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Abstract: The point cloud is a form of three-dimensional data that comprises various detailed 

features at multiple scales. Due to this characteristic and its irregularity, point cloud analysis based 

on deep learning is challenging. While previous works utilize the sampling-grouping operation of 

PointNet++ for feature description and then explore geometry by means of sophisticated feature 

extractors or deep networks, such operations fail to describe multi-scale features effectively. 

Additionally, these techniques have led to performance saturation. And it is difficult for standard 

MLPs to directly "mine" point cloud. To address above problems, we propose the Detail Activation 

(DA) module, which encodes data based on Fourier transform after sampling and grouping. We 

activate the channels at different frequency levels from low to high in the DA module to gradually 

recover finer point cloud details. As training progresses, the proposed Point-MDA can uncover local 

and global geometries of point cloud progressively. Our experiments show that Point-MDA 

achieves superior classification accuracy, outperforming PointNet++ by 3.3% and 7.9% in terms of 

overall accuracy on the ModelNet40 and ScanObjectNN dataset, respectively. Furthermore, it 

accomplishes this without employing complicated operations, while exploring the full potential of 

PointNet++. 
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1. Introduction 

The point cloud is a data set of points in 3D space, where each point possesses its own distinct 

attributes like color, normal direction or light intensity. This data is commonly acquired through 

sensors such as laser radar or camera, and is ideal for preserving the geometric structure and surface 

features of objects, making it very suitable for 3D scene understanding. Point cloud classification has 

been active in the research fields such as photogrammetry and remote sensing for decades. It has 

become an important part of intelligent vehicles [1], automatic driving [2], 3D reconstruction [3], 

forest monitoring [4], robot perception [5], traffic signage extraction [6] and so on. Due to factors like 

irregularity and disorder, high sensor noise, complex scenes and non-homogeneous density, point 

cloud classification is still challenging. Most previous works focuse on manually designing point 

cloud features [7], which are limited to specific tasks and cannot be optimized easily for new tasks. 

Nowadays, deep learning has become the leading method of point cloud classification because of its 

high efficiency in processing large data sets and the autonomy of extracting features. 

PointNet, proposed by Charles [8], is the first groundbreaking deep neural network directly 

processing unordered point clouds. PointNet mainly utilizes multi-layer perceptions (MLPs) to 

elevate the coordinate space of point clouds to a high-dimensional feature space, and then obtain 

representative global feature vectors of point clouds by global pooling. However, PointNet pays too 

much attention to the global features of point clouds, and its ability to exploit local features is poor. 

The subsequently proposed method, PointNet++ [9], is a layered network. Its abstraction layer 
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consists of a sampling layer, a grouping layer, and a PointNet layer for nonlinear mapping. 

PointNet++ can better learn local features. 

Inspired by PointNet++, some works attempt to extract local geometric features of point clouds 

by using convolution [10–12], graph convolution [13,14], and transformer [15,16] in the non-linear 

mapping layers. Some methods are also proposed to improve classification performance by 

deepening the network [17–19] or stacking network structures [20–22]. In addition, many researchers 

choose to convert irregular point clouds into regular data before processing [23,24], such as 

converting point clouds into grids for uniform distribution and then using 3D-CNN [25] to process 

grid data. These approaches have the disadvantages of high computational complexity and 

quantization noise, resulting in low accuracy and efficiency of point cloud classification. 

Furthermore, the sampling-grouping operation can lead to the loss of point cloud information 

and the neglect of various detail regions. Using complex feature extractors in the non-linear mapping 

layer cannot also solve the sampling-grouping operation's failure to capture multi-scale detailed 

features well. Meanwhile, [26] proves that the standard MLP is more suitable for low-dimensional 

visual and graphics tasks, and cannot learn high-frequency information in theory and practice. 

Deepening or stacking network structures can lead to network degradation, model performance 

saturation, and inference delay. 

To address the above issues, this paper proposes a simple and intuitive point cloud analysis 

network without any delicate local feature exploration algorithms or deepening networks: a detail 

activation operation, similar to positional encoding, is added between the sampling-grouping 

operation and the non-linear mapping layer, so that subsequent coordinated-based MLPs can learn 

higher frequency features. We develop a novel Detail Activation (DA) module based on the 

corroborating theory using Neural Tangent Kernels [26]. The strategy we adopt is to gradually 

activate the high-frequency channels of the DA module's inputs and successively unfold more 

complex details as the training proceeds. Specifically, after sampling and grouping, the DA module 

first recovers the detailed features of the point cloud at a low-frequency level. Then, in different 

network layers, we recover the feature information at different scales by activating channels at 

different frequency levels in the DA module. In this way, we progressively expand more intricate 

details as the training continues, which is more conducive to the subsequent MLP layer to learn 

detailed features. 

Additionally, inspired by ResNet [27], DenseNet [28], and PointMLP [18], we develop an 

improved MLP module that integrates the design concepts of residual connection and dense 

connection. We call the module ResDMLP. Ablation experiments show that our network, coupling 

these two designs (ResDMLP and DA), can more efficiently learn and process point clouds than 

standard MLPs.  

Finally, to enable the current layer to retain the details activated by the previous layers 

ultimately, we introduce residual connections between the network layers so that the entire feature 

extraction process can be jointly supervised with the details from the farthest scale to the current 

scale. In this paper, the following is achieved: 

(1) We propose a new framework named Point-MDA, which can progressively expand more 

intricate details as training progresses. Point-MDA can jointly monitor the entire feature extraction 

process through the activated details from the farthest scale to the current scale. 

(2) We introduce a novel Detail Activation (DA) module. In different layers of Point-MDA, we 

activate different frequency levels in the DA module. By progressively recovering detailed features 

at different scales, we aim to address the issue of information loss caused by the conventional 

sampling-grouping operation failing to fully explore the geometry of irregular point clouds. 

Additionally, the DA module enables subsequent MLPs to better learn high-frequency information, 

thereby improving the accuracy and robustness of point cloud classification. 

(3) We design a plug-and-play style MLP-based module (ResDMLP) that combines ideas of 

residual connection and dense connection, aiming to reuse features, alleviate gradient disappearance, 

and help conduct training more intensely, accurately, and effectively. 

Our method achieves superior overall and class-average accuracy on the point cloud 

classification task on ModelNet40[29] and ScanObjectNN[30] datasets without complex feature 
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extraction algorithms or deepening and stacking network structures, extensively tapping the 

potential of PointNet++. 

2. Related Works and Proposed Methods 

2.1. Related Works 

The point cloud analysis tasks based on deep learning have always been challenging. Recent 

studies have shifted their focus towards achieving good performance by simplifying methods, rather 

than designing complex feature extraction algorithms. Some works considers improving the related 

modules in non-linear mapping layers to overcome model performance bottlenecks. In this section, 

we first review the development of point cloud analysis networks and compare them with our 

proposed method. Our method utilizes a progressive point cloud classification network structure 

that can extract point cloud details at different scales, without involving complex network design and 

module stacking. Our basic strategy is to gradually activate the high-frequency channels in the DA 

module and gradually unfold more complex details as the training progresses. 

2.1.1. Point Cloud Analysis 

Since the point cloud is irregular, previous works usually consider converting the raw point 

cloud into regular data before processing [23,24,31]. However, these transformations are 

accompanied by complex computation and loss of details, which leads to low accuracy and efficiency 

of point cloud analysis. Processing the original point cloud data directly can reduce the heavy 

computation, fully consider the characteristics of point clouds and retain data information more 

thoroughly. PointNet [8] pioneered using deep learning directly for 3D point cloud analysis tasks. 

Due to the disorder of point clouds, it is impossible to directly use convolution and other operations 

on the original point cloud. PointNet proposes to exploit the symmetric function to solve this problem 

and designs a network structure that can perform classification and segmentation tasks. PointNet++ 

[9] is one of the most influential hierarchical neural architectures for analyzing point clouds.  Its 

architecture is simple, but its full potential remains to be tapped. PointNet++'s principal operations 

are composed of sampling, grouping, and shared MLPs. It can better obtain the local features of point 

clouds. Based on PointNet++, subsequent researchers propose a variety of point cloud analysis 

networks, such as SO-Net [32] and PointWeb [33]. Our Point-MDA also follows the design concept 

of PointNet++ that applies the sampling-grouping operation with an MLP-based architecture. 

Nevertheless, Point-MDA performs the encoding operation of activating the point cloud detailed 

features after the sampling-grouping layers but before the MLP layers. Moreover, Point-MDA 

deactivates point cloud features at different detail scales from low to high among different layers of 

the network and introduces the identity mapping between layers of the network to achieve the reuse 

of details activated. 

2.1.2. Point Cloud Local Geometry Exploration 

Owing to the success of PointNet++, the recent research focus is shifted to point cloud local 

geometry exploration. The methods of local geometry exploration can be broadly divided into four 

categories: convolution-based [10,12], graph-based [13,34,35], transformer-based [15,16], and 

geometry-based [18,36]. One of the most prominent convolution-based methods is PointConv [12], 

which regards the convolution kernel as a non-linear function composed of weight and density 

functions. The weight functions are learned through MLPs, and the density functions are learned 

through kernel density estimation. Unlike convolution-based methods, graph-based methods use 

graph edges to study the correlation between points. For example, Zhou [35] proposed the adaptive 

graph convolution (AdaptConv), which can generate an adaptive kernel for points according to their 

dynamic learning features. In this way, AdaptConv improves the flexibility of graph convolution and 

captures various relationships of points from different semantic parts effectively. Transformer-based 

methods emphasize the enhancement of connections between point cloud Surface Representation ds 

like Point-BERT [15] and Point Transformer [16]. Different from other categories, geometry-based 
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methods are more customized. For example, PointMLP [18] proposes a lightweight geometric affine 

module to transform the local points to a normal distribution adaptively. At the same time, Repsurf 

[36] exploits representative surfaces to explicitly describe the points in local areas. With the 

development of local geometry exploration, the performance on various tasks tends to be saturated. 

Continuing this orbit will bring slight improvement. Unlike these methods demanding sophisticated 

local feature extractors, Point-MDA, proposed in this paper, succeeds in tapping the potential of point 

cloud analysis networks considerably by mainly utilizing simple encoding operations based on 

Fourier feature transform. 

2.1.3. Shared MLP Improvement for Point Cloud Analysis 

The essence of shared MLPs is generally known as multi-layer perceptrons (MLPs), which use a 

1x1 convolution kernel to make convolution operations, aiming to reduce network training 

parameters and achieve a weight-sharing mechanism similar to CNN. Shared MLPs have been 

widely used in point cloud analysis networks. In recent years, point cloud analysis tasks have noticed 

that complex feature extractors for local geometric exploration of point clouds are not the key to point 

cloud analysis[17,18]. To better match the network structure, some works have upgraded the MLP 

module in the non-linear mapping layer to improve network performance. For example, PointMLP 

[18] builds a deep network for point cloud analysis using only residual feed-forward MLPs and 

abandons the use of delicate local geometric extractors. PointNorm[17] combines the advantages of 

InvResBlock[37] and SEBlock[38] to design a new controllable residual block (C-ResBlock) aimed at 

improving computational efficiency. PointNeXT[19] proposes an inverted residual bottleneck design 

and separable MLPs into PointNet++ to achieve efficient and effective model scaling. In contrast, the 

proposed ResDMLP module combines residual and dense connections principles. We aim not to 

deepen the network or reduce model parameters but to achieve feature reuse and help with more 

accurate and practical training. In ablation experiments, it has been proven that our developed 

ResDMLP module is more suitable for Point-MDA. 

2.2. Proposed Methods 

In this section, we first explain the significance and principle of the proposed Detail Activation 

module from the theory and formulas and how to use the DA module to activate point cloud details 

at different scales hierarchically. Then we introduce the ResDMLP module from the perspective of 

the module structure, which combines the concepts of residual and dense connections. Finally, based 

on the proposed DA and ResDMLP modules, we propose the specific framework of Point-MDA, as 

shown in Figure 2. It is worth noting that Point-MDA can utilize information from the farthest scale 

to the current scale to jointly supervise the entire feature extraction process, achieving progressive 

training. 

2.2.1. Detail Activation Module 

Point cloud data contains detailed information at different scales. For example, when we acquire 

point cloud data through laser scanning, the obtained data is usually incomplete and uneven due to 

factors such as low surface reflectivity of some materials and cluttered urban background. Such data 

typically has detailed information at different scales. However, even if the point cloud data is 

sampled and grouped hierarchically, the detailed information of the point cloud cannot be well 

excavated. In addition, [26] indicates that deep networks tend to learn functions with lower 

frequencies. It also suggests that before feeding data into a neural network, it is possible to better 

capture patterns and structures containing high-frequency variations by mapping the data from its 

original dimensionality to a higher dimensionality using high-frequency functions. 

In the context of implementing point cloud classification based on deep learning, we utilize these 

findings and develope the Detail Activation (DA) module to encode and activate point cloud details 

for the sampled-grouped point cloud coordinates, while also helping subsequent MLPs represent 

high-frequency functions, significantly improving classification accuracy. The core implementation 
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of the DA module is based on the basic principles of Fourier transform and can be expressed in 

formula as follows: 

�(p) = (sin(2��p), cos(2��p) , … , sin(2����p), cos(2����p)), (1)

where p =  {��|� = 1, …, �}  ∈  ����,  represents a set of points, � indicates the number of points in 

an (�, �, �) Cartesian space and L represents different Fourier feature frequencies activated in the 

Detail Activation module. Specifically, L means the scales of detailed features we want to activate. 

�(∙) works as a mapping from R into a higher dimensional space R2L. The DA module is applied 

separately to each of the three coordinate values in the sampled-grouped point cloud. 

The characteritics of point clouds imply varying degrees of learning difficulty and focal points. 

Therefore, we suggest building and training models in a progressive manner to encourage division 

of labor between network layers and fully utilize the power of the DA module across all frequency 

bands. The success of [39] has strengthened our motivation to construct a progressive layered 

network structure. We do not activate all detail scales at once. we gradually expand the training sets 

of point clouds by one closer scale at each model layer. Different network layers activate different 

Fourier feature frequencies of the DetailActivation module. For instance, in the shallow layers of the 

network, only low-frequency channels in the DA module are activated, thereby facilitating the 

learning of features that are matched with low-level details. Furthermore, in most existing 

hierarchical point cloud analysis networks, more information reuse is required between model layers. 

Despite attempts to restore point cloud details by activating channels of varying frequencies in 

DetailActivation through layer activation, earlier layers are unable to retain the details of previous 

layers. To address this challenge, we introduce skip connections between layers of the network, 

serving as a joint supervision mechanism that encompasses the entire feature extraction process for 

details from the farthest to the current scale. As a result, the final layer of the network is under the 

supervision of all the layers, whereas the earliest layer only exposes the point cloud features on the 

coarsest detail scale. 

2.2.2. ResDMLP Module 

To capture the non-linear characteristics of point cloud data, the multi-layer perceptron (MLP) 

is introduced as a non-linear mapping layer in the point cloud classification network for feature 

extraction and abstraction. A novel MLP module, named ResDMLP, is designed by combining the 

ideas of ResNet [27] and DenseNet [28] to enhance the performance of the network in conjunction 

with the Point-MDA structure. 

ResNet was originally intended for 2D image classification tasks to cope with the degradation 

problem in deep networks via cross-layer connections. DenseNet introduces dense blocks, where 

each layer within each block is connected to all previous layers, producing a network that can 

effectively utilize the previous layers' features. Recently, PointMLP [18] proposed a deep network 

using residual feedforward MLP. Following PointMLP's approach, we merge residual blocks and 

dense blocks to the MLP module aimed at non-linear mapping layers. The ResDMLP module 

resembles DenseNet's structure but utilizes ResNet's "addition" functionality. Rather than 

intensifying the network, the ResDMLP module is intended to complement the entire progressive 

network structure, promote feature reuse, decelerate gradient disappearance, and facilitate more 

accurate training. Figure 1 depicts the ResDMLP module overview. 
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Figure 1. Overview of the proposed ResDMLP module which combines the concepts of residual 

connection and dense connection. The ResDMLP module resembles the architecture of DenseNet, but 

it diffes in that addition is used instead of concatenation. "⨁" means that the corresponding elements 

of features are summed rather than concatenated. 

2.2.3. Framework of Point-MDA 

The framework of Point-MDA is illustrated in Figure 2, which is a simple yet powerful MLP-

based network designed for point cloud analysis by avoiding complex operations and deepening of 

the network. Given a set of points � =  {��|� = 1, …, �}  ∈  ����, where � indicates the number of 

points in an (�, �, �) Cartesian space. The workflow of Point-MDA can be formulated as follows: 

�� = ∑ �(��)
���
���  +  �������(���

(�(�(�)))), (2)

where �(⋅) is the sampling function and �(⋅) is the grouping function. Additionally, ���
 

represents the DA module, which activates � frequency level initiated in network layer i. 

Furthermore, Ε(⋅) refers to 1 ×  1 convolutions that adjust data dimensions. For this study, we set 

n = 3. 

Point-MDA can be divided into four steps: sampling-grouping, DetailActivation, non-linear 

mapping, and classification. Drawing inspiration from PointNet++, we develope a new set abstraction 

layer composed of three modules: sampling-grouping, DetailActivation, and non-linear mapping. 

We repeat this new set abstraction layer three times to progressively capture and highlight point 

cloud details of differing scales, ranging from coarse to fine. For point sampling, we utilize Farthest 

Point Sampling (FPS), and for point grouping, we use K-Nearest Neighbors (KNN). After sampling 

and grouping, we utilize the Detail Activation (DA) module to activate the details at a coarse scale 

and gradually activate finer details. Following the DA module, Point-MDA enters a non-linear 

mapping layer, consisting of the ResDMLP module proposed. Notably, we introduce residual 

connections among the layers of Point-MDA to coordinate the whole progressive workflow, enable 

feature reuse, and facilitate deeper and more accurate training. Finally, we perform max pooling 

before the classifier to output the classification results. 

In general, Point-MDA, which is a progressive point cloud layered classification network for 

extreme multi-scale detail activation, is a simple yet efficient neural network primarily used for 

recognizing and classifying point cloud data. The significant feature of this network is gradually 

introducing higher-level features into the network, processing point clouds in layers at different 

levels to identify features with varying levels of details without the need for complex feature 

extraction algorithms. 
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Figure 2. The workflow of Point-MDA for classification tasks. Given an input point cloud, Point-MDA 

first uses the sampling-grouping operation and then exploits the Detail Activation module to activate 

the details of the point cloud and progressively activate different scales. The ResDMLP module will 

then process the activated features. Meanwhile, the feature extraction process is jointly supervised by 

the details captured from the farthest scale to the current scale through residual connections, thus 

promoting information reuse. 

3. Results 

In Section 3.1, we first introduce the two datasets utilized for the experiments, namely 

ModelNet40 [29] and ScanObjectNN [30], followed by a description of the specific implementation 

details. In Section 3.2, we evaluate the classification performance of Point-MDA on two benchmarks 

in point cloud classification and compare it with state-of-the-art networks in the field. Lastly, in 

Section 3.3, detailed ablation studies are conducted to demonstrate the effectiveness of the proposed 

modules and the appropriateness of the current hyperparameter selection. 

3.1. Experiments 

3.1.1. Experimental Data 

We evaluate our Point-MDA on the ModelNet40 [29] dataset and ScanObjectNN [30] dataset. 

The ModelNet40 dataset is a large-scale synthetic dataset that consists of more than 12,000 3D models 

covering 40 different categories such as tables, chairs, sofas, cars, lamps and others. It comprises a 

total of 9843 training samples and 581 testing samples. The dataset is superior in quality as it is free 

from significant noise and defects. It is significantly diverse as it encompasses a wide range of 

categories, each with multiple variations. Additionally, it is easily accessible and available to the 

public through online platforms. 

The ScanObjectNN dataset is a public dataset used for 3D object detection and classification. It 

consists of 200 3D scanning scenes covering various types of objects, which are categorized into 15 

classes, such as tables, chairs, sofas, beds, bookcases, boxes, cabinets, and cutlery. This dataset 

exhibits high diversity, covering different scene types and object shapes. Additionally, the dataset 

contains over 15,000 annotated object instances, making it one of the largest-scale 3D object detection 

and classification datasets currently available. However, due to occlusion and noise, this dataset 

presents significant challenges to existing point cloud analysis methods. 

3.1.2. Implementation Details 

For the experiments conducted on the ModelNet40 dataset, PyTorch framework [40] is utilized 

along with AdamW optimizer [41]. In simple terms, AdamW introduces weight decay on top of 

Adam optimizer. Point-MDA is trained for 250 epochs to achieve convergence. The initial learning 

rate is set to 0.001 and gradually decreases to 0.000 by applying cosine annealing scheduler [42]. The 

batch size is set to 32. Based on experimental and theoretical analysis, the activation frequency of DA 

modules in each layer of the network is set to 2, 6, and 10. Following previous research [18,19,43], 
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cross-entropy loss with label smoothing [44] is employed as the loss function. Scaling and translation 

are used as data augmentation techniques. 

For the experiments conducted on the ScanObjectNN dataset, different implementation details 

are used, where the activation frequency of each layer is set to 3, 7, and 11, the initial learning rate is 

set to 0.002, and random rotation and scaling are used as data augmentation techniques. 

3.2. Classification Results 

3.2.1. Shape Classification on ModelNet40 

We report the class-average accuracy (mAcc) and overall accuracy (OA) on the testing set. In 

Table 1, we present the results of shape classification experiments of Point-MDA on the ModelNet40 

dataset. Point-MDA achieves excellent OA of 94.0% and best mAcc of 91.9%, outperforming 

PointNet++ by 3.3% and 3.5% in these two evaluation metrics, respectively. 

Table 1. Shape Classification Results on the ModelNet40 dataset. All methods except PointASNL are tested 

without the voting strategy. ‘-’ indicates a result is unavailable. ‘Etra Training Data’ indicates whether the 

model uses additional training data, and ‘Deep’ indicates whether the model needs to improve performance by 

deepening the network. We use bold to indicate the best score, and blue for the second-best score. 

Method Publication ModelNet40 Extra Training 

Data 

Deep 

OA(%) mAcc(%) 
PointNet [8] CVPR 2017 89.2 86.0 × × 

PointNet++ [9] NeurIPS 2017 90.7 88.4 × × 

PointCNN [10] NeurIPS 2018 92.5 88.1 × × 

RS-CNN [11] CVPR 2019 92.9 - × × 

PointConv [12] CVPR 2019 92.5 - × × 

DeepGCN [13] PAMI 2019 93.6 90.9 × √ 

PointASNL [45] CVPR 2020 93.2 - × × 

CurveNet [46] ICCV 2021 93.8 - × × 

Point-BERT [15] CVPR 2022 93.8 - √ × 

PointNorm [17] CVPR 2022 93.7 91.3 × √ 

PointMLP [18] ICLR 2022 93.7 90.9 × √ 

PointNeXT [19] 

RepSurf-U [36] 

NeurIPS 2022 

CVPR 2022 

94.0 

94.4 

91.1 

91.4 

× 

× 

√ 

× 

Point-MAE [47] CVPR 2022 94.0 - √ × 

P2P [48] 

Point-PN [49] 

PointConT [50] 

APES [51] 

CVPR 2022 

CVPR 2023 

IEEE 2023 

CVPR 2023 

94.0 

93.8 

93.5 

93.5 

91.6 

- 

- 

- 

√ 

× 

× 

× 

√ 

× 

× 

× 

Point-MDA 2023 94.0 91.9 × × 

We also report the class-average accuracy (mAcc) and overall accuracy (OA) on the testing set. 

The experimental results of Point-MDA on the ScanObjectNN dataset are presented in Table 2. 

Point-MDA achieves a reasonable OA of 85.8%, and an mAcc of 83.6%. These two evaluation 

metrics outperform those of PointNet++ by 7.9% and 8.2%, respectively. 
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Table 2. Shape Classification Results on ScanObjectNN dataset. All methods are tested without the voting 

strategy. ‘-’ indicates a result is unavailable. ‘Etra Training Data’ indicates whether the model uses additional 

training data, and ‘Deep’ indicates whether the model needs to improve performance by deepening the 

network. 

Method Publication ScanObjectNN Extra Training 

Data 

Deep 

OA(%) mAcc(%) 
PointNet [8] CVPR 2017 68.2 63.4 × × 

PointNet++ [9] 

PointCNN [10] 

NeurIPS 2017 

NeurIPS 2018 

77.9 

78.5 

75.4 

75.1 

× 

× 

× 

× 

DGCNN [34] 

SpiderCNN [52] 

DRNet [53] 

PRA-Net [54] 

ELSEVIER 2018 

ECCV 2018 

WACV 2021 

IEEE 2021 

78.1 

73.7 

80.3 

82.1 

73.6 

69.8 

78.0 

79.1 

× 

× 

× 

× 

× 

× 

× 

× 

Point-BERT [15] 

PointNorm [17] 

PointMLP [18] 

PointNeXt [19] 

RepSurf-U [36] 

CVPR 2022 

CVPR 2022 

ICLR 2022 

NeurIPS 2022 

CVPR 2022 

83.1 

86.8 

85.4 

88.2 

84.6 

- 

85.6 

83.9 

86.8 

81.9 

√ 

× 

× 

× 

× 

× 

√ 

√ 

√ 

× 

Point-MAE [47] CVPR 2022 85.2 - √ × 

P2P [48] CVPR 2022 89.3 88.5 √ × 

Point-PN [49] 

PointConT [50] 

CVPR 2023 

IEEE 2023 

87.1 

88.0 

- 

86.0 

× 

× 

× 

× 

Point-MDA 2023 85.8 83.6 × × 

3.3. Ablation Studies 

Extensive ablation studies have been conducted to establish the efficacy of the proposed 

modules in Point-MDA. Two aspects are investigated using Tables 3 and 4, including the activation 

of detail scales in different network layers and component studies. 

3.3.1. Detail Scales Activated in Different Network Layers 

The Detail Activation module is situated after the sampling-grouping operation and before the 

non-linear mapping layer in Point-MDA. During the training process, different frequency levels 

within the DA module need to be activated. For the ModelNet40 and ScanObjectNN datasets, we 

test various combinations of detail scales activated in different layers. The experimental results are 

presented in Table 3. Optimal results are achieved for the ModelNet40 dataset with the three scales 

set to 2, 6, and 10, respectively, with Point-MDA achieving the best OA and mAcc. For the 

ScanObjectNN dataset, the three scales set to 3, 7, and 11, respectively, yielded the best OA and 

mAcc. 

Table 3. Classification accuracy of Point-MDA using different combinations of detail scales activated in 

different layers on the ModelNet40 and ScanObjectNN dataset. 

Dataset Activation Frequency Level OA(%) mAcc(%) 

ModelNet40 

L1=1,L2=5,L3=9 93.7 91.4 

L1=2,L2=6,L3=10 94.0 91.9 

L1=3,L2=7,L3=11 

L1=4,L2=8,L3=12 

93.9 

93.7 

91.7 

91.3 

ScanObjectNN 

L1=1,L2=5,L3=9 85.4 82.9 

L1=2,L2=6,L3=10 85.7 83.2 

L1=3,L2=7,L3=11 85.8 83.6 

L1=4,L2=8,L3=12 85.4 83.3 
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Point-MDA comprises of two primary constituents: the Detail Activation module and the 

ResDMLP module. Additionally, to enhance the feature extraction process, we have introduced 

residual connections between network layers to jointly supervise the detail activation from the 

farthest scale to the current one. In this study, we perform ablation studies to evaluate the 

effectiveness of each of the three Point-MDA components mentioned above. Table 4 displays the 

experimental outcomes on the ModelNet40 and ScanObjectNN datasets. 

Table 4. Component ablation studies on ModelNet40 and ScanObjectNN datasets. ‘DA’ indicates the 

DetailActivation module. ‘Reuse’ indicates the residual connection between network layers. 

Dataset DA ResDMLP Reuse OA(%) mAcc(%) 

ModelNet40 

√ √ √ 94.0 91.9 

√ × √ 93.7 91.4 

× 

× 

√ 

√ 

× 

√ 

93.7 

93.6 

91.2 

91.2 

ScanObjectNN 

√ √ √ 85.8 83.6 

√ × √ 84.7 82.8 

× √ × 85.3 83.2 

× √ √ 84.8 82.8 

4. Discussion 

We further discuss and analyze the results in Table 1 and Table 2. In terms of classification 

accuracy on the ModelNet40 dataset, PointNeXt [19], Point-MAE [47] and P2P [48] are comparable to 

Point-MDA. However, in comparison to Point-MAE and P2P, Point-MDA has the advantage of not 

using additional training data. In comparison to PointNeXt, Point-MDA has a shallower network 

architecture and simpler structure. Although the classification accuracy of Point-MDA on the 

ModelNet40 dataset is not as high as RepSurf-U [36], on the ScanObjectNN dataset, Point-MDA 

outperforms RepSurf-U in both OA and mAcc. These findings suggest that Point-MDA is a network 

with strong overall performance. 

5. Conclusions and Future Research Directions 

This paper proposes Point-MDA, a simple MLP-based point cloud analysis network. Point-MDA 

discards complex feature extractors and does not require deepening or stacking network structures 

to improve performance. The key component of Point-MDA is the Detail Activation module, which 

revolves around Fourier feature transformation to recover detailed features of point clouds. For point 

cloud analysis tasks, Point-MDA's biggest innovation is introducing a progressive activation strategy, 

gradually introducing higher-level features to the network and processing point clouds on different 

levels to identify features with varying levels of detail. Comprehensive experiments and ablation 

studies show that our model achieves competitive performance in point cloud classification tasks. 

Our inspiration comes from computer graphics. We also hope that the point cloud community 

can rethink some classical network designs and pay more attention to standard works from other 

fields, rather than always focusing on complex feature extractors and more complex architectures. 

We plan to embed the DA module and progressive training ideas into other architectures, such as 

PointMLP and PointNorm. We also hope to apply Point-MDA to object detection (e.g., SUN RGB-D) 

[55], partial segmentation (e.g., ShapeNetpart) [56], and semantic segmentation (e.g., S3DIS) [57]. 
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