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Abstract: Accurate detection and quantification of regional vegetation trends is essential for

understanding the dynamics of landscape ecology and vegetation distribution. We applied a

comprehensive trend analysis to satellite data to describe geo-spatial changes in vegetation along

the Pacific slope of Peru and northern Chile, from sea level to the continental divide, a region

characterised by biologically unique and highly sensitive arid and semi-arid environments. Our

statistical analyses show broad regional patterns of positive trends in EVI, called “greening” alongside

patterns of “browning” where trends are negative between 2000 and 2020. The coastal plain and

foothills, up 1000m, contain notable greening of the coastal Lomas and newly irrigated agricultural

lands occurring alongside browning trends related to changes in land use practices and urban

development. Strikingly, the precordilleras show a distinct ’greening strip’ which extends from

approximately 6◦S to 22◦S, with an altitudinal trend; ascending from the tropical lowlands (170-780

m) in northern Peru, to the subtropics (1000-2800 m) in central Peru, and temperate zone (2600-4300

m) in southern Peru and northern Chile. We find that the geographical characteristics of the greening

strip do not match climate zones previously established by Köppen and Geiger. Greening and

browning trends in the coastal deserts and the high Andes lie within well defined climatic and

life zones, producing variable but identifiable trends. However, the distinct Pacific slope greening

presents an unexpected distribution with respect to the regional Köppen-Geiger climate and life

zones. This work provides insights on understanding the effects of climate change on Peru’s diverse

ecosystems in highly sensitive, biologically rich arid and semi-arid environments on the Pacific slope.

Keywords: MODIS; EVI; time series; greening; browning; Andes; Peru; climate zones; life zones;

trend

1. Introduction

Climatic conditions are considered to be the primary determinants of vegetation patterns,

mediated by a complex of locally specific variables that significantly impact ecosystem services,

from watershed protection and soil conservation to land use utility and resource availability [1,2].

The Köppen-Geiger climate classification model is based on the ambition to understand what

determines the types of vegetation that could be found in any given region [3,4]. It is a widely

used system that divides climates into five principal groups (tropical, arid, temperate, continental,

and polar), each sub-divided according to rainfall and temperature data to give thirty discrete climate

zones [3]. The Köppen-Geiger system produces geographical zones strongly linked to vegetation

productivity and the geographical determinants of plant diversity, which makes it particularly useful in

understanding and predicting regional changes in the distribution of life zones [2,5]. It is the dynamic

character of climatic conditions that produce long-term changes in vegetative distribution [6–8].

This complex interaction significantly impacts environmental processes that determine ecosystem

services and resource availability. Globally, climate change is increasingly considered to be one of the

greatest threats to environmental systems and ecosystem services, with biodiversity being particularly

vulnerable [9–11]. Atmospheric CO2 concentration, the primary limiting factor of photosynthesis, has

risen from 277ppm in 1750 to 414.35ppm in 2022 [12] and is predicted to continue rising [13–15]. In

combination with atmospheric CO2 concentration, moisture availability and temperature are also key
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factors for determining vegetation productivity. While spatial changes in rainfall and temperature

are highly variable, the general easing of limiting factors for photosynthesis is now considered to be

causing global greening [5,16].

The climatic drivers of spatio-temporal vegetation dynamics are not well understood, especially in

mountainous regions [17,18]. Arid land habitats in upland regions are considered to be more sensitive

to changes in climatic variables than habitats in more humid regions, with minor changes in the climatic

drivers having a proportionately greater impact in such habitats. Loss of habitat driven by climate

change, especially for endemic organisms in these highly specialised environments, lends increasing

justification to the monitoring of environmental change in arid mountainous regions [18], however,

few regional studies of vegetation dynamics in arid upland regions have been conducted [19,20].

As in many regions of the world, environmental change in the Andes is generally associated with

deforestation, long-term habitat degradation and large scale infrastructural projects [21,22]. The Pacific

slope of the Andes in Peru and northern Chile consists of a useful study area for examining vegetative

response to climate change for four main reasons: 1. the region is both arid and mountainous with

the Andes rising rapidly from the arid coastal plain to 6000m at the continental divide, only dissected

by rivers that cut deep east-west valleys running to the Pacific Ocean; 2. while the region supports

relatively low levels of biodiversity, it is characterised by environmental fragility and high levels of

biological endemism with four discrete centres of endemicity [23–25]; 3. the region is characterised

by sharp east-west humidity and temperate gradients, producing distinct vegetation zones; and 4.

the Pacific slope is a highly vulnerable, water-scarce region with significant pressures on natural

resources from several large cities in the coastal deserts including Lima, Trujillo and Arequipa in

Peru to Antofagasta and Calama in northern Chile, which are totally dependent on these scarce water

resources. [26–28]. An understanding of the spatio-temporal responses to climate change in the region

is therefore vital in predicting the impacts of climate change on ecosystem services and resource

availability while conserving biological endemism [11].

Of the climatic variables that determine photosynthetic productivity, temperature, moisture

availability and atmospheric CO2 concentration are widely considered the most important [29–31].

Temperature declines by approximately 1◦C with each 100m of ascent, progressively imposing a limit

to photosynthetic productivity as elevation increases. Photosynthetic CO2 uptake potential is known

to decline with increasing altitude as temperature falls[32]. While CO2 concentration is more evenly

distributed throughout the troposphere, variation does occur below 800m asl, but only up to 300m

above any given point. This variability is related primarily to plant productivity and is enhanced in

regions characterised by semi-permanent atmospheric stability as in this region [33]. Precipitation

and moisture availability show high regional heterogeneity across the Pacific slope of Peru [34]. This

is largely determined by seasonality, altitude, aspect and atmospheric stability and is significantly

impacted by the episodic El Niño phenomena, although there appears to be a nonlinear relationship

between rainfall and El Niño events [35].

The plant physiologist Wladimir Köppen was instrumental in developing the widely used

Köppen-Geiger climate classification system, and motivated by his interest, as a botanist, in the

climatological determinants of plant distributions [3]. Recently revised and updated, this model is

based on climate data which, given its connection to plant life, can be used to analyse and predict the

impact of climate change on plant distributions [2,4]. Wladimir Köppen first divided vegetation zones

into five broad categories, determined by combining temperature and precipitation thresholds to give

Equatorial, Arid, Warm temperate, Snow and Polar climates coded A,B,C,D,and E respectively. Each

of these groups is then further divided using seasonal precipitation patterns and then again according

to temperature thresholds to produce thirty distinct climate zones [2,4].

The Pacific slope of Peru and northern Chile fall into four of these climate zones, listed in Table 1

and shown in Figure 1. This includes the arid, hot deserts (coded BWh), which stretch discontinuously

south along the coastal deserts, from northern Peru to northern Chile, with a climate defined by

monthly average temperatures exceeding 10◦C and over 50% of its precipitation falling in a short wet
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season. Highly sensitive floristic assemblages in this zone are sparse or largely restricted to narrow

riparian strips that cross the coastal plain. The arid, cold desert region, (coded BWk), lies above the

hot deserts and extends from northern Peru to Chile. This region, as defined by Köppen, gradually

expands to the south along the Pacific slope to become the dominant climatic zone at lower elevations

in southern Peru and Chile. This zone differs from the hot deserts in having at least one month in

which average temperatures lie below 0◦C. Vegetation in this zone is also sparse, but locally more

prolific in the fog oases or lomas. Above the cold desert lies the cold semi-arid steppe, (coded BSk),

which extends along the Pacific slope in a narrow elevational strip that gradually ascends southwards

into Chile and Bolivia. This zone differs from the cold deserts in that more than 50% of its precipitation

falls outside a short wet season and is typified by dense thorn scrub and cacti. Ascending to the high

Andes, the cold semi-arid steppe climate zone (coded BSk) gives way to the Polar Tundra (coded ET).

This is a more simply defined climate with average monthly temperatures lying above freezing but

not exceeding 10◦C and being a region typically covered in open grasslands with relictual patches

of Polylepis woodlands. When mapped, these climatic zones produce a north to south arrangement

of parallel zones following the Pacific slope of Peru and northern Chile as shown in Figure 1 which

indicates our study area and major Köppen-Geiger climate zones [3,4].

The use of time-series satellite data for remote sensing has developed rapidly since their inception,

providing a powerful set of tools to monitor geo-spatial and temporal changes at the Earth’s surface [36].

A large number of studies looking at regional and global changes in photosynthetic productivity at the

earth’s surface allow the analysis of vegetation dynamics [37]. A standard metric for measuring the

health and abundance of vegetation is the normalized difference vegetation index (NDVI), which is

based on the principle that photosynthetic activity in plants will absorb red light and reflect infrared

light in healthy plants while the opposite holds for unhealthy plants where photosynthesis reduces

or does not take place [38]. The NDVI is then derived as the normalized ratio of reflectance between

red and infrared wavelengths for terrestrial surfaces. Where photosynthetic processes are increasing

plant growth, an NDVI time series exhibits a positive trend known as ’greening’, or a negative trend

and known as ’browning’ where plant growth is decreasing. The NDVI is strongly influenced by

atmospheric aerosol loading, the angle of solar incidence, time of day and soil conditions, all of which

variably distort values [39]. The Enhanced Vegetation Index (EVI), modifies the NDVI, optimising

vegetation signals by correcting for these distortions using blue wavelengths to correct for atmospheric

aerosols and a canopy background adjustment factor. The two vegetation indices together provide a

robust means of analysing vegetation and have been widely used in studies of vegetation trends at a

variety of scales across the globe.

Huete et al, 2006, using the EVI analysed trends across the Amazon basin, identifying

counter-intuitive dry season greening, firing a debate about the veracity of the method and the

variable impact of regional drivers of vegetative productivity [40]. Long term regional studies, driven

by the need to understand the impacts of climate change on the vegetation dynamics in the circumpolar

boreal forests and Arctic region, have also been widely undertaken [41–43]. At a more regional scale,

Aide et al, 2019, identified geo-spatial greening patterns in the Andes, in which woody vegetation

decreased between 1000-1500m, but increaded above that elevation [44]. Analyses of greening patterns

in the Andes and European Alps have further demonstrated the value of NDVI and EVI for monitoring

trends in the retreat of ice sheets [43,45]. More complex studies have analysed geospatial trends

in biologically diverse and topographically complex regions from the Himalaya [17] and Andean

cordilleras [46] to Peru [46]. While most studies have employed NDVI, the EVI is increasingly viewed

as a more sensitive and robust measure of vegetative productivity [47].

Although studies have been undertaken into climate change impacts on vegetation dynamics in

the highly biodiverse, but sparsely populated, Amazon basin, there are no such studies of the Pacific

slope of the Andes, despite high levels of biological endemism in the region [40,46,48,49]. Given

dramatic environmental gradients in the Andes of the Pacific slope, with highly structured climatic

zonation related to both moisture availability and elevation from west to east and a strong north-south
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moisture gradient, it is likely that climatic drivers will have a highly differentiated geo-spatial impact

on vegetation dynamics. A pattern further complicated by the combination of isolated sub-regions

of biological endemism and distinctive vegetative assemblages together with complex patterns of

anthropogenic pressures. This presents a complex interpretive challenge, requiring smaller scale

studies across the entire Pacific slope of Peru and northern Chile to fully understand the impacts of

climate change here. At present, there remains a gap in our knowledge, not only of the response to

climatic drivers across these environmental gradients, but also of the habitats and ecosystem dynamics

on the Pacific slope.

In this study we have carried out a trend analysis of MODIS time-series multi-spectral imagery

from 2000 to 2020 as a proxy for vegetation productivity to identify geospatial greening and browning

trends for the Pacific slope of Peru and northern Chile. We verify the statistical significance of remotely

sensed data to produce a clear pattern in vegetation response and validate our observations with

ground-truthing field sessions. We discuss the role of climatic drivers in the region by correlating our

calculated vegetation response with known climatic drivers.

2. Materials and Methods

2.1. Study Area

This study is focused on the arid Pacific slope of South America between 6◦S and 22◦S, extending

from Chiclayo in northern Peru south to Calama in northern Chile and bounded by the Pacific Ocean to

the west and the continental divide to the east; in total, an area of 50,406 km2. Figure 1 shows the study

area and major climate zones, as defined by the Köppen-Geiger climate classification model [3,4]. In

our area of interest, greening data was principally analysed over four climate zones; the hot arid desert

(BWh), cold arid desert (BWk), cold arid steppe (BSk), and polar tundra (ET). The precise area coverage

of each climate zone is shown in Table 1. Although some of our satellite images have included tropical

rainforest, we restrict our studies to the Pacific slope of the Andes, which does not contain rainforest

climate zones in Peru. Within these climate zones, what we refer to as the ’greening strip’ is almost

entirely confined to the hot and cold arid deserts and the cold arid steppe.

Table 1. Study area composition, as defined by Köppen-Geiger zones [4] totalling over 99% of the area.

The climate zone code relates to the legend in Figure 1. We limited our study to the Pacific slope of the

Andes, thus, we manually excluded the climate zones on the eastern side of the continental divide,

coloured in light gray.

Climate Zone Code Area Coverage

Arid, Desert, Cold BWk 30.0%
Polar, Tundra ET 29.2%
Arid, Desert, Hot BWh 16.7%
Arid, Steppe, Cold BSk 7.9%
Temperate, no dry season, warm summer Cfb 6.1%
Temperate, dry winter, warm summer Cwb 5.2%
Tropical, savannah Aw 2.0%
Arid, steppe, hot BSh 1.3%
Tropical, rainforest Af 0.9%

The abrupt rise of the Andes from sea level to 6786m in this region combines a unique blend of

climatic and vegetation types and land use patterns from west to east and north to south [50,51]. The

climate along the Pacific slope is strongly influenced by the Intertropical Convergence Zone (ITCZ),

the episodic El Niño Southern Oscillation (ENSO) phenomena in combination with the cold Humboldt

Current and orographic influence of the Andes, producing great spatial variation in both temperature

and precipitation. Regional precipitation patterns are highly variable, especially in the context of the

El Niño Southern Oscillation. However, precipitation on the arid pacific slope typically ranges from 50
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mm/year in the northern coastal deserts to 0 mm/year in the south[52] At higher elevations up to

the continental divide precipitation ranges up to 1000 mm/year [53]. The marked spatial variation

in the distribution of precipitation is primarily due to steep west-east altitudinal gradients which

consequently control the distribution of vegetation zones maintaining a significant environmental

diversity.

Figure 1. EPSG:4326 projection of the South American Andes with colour-coded climate zones. The

key for the legend is found in Table 1. The darker shaded area in the inset represents the region of

interest for which we processed satellite data.

The arid and hyper-arid coastal deserts of Peru and Chile are bisected by numerous broad river

valleys and associated riparian vegetation with a series of coastal lomas or fog oases, on the coastal

hills from Trujillo southwards. In the dramatic transition from the coast through the arid sub-tropics,

vegetative associations grade from thorny cactus scrub to dry shrubby woodlands at 2500m [54]. In

turn, this grades to a complex mix of relictual polylepis woodlands, puna grasslands and peatlands

(wetlands) to the arctic-alpine zone above 5100m, rising locally to over 6500 masl in the Cordillera

Blanca and Cordillera Occidental.
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2.2. Remote Sensing Data

In this analysis, we used the EVI band of the Terra module of the Moderate Resolution Imaging

Spectroradiometer (MODIS) sensor as a proxy for land cover changes [55]. EVI was chosen in

preference to NDVI and the Leaf Area Index (LAI) as it corrects for atmospheric distortion and

land surface characteristics in a region where bare earth and high atmospheric aerosol loading are

particularly evident [56]. The data set used is the MOD13Q1.006 Terra Vegetation Indices 16-Day

Global 250m resolution provided by NASA LP DAAC at the USGS EROS Center [56]. This data set

creates a composite image of the earth by integrating the best quality images from a 16-day period,

with each pixel marked with an overall quality indicator. The MODIS image collections were accessed

and pre-processed using the Google Earth Engine platform [57]. Changes to the EVI were investigated

over a twenty-one year period from the beginning of 2000 to the end of 2020.

Our interest in climatically driven greening across the Pacific slope required that we differentiate

direct anthropogenic effects, such as urban development and agricultural expansion, on the vegetation

signal from broader biogeographical outcomes emergent from global or continental changes. It has

been previously noted that the strong greening hot spots in the arid lands are primarily of human

causation [46]. Specific EVI returns can indicate direct land cover change resulting from human

activity and these were used in combination with positive field verification from satellite images to

determine and confirm direct change. Direct anthropogenic land cover change can be both permanent

or semi-permanent and is uniquely identifiable. For example, recently irrigated farmlands appear

as patchworks of rectangular greening corresponding to fields being watered. Where irrigation has

ceased, such rectangular areas appear patchy and browning as the photosynthetic capacity of the field

diminishes unevenly. In the same way regularly shaped areas of extreme browning are indicative

of more recent land cover transformation resulting from the construction of houses or factories and

corresponding largely to the expansion of urban areas. Verifying that these extremes of land cover

change corresponded to discrete greening or browning driven by human activity, thereby allowed

broader identification and confirmation of regional or biogeographic change on the Pacific slope. Our

field verification was undertaken in the departments of Lima and Moquegua in Peru in the Fortaleza,

Pativilca, Cañete and Moquegua drainage basins from 2017 to 2022 supported with reference to Google

Earth satellite imagery.

2.3. Data analysis workflow

Figure 2 details our workflow for data extraction and analysis. We separate our work into three

main parts: the pixel-by-pixel analysis of the 20-year time period, the construction of spatially averaged

time series, and statistical correlations with climate factors.

2.4. Pixel pre-processing

Raw EVI data were obtained from MODIS at 250m x 250m resolution [56]. In this study, we

refer to ‘pixels’ as geographical points spaced approximately 250m by 250m apart. ‘Points’ refer to

temporal data points in the time series of each pixel. Points are classified within the MODIS dataset as

missing, good, marginal, snow/ice and clouds in the ‘SummaryQA’ band and labelled -1,0,1,2 and 3

respectively [58] Pixels where more than 29.3% of EVI data points were missing were not analysed

because, below this threshold, a Theil-Sen regression can no longer be considered robust [59]. To

ensure that the time series can be compared with an equal frequency, missing temporal data points

were filled in using linear interpolation.
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Figure 2. MODIS imagery analysis workflow. Boxes with shadows represent inputs from other data

sets. Boxes with rounded corners represent final results. Boxes with dotted outlines represent steps

where data is discarded or excluded from analysis. Bolded outlines are repeated processes.

2.5. Seasonal decomposition

In order to extract yearly and periodic vegetation index fluctuations, the complete

time series for each pixel was decomposed using additive decomposition, which resulted

in three time series patterns: trend, seasonal, and residual components. We used the

statsmodels.tsa.seasonal.seasonal_decompose python package [60]. The seasonal component

was removed using a periodicity of 23 points per year, preserving the trend and residual components.

The residual component was not removed at this stage because the package employs a self-reportedly
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naïve method of extracting the trend, leaving a result that is too smooth and removes all finer details

from the time series [60].

2.6. EVI upper envelope calculation

Cloudy days and poor atmospheric conditions will negatively affect the EVI and produce a false

reading of degraded vegetation health. To minimize this effect, we take the upper envelope of our

entire time series. The methodology, based on an improved Savitzky-Golay filter, is largely adapted

from Chen et. al [61].

We used linear interpolation to replace data points that were classified as snow/ice, clouds, and

points that corresponded to missing EVI – this was defined as N0. The completed series was then

smoothed using Whittaker smoothing [62], a version of spline smoothing for discrete series with

smoothing parameter λ = 10. The smoothed series was defined as Ntr. N0 and Ntr were compared,

and a new time series N1 was defined where N1
i = max(N0

i , Ntr
i ). This removed the downward spikes

where EVI is underestimated due to clouds. The absolute difference between N0 and Ntr is defined as

di = |N0
i − Ntr

i | with the maximum difference calculated as dmax = max(di). The fitting weights are

calculated using

Wi =

{

1, when N0
i ≥ Ntr

i

1 − di/dmax, when N0
i < Ntr

i

. (1)

A new, upper envelope time series is defined as the highest value between the original time series

and a fitted time series using the Savitzky-Golay (Sav-Gol) fitting, we label this time series N
f it
i . We

define this new envelope as Nk
i = max(N0

i , N
f it
i ).

A fitting index was calculated using

Fk =
n

∑
i=1

|Nk
i − N0

i | × Wi (2)

Iteratively fitting Nk and calculating Fk led to the exit condition Fk−1 ≥ Fk ≤ Fk+1 i.e. minimum Fk

being reached. The expected behaviour of the iteration-fit curve is that F will decrease to a minimum

and then increase, which typically takes 2 iterations. The fit corresponding to Fk was taken. For the

Savitzky-Golay fitting, combinations of window length and poly-order from m = 5,7,9,11,13,15,17 and

d = 2,3,4,5,6 with the condition m > d, were tested. It was found that m = 9, d = 6 was the combination

that most consistently produced this behaviour.

For atypical cases:

• if F0 ≤ F1, i.e. the iteration-fit curve continually increased, the fit of the first iteration was taken,
• if after 10 iterations, the Fk−1 ≥ Fk ≤ Fk+1 condition was not met, i.e. iteration-fit curve

continually decreased, the fit of the last iteration was taken.

2.7. Assessment of statistical significance

The final fit from the Savitzky-Golay filtering was smoothed again using a Whittaker smoothing

parameter of λ = 2. While λ = 10 was chosen earlier to produce a very smooth time series representing

the long term trend, λ = 2 was chosen to reduce the amount of noise remaining from the construction

of the upper EVI envelope without removing details in each time series. The Whittaker filter was

chosen over Savitzky–Golay because the Savitzky–Golay filter is less reliable at the start and ends of

the time series due to windowing effects and is therefore considered less robust [63].

The trend in our post-processed time series was assumed to be linear, owing to the relatively

short temporal observation window, and the Mann-Kendall test [64,65] (τ rank correlation) was used

to determine its statistical significance. The slope and intercept were determined using the Theil-Sen

estimator, [66,67] with the intercept calculated using the Conover method [68]. This was done using
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the pymannkendall package [69]. The criteria τ > 0.2, p > 0.05, sign(τ) = sign(slope) were used to

qualify significantly greening and browning pixels.

To calculate relative EVI change (∆EVI), the trend was extrapolated to the first point of the time

series – this is because seasonal_decompose truncates the beginning and end of the time series when

returning trend and residual components.

∆EVI =
slope × (len(time series) − 1)

intercept − slope × len(truncated points)
(3)

Values of this extrapolated ‘initial EVI’ between 0 and ±0.000001 were set to ±0.000001 to prevent

division by 0 errors. For our analysis, only pixels with EVI change between -200% and 200% were

considered; changes outside this range were assumed to be unnatural or caused by a very weak initial

EVI value, possibly due to the presence of water or ice.

2.8. Spatially-averaged time series

Direct anthropogenic land cover changes relating principally to irrigation schemes and urban

expansion were excluded from the analysis. The Land Cover Classification System (LCCS) developed

by the Food and Agriculture Organisation (FAO) identifies these areas which were spatially excluded

from our analysis [70].

Only statistically significant greening pixels, as described in Section 2.7 were included in our time

series analysis. We manually outlined a continuous area extending from northern Peru to northern

Chile that exhibited high values of relative greening (approx. above 15%), which we define as the

greening strip (GS). In order to compare the ecological dynamics of the greening strip with expected

climatic behaviour, we divided the strip into the three climate zones that extend the area, namely the

hot arid desert (BWh), the cold arid desert (BWk) and the cold arid steppe (BSk). We investigate the

EVI time series for each climate zone both within the greening strip and over our entire area of study.

To construct our time series, we take the average EVI of all included pixels within a particular

region for each point in time. The months corresponding to maxima and minima of the seasonal

component were found and the ‘greenest’ and ‘brownest’ months was defined as the month before,

during and after these maxima and minima respectively. The average EVI values over the greenest

and brownest months were compared to the overall annual average.

2.9. Statistical correlations

Monthly precipitation values were obtained from CHIRPS [71] daily data monthly averages for

each region. Sea Surface Temperature (SST) was obtained from Copernicus ERA-5 (reanalysed) [72]

as a spatial average over a rectangular area between 6◦ S to 30◦ S and 70◦ W and 80◦ W. This area

captures broad regions of the Pacific ocean affected by the Humboldt current. As with the EVI data we

collected, seasonality was removed from these data sets prior to calculating a correlation. Monthly

average CO2 data (as a trended series without seasonality) was obtained from NOAA [73]. Assuming

that vegetation does not respond to climate variations instantly, we allowed for a delayed response

of up to 1 month for precipitation and up to 12 months for SST and CO2. By adjusting this delay, we

calculated the maximum correlation between each region’s EVI time series and the above data sets.

Longer delay times were not considered for precipitation data because most of the study area consists

of plants which respond to precipitation in a matter of weeks. It was assumed that soil moisture would

have negligible effect due to the aridity of the area. The maximum correlations between EVI series of

each pair of regions was calculated with delays of up to 12 months in both directions in time.

3. Results

We observe a complex spatially differentiated pattern of changes in EVI on the Pacific slope of

Peru and northern Chile over a period from 2000-2020, with discrete zoning of greening and browning

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2023                   doi:10.20944/preprints202305.0351.v1

https://doi.org/10.20944/preprints202305.0351.v1


10 of 21

throughout the region. Figure 3 illustrates this patterning, and most notably a ’greening strip’ that

extends along the pacific slope, an area characterised by arid and hyper-arid climatic conditions. The

EVI in this ’greening strip’, highlighted in the inset of figure 3, has increased by 15% during this

period and extends from northern Peru to northern Chile and constitutes a hitherto undescribed novel

phenomena.

Figure 3. The area defined as the greening strip extends from approximately 7.5◦S to 22.5◦S, located on

the western flank of the Andes. The colour range includes pixels with EVI change between -10% and

60%, where change below -10% and above 60% were clipped. The inset shows statistically significant

pixels only, with an EVI change of at least ±15%. Rectangular outlines in the inset show locations for

higher resolution images that follow in Figures 4–8.
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There is an overall greening throughout the Andes from the foothills to the continental divide

while in the coastal deserts there is a mix of greening and browning with significant areas that show

no change. Figures 4–8 show six different areas of the greening strip in greater detail. These areas

span the entire greening strip from northern Peru to Northern Chile. The higher resolution images

presented in these figures reveal distinct polygons of urban areas that appear bright red or irrigated

fields that appear bright green or red (depending on whether they have recently been irrigated or

have been abandoned) while the natural vegetation changes are at a lower colour intensity and its

boundaries less clear cut.

Figure 4. There is a greening gap from approximately 9.6◦S to 10.2◦S. Dotted outlines denote urban

areas and dashed outlines denote mines and quarries. Unmarked large dark green areas along the

coast and smaller red areas are linked to agriculture; these were excluded from the ’greening’ strip.

The dark green area towards the right hand side marks the outline of glaciers.

Strikingly, there is a regional gap in the greening strip on the coastal pre-cordilleras in central

Peru. See Figure 4. However, the ’greening’ would appear to be offset eastwards to the west facing

foothills of the Cordillera Blanca rather than the Cordillera Negra. This does reflect the geography of

the region, with the Cordillera Negra running north-south in parallel with the much taller Cordillera

Blanca to the east. The Southern Cordillera Blanca is a small area of high peaks.

Atmospheric circulation drives the easterly flowing air masses over the Andes. In this region, the

taller peaks of the Cordillera Blanca (nearly 7000m peaks) and Huayhuash force greater altitudinal

uplift and vertical compression of airmasses than to the north or south. Air mass compression thus

clears the Cordillera Negra, leaving it a relatively drier range with a noticeably more arid coastal strip.

The greening is then recorded on the lower slopes of the Cordillera Blanca, southern Cordillera Blanca,

upper Rio Fortaleza and Cordillera Huayhuash.
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Figure 5. Greening increases in intensity southwards from Lima. Dotted outlines denote urban areas

and dashed outlines denote mining activity. The solid tipped arrow represents separation between the

strip and other, less intense, natural greening closer to the coast. The smaller coastal greening is located

in a different geographical region and was not included in what we define as the greening strip. Red

patches seen on the coast are urban areas. Red lines crossing the strip are roads and green lines are

rivers. Solid outlines denote agricultural and farming areas.

Figure 6. Dotted outlines denote urban areas and dashed outlines denote mines and quarries. The

discontinuous areas of coastal greening were not included in the greening strip as they are located

beneath the Pacific slope, sensu strictu. Agricultural development along rivers, highlighted using a

solid box, was also excluded from our statistical analysis, since any change in vegetation would be

directly controlled by human activity. Similarly, red stripes perpendicular to the coast going into the

strip are either roads or abandoned or less productive fields along rivers and were excluded from our

analysis. Solid circles outline glaciers.

One of the more surprising results coming from our analysis is that the greening strip does not

follow a constant altitude. Instead, the strip ascends from North to South. At the most northern part

of the region, around the Lambayeque area, greening occurs from 170 to 580 masl. In the southern

region, around Chiquicamata, the same greening occurs between 2850 and 4250 masl. A visualisation

of the relative EVI change for transects of equal latitude is shown in Figure 9. The data represented

here includes statistically significant trends within the area of interest defined as the greening strip.

The minimum, maximum and mean altitude for the greening strip increases as the latitude progresses
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southward. We also observe that the climate zones defined in the Köppen-Geiger model similarly

ascend southwards but that the ’greening’ strip does so more rapidly, crossing from lower elevation to

higher elevation zones. The reason for this southward ascent remains unclear as the strip does not

seem to follow isotherm or isohyet lines.

Figure 7. Dotted outlines denote urban areas and dashed outlines denote mines and quarries. Large

marked red/green patches are cities and agricultural areas – most of these pixels have been excluded

from our analysis. Red or green lines extending from the coast up into the greening strip are rivers

and roads. Pixels within the greening strip exhibit the most intense relative increase in the area located

between Arequipa and Moquegua. Solid circles outline glaciers.

Figure 8. Dotted outlines denote urban areas and dashed outlines denote mines and quarries. Left:

The greening of coastal vegetation, as seen in Figures 6 and 7, stops. Red or green lines extending from

the coast up into the greening strip are rivers and roads. Right: Between 19.9◦S and 20.2◦S, another gap

in the greening strip can be found. South of this area, the greening of vegetation becomes less intense

and the strip is no longer visible.Solid circles outline glaciers.

We compared the greening within the three main Köppen-Geiger zones in our region of interest

(BWh, BWk, BSk) and compared the values of EVI change within and outside the area we define as the

greening strip. Figure 10 shows a histogram of binned distributions of statistically significant pixel

greening or browning. For each climate zone, the area outside the greening strip contains a diverse

set of EVI trends, both positive and negative, which sharply drops off after a positive trend greater

than 30%. For pixels within the greening strip, however, there are almost no statistically significant

browning pixels and the distribution is much more positive with a dropoff around 50% relative EVI

change.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2023                   doi:10.20944/preprints202305.0351.v1

https://doi.org/10.20944/preprints202305.0351.v1


14 of 21

Figure 9. Visualisation of relative EVI change as a function of both latitude and altitude. Latitude

cross-sections were taken from Northern Peru to Northern Chile.

The qualitative distribution of relative greening in Figure 10 shows that the vegetation within the

greening strip behaves in a cohesive way across all three Köppen-Geiger zones. This is contrasted by

the histograms comparing vegetation within a single Köppen-Geiger zone inside and outside of the

greening strip.

Figure 10. Binned distributions of statistically significant EVI changes.
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Table 2 provides numerical correlations between the distributions represented in Figure 10. Here,

we can clearly see that the areas defined by the greening strip in the cold arid desert (GS_BWk) and

the greening strip in the cold arid steppe (GS_BSk) correlate more with each other than the areas of

the same climate zones outside the greening strip. These results either indicate that the phenomenon

contained within the greening strip does not follow previously defined climate zones or that the

zones themselves need to be redefined in order to reflect this change in climatic conditions. The latter

contradicts previous predictions by Beck et al. who claim that these climate zones will not change in

the next 100 years [4]. The high correlation between the full greening strip (GS) and the sub-section

that belongs to the cold arid desert (GS_BWk) exists because the greening strip is mostly located in

that climate zone.

Table 2. Correlations between spatially averaged EVI time series within Köppen-Geiger climate zones.

Cells highlighted in light grey represent correlations between the same climate zone inside vs. outside

the greening strip; dark grey represents correlations between different zones inside the greening strip.

BWk BSk GS GS_BWh GS_BWk GS_BSk

BWh 0.85 0.82 0.72 0.92 0.71 0.59
BWk 0.79 0.63 0.78 0.60 0.54
BSk 0.69 0.79 0.67 0.64
GS 0.75 0.997 0.92
GS_BWh 0.72 0.60
GS_BWk 0.91

In addition to these previous observations, we see intense greening in the coastal Lomas of Peru

and Chile. The Lomas are coastal hills with a highly distinctive fog-dependant vegetation, exhibiting

high levels of biological endemism. These fog-adapted plants produce a highly distinctive habitat

constrained by the moisture content of coastal fog or Garua. They are found in the coastal deserts

from central Peru to northern Chile from 5◦S to 30◦S. We observe that the greening in the coastal

Lomas as well as that on the Pacific slope of the Andes is not directly anthropogenic in origin. We see

highly differentiated patterns of change below 1100m in the coastal deserts, with greening hot spots

associated with agricultural expansion and browning hot spots associated with urbanisation and the

expansion of the built environment. These represent direct changes in land cover characteristics driven

by human activity.

4. Discussion

We observe a continuous strip of greening along the Pacific slope that ascends from the hot desert

in the north to the temperate zone (2500-3500m) in the south with a 20-year increasing trend in EVI

representing a newly described regional phenomena. From this, we can deduce that changes in arid

natural vegetation have occurred but not what this consists of in terms of species assemblages and the

relative abundance of each species.

Although it is possible to subdivide the 20-year study period into 10 or 5 years and study short

term trends, this yields different results depending on how the period has been divided. The calculation

method itself is skewed by the starting year- the result will be higher than real life if the starting year

had relatively less vegetation. This is amplified because the study-area comprises of sparse vegetation

by nature. It is possible that the observed 20-year trend is an anomaly on the time scale of hundreds of

years but this is unverifiable using remote sensing technologies as we are limited by the availability

of MODIS data. However, this result can form part of the basis of our interpretation of greening and

browning trends in natural systems on the pacific slope for which long term study is required to

monitor and confirm.

Exploring causality for this phenomenon is problematic, since as one moves south, the greening

strip ascends, which would seem counter intuitive. That is, since plant productivity would be expected
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to decline as temperature declines with increasing altitude. Temperature being a primary limiting

factor in photosynthesis.

The increase in global CO2 contributes to the globally observed greening phenomenon and could

account for greening inside and outside of the defined strip but this cannot explain the shorter-term

regionally-determined fluctuations in EVI.

We must therefore look to moisture availability, the third driver in vegetation growth. Figure 11

and Table 3 show the correlations between the 20-year trend in EVI within the greening strip and sea

surface temperature (SST), precipitation, and global CO2 concentrations over the same time period.

Figure 11. Monthly time series of spatially averaged EVI across the greening strip (solid dark green

line) compared to monthly precipitation, sea surface temperature (SST) and atmospheric CO2. Orange

and blue shaded areas represent the duration of El Niño and La Niña events, respectively, where darker

colours denote more intense events [74]

When observing the correlations in Table 3, we focus on the relative correlations between each

region rather than the actual values of each correlation. We note that there is more variation between

the correlation of each climate zone outside the strip with precipitation, whereas inside the strip this

more similar. Outside the strip, there is less correlation with SST and higher correlation with CO2

compared to inside the strip. It is important to note that although we correlated anomalies in EVI

with precipitation in specific to each subdivided area, this does not consider the hydrology of the area

which is beyond the scope of this paper.

Table 3. Cross-correlation of the EVI time series in the greening strip and each Köppen-Geiger climate

zone with precipitation, sea surface temperature and global CO2 concentrations.

Region Precipitation SST Global CO2

BWh 0.65 0.26 0.93
BWk 0.36 0.18 0.85
BSk 0.28 0.19 0.77
GS 0.53 0.38 0.60
GS_BWh 0.57 0.27 0.83
GS_BWk 0.52 0.39 0.58
GS_BSk 0.45 0.37 0.46
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When comparing the greening strip with land surface temperature (LST), we see complex patterns

of warming and cooling. Visual confirmations with known agricultural sites have shown us that LST

cooling is a response to vegetation growth rather than a driver. However, we cannot conclusively

determine that LST is not a driver to vegetation growth in the greening strip since we also see regional

warming highlighted by the Climate Change Institute’s reanalyzer [75].

Although the complex interplay between LST and greening or browning is beyond the scope of

this research paper and will be the topic of a future publication, this preliminary observation indicates

that plant feedback plays a role in the greening strip’s changing environment and possibly requires a

redefinition or an updated boundary to the Köppen-Geiger Climate Zones.

5. Conclusions

We demonstrate that the greening strip is a statistically significant regional phenomenon.

Although most likely driven by changes in the primary climatic variables that determine vegetative

productivity it is counter intuitive for several reasons. First, temperatures drop as one ascends

and so vegetative productivity would be expected to decline, all else being equal. This was shown

using simulated photosynthetic CO2 uptake potential and altitude [32]. However, the greening strip

behaves in the opposite direction, where the most intense relative greening rises in altitude as the strip

progresses southward. Second, CO2 concentration is a more generalised global driver but for the most

part evenly distributed throughout the atmosphere. There is some altitudinal variation below 300m

that is associated with plant productivity and atmospheric stability, but the correlation of ground-level

CO2 concentrations and altitude is no longer significant above 800m [33]. These previous results go

against the clear delimitation of the greening strip. Third, although the novel phenomenon we describe

is roughly located in the climate zones identified by the Köppen-Geiger climate classification system,

this greening strip crosses from the hot arid desert, through the cold arid desert into the cold arid

steppe. This evolution through the climate zones as the greening strip extends from north to south

indicates that the drivers of this positive EVI trend are not locked to a single climate zone and also do

not span the entirety of climate zones as they are currently defined. This holds especially true for the

hot arid desert and the cold arid steppe.

In light of our findings, a comprehensive investigation into vegetation responses on the Pacific

slope from northern Peru to northern Chile is essential to understand the geospatial impacts of

global increases in CO2 concentrations and both atmospheric and marine temperatures changes. An

unbalanced change in vegetation dynamics can affect the integrity of ecosystems and, through the use

of remote sensing techniques, we have identified a region spanning from northern Peru to northern

Chile that exhibits anomalous behaviour compared to global vegetation patterns. This study highlights

the need for region-specific studies to understand the spatial dynamics of photosynthetic capacity, and

vegetation response to changing climatic factors.
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Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute

BWh Hot arid desert

BWk Cold arid desert

BSk Cold arid steppe

ET Polar Tundra

GS Greening Strip

NDVI Normalized Difference Vegetation Index

EVI Enhanced Vegetation Index

LAI Leaf Area Index

MODIS Moderate Resolution Imaging Spectroradiometer

SST Sea Surface Temperature

LST Land Surface Temperature

ROI Region of Interest

ITCZ Intertropical Convergence Zone

ENSO El Niño Southern Oscillation
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