 55

56

(3) tr F2 = 1, tr(−F2) = −1, tr F3
2 = −2, tr(−F2)

3 = 2. 57

In view of Lemma2, we see that 1
2 (1 ±

√
3i) is eigenvalues of A iff F2 or FT

2 is a sub- 58

block of the standard form OA. In fact, if 1
2 (1 ±

√
3i) ∈ σ(A), then there will be a sub-block 59

W =

(
a b
−b a

)
∈ OA. Therefore trW = 2a = 1, it follows a = 1

2 . Then b = ±
√

3
2 by 60

|W| = 1, so W = F2 or W = FT
2 . 61

The correspondence between sub-blocks of the standard form OA and the eigenvalues 62

will be an important fact for our later discussion. 63

2. Main results 64

Based on the background in Sect.2, we consider how to calculate the eigenvalue of 65

a symmetric orthogonal matrix with cube be symmetric quickly. We show a simple fact 66

firstly. 67

Theorem 1. For an orthogonal matrix A, it has

σ(A) =

{
1,−1,

1
2
(1 +

√
3i),

1
2
(1 −

√
3i),−1

2
(1 +

√
3i),−1

2
(1 −

√
3i)
}

⇔ A3 ∈ SOn×n.
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Proof. For the necessity, if the all possible eigenvalue of A is 1 or −1 or 1
2 (1 ±

√
3i)

or− 1
2 (1 ±

√
3i), then it follows Et, Es, F2, −F2 be the all possible different sub-blocks

of the standard form OA. By (1), we can assume

OA = diag

Et,−Es, F2, · · · , F2︸ ︷︷ ︸
k1

,−F2, · · · ,−F2︸ ︷︷ ︸
k2

, where F2 =
1
2

(
1

√
3

−
√

3 1

)
.

Combined with Lemma 2 yields

OA2 = diag

Et+s,−FT
2 , · · · ,−FT

2︸ ︷︷ ︸
k1

,−FT
2 , · · · ,−FT

2︸ ︷︷ ︸
k2

, n = t + s + 2k1 + 2k2;

OA3 = diag

Et,−Es,−E2, · · · ,−E2︸ ︷︷ ︸
k1

, E2, · · · , E︸ ︷︷ ︸
k2

 ∈ SOn×n.

For the sufficiency, as A3 ∈ SOn×n, it has σ(A3) = {1,−1}, then the all possible eigenvalues
of A should be cube unit roots. As

x3 − 1 = (x − 1)
[

x +
1
2
(1 +

√
3i)
][

x +
1
2
(1 −

√
3i)
]

,

x3 + 1 = (x + 1)
[

x − 1
2
(1 +

√
3i)
][

x − 1
2
(1 −

√
3i)
]

,

then the all possible eigenvalue of A is 1 or −1 or 1
2 (1 ±

√
3i) or− 1

2 (1 ±
√

3i). 68

Now we can obtain the standard form of an orthogonal matrix A with cube be sym- 69

metric. 70

Theorem 2. For an orthogonal matrix A, if its cube is symmetric, then there exists an orthogonal 71

matrix Q such that 72

OA = Q−1 AQ = diag

Et,−Es, F2, · · · , F2︸ ︷︷ ︸
k1

,−F2, · · · ,−F2︸ ︷︷ ︸
k2

, where F2 =
1
2

(
1

√
3

−
√

3 1

)
.

(2)
Besides, the parameters t,s,k1,k2 are as follows, 73

t = 1
6
(
n + tr A3 + 2 tr A2 + 2 tr A

)
, s = 1

6
(
n − tr A3 + 2 tr A2 − 2 tr A

)
k1 = 1

6
(
n − tr A3 − tr A2 + tr A

)
, k2 = 1

6
(
n + tr A3 − tr A2 − tr A

)
.

(3)

Proof. As A3 ∈ SOn×n, by Theorem1, all possible eigenvalue of A is 1 or −1 or 1
2 (1 ±

√
3i) 74

or− 1
2 (1 ±

√
3i), then Eq.(2) follows by Lemma2 and Theorem1. 75

By Lemma2, we see that

tr A = t − s + k1 − k2 (4)

tr A2 = t + s − k1 − k2, (5)

tr A3 = t − s − 2k1 + 2k2, (6)

n = t + s + 2k1 + 2k2. (7)
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Plusing Eqs.(4) and Eqs.(5) gives 1
2
(
tr A2 + tr A

)
= t − k2, and plusing Eqs.(6) and Eqs.(7) 76

gives 1
2
(
n + tr A3) = t + 2k2. Then 77

k2 =
1
6

(
n + tr A3 − tr A2 − tr A

)
, t =

1
6

(
n + tr A3 + 2 tr A2 + 2 tr A

)
. (8)

By Eqs.(5) and Eqs.(7) follows

k1 + k2 = t + s − tr A2 = t + s + 2k1 + 2k2 − 2(k1 + k2)− tr A2 = n − 2(k1 + k2)− tr A2.

Therefore,

k1 + k2 =
1
3

(
n − tr A2

)
.

Combined with Eqs.(8) yields

k1 =
1
3

(
n − tr A2

)
− k2 =

1
3

(
n − tr A2

)
− 1

6

(
n + tr A3 − tr A2 − tr A

)
,

namely, k1 = 1
6
(
n − tr A3 − tr A2 + tr A

)
. 78

Consequently, we have

s = n − 2(k1 + k2)− t

= n − 2
3

(
n − tr A2

)
− 1

6

(
n + tr A3 + 2 tr A2 + 2 tr A

)
=

1
6

(
n − tr A3 + 2 tr A2 − 2 tr A

)
.

So Eqs.(3) is established . 79

Theorem2 indicates that the exact eigenvalue and multiplicities of an orthogonal 80

matrix with cube be symmetric could be obtained by Eqs.(3), which only relates to trace of 81

matrices, avoiding to calculate the characteristic polynomials. 82

In 1962, Hua Loo-Keng once obtained the necessary and sufficient condition for two 83

orthogonal matrices be similar is that their characteristic matrices have the same elementary 84

factor, when solving the similarity problem of the symplectic square under the symplectic 85

group[9, Theorem 1]. It is equivalent to Lemma1, namely whether the orthogonal similarity 86

of two orthogonal matrices is determined by all their eigenvalues. 87

Theorem 3. For orthogonal matrices A,B, if their cubes are both symmetric, then A, B are orthogo- 88

nal similar if and only tr A = tr B, tr A2 = tr B2, tr A3 = tr B3. 89

Proof. For the necessity, if A, B are orthogonal similar, it is obvious that tr A = tr B, so are 90

the square and cube of trace. 91

For the sufficiency, in view of Theorem2 yields the standard form of an orthogonal 92

matrix with cube be symmetric could be determined by Eqs.(3), which only relates to the 93

trace of the an orthogonal matrix and its square and cube. Consequently, when tr A = 94

tr B, tr A2 = tr B2, tr A3 = tr B3, A, B are orthogonal similar. 95

3. Numerical Examples 96

We see an example from [10, Example6.2] firstly. 97

Example 1. Let D = 1
8


6 2

√
3 −

√
6 −

√
2 −

√
6 +

√
2

−2
√

3 6 −
√

6 +
√

2
√

6 +
√

2√
6 −

√
2

√
6 +

√
2 6 −2

√
3√

6 +
√

2 −
√

6 +
√

2 2
√

3 6

, then D is 98

asymmetric. By [10], we see that it belongs to the subgroup G of symmetric groupG, which is 99

composed of positive hexagons, it is also orthogonal. By calculating, it has 100

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 May 2023                   doi:10.20944/preprints202305.0434.v1

https://doi.org/10.20944/preprints202305.0434.v1


5 of 9

D2 =
1
8


2 2

√
3 −

√
6 − 3

√
2 −

√
6 + 3

√
2

−2
√

3 2 −
√

6 +
√

2
√

6 +
√

2√
6 − 3

√
2

√
6 + 3

√
2 2 −2

√
3√

6 + 3
√

2 −
√

6 + 3
√

2 2
√

3 2

;

D3 =

√
2

2


0 0 −1 1
0 0 1 1
−1 1 0 0
1 1 0 0

.

We see D3 is sym- 101

metric. It would be very complicated to calculate its eigenvalues. 102

Since D2 /∈ SO4×4, D3 ∈ SO4×4, tr D = 3, tr D2 = 1, tr D3 = 0, it follows t = 2, k1 =
1, s = k2 = 0 by Eqs.(3). Then combined with Eqs.(2) yields

OD = diag
(

1, 1,
1
2

(
1

√
3

−
√

3 1

))
, σ(D) =

{
1, 1,

1
2
(1 ±

√
3i)
}

.

Example 2. From [10, example 8.1], there are four orthogonal matrices as follows,

σ1 =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

, σ2 =


0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

, σ3 =


0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

, σ4 =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

.

By checking, σ2
1 , σ2

2 , σ2
3 , σ2

4 are different and all asymmetric. It is easy to know

σ3
j = E4, tr σj = tr σ2

j = 1, tr σ3
j = 4, j = 1, 2, 3, 4.

Therefore σ1, σ2, σ3, σ4 are orthogonal matrices with cube be symmetry. 103

Let B =


− 1

2

√
3

2 0 0
−

√
3

2 − 1
2 0 0

0 0 1 0
0 0 0 1

 = diag
(
−FT

2 , E2
)
, then by Lemma2 yields

B2 = diag
(
−FT

2 , E2

)2
= diag

((
FT

2

)2
, E2

2

)
= diag(−F2, E2),

B3 = diag
(
−FT

2 , E2

)3
= diag

((
FT

2

)3
, E3

2

)
= E4.

So tr B = tr B2 = 1, tr B3
4 = 4. Then σ2

1 , σ2
2 , σ2

3 , σ2
4 , B are orthogonal similar, they have the same 104

orthogonal standard form and the same spectrum. 105

Example 3. From [11, Theorem 3.3],

A =

 0 a12 0
0 0 a23

a31 0 0

, B =

 0 0 b13
b21 0 0
0 b32 0


are orthogonal matrices of order 3 with only three non-zero elements and all the diagonal elements
are zero. By calculation, it has

A2 =

 0 0 a12a23
a23a31 0 0

0 a31a12 0

, B2 =

 0 b13b32 0
0 0 b21b13

b32b21 0 0

,
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and 106

A3 = diag(a12a23a31, a23a31a12, a31a12a23) = a12a23a31E3 = |A|E3; (9)

107

B3 = diag(b13b32b21, b21b13b32, b32b21b13) = b13b32b21E3 =| B | E3. (10)

It shows A, B are orthogonal with cubic be symmetry, and

tr A = tr B = tr A2 = tr B2 = 0, tr A3 = 3|A|, tr B3 = 3|B|,

it meets Theorem2. 108

As we know, if A, B are orthogonal similar, then A| = |B|. Here the inverse is also correct. In 109

fact, if A| = |B|, then it follows tr A3 = tr B3 by Eq.(9-10), which indicates A, B meet Theorem3, 110

namely,A, B are orthogonal similar. 111

Furthermore, if |A| = 1, then by Eq.(9) yields tr A3 = 3. Then from Eq.(3), it follows

OA = diag
(

1,−1
2

(
1

√
3

−
√

3 1

))
, σ(A) =

{
1,−1

2
(1 ±

√
3i)
}

.

If |A| = 1, then by Eq.(9) yields tr A3 = −3. Combined with Eq.(3) yields

OA = diag
(
−1,−1

2

(
1

√
3

−
√

3 1

))
, σ(A) =

{
−1,−1

2
(1 ±

√
3i)
}

.

4. Application 112

As everyone knows, the sum of orthogonal matrices is not necessarily orthogonal. 113

For example, A =

(
1 0
0 1

)
, B =

(
1 0
0 1

)
both are orthogonal, however, A + B = 114(

2 0
0 2

)
is not orthogonal. So it is natural to consider under what conditions, the sum of 115

the orthogonal matrices coule be orthogonal? It is an interesting question. 116

Proposition 1. [12] Let A, B be orthogonal, then A + B is orthogonal if and only if A, B are 117

orthogonal matrices of order 2n, and B = APFPT , where P is an arbitrary orthogonal matrix, 118

F = diag
(
Et,−Es,−FT

2 , · · · − FT
2
)
, and F2 = 1

2

(
1

√
3

−
√

3 1

)
. 119

There are some mistakes in Proposition1. If t ̸= 0, and s ̸= 0, then AT(A + B) = 120

E + PFPT = P diag
(
2Et, 0s, E2 − FT

2 , · · · , E2 − FT
2
)

PT , that is, AT B has eigenvalues 2 or 0, 121

it is contradictory. 122

Proposition 2. [13] Let A, B be orthogonal, then A + B is orthogonal if and only if A, B are 123

orthogonal matrices of order 2n, and B = APFPT , where P is an arbitrary orthogonal matrix, 124

F = diag
(
−FT

2 , · · · − FT
2
)
, and F2 = 1

2

(
1

√
3

−
√

3 1

)
. 125

Proposition2 is not rigorous. As P is arbitrary in Proposition1, then suppose P1 = E2, 126

it follows AT B = −FT
2 by B = AP1

(
−FT

2
)

PT
1 = A

(
−FT

2
)
. If suppose P1 = E2, it follows 127

AT B = −FT
2 from P2

(
−FT

2
)

PT
2 = −F2. They are contradictory. 128

As an application, we will give a new characterization for the sum of orthogonal 129

matrices being orthogonal. 130

Theorem 4. Let A, B be orthogonal, then A + B is orthogonal if and only if n is an even number 131

and AT B is a tri-potent matrix with no real-eigenvalue, namely,
(

AT B
)3

= En. 132
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Proof. For the necessity, as A + B is orthogonal, then (A + B)T(A + B) = En, namely,
2En + AT B + BT A = En. Therefore,

AT B +
1
2

En = −
(

AT B +
1
2

En

)T
= −BT A − 1

2
En

is a anti-symmetric matrix with no real eigenvalue. Now we can suppose the eigenvalue 133

of AT B + 1
2 En is cji, here i is the imaginary unit of the complex field C and the coefficient 134

cj ∈ R. Then the eigenvalue of AT B = − 1
2 En +

(
AT B + 1

2 En

)
is − 1

2 + cji. Consequently, 135

it has | 1
2 + cji |= 1, namely,

(
− 1

2

)2
+ c2

j = 1, it follows cj = ±
√

3
2 . It indicated that the 136

eigenvalues of AT B are only − 1
2

(
1 ±

√
3i
)

. From Eqs.(1) and Lemma2, it gets 137

QT
(

AT B
)

Q = diag(−F2, · · · ,−F2) = OAT B, (11)

where Q ∈ On×n. It shows nis an even number and AT B has no real-eigenvalue. Combining
with Lemma2 yields

O
(AT B)

2 = diag
(
−FT

2 , · · · − FT
2

)
, O

(AT B)
3 = diag(E2, · · · E2) = En,

that means
(

AT B
)3

= En. This completes the proof of the necessity. 138

For the sufficiency, since
(

AT B
)3

= En, if follows x3 − 1 is the annihilating polynomial

of AT B. As x3 − 1 = (x − 1)
[

x + 1
2 (1 +

√
3i)
][

x + 1
2 (1 −

√
3i)
]

and AT B has no real-

eigenvalue, then the eigenvalues of AT B are only − 1
2

(
1 ±

√
3i
)

, it follows Eqs(11). Then

there exists H2 =

(
0 1
−1 0

)
such that

AT B = Q diag(−F2, · · · ,−F2)QT = Q

[
−1

2
En −

√
3

2
diag(H2, · · · , H2)

]
QT .

By Lemma2, it follows 139

AT(A + B) = En + AT B = Q diag

(
1
2

E2 −
√

3
2

H2, · · · ,
1
2

E2 −
√

3
2

H2

)
QT

= Q diag
(

FT
2 , · · · FT

2

)
QT ∈ On×n.

140

Furthermore, A + B = A
[
Q diag

(
FT

2 , · · · · FT
2
)
QT] is orthogonal. 141

Corollary 1. For a 2n × 2n orthogonal matrix A, there exists an orthogonal matrix B with same 142

order meets A + B is orthogonal. 143

Proof. By Lemma1 and Lemma2, we can assume 144

B = AQ diag(−F2, · · · ,−F2)QT ∈ O2n×2n, (12)

where Q is orthogonal with order 2n. Then B is orthogonal. Hence 145

A + B = A
[

En + Q diag(−F2, · · · · E2 − F2)QT
]

= A
[

Q diag(E2 − F2, · · · · E2 − F2)QT
]

= A
[

Q diag
(

FT
2 , · · · · FT

2

)
QT
]
∈ O2n×2n.

146

147
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Corollary1 indicates there are many pairs of orthogonal matrices such that their sum 148

is orthogonal as well. We can construct many orthogonal matrices of the form as Eqs.(12). 149

We seek into the example as follows. 150

Example 4. Let A be an orthogonal matrix of order 4, and Q1 = diag
((

0 1
1 0

)
,
(

0 1
−1 0

))
,

Q2 = diag(F2,−F2) be orthogonal, then

QT
1 = diag

((
0 1
1 0

)
,
(

0 −1
1 0

))
, QT

2 = diag
(

FT
2 ,−FT

2

)
.

Since
(

0 1
1 0

)
(−F2)

(
0 1
1 0

)
= −FT

2 ,
(

0 1
−1 0

)
(−F2)

(
0 −1
1 0

)
= −F2, and 151

F2(−F2)FT
2 = (−F2)(−F2)

(
−FT

2
)
= −F2, by Eqs.(12), it follows 152

B1 = A
[

Q1 diag(−F2,−F2)QT
1

]
= A

[
diag

(
−FT

2 ,−F2

)]
,

B2 = A
[

Q2 diag
(
−FT

2 ,−F2

)
QT

2

]
= A[diag(−F2,−F2)].

153

Then B1 − B2 = A
[
diag

(
−FT

2 + F2,−F2 + F2
)]

= A
[

diag
(√

3
(

0 1
−1 0

)
, 0
)]

̸= 0, that is, 154

B1 ̸= B2, which means B1, B2 are different. 155

From Theorem4, we get [14, Theorem 3] as follows easily. 156

Corollary 2. Let A, B be orthogonal matrices of order n, then the following statements are equiva- 157

lent: 158

(1) A + B is orthogonal; 159

(2) AT B + 1
2 En be real anti-symmetric; 160

(3) the eigenvalues of AT B are − 1
2 (1 ±

√
3i). 161

It shows some equivalent characterization for the sum of orthogonal matrices be or- 162
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