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Abstract: In this work, an analytical and numerical analysis of the transition to chaos in five 

nonlinear systems of ordinary and partial differential equations, which are models of the 

autocatalytic chemical processes and the numbers of interacting populations, is carried out.  It is 

analytically and numerically shown that in all considered systems of equations, further 

complication of the dynamics of solutions and the transition to chemical and biological turbulence 

is carried out in full accordance with the universal Feigenbaum-Sharkovsky-Magnitskii bifurcation 

theory through subharmonic and homoclinic cascades of bifurcations of stable limit cycles. In this 

case, irregular (chaotic) attractors in all cases are exclusively singular attractors in the sense of the 

FShM theory.. 
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1. Introduction 

It is well known that chaotic dynamics is inherent in almost all natural and social processes and 

phenomena described by nonlinear systems of ordinary and partial differential equations. However, 

many years there was no clear understanding how there are formed  irregular attractors which are 

differ from stable fixed  points, limit cycles and tori. It was considered that there are differences 

between attractors of non-autonomous and autonomous nonlinear systems, ordinary and partial 

differential equations and the equations with delay arguments. Chaos in Hamiltonian and 

conservative systems was considered to be essentially different from chaos in dissipative systems. 

There was also an opinion that irregular attractors of complex nonlinear systems could not be 

described by systems of differential equations and that a new mathematical apparatus had to be 

developed to describe them. And only recently it has been proved and confirmed by numerous 

examples that irregular (chaotic) attractors can be understood and described within the framework 

of the theory of bifurcations in nonlinear systems of differential equations. It was proved that there 

is a universal bifurcation scenario of the transition to chaos in nonlinear systems of differential 

equations of all kinds and types: dissipative and conservative, autonomous and non-autonomous, 

ordinary, partial  and with a delayed  argument (see, for example, [1–4]). This is the Feigenbaum-

Sharkovsky-Magnitskii (FShM) bifurcation scenario. It begins with a cascade of Feigenbaum 

bifurcations of doubling the period of some stable cycle or torus of arbitrary dimension, and then 

continues with a subharmonic cascade of Sharkovsky bifurcations of stable cycles or tori of any 

period up to a cycle or torus of period three. Then, if possible, the bifurcation scenario continues with 

a homoclinic or heteroclinic cascade of Magnitskii bifurcations of stable cycles or tori converging to 

a homoclinic or heteroclinic separatrix contour or toroidal manifold. All irregular (chaotic)  

attractors that are born during the implementation of such a scenario are exclusively singular 

attractors, that is, non-periodic bounded trajectories in a finite-dimensional or infinite-dimensional 

phase space, which are the limits of the cycles of the Feigenbaum cascade and contain an infinite 
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number of unstable periodic trajectories in any of their neighborhoods. The birth of cycles (tori) of 

the universal bifurcation scenario occurs in accordance with the order 20 ⊲ 21 ⊲ 22 ⊲ ⋯ ⊲ 22 · 5 ⊲···⊲ 22 · 3 ⊲···⊲ 2 · 5 ⊲···⊲ 2 · 3 ⊲···⊲ 5 ⊲···⊲ 3 ⊲···⊲ 4 ⊲···⊲ 5 ⊲·· 
The left part of the order is the Feigenbaum cascade of bifurcations of cycle (torus) period doubling  

and ends with the first simplest singular attractor - the Feigenbaum attractor. The middle part of the 

order is a subharmonic cascade of Sharkovsky bifurcations and ends with the birth of a cycle (torus) 

of period three. The right-hand side of the order is a homoclinic cascade of Magnitskii bifurcations 

and ends in the limit, as a rule, with a homoclinic separatrix loop of the saddle-focus. All cycles (tori) 

previously born as a result of saddle-node bifurcations become unstable, but remain in the system. 

Therefore, if, for example, a stable cycle of period three is found in the system, which completes the 

subharmonic cascade of bifurcations, then in the system, together with a stable cycle of period three, 

there are infinitely many unstable cycles of all periods. 

In systems with strong dissipation it is realized both the full subharmonic cascade of Sharkovsky 

bifurcations, and full (or incomplete) homoclinic (or heteroclinic )  cascade of Magnitskii bifurcations 

depending on, whether exists homoclinic  (or heteroclinic)  separatrix contour in the system. In 

systems with weak dissipation the FShM-order of bifurcations can be broken in its right part. For 

conservative and Hamiltonian systems, only an incomplete cascade of Feigenbaum bifurcations is 

usually realized with the birth of elliptic tori around the cycles of the cascade. 

It is proved in papers of author and in other papers, that the FShM bifurcation scenario of 

transition to chaos takes place in such classical two-dimensional dissipative systems with periodic 

coefficients, as Mathieu, Duffing-Holmes, Croquette, Krasnoschekov systems; in three-dimensional 

autonomous dissipative systems, as systems of Lorenz, Chua, Sprott, Ressler, Chen, Rabinovich-

Fabricant, Vallis, Magnitskii, Anishchenko-Astakhov, Volterra-Gause, Pikovskii-Rabinovich-

Trakhtengertz, Sviregev, Rucklidge, Genezio-Tesi, Wiedlich-Trubetskov and many others. This 

scenario transition to chaos takes place also in many- and infinitely dimensional systems of nonlinear 

ordinary differential equations, such as Rikitaki system, Lorenz complex five-dimensional system, 

Mackey-Glass equation with delay argument and many others. This scenario transition to chaos takes 

place also in many partial differential equations and systems, such as Brusselator and Kuramoto-

Tsuzuki (Time Dependent Ginzburg- Landau) equations, reaction-diffusion and FitzHugh-Nagumo 

type systems of equations, nonlinear Schrodinger and Kuramoto-Sivashinskii equations.  Moreover, 

this scenario describes also the laminar-turbulent transitions in any tasks for Navier-Stokes equations 

and transition to chaos in Hamiltonian and conservative systems, such as  conservative Croquette 

and Duffing-Holmes equations,  Mathieu-Magnitskii and Yang-Mills-Higgs Hamiltonian systems. 

The listed systems of equations describe a variety of complex natural, social, scientific and technical 

processes and phenomena in physics, chemistry, biology, economics, medicine and sociology, which 

emphasizes the universal applicability of the considered bifurcation approach.  

However, works continue to appear in the scientific literature, in which the authors, not 

understanding the essence of the ongoing processes, write about new attractors allegedly discovered 

by them in nonlinear systems of differential equations. “Hidden” attractors for systems with stable 

singular points or no singular points at all are explained by the authors by the presence of the Smale 

horseshoe or by the found numerically positive Lyapunov exponent, or by the so-called 

"intermittency".  Hyperchaos in the system is explained by the numerically found two positive 

Lyapunov exponents. Diffusion chaos in nonlinear system of   equations with partial derivatives is 

explained by the RT (Ruelle-Takens) theory and is connected with birth of mythical strange attractor 

at destruction of three-dimensional torus, and presence of chaotic dynamics in Hamiltonian or 

conservative system is explained by the КАМ (Kolmogorov-Arnold-Mozer) theory and is connected 

with consecutive destruction in the system of rational and mostly irrational tori of  nonperturbed  

system.    

But, in the works of the author (see, for example, [1–4] and others) it is theoretically proved and 

demonstrated on numerous examples that the intermittency and positiveness of the Lyapunov 

exponent are only calculation errors and cannot serve as criteria for the existence of chaotic dynamics 

in a system. It is proved that the leading characteristic Lyapunov exponent is equal to zero on any 
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singular attractor. The effect of the positiveness of the Lyapunov exponent is exclusively a 

consequence of computational errors, since due to the presence of an everywhere dense set of non-

periodic trajectories, numerical motion is possible only over the entire region in which the trajectory 

of the singular attractor is located, and not along its trajectory itself. In addition, the calculated 

Lyapunov exponent will also be positive when moving along a stable periodic trajectory of large 

period, located in the neighborhood of some singular attractor. The same errors lead to the 

determination of the alleged presence of  “intermittency” in the system. Тhe presence of the Smale 
horseshoe in the system indicates the complex dynamics of solutions, but even in the neighborhood 

of the saddle-focus separatrix loop, where, according to Shilnikov’s theorem, there are an infinite 
number of Smale horseshoes, the dynamics of solutions is determined not by horseshoes, but by a 

much more complex infinite set of unstable periodic solutions generated on all stages of all three 

cascades of bifurcations of the FShM scenario.  A birth in the system of three-dimensional and even 

multi-dimensional stable torus leads not to its destruction with birth of mythical strange attractor, as 

it postulated by RT theorem, but to cascade of its period-doubling bifurcations along one of its 

frequencies or several frequencies simultaneously. Chaotic dynamics in Hamiltonian and 

conservative systems also is consequence of cascades of bifurcations of birth of new tori, instead of 

consequence of destruction of some already ostensibly existing mythical tori of nonperturbed system, 

as it postulated by KAM theorem. 

The purpose of this article is to present five new systems of ordinary and partial  differential 

equations  in which transition to chaos occurs in accordance with the universal bifurcation FShM 

theory. The two systems describe autocatalytic chemical processes. The two next systems describe 

the numbers of  interacting populations, one of them is the  system of  partial differential 

equations. The last system has no singular points and so it has so-called  "hidden"  attractor. It is 

well known that models of chemical autocatalytic reactions and models of the dynamics of the 

numbers of interacting populations have complex dynamics of the behavior of their solutions up to 

chaotic dynamics, called chemical or biological turbulence. However, the theoretical explanation of 

the development of chaotic dynamics in models of autocatalytic chemical processes and in models of 

the numbers of interacting populations has so far been reduced at best to the numerical determination 

of the Feigenbaum cascade of cycle period doubling bifurcations and further postulation of the 

transition to chaos either through the so-called "intermittency" or through the existence of a mythical 

"positive" Lyapunov exponent in the system. This explains the appearance of chaotic dynamics in the 

models proposed in [5–7] of an autocatalytic chemical process with feedback and an autocatalytic 

process in which the autocatalyst undergoes a mutation process in a fully stirred tank reactor. The 

appearance of chaotic dynamics in the model of the dynamics of the numbers of interacting 

populations of a predator and two prey proposed by A.D. Bazykin et al. in [8]  has the similar 

explanation. 

The obtained results ones again indicate  the wide applicability of the universal bifurcation 

FShM theory for describing laminar-turbulent transitions to chaotic dynamics in complex nonlinear 

systems of differential equations. 

2. Bifurcations and chaos in an autocatalytic chemical process with feedback.  

Let us consider the model of an autocatalytic chemical process with feedback proposed in [5], 

which is a development of the well-known Gray-Scott model [6] in the case of homogeneity of its 

solutions. The model is a system of three nonlinear ordinary differential equations 𝑥̇ = 𝑘 + 𝜇𝑧 − 𝑥𝑦2 − 𝑥,    𝜎𝑦̇ = 𝑥𝑦2 + 𝑥 − 𝑦,     𝛿𝑧̇ = 𝑦 − 𝑧                                 (1)     
with positive fixed parameters 𝑘 = 10, 𝜎 = 0.005, 𝛿 = 0.02 and changing bifurcation parameter μ. It 

was numerically shown in [5] that as the values of the parameter μ ≥ 0.1 increase, the system of 
equations (1) has a cascade of Feigenbaum bifurcations of doubling the period of stable cycles and 

then chaotic dynamics at μ = 0.153 with one window of periodicity of the cycle of period five at μ = 

0.155 and cycle with double period ten. Then it is shown numerically that in system (1) the inverse 

Feigenbaum tree is realized up to the birth of a stable cycle of period one. But, since the stable cycles 

of the Feigenbaum bifurcation cascade are regular attractors, the numerical analysis carried out in [5] 
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does not allow us to answer the question about the nature of the chaotic dynamics found in system 

(1) by the authors of  [5].  

In this section, an analytical and numerical analysis of the transition to chaos in the system of 

equations (1) is carried out. It is proved that for certain values of the bifurcation parameters, the 

transition to chaos in the system occurs in full accordance with the universal Feigenbaum-

Sharkovsky-Magnitskii bifurcation scenario [1–4] through the Feigenbaum bifurcation cascade of 

doubling the period of stable cycles, then through the subharmonic cascade of Sharkovsry 

bifurcations of the  birth of stable cycles  up to a cycle of period three, and then through the initial 

stage of the homoclinic cascade of Magnitskii bifurcations.       

2.1. Dissipativity region and singular points of the system (1). 

Let us study the area of dissipativity of system (1). Compute 𝑑𝑖𝑣 𝑭(𝑥, 𝑦, 𝑧) = 𝜕𝐹1𝜕𝑥 + 𝜕𝐹2𝜕𝑦 + 𝜕𝐹3𝜕𝑧 = −𝑦2 − 1 + 2𝑥𝑦 − 1𝜎 − 1δ , 
where  𝐹𝑖 , 𝑖 = 1,2,3 are the right parts of the equations of the system. Let us find the singular points 𝑂 = (𝑥∗, 𝑦∗,  𝑧∗) of system (1) by equating the right-hand sides of its equations to zero: 𝑦 = 𝑧,      𝑥𝑦2 = 𝑦 − 𝑥,      𝑥𝑦2 = 𝑘 + 𝜇𝑦 − 𝑥.   

We get that   𝑦∗ = 𝑘/(1 − 𝜇) = 𝑧∗, 𝑥∗ = 𝑘(1 − 𝜇)/(𝑘2 + (1 − 𝜇)2),        𝑥∗𝑦∗ = 𝑘2/(𝑘2 + (1 − 𝜇)2) ≤ 1. 
Then 𝑑𝑖𝑣 𝐹(𝑥∗, 𝑦∗, 𝑧∗) ≤ −𝑦∗2 + 1/𝜎 − 1/𝛿 < 0  for 𝜎 > 0,   1/𝜎 − 1/𝛿 < 𝑘2/(1 − 𝜇)2.  

Consequently, for such a relation of parameters, system (1) is dissipative in a neighborhood of the 

singular point  𝑂.  

2.2. Stability region and Andronov-Hopf bifurcation of a singular point of system (1). 

Let us study the stability of the singular point 𝑂  of the system (1). The linearization matrix of 

the right side of the system at a singular point has the form: 

𝐴 = ( 
 −𝑦∗2 − 1,  −2𝑥∗𝑦∗, 𝜇𝑦∗2 + 1𝜎 ,  (2𝑥∗𝑦∗ − 1)/𝜎, 00, 1𝛿 , − 1𝛿) 

 
 

and its characteristic equation is the equation: 𝜆3 + [𝑦∗2 + 1 −  (2𝑥∗𝑦∗ − 1)/𝜎 + 1/𝛿]𝜆2 + [(𝑦∗2 + 1)(1/𝜎 + 1/𝛿) − (2𝑥∗𝑦∗ − 1)/𝜎𝛿]𝜆 + +(1 − 𝜇)(𝑦∗2 + 1)/𝜎𝛿 = 0 

Consider system (1) with fixed values of the parameters 𝜇 = 0.16, 𝜎 = 0.00495, 𝛿 = 0.014, at 

which the system has chaotic dynamics at 𝑘 = 10.07 and a five-period cycle at 𝑘 = 10.057. We 

choose the parameter k as the bifurcation parameter. 

Theorem 1. The singular point 𝑂 of system (1) is asymptotically stable for 𝑘 > 𝑘∗ ≈ 11.54. For 𝑘 < 𝑘∗, the singular point 𝑂 becomes unstable, and as a result of the Andronov-Hopf bifurcation, a 

stable limit cycle is softly born from it. 

Proof. Let us rewrite the characteristic equation in the form 𝜆3 + 𝑎1(𝑘)𝜆2 + 𝑎2(𝑘)𝜆 + 𝑎3(𝑘) = 0, 
where 𝑎1(𝑘) = 𝑘4 − 90.73𝑘2 + 136.640.7056(𝑘2 + 0.7056) ;      𝑎2(𝑘) = 387.54𝑘4 − 13883.12𝑘2 + 10374.76(𝑘2 + 0.7056) ;   𝑎3(𝑘) = 17178.59𝑘2 + 12121.21 > 0. 

By virtue of the Routh-Hurwitz criterion, a singular point 𝑂 is asymptotically stable if and only 

if 𝑎1(𝑘) > 0,      𝑎2(𝑘) > 0,      𝑎3(𝑘) > 0,      𝑎1(𝑘)𝑎2(𝑘) > 𝑎3(𝑘). 
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Since   𝑎1(𝑘) > 0   for   𝑘2 > 89.198 ,  𝑎2(𝑘) > 0    for  𝑘2 > 35.06  and   𝑎1(𝑘)𝑎2(𝑘) >𝑎3(𝑘)  for 𝑘8 − 157.8323𝑘6 + 3347.6333𝑘4 − 7370.6872𝑘2 + 3646.9737 > 0, 
then, numerically finding the roots of the last polynomial of the fourth degree with respect to 𝑘2, we 

obtain that the inequality is satisfied for  𝑘2 > 133.09. Thus, the singular point 𝑂 of system (1) is 

asymptotically stable for 𝑘2 > 133.09 or for 𝑘 > 𝑘∗ ≈ 11.54. Consequently, for 𝑘 < 𝑘∗ the singular 

point 𝑂 becomes unstable, and in this case 𝑎1(𝑘)𝑎2(k) < 𝑎3(𝑘). At the bifurcation point 𝑘 = 𝑘∗ we 

have   𝑎1(𝑘∗)𝑎2(𝑘∗) = 𝑎3(𝑘∗).  Let us show that this condition means the soft birth of a limit cycle 

from a singular point 𝑂 as a result of the Andronov-Hopf bifurcation. Indeed, let's find the value of  𝑘∗ ,  at which the roots of the characteristic equation have the form: 𝜆1 < 0, 𝜆2 = 𝑖𝜔,   𝜆3 = −𝑖𝜔 , 

which is the condition for the Andronov-Hopf bifurcation at the point. With such a value of 𝑘∗ 
according to the Vieta theorem, the equalities take place 𝜆1𝑖𝜔(−𝑖𝜔) = 𝜆1𝜔2 = −𝑎3(𝑘∗),   𝜆1𝑖𝜔+𝜆1(−𝑖𝜔) + 𝜔2 = 𝑎2(𝑘∗),   𝜆1 + 𝑖𝜔 − 𝑖𝜔 = −𝑎1(𝑘∗). 

Substituting from the second and third equalities the expressions for   𝜆1  and  𝜔2 into the first 

equality, we get that   𝑎1(𝑘∗)𝑎2(𝑘∗) = 𝑎3(𝑘∗),  i.e. precisely for such a value of 𝑘∗ in the system of 

equations (1) the Andronov-Hopf bifurcation occurs. The theorem is proved. 

It follows from theorem 1 that the study of possible cascades of bifurcations for 𝑘 < 𝑘∗ of a 

stable limit cycle born from a singular point 𝑂  at 𝑘 = 𝑘∗    as a result of the Andronov-Hopf 

bifurcation is of greatest interest. It is in this case that in the system (1) the existence of all three 

cascades of bifurcations of stable limit cycles and an infinite number of chaotic singular attractors is 

possible in accordance with the universal Feigenbaum-Sharkovsky-Magnitskii bifurcation theory.  

The study of the following bifurcations with decreasing values of the bifurcation parameter 𝑘 < 𝑘∗  by analytical methods, starting from the bifurcation of doubling the period of the born limit 

cycle, is an extremely difficult task. To do this, it is necessary to find analytically the cycle multipliers, 

which is possible in very rare cases, and determine such a value of the parameter k, in which all three 

multipliers are real numbers, and one of them is equal to +1, the second is equal to -1, and the third 

lies in the interval (- 1.0). Therefore, further study of the complication of the dynamics of solutions of 

the system of equations (1) will be carried out by numerical methods.  

2.3. Scenario of transition to chaos in the system of equations (1). 

Let us carry out a numerical study of system (1) with fixed values of the parameters 𝜇 = 0.16,𝜎 = 0.00495, 𝛿 = 0.014 and a decrease in the values of the bifurcation parameter 𝑘 < 𝑘∗ ≈ 11.54. For 𝑘 ∈ (10.853, 𝑘∗) system (1) has a stable (asymptotically orbitally stable) limit cycle, from which, at a 

value of 𝑘 ≈ 10.2 a stable limit cycle of a double period is born. With a further decrease in the values 

of the parameter k in system (1), the Feigenbaum cascade of cycle period doubling  bifurcations is 

observed. A stable cycle of period four is born at 𝑘 ≈ 10.111, a cycle of period eight is born at 𝑘 ≈10.098  etc .   For 𝑘 ≈ 10.0945   in system (1) there is the first simplest singular attractor - the 

Feigenbaum attractor which is a non-periodic bounded trajectory, which is the limit of the sequence 

of cycles from the Feigenbaum cascade. 

With a further decrease in the values of the parameter k, a sequence of stable cycles is found in 

accordance with the Sharkovsky order. So, for example, the cycle of period twelve of the subharmonic 

cascade exists at 𝑘 = 10.093, the cycle of period ten exists at 𝑘 = 10.0897,  the cycle of period six 

exists at 𝑘 = 10.086, the cycle of period seven exists at 𝑘 = 10.0658,  the cycle of period five exists  

at 𝑘 = 10.057 and, finally, the cycle of period three, which completes the subharmonic cascade of 

Sharkovsky bifurcations, exists at 𝑘 = 10.03 (Figure 1). Figure 1 also shows one of the singular 

subharmonic attractors of system (1), found for 𝑘 = 10.07. 
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Figure 1. Projections onto the plane (z, y) of stable cycles of system (1) of periods six, five, three at 𝑘 =10.086,  𝑘 = 10.057,  𝑘 = 10.03, respectively, and one of the subharmonic singular attractors at 𝑘 =10.07. 
As is known (see [1–4]), the last cycle of the subharmonic cascade of bifurcations, the cycle of 

period three, is the third cycle of the homoclinic cascade, the sequence of cycles of which must 

converge to the separatrix loop of the saddle-focus singular point 𝑂. However, for a given set of 

values of the system parameters, not only the separatrix loop does not exist in it, but also the cycles 

of the homoclinic cascade, starting from the cycle  𝐶4 , which makes four successive revolutions 

around the singular point. 

Thus, it has been numerically established that in system (1), as the values of the parameter k 

change, a cascade of Feigenbaum bifurcations of doubling the period of stable limit cycles, a complete 

subharmonic cascade of bifurcations of stable cycles in accordance with the Sharkovsky order, and 

an incomplete homoclinic cascade of Magnitskii bifurcations are realized. Some cycles of the 

subharmonic cascade of bifurcations in the system of equations (1) and one of the system's singular 

attractors in the sense of the FShM theory are shown in Figure 1.  

3. Bifurcations and chaos in the model of a chemical process with mutation.  

Let us consider the model of autocatalytic chemical reactions with mutation proposed in [7], in 

which the autocatalyst undergoes a mutation process in a fully stirred tank reactor. The model of 

autocatalytic reactions with mutation proposed in [7] is described by a system of nonlinear 

differential equations  𝑥̇ = − 𝑥𝜃 + (1 + 𝛼)𝛾1(1 − 𝑥)𝑦2 + 𝛽𝛾1(1 − 𝑥)𝑧2            𝑦̇ = (𝛿 − 𝑦)𝜃 + (1 − 𝛼)𝛾1(1 − 𝑥)𝑦2 − 𝛾2𝑦,                                                          (2) 𝑧̇ = − 𝑧𝜃 + 𝛽𝛾1(1 − 𝑥)𝑧2 + 2𝛼𝛾1(1 − 𝑥)𝑦2 − (𝛾2/𝛽)𝑧. 
System (2) has six parameters: α, β, θ, 𝛾1, 𝛾2, 𝛿.    In [7], the last three parameters are fixed: 𝛾1 =450,  𝛾2 = 11.25, 𝛿 = 0.067  and several cases with different values of mutation coefficients α and its 

efficiency β are considered. In this case, the coefficient θ  is a bifurcation parameter. Chaos in system 

(2) was discovered in [7] at α = 0.29, β = 0.68 and with a change in the bifurcation parameter in the 

interval 0.10902 ≤  θ ≤  0.10984 . For θ ≈  0.10902   in system (2) a hard loss of stability of the 

singular point occurs. The cycle becomes stable, and, as the values of the bifurcation parameter 

increase, it undergoes the Feigenbaum cascade of bifurcations of doubling period. A stable cycle of 

period two is born at θ ≈  0.10937,  a cycle of period four is born at  θ ≈  0.10642, a cycle of period 

eight is born at  θ ≈  0.10973,  etc. Then, at θ =  0.10984   chaotic dynamics was discovered in the 
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system, which, according to the authors of [7], is confirmed by the found numerically positive value 

of the Lyapunov exponent, and the transition to chaos occurs allegedly through “intermittency”. The 
question of the nature of the chaotic dynamics found in system (2) by the authors of the paper [7] also 

remains open. 

3.1. Subharmonic chaos in the system of equations (2). 

System (2) has several singular points, two of which play the main role in the formation of 

chaotic dynamics, since they have homoclinic and heteroclinic separatrix contours for the 

corresponding values of the system parameters. Equating the right parts of system (2) to zero, we 

find the coordinates of these two singular points 𝑂1 and  𝑂2 𝑦1,2(𝑥) = (1 + 𝛾2𝜃) ∓ √(1+𝛾2𝜃)2 − 4(1 − 𝛼)𝛾1(1 − 𝑥)𝜃𝛿2(1 − 𝛼)𝛾1(1 − 𝑥)𝜃 , 
  𝑧1,2(𝑥) = √ 𝑥𝜃𝛾1𝛽(1 − 𝑥) − (1 + 𝛼)𝛽 𝑦1,22 (𝑥), 

and  𝑥1,2  are the solutions of the equation 𝛿 + 𝑥 − (1 + 𝛾2𝜃)𝑦1,2(𝑥) − (1 + 𝛾2𝜃𝛽 ) 𝑧1,2(𝑥) = 0. 
The Feigenbaum period doubling bifurcation cascade in system (2), found in [7], occurs after a 

hard loss of stability of the singular point 𝑂1 and continues along the parameter θ up to the value 𝜃 ≈ 0.1098, at which the Feigenbaum singular attractor exists in the system.  Feigenbaum attractor 

is the first non-periodic bounded trajectory, which is the limit of the cascade of period doubling 

bifurcations of the original cycle. With a further increase in the values of the parameter θ, an 

incomplete subharmonic cascade of Sharkovsky bifurcations is realized in the system. A stable cycle 

of period six exists in system (2) at 𝜃 = 0.10981 ,  a cycle of period five exists at 𝜃 = 0.10995.  

Further, the dynamics of solutions is simplified. Thus, a stable cycle of period six again exists in the 

system at  𝜃 = 0.11016, a cycle of period four exists at 𝜃 = 0.11021, a cycle of period two exists at 𝜃 = 0.1104.  Consequently, the bifurcation scenario considered in [7], firstly, fits into the framework 

of the universal bifurcation  FShM scenario. Secondly, the chaotic attractor that exists in system (2) 

at 𝜃 = 0.10984  is a trajectory lying in the neighborhood of a singular attractor formed by a cycle of 

period six from the subharmonic cascade of  Sharkovsky bifurcations. Third, since for the considered 

values of the parameters, the complication of the dynamics of solutions of the system of equations (2) 

does not even reach the birth of a stable cycle of period three, which completes the Sharkovsky 

cascade, the subharmonic attractor found in [7] is one of the simple chaotic attractors that exist in the 

system (2). 

3.2. Homoclinic chaos in the system of equations (2). 

Let us now show that system (2) has a much more complicated chaotic dynamics than the 

dynamics found in [7]. In order to find more complex singular attractors of system (2) in accordance 

with the Feigenbaum-Sharkovsky-Magnitskii theory, it is necessary to correctly determine which of 

the system parameters is bifurcational. We fix the last five parameters of the system:  β =  0.68, 𝜃 =0.10948, 𝛾1 = 450, 𝛾2 = 11.27, 𝛿 = 0.067, and we make the parameter α as a bifurcation parameter 

and consider the bifurcations occurring in the system (2) as the values of the parameter α decrease in 

the interval 0.1876 ≤ α ≤ 0.3280. For α ≈ 0.328 in system (2)  a hard loss of stability of the singular 

point  𝑂1  occurs. The cycle becomes stable, which, as the values of the bifurcation parameter 

decrease, undergoes a cascade of the Feigenbaum bifurcations of doubling period. A stable cycle of 

period two is born at  α ≈ 0.319,  a cycle of period four is born at α ≈ 0.301, a cycle of period eight 

is born at α ≈ 0.297  etc. The Feigenbaum bifurcation cascade ends with a singular Feigenbaum 

attractor that exists in system (2) at   α ≈ 0.296. As the values of the bifurcation parameter α decrease 

further, a complete subharmonic cascade of Sharkovsky bifurcations is realized in system (2). So, for 

example, a cycle of period five exists in the system at α = 0.292,  and a cycle of period three, which 
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completes the Sharkovsky cascade, exists in system (2) in the interval 0.279 ≤ α ≤ 0.2867   (see 

Figure 2).   

 

Figure 2. Projections onto the plane (x, z) of stable cycles of system (2) of periods five, three of the 

subharmonic cascade of bifurcations at α = 0.292, α = 0.28 , respectively, and one of the singular 

attractors at α = 0.272. 
With a further decrease in the values of the parameter α  in the system (2), an incomplete 

homoclinic cascade of Magnitskii bifurcations of the birth of stable homoclinic cycles is realized, 

converging to a homoclinic contour, which is the saddle-focus separatrix loop of the singular point 𝑂1. The homoclinic cascade begins with a cascade of bifurcations of period doubling of the cycle of 

period three of the Sharkovsky cascade, which is also a homoclinic cycle of period three. A stable 

homoclinic cycle of period four exists in system (2) at α = 0.2592, a homoclinic cycle of period five 

exists at α = 0.2417,  a homoclinic cycle of period six exists at α = 0.237 (Figure 3).  

 

Figure 3. Projections onto the plane (x, z) of stable cycles of system (2) of periods four, five and six of 

the homoclinic cascade of bifurcations at α = 0.2592, α = 0.2417, α = 0.237, respectively. 

With a further decrease in the values of the parameter α, the dynamics in the system (2) is 

simplified in the reverse order of the FShM  cascade of bifurcations, ending with a stable simple 

cycle gently sticking into the unstable singular point 𝑶𝟏 at 𝛂 ≈ 𝟎. 𝟏𝟖𝟕𝟔. Thus, for the given values 

of the parameters in system (2), there is no homoclinic loop of the separatrix of the singular point of 

the saddle-focus type, and the homoclinic chaos that exists in the neighborhood of homoclinic cycles 

is rather complicated, but not the most complicated chaos that, in principle, can exist in system (2). 

The problem of finding in the space of parameters  the hypersurface of the existence of homoclinic 

loop of a saddle-focus separatrix is an independent rather complicated problem and is not considered 

in this paper. 

3.3. Heteroclinic chaos in the system of equations (2).  
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In system (2), for some values of the parameters, there apparently exists a heteroclinic separatrix 

contour connecting the singular points 𝑂1 and 𝑂2 and, possibly, a homoclinic contour (separatrix 

loop) of the singular point   𝑂2.  One of the stable heteroclinic cycles that exists in the neighborhood  

of the separatrix heteroclinic  contour of the singular points 𝑂1 and 𝑂2 and found for the values of 

the parameters 𝜃 = 0.11, α = 0.2538,  is shown in Figure 4. Figure 4 also shows heteroclinic chaos in 

system (2) at 𝜃 = 0.11, α = 0.254,  generated by the singular attractor of the system in the 

neighborhood of its heteroclinic cycle. From Figure 4 it can be seen that somewhere in the 

neighborhood of the heteroclinic cycle there must also be a homoclinic separatrix contour of the 

singular point 𝑂2.  

 

Figure 4. Projections onto the plane (x, z) of  heteroclinic cycle and heteroclinic singular attractor of 

system (2) at  𝜃 = 0.11, α = 0.2538, α = 0.254,   respectively. 

4. Bifurcations and chaos in a model of the numbers of interacting populations 

In [8], A.D. Bazykin et al. proposed a model for the dynamics of the interacting populations of a 

predator and two prey. The model is a system of three nonlinear ordinary differential equations 𝑥̇ = 𝑥(𝛼 − 𝑥 − 𝛽𝑦 − 4𝑧),   𝑦̇ = 𝑦(𝛿 − 𝑦 − 𝑥 − 10𝑧),                                                              (3)   𝑧̇ = 𝑧(−1 − 𝑥/4 + 4𝑦 − 𝑧) 
with positive fixed parameters 𝛼 = 11, 𝛽 = 6 and a changing bifurcation parameter δ, which is the 

growth rate of the second prey. It was numerically shown in [8] that, as the values of the parameter 

δ decrease in system (3), a cascade of period-doubling bifurcations of stable limit cycles is observed. 

In [9], a hypothesis was put forward that such a cascade is a transition to a complex inexplicable 

quasi-stochastic dynamics. The purpose of this work is to show that the dynamics of the  numbers 

of interacting populations in model (3) is completely subject to the universal law of transition to 

dynamical chaos in nonlinear systems of differential equations in accordance with the bifurcation 

scenario of Feigenbaum-Sharkovsky-Magnitskii.  

4.1. Dissipativity region and singular points of the system (3). 

System (3) has seven singular points:  

1) 𝑥∗ = 𝑦∗ = 𝑧∗ = 0;  2) 𝑥∗ = 𝛼, 𝑦∗ = 𝑧∗ = 0 ; 3)  𝑥∗ = 0, 𝑦∗ = 𝛿,  𝑧∗ = 0;   4)  𝑥∗ = 𝑦∗ = 0, 𝑧∗ = −1 ;   

5)  𝑥∗ = 0,  𝑦∗ = (10 +  δ)/41, 𝑧∗ = (−1 +  4δ)/41;  6) 𝑧∗ = 0, 𝑥∗ = (11 −  βδ)/(1 −  β),  𝑦∗ = (δ − 11)/(1 −  β);     7) 𝑦∗ = (α +  4)/(β +  16),  𝑥∗ = −(δ +  10)/1.5 + 27.33333 𝑦∗,  𝑧∗ = −1 − 𝑥∗/4 + 4𝑦∗.  
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We are interested in the dynamics of solutions to system (3) in the neighborhood of the seventh 

singular point  𝑂  with nonzero coordinates  (𝑥∗, 𝑦∗, 𝑧∗),  in the neighborhood of which complex 

irregular dynamics can exist. Let 𝛼 = 10, β = 3.4   and study system (3)  for 10.9 < δ <  13.1.   Let 

us calculate the divergence of the vector field of the system 𝑑𝑖𝑣 𝐹(𝑥∗, 𝑦∗, 𝑧∗) = (𝜕𝐹1𝜕𝑥 + 𝜕𝐹2𝜕𝑦 + 𝜕𝐹3𝜕𝑧 ) (𝑥∗, 𝑦∗, 𝑧∗) = −(𝑥∗ + 𝑦∗ + 𝑧∗) < 0 

everywhere in the region under consideration, where 𝐹𝑖 , 𝑖 = 1,2,3 are the right parts of the equations 

of the system. Consequently, system (3) is dissipative in a neighborhood of the singular point 𝑂(𝑥∗, 𝑦∗, 𝑧∗)   for all considered values of the parameter δ. 

4.2. Stability region and Andronov-Hopf bifurcation of a singular point of system (3). 

Let us study the stability of the singular point 𝑂(𝑥∗, 𝑦∗, 𝑧∗)  of system (3). The linearization 

matrix of the right side of the system at a singular point has the form: 𝐴 = ( −𝑥∗,    −3.4𝑥∗, −4𝑥∗−𝑦∗,     −𝑦∗, −10𝑦∗−0.25𝑧∗ 4𝑧∗ −𝑧∗ ) 

and its characteristic equation is the equation: 𝜆3 + (𝑥∗ + 𝑦∗ + 𝑧∗)𝜆2 + (41𝑧∗ − 2.4𝑥∗)𝑦∗𝜆 + 29.1𝑥∗𝑦∗𝑧∗ = 0. 
Theorem 2. The singular point 𝑂 of system (3) is asymptotically stable for δ > δ∗ ≈ 13.0939. 

For  δ < δ∗   the singular point 𝑂  becomes unstable, and, as a result of the Andronov-Hopf 

bifurcation, a stable limit cycle is softly born from it. 

Proof. Let us rewrite the characteristic equation in the form 𝜆3 + 𝑎1(δ)𝜆2 + 𝑎2(δ)𝜆 + 𝑎3(δ) = 0. 
By virtue of the Routh-Hurwitz criterion, a singular point  𝑶 is asymptotically stable if and only 

if 𝑎1(δ) > 0,     𝑎2(δ) > 0,     𝑎3(δ) > 0,   𝑎1(δ) 𝑎2(δ) >  𝑎3(δ).  
Since  𝑎1(δ) > 0  for δ < 26.644,  𝑎2(δ) > 0  for δ > 11.1933 ,  𝑎3(δ) > 0  for 8.881 < δ < 21.067,  and 𝑎1(δ) 𝑎2(δ) >  𝑎3(δ)   for  13.0939 < δ <  50.6845,   then the singular point 𝑂  of 

system (3) is asymptotically stable for 13.0939 < δ <  21.067. For δ < δ∗ ≈ 13.0939, the singular 

point 𝑂  becomes unstable, and in this case 𝑎1(δ) 𝑎2(δ) <  𝑎3(δ).  At the bifurcation point δ = δ∗ 
we have  𝑎1(δ) 𝑎2(δ) =  𝑎3(δ).   Let us show that for such a value of  δ∗  in system (3) the limit 

cycle is softly born from the singular point 𝑂 as a result of the Andronov-Hopf bifurcation. Indeed, 

if at the point δ∗  the Routh-Hurwitz conditions for the coefficients of the characteristic equation and 

the condition  𝑎1(δ) 𝑎2(δ) = 𝑎3(δ)    are satisfied, the characteristic equation can be rewritten as (𝜆2 + 𝑎2(δ∗))(𝜆 + 𝑎1(δ∗)) = 0. 
Therefore, at the point δ∗ the roots of the characteristic equation have the form: 𝜆1 = −𝑎1(δ∗) <0,  𝜆2 = 𝑖√𝑎2(δ∗),  𝜆3 = −𝑖√𝑎2(δ∗) ,  that is, the characteristic equation has one real negative root 

and two complex conjugate roots, which is the condition for the Andronov-Hopf bifurcation at the 

point δ∗.  The theorem is proved. 

From Theorem 2 it follows that the greatest interest is the study of possible cascades of 

bifurcations for  δ < δ∗   of a stable limit cycle born from a singular point  𝑂  at δ = δ∗  as a result 

of the Andronov-Hopf bifurcation. It is in this case that all three cascades of bifurcations of stable 

limit cycles and an infinite number of chaotic singular attractors can exist in system (3) in accordance 

with the universal Feigenbaum-Sharkovsky-Magnitskii  bifurcation theory. 

The study of the following bifurcations with decreasing values of the bifurcation parameter δ <δ∗  by analytical methods, starting from the bifurcation of doubling the period of the born limit cycle, 

is an extremely difficult task. Therefore, further study of the complication of the dynamics of 

solutions of the system of equations (3) will be carried out by numerical methods 

4.3. Scenario of transition to chaos in system of equations (3). 
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Let us carry out a numerical study of system (3) with fixed values of the parameters α = 10.7, β 

= 3.4  and a decrease in the values of the bifurcation parameter δ < δ∗ = 13.0939. At 11.1 < δ < δ∗   

in the system (3) the Feigenbaum cascade of period doubling bifurcations of stable cycles is observed. 

So, at δ = 11.18   in system (3) there is a stable (asymptotically orbitally stable) limit cycle of the 

double period, at δ = 11.13   there is  a stable cycle of period four,  at δ = 11.11   there is a stable 

cycle of period eight, etc. For smaller values of the parameter δ  system (3) reveals a sequence of 

stable cycles of a subharmonic cascade of bifurcations in accordance with the Sharkovsky order. So, 

for example, the cycle of period six of the subharmonic cascade exists at δ = 11.09, the cycle of 

period three, which completes the Sharkovsky cascade, exists at δ = 11.031  (Figure 5). 

 

Figure 5. Projections onto the plane (z, y) of stable cycles of the subharmonic cascade of bifurcations 

of periods two, six, three of system (3) at δ = 11.18, δ = 11.09 δ = 11.031,    respectively, and 

Feigenbaum  singular attractor at δ = 11.11. 
As is known (see [1–4]), the last cycle of the subharmonic cascade of bifurcations - the cycle of 

period three is the third cycle of the homoclinic cascade, the sequence of cycles of which must 

converge to the separatrix loop of the saddle-focus singular point  𝑂. Figure 6 shows the stable cycles 

of the homoclinic cascade of  periods four and five, as well as one of the singular homoclinic 

attractors of system (3) for δ = 10.97, which lies in the neighborhood of the separatrix loop of the 

saddle-focus singular point 𝑂. 

 

Figure 6. Projections onto the plane (z,y) of stable cycles of the homoclinic cascade of bifurcations of 

the system (3) of periods four and five at  δ = 10.99  and δ = 10.9761 , as well as one of the 

homoclinic singular attractors at  δ = 10.97. 
Thus, it has been numerically established that in system (3), as the values of the parameter δ 

change, a Feigenbaum cascade of  the period doubling  bifurcations of  stable limit cycles is 
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realized, as well as complete subharmonic cascade of bifurcations of stable cycles in accordance with 

the Sharkovsky order and an incomplete homoclinic cascade of Magnitskii bifurcations. Some cycles 

of subharmonic and homoclinic cascades of bifurcations and singular attractors in the sense of the 

FShM theory are shown in Figures 5,6. 

5. Traveling waves and space-time chaos in the model of the numbers of interacting populations. 

Consider a spatio-temporal model of the dynamics of numbers of interacting populations, which 

is a system of equations in partial derivatives of the reaction-diffusion type {𝑢𝑡 = 𝐷1𝑢𝑥𝑥 + (𝜇 + 1)𝑢2 − 𝑢3𝑣 − 𝐴𝑣𝑡 = 𝐷2𝑣𝑥𝑥 + 𝑢3𝑣 − 𝜇𝑢2                                                          (4) 
By linearization in the neighborhood of the thermodynamic branch  (𝑈, 𝑉) = (√𝐴, 𝜇/√𝐴) system 

(4) can be reduced in the first approximation to the system  {𝑧𝑡 = 𝐷1𝑧𝑥𝑥 + √𝐴(2 − 𝜇)𝑧 − √𝐴3𝑦𝑦𝑡 = 𝐷2𝑦𝑥𝑥 + √𝐴𝜇𝑧 + √𝐴3𝑦,  

where  𝑢 = √𝐴 + 𝑧, 𝑣 = 𝜇/√𝐴 + 𝑦. Therefore, for 0 < 𝜇 < 2  the dynamics of system of equations 

(4) in the neighborhood of its thermodynamic branch is the dynamics of the interaction between the 

numbers of the predator described by the variable y, and the numbers of the prey described by the 

variable z. 

Let us turn to the analysis of the dynamics of solutions and the transition to space-time chaos in 

the system of partial differential equations (4). Let us prove that, for certain values of the parameters, 

system (4) has, in full accordance with the universal bifurcation theory of Feigenbaum-Sharkovsky-

Magnitskii, an infinite number of different stable wave solutions travelling along the spatial axis with 

arbitrary velocities, as well as an infinite number of different regimes of space-time chaos. Moreover, 

the bifurcation parameter is the velocity of propagation of traveling waves along the spatial axis, 

which is clearly not included in the original system of equations. 

5.1. Reduction to an ODE system by means of a self-similar change of variables.  

Consider system (4) on the entire real axis:  𝑢(𝑥, 𝑡): ℝ × ℝ → ℝ, 𝑣(𝑥, 𝑡): ℝ × ℝ → ℝ. We will 

analyze regular and chaotic solutions of system (4) using a self-similar change of independent 

variables  𝜉 = 𝑥 − 𝑐𝑡  thereby reducing the original system of equations (4) to a system of nonlinear 

ordinary differential equations 

{   
   𝑢̇ = 𝑟,𝑟̇ = −𝑐𝑟 + 𝐴 − (𝜇 + 1)𝑢2 + 𝑣𝑢3𝐷1 ,𝑣̇ = 𝑠,𝑠̇ = −𝑐𝑠 + 𝜇𝑢2 − 𝑣𝑢3𝐷2 ,                                                         (5) 

where the derivative is taken with respect to 𝜉 .  If (𝑢(𝜉), 𝑟(𝜉), 𝑣(𝜉), 𝑠(𝜉))  is a solution of the 

system of ordinary differential equations (5), then (𝑢(𝑥 − 𝑐𝑡), 𝑣(𝑥 − 𝑐𝑡)) will be a solution of  the 

system of equations in partial derivatives (4). In this case, traveling waves of the system of equations 

(4) are described by the limit cycles of system (5), traveling impulses of the system of equations (4) 

are described by separatrix loops of saddle-foci of system (5), and space-time chaos of the system of 

equations  (4) is described by singular attractors of system (5) in the sense of the universal bifurcation 

FShM theory. 

5.2. Dissipativity region and singular points of the system (5).  

Let us study the area of dissipativity of the system (5): 𝑑𝑖𝑣 𝐹(𝑢, 𝑟, 𝑣, 𝑠) = 𝜕𝐹1𝜕𝑢 + 𝜕𝐹2𝜕𝑟 + 𝜕𝐹3𝜕𝑣 + 𝜕𝐹4𝜕𝑠 = − 𝑐𝐷1 − 𝑐𝐷2. 
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Since 𝐷1 > 0, 𝐷2 > 0,  the system of equations (5) is everywhere dissipative for  𝑐 > 0. Let us 

find the singular points 𝑂(𝑢∗, 𝑟∗, 𝑣∗, 𝑠∗) of system (5) by equating the right-hand sides of its equations 

to zero. We get that  𝑟∗ = 𝑠∗ = 0, 𝑢∗ = √𝐴,   𝑣∗ = 𝜇/√𝐴,  , i.e. 𝑂(𝑢∗, 𝑟∗, 𝑣∗, 𝑠∗) = 𝑂(√𝐴, 0, 𝜇/√𝐴, 0).  

Let us study the stability and type of the singular point 𝑂  of the system (5). The linearization 

matrix of the right side of the system at the singular point has the form 

𝐴 =
( 
   

    0                      1                     0                        0√𝐴(𝜇 − 2)𝐷1        − 𝑐𝐷1                  √𝐴3𝐷1                   0        0                      0                        0                     1  −√𝐴𝜇𝐷2                   0                − √𝐴3𝐷2             − 𝑐𝐷2) 
   , 

and its characteristic equation is the equation det(𝐴 − 𝜆𝐼) = 𝜆4 + ( 𝑐𝐷1 + 𝑐𝐷2) 𝜆3 + (√𝐴3𝐷2 + 𝑐𝐷1 𝑐𝐷2 − √𝐴(𝜇 − 2)𝐷1 )𝜆2 + 𝑐√𝐴(𝐴 − 𝜇 + 2)𝐷1𝐷2 𝜆 + 2𝐴2𝐷1𝐷2 = 0. 
In the case   𝐷1 = 𝐷2 = 𝐷, which we will consider below, the characteristic equation has the 

form 𝜆4 + 2𝑐𝐷 𝜆3 + (𝑐2𝐷2 + √𝐴(𝐴 − 𝜇 + 2)𝐷 ) 𝜆2 + 𝑐√𝐴𝐷2 (𝐴 − 𝜇 + 2)𝜆 + 2𝐴2𝐷2 = 0.                            (6) 
Theorem 3. The singular point 𝑂 of system (5) is asymptotically stable and is a stable focus for 𝑐 > с∗ = √𝐷(8𝐴2 − 𝐵2)/2𝐵.   For  𝑐 < 𝑐∗, the singular point 𝑂 becomes a saddle-focus, and from it, 

as a result of the Andronov-Hopf bifurcation, a stable limit cycle is softly born. 

Proof. By virtue of the Routh-Hurwitz criterion, a singular point 𝑂 is asymptotically stable if 

and only if 2𝑐𝐷 > 0,         2𝑐𝐷  (𝑐2𝐷2 + 𝐵𝐷) − 𝑐𝐵𝐷2 = 𝑐𝐷 (2𝑐2𝐷2 + 𝐵𝐷) > 0,           𝑐𝐵𝐷2  𝑐𝐷 (2𝑐2𝐷2 + 𝐵𝐷) − (2𝑐𝐷 )2 2𝐴2𝐷2 > 0, 
where  𝐵 = √𝐴(𝐴 − 𝜇 + 2) > 0.   The first inequality holds for all 𝑐 > 0.. The second inequality is 

also satisfied. Consequently, the singular point 𝑂 of system (5) is asymptotically stable for 2𝑐2𝐵𝐷 + 𝐵2 − 8𝐴2 > 0,              𝑐 > с∗ = √𝐷(8𝐴2 − 𝐵2)/2𝐵.                                       
Let us show that for   𝒄 < с∗  a stable limit cycle is born from the singular point 𝑂 which 

corresponds to the transition of two complex conjugate roots of the characteristic equation (6) from 

left to right through the imaginary axis of the plane of the complex variable. Indeed, let the value of 

the variable  𝑐 be such that the characteristic equation (6) has the following roots: 𝜆1 < 0, 𝜆2 < 0,𝜆3 = 𝑖𝜔,   𝜆4 = −𝑖𝜔.  Then, by the Vieta theorem, we have the equalities    𝜆1 + 𝜆2 = −2𝑐𝐷 , 𝜆1𝜆2 + 𝜔2 = 𝑐2𝐷2 + 𝐵𝐷 , (𝜆1 + 𝜆2)𝜔2 = − 𝑐𝐵𝐷2 ,            𝜆1𝜆2𝜔2 = 2𝐴2𝐷2 . 
Substituting from the first, third and fourth equalities the expressions for  𝜆1 + 𝜆2,   𝜔2 and  𝜆1𝜆2 into the second equality, we get that it is satisfied for 𝒄 = с∗. In this case, the transition through 

the imaginary axis of two complex conjugate roots of the characteristic equation occurs from left to 

right as the values of the variable  𝒄   decrease. That is, it is precisely for such a value of с∗ in the 

system of equations (5)   the Andronov-Hopf  bifurcation of the birth of a stable limit cycle occurs. 

The theorem is proved. 

It follows from Theorem 3 that the study of possible cascades of bifurcations of the singular point 𝑂  in the case when 𝒄 < с∗  is of greatest interest. It is in this case that in system (5) the existence of 

all three cascades of bifurcations of stable limit cycles and an infinite number of chaotic singular 

attractors is possible in accordance with the universal Feigenbaum-Sharkovsky-Magnitskii 

bifurcation theory. And the system of equations (4) can have an infinite family of the most complex 

periodic and non-periodic (chaotic) traveling waves up to traveling pulses. It also follows from 

Theorem 3 that the bifurcation parameter in the system of equations (5) is the parameter 𝒄, which is 

not included explicitly in the original system of equations (4) and characterizes the velocity of 
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propagation of perturbations along the spatial axis  x. Further study of the complication of the 

dynamics of solutions of the systems of equations (4) and (5) will be carried out by numerical 

methods. 

5.3. Scenario of transition to spatio-temporal chaos in system (4).  

Numerical study of system (5) will be carried out at fixed values of the parameters 𝐴 =0.83,   𝜇 = 1.45  and a decrease in the values of the bifurcation parameter 𝑐 < с∗ ≈ 3.954.  A stable 

(asymptotically orbitally stable) limit cycle born at  𝑐 = с∗  from a singular point 𝑂  of system (5) 

exists up to the value  𝑐 ≈ 2.68  at which a stable limit cycle of doubled period is born from it. With 

a further decrease in the values of the parameter 𝑐 in system (5), the Feigenbaum cascade of cycle 

period doubling bifurcations is observed. Period four cycle is born at  𝑐 ≈ 2.38, period eight cycle is 

born at 𝑐 ≈ 2.315 etc. For 𝑐 ≈ 2.29 in system (5) there is the first simplest singular attractor - the 

Feigenbaum attractor which is a non-periodic bounded trajectory, which is the limit of cycles from 

the Feigenbaum cascade. 

With a further decrease in the values of the parameter 𝑐,  a sequence of stable cycles is found 

in accordance with the Sharkovsky order. So, for example, the cycle of period six of the subharmonic 

cascade exists at 𝑐 = 2.263, the cycle of period five exists at 𝑐 = 2.17, the cycle of period three, which 

completes the subharmonic cascade of bifurcations, exists at 𝑐 = 2.01 (Figure 7). 

 

Figure 7. Projections onto the plane (z,y) of stable cycles of  periods five and three of the subharmonic 

cascade of bifurcations of system (5) and one of the subharmonic singular attractors at  𝑐 = 2.17, 𝑐 =2.01, 𝑐 = 1.8,  respectively. 

Thus, it has been numerically established that in system (5), as the values of the parameter c 

decrease, the Feigenbaum cascade of doubling the period of stable limit cycles and the complete 

subharmonic cascade of bifurcations of stable cycles are realized in accordance with the Sharkovsky 

order. The found cycles of the system (5) correspond to traveling waves of the system of equations 

(4). Figure 8 shows such waves corresponding to the cycles and the singular attractor shown in Figure 

7. 
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Figure 8. Traveling periodic and chaotic waves of the variable 𝑣(𝑡) of the system of equations (4)  

corresponding to the cycles and the attractor of the system of ordinary differential equations (5) 

shown in Figure 7. 

6. FShM chaos in a system with a hidden attractor. 

In the modern literature on nonlinear and chaotic dynamics, the concept of a “hidden” attractor 
of an autonomous system of ordinary differential equations is widely used in the case when the 

system, together with an irregular attractor, either has no singular points at all (see [10]) or has stable 

singular points (see [11]). The system from [11] with a stable singular point was considered by the 

author in [4], where it was shown that its chaotic attractor is also a singular attractor generated by a 

subharmonic cascade of  FShM  bifurcations theory.  The system of equations with “hidden” 
attractor and without singular points proposed in [10] has the following form 𝑥̇ = 𝑎(𝑦 − 𝑥) − 𝑤,          𝑦̇ = 𝑥𝑧,           𝑧̇ = 𝑏 − 𝑥𝑦,              𝑤̇ = 𝑥.                           (7) 

The “hidden” attractor was found by the authors of [10] in system (7) at 𝑎 = 4, 𝑏 = 40, and the 

allegedly positive Lyapunov exponent was calculated in MATLAB by integrating the equations of 

system (7) by the fourth-order Runge-Kutta method, that, as noted above, is an absolutely 

meaningless procedure and is not a characteristic of the attractor.  

The fact that system (7) must have some attractor for all  𝑎 > 0  follows from its dissipativity, 

since for the divergence of its right-hand side 𝐹(𝑥, 𝑦, 𝑧, 𝑤)  we have 𝑑𝑖𝑣 𝑭 = (𝜕𝐹1𝜕𝑥 + 𝜕𝐹2𝜕𝑦 + 𝜕𝐹3𝜕𝑧 + 𝜕𝐹4𝜕𝑤) = −𝑎 < 0.  
Usually a complex singular attractor is born as a result of  FShM cascade of stable cycle or torus 

bifurcations, which themselves are born as a result of one or two Andronov-Hopf bifurcations from 

an initially stable singular point. It is clear that this scenario does not work for system (7), since it has 

no singular points at all at  𝑏 ≠ 0, as in  this case its right-hand sides cannot be equal to zero at the 

same time. Nevertheless, let us show numerically that the “hidden” attractor found in system (7) is 
also a complex singular attractor of FShM cascades of bifurcations with respect to the parameter 𝑎  

of some initially stable limit cycles of system (7) not born from singular points as a result of 

Andronov-Hopf bifurcations, but those born as a result of saddle-node bifurcations. 

6.1. Numerical analysis of the transition to chaos in system (7). 

We will study the dynamics of solutions of the system of equations (7) by numerical methods 

for 𝑏 = 40  and for decreasing values of the bifurcation parameter  𝑎 < 15.5.  Numerical analysis 

shows that at 𝑎 = 15.48  system (7) has three stable limit cycles, which can be reached by integrating 

the equations of the system with different initial conditions. Figure 9 shows the projections of these 

cycles on the plane (𝑥, 𝑧).  As the values of the parameter 𝑎  decrease, the central symmetric cycle 

undergoes a fork-type bifurcation, remaining unstable in the system, and cascades of bifurcations 
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occur with the two stable limit cycles born in this case, in full accordance with the theory FShM. So 

stable cycles of period two are observed at 𝑎 = 13.5, stable cycles of period four are observed  at  𝑎 = 13.37,  stable cycles of period eight are observed at 𝑎 = 13.36,  the first Feigenbaum singular 

attractors are observed  at 𝑎 = 13.34.  Cycles of period three, completing the subharmonic cascades 

of Sharkovsky bifurcations, can be observed at 𝑎 = 12.71 (Figure 10a,c). 

 

Figure 9. Projections onto the plane (𝒙, 𝒛) of stable cycles of system (7) at 𝑎 = 15.48 . 
Further complication of the dynamics of solutions of the system of equations (7) occurs, as in the 

system of Lorentz equations, by merging two tapes of heteroclinic separatrix manifolds containing 

all unstable cycles, with the appearance of a cascade of bifurcations of heteroclinic cycles. One of the 

stable  heteroclinic cycles found at  𝑎 = 10.3    shown in Figure 10b. 

 

Figure 10. Projections onto the plane (𝑥, 𝑧)  of stable cycles of period three of Sharkovsky 

subharmonic cascade of bifurcations in system (7) at 𝑎 = 12.71 (а,c) and 𝑎 = 10.3 (b). 

With a further decrease in the values of the parameter  𝒂, new stable cycles are born as a result 

of saddle-node bifurcations, found at 𝑎 = 10.1 and shown in Figure 11. With the cycles shown in 

Figure 11a and Figure 11d, period doubling bifurcations occur at 𝑎 = 9.95  and then complete 

subharmonic cascades of Sharkovsky bifurcations take place. The cycles shown  in Figure 11b and 

Figure 11c remain stable up to 𝑎 = 9.25,   and then also undergo full subharmonic cascades of 

Sharkovsky bifurcations. 
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Figure 11. Projections onto the plane (𝑥, 𝑧) of stable cycles of system (7) at 𝑎 = 10.1. 
In Figure 12a,c the stable cycles of three periods found at 𝑎 = 8.767 are shown, which complete 

the subharmonic cascades of Sharkovsky bifurcations, the beginning of which is laid by the cycles 

shown in Figure 11b and Figure 11c. In Figure 12b the “hidden” attractor of the system of equations 
(7) found by the authors of [10] for 𝑎 = 4  also is shown. The form of the “hidden” attractor clearly 
indicates its formation as a result of cascades of bifurcations of cycles, shown in Figure 9,10,11.  Thus, 

the so-called “hidden” attractor found in system (7) with 𝑎 = 4  is a consequence of several infinite 

cascades of bifurcations in accordance with the universal Feigenbaum-Sharkovsky-Magnitskii 

bifurcation scenario with decreasing values of the bifurcation parameter a. That is, the “hidden” 
attractor of system (7) is not some special type of irregular attractors, but just like in any other three-

dimensional and multidimensional nonlinear dissipative and conservative systems of ordinary and 

partial differential equations, it is one of an infinite number of singular attractors of the system. Since 

all cycles that are born and become unstable at all stages of all FShM cascades of bifurcations do not 

disappear, but remain in the system, the complexity of the singular attractors of system (7) increases 

significantly with decreasing values of the parameter a, and the stability regions of the resulting 

saddle-node bifurcations of new stable cycles are significantly reduced, which significantly limits the 

possibility of finding them numerically for 𝑎 ≳ 4.   Although, undoubtedly, such stable cycles must 

also exist in the interval 4 < 𝑎 < 8.7.  

 

Figure 12. Projections onto the plane (𝑥, 𝑧)  of stable cycles of period three of Sharkovsky 

subharmonic cascade of bifurcations in system (7) at  𝑎 = 8.767(а,c) and the «hidden» attractor of the 

system at  𝑎 = 4 (b). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 May 2023                   doi:10.20944/preprints202305.0401.v1

https://doi.org/10.20944/preprints202305.0401.v1


 18 

 

Thus, a numerical study of the nature of "hidden" attractors of nonlinear autonomous systems 

of differential equations has been carried out using the example of an irregular attractor of system 

(7). It is shown that the transition to the attractor in this nonlinear system of differential equations 

occurs, as in any other nonlinear chaotic systems of differential equations, in accordance with the 

universal Feigenbaum-Sharkovsky-Magnitskii bifurcation scenario. At the same time, due to the 

absence of singular points and, consequently, the absence of homoclinic and heteroclinic separatrix 

contours, several incomplete FShM cascades of bifurcations are realized in the system, forming an 

infinitely sheeted surface of a two-dimensional heteroclinic separatrix manifold (separatrix zigzag) 

containing both all singular attractors of the system and all its unstable limit cycles. The leading 

characteristic Lyapunov exponent on any singular attractor of the system is zero, and its positive 

values found numerically are only the result of computational errors 

7. Conclusion 

In this work, an analytical and numerical analysis of laminar-turbulent transitions in five 

nonlinear systems of ordinary and partial differential equations, which are models of autocatalytic 

chemical processes, the numbers of interacting populations and “hidden” attractor is carried out. It 
is numerically shown that in all considered systems of equations, the transition to chemical and 

biological turbulence is carried out in full accordance with the universal Feigenbaum-Sharkovsky-

Magnitskii bifurcation theory through subharmonic and homoclinic cascades of bifurcations of stable 

limit cycles. It is proved that irregular attractors in all cases are exclusively singular attractors in the 

sense of the FShM theory. 

Let us  make some general remarks  about the causes and scenarios of the emergence of chaos 

in nonlinear systems of differential equations, as the  publication of papers [7,10,11] and many others 

about “hyperchaotic”, “hidden”,  “strange”,  “stochastic”, “hyperbolic”  and other attractors even 
in prestigious refereed journals, indicates to a complete lack of understanding of the mechanism of  

chaotic dynamics in nonlinear systems of differential equations. In this paper, author's papers [1–4] 

and others, on numerous examples, it is convincingly demonstrated that there exists universal FShM 

bifurcation scenario of transition to chaos in all systems of nonlinear differential equations without 

exception: autonomous and non-autonomous, dissipative and conservative, ordinary, with partial 

derivatives and with delayed argument. All irregular attractors that arise during the implementation 

of this scenario are exclusively singular attractors. Each nonlinear system can have infinitely many 

different structurally unstable singular attractors for different values of the bifurcation parameter, 

which may not be included explicitly into the equations of the system. Thus, neither the presence or 

absence of stable or unstable singular points in the system, nor the presence or absence of  

homoclinic or heteroclinic separatrix contours of saddle-nodes or saddle-focuses,  is not a criterion 

for the appearance of chaotic dynamics in the system. Also, neither the positivity of the numerical 

senior Lyapunov exponent, nor the proof of existence of Smale's horseshoe, nor the KAM theory, nor 

the theory of RT, are such criteria either. The positivity of the Lyapunov exponent is purely a 

consequence of computational errors, because due to the presence of an everywhere dense set of non-

periodic trajectories, numerical motion is possible only over the whole region occupied by the 

trajectory of the singular attractor, and not along its trajectory itself. In addition, the Lyapunov 

exponent will also be positive when moving along a stable periodic trajectory of a large period in the 

neighborhood of some singular attractor. The presence of Smale’s horseshoe in the system testifies to 
the complex dynamics of the solutions, however, even in the neighborhood of the separatrix loop of 

saddle-focus, where by Shilnikov's theorem there exists an infinite number of Smale’s horseshoes, the 
dynamics of the system is determined not by horseshoes, but a much more complex infinite set of 

unstable periodic solutions generated at all stages of all three cascades of bifurcations of the FShM-

scenario, whose homoclinic cascade of cycles ends in the limit precisely with the separatrix loop of 

saddle-focus. The only method that allows establishing reliably the presence of chaotic dynamics in 

the system is the numerical finding of stable cycles or tori of the FShM-cascades of bifurcations. 
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