Pre prints.org

Article Not peer-reviewed version

Maximizing test coverage for
security threats Using Optimal
Test Data Generation

Talha Hussain , Rizwan Bin Faiz , Mohammad Aljaidi i , Adnan Khattak , Ghassan Samara , Ayoub Alsarhan,
Raed Alazaidah

Posted Date: 5 May 2023
doi: 10.20944/preprints202305.0343.v1

Keywords: Modified Condition/Decision Coverage; Decision Coverage; Test Coverage; Test Data; Object
Constraint Language; Structured Misuse Case Description.

E E Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2956768
https://sciprofiles.com/profile/2610385
https://sciprofiles.com/profile/2538264
https://sciprofiles.com/profile/1900976
https://sciprofiles.com/profile/297126

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 do0i:10.20944/preprints202305.0343.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Maximizing Test Coverage for Security Threats Using
Optimal Test Data Generation

Talha Hussain !, Rizwan Bin Faiz 1, Mohammad Aljaidi >*, Adnan Khattak !, Ghassan Samara 2,
Ayoub Alsarhan 3, Raed Alazaidah 2

! Faculty of Computing, Riphah International University, Islamabad, Pakistan, Emails:
thussain98ml@gmail.com (T.H.), rizwan.faiz@riphah.edu.pk (R. B. F.), adnan_ktk08@yahoo.com (A.K.)

2 Department of Computer Science, Faculty of Information Technology, Zarqa University, Zarqa 13110
Jordan, Emails: mjaidi@zu.edu.jo (M.A.), gsamara@zu.edu.jo (G.S.), raed.azaedah@zu.edu.jo (R.A.)

3 Department of Information Technology, Faculty of Prince Al-Hussein Bin Abdallah II for Information

Technology, The Hashemite University, Zarqa 13116, Jordan, ayoubm@hu.edu.jo (A.A.)

Correspondence should be addressed to mjaidi@zu.edu.jo (M.A.)

Abstract: As time continues to advance, the need for robust security threat mitigation has become increasingly
vital in software. However, ensuring early effective security threat mitigation requires optimal test data and
consistent test case design. It is a constant struggle to maximize test coverage through test data optimization.
We conducted explanatory research to maximize test coverage of security requirements as modeled in
Structured Misuse Case Description (SMCD) i.e., structured specification of misuse case, so as to improve
consistency in optimal test data generation. We specified constraints upon Mal activity in Object Constraint
Language (OCL) in order to minimize human dependency and improve consistency in optimal test data
generation. It was evident through results that MC/DC generated optimal test data of security threats through
SMCD in comparison to the Decision Coverage method thus resulting in designing a significantly lower
number of test cases and yet maximizing test coverage of security threats. MC/DC generated test data with n+1,
while Decision Coverage generated test data with 2", we, therefore, conclude that MC/DC maximizes test
coverage through optimal test data from SMCD in comparison to Decision Coverage.

Keywords: Modified Condition/Decision Coverage; Decision Coverage; test coverage; test data;
Object Constraint Language; Structured Misuse Case Description

1. Introduction

Software testing is a time-consuming but vital activity that tries to raise the quality of
software[1].The primary goal of testing is to ensure that the delivered product is bug-free[2]. Software
testing is crucial during the development process since it seeks to show that the program is free of
errors[3]. Test coverage is a crucial component of software maintenance and a significant indicator of
software testing[4]. Offering data on various coverage items aids in evaluating the success of the
testing process. The hardest part of maximizing test coverage is coming up with appropriate test
data[5]. Moreover, generating test data to achieve 100% coverage is labor-intensive and expensive[6].
A greater number of tests also necessitates a longer test period and greater tester memory. Test
development becomes more challenging due to the growing number of tests required to fulfil
adequate coverage criteria. Selecting a portion of tests from a large baseline test set becomes critical
when it is impossible to apply all of the (supposedly Offering required) tests due to test time or tester
memory limitations[7]. It is clear from the literature that testing accounts for more than 40% of project
costs[8]. Instead of covering all the entities in the tested program, test data can be aimed toward
covering the optimal set to reduce the testing effort[9]. Reducing the amount of data utilized for
testing is one method of minimizing this cost. Test data optimization is a method for minimizing test
data sets that can be used for both black-box and white-box testing[10]. Our research goal is to
maximize test coverage through optimal test data generation at the design level for security threat
mitigation.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202305.0343.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 do0i:10.20944/preprints202305.0343.v1

We tested the UML model having constraints specified in Object Constraint Language (OCL) as
an experiment to use our approach to get the best test data and test coverage because we have
evidence from the literature that UML models with specified constraints in OCL are comprehensive
and consistent [11]. The Modified Condition/Decision Coverage MC/DC methodology is one widely
used method for generating the optimum test data for code coverage [12]. Through optimal test data
generation, we aim to maximize test coverage in our study. Achieving 100% test coverage can be
thought of as maximizing test coverage. Since it is noted in the literature that the method used to
generate test data to reach 100% coverage is laborious and expensive, achieving 100% test coverage
is not practicable.

Use cases outline functional specifications; however, they are unable to allow the modeling of
security threats. In order to model security threats and identify misuse cases, the use case diagram is
developed. Since a use case model simply specifies the necessary capabilities, the textual description
often captures the core of the use case. This textual description plays a vital role while representing a
misuse case [13]. Diagrams of misuse cases and the textual descriptions of those diagrams give
developer essential security-related details.

To deal with malicious system usage, we need security standards. Similar to functional
requirements, security threats must be addressed. The system's security can be enhanced by adopting
security requirements [14]. Misuse cases can be used to implement security threats, and test cases are
developed from misuse cases for security threats. Diagrams of misuse cases and the textual
descriptions of those diagrams give the developer essential security-related details. Techniques to
create security test cases from misuse instances have been proposed by a plethora of authors. By
executing test cases and verifying that the software worked as intended, security testing may be put
into practice utilizing misuse cases. An example of a test case would include test input, excepted
output, and actual output [15]. It is a sign that the program functionality is correctly implemented
when the expected output and actual output match.

The significance of our research is that we have designed consistent acceptance test cases for
security threats (authentication and authorization) through structured misuse case descriptions for
early-stage mitigation of security threats. This will help us to overcome the challenge of inconsisent
acceptance test case design due to its reliance upon human judgment. For that, we have first identified
misusage scenarios through structured misuse case descriptions against security threats such as
authentication and authorization and their corresponding mitigation. Then to identify the inputs and
triggers of each misusage scenario of security threats, we have modelled them in Mal-activity
diagrams. In the third step, we have designed the acceptance test cases for security threats, i.e.,
authentication and authorization through SMCD. The result shows that test cases designed through
MC/DC are optimal and require minimum test conditions.

We create test cases using (i) automated and brute, (ii) weak password attacks, (iii) session id
links, and (iv) session expiry time. The goal of employing misuse situations is to build security
acceptance test cases at a high level and to get beyond the challenge of discovering acceptance test
cases from programming languages. Without any knowledge of the programming language, the user
will concentrate on creating acceptance test cases from textual descriptions. To create acceptance test
cases, textual descriptions of the use cases, misuse instances, threats to them, and solutions are
identified. The various usage scenarios should be covered by the designed acceptance test cases.
Security acceptance test cases include expected outputs and inputs like any other test case. Data or
functional calls might be used in the input security acceptance test scenarios. Evaluation of
acceptance test cases is done in the output of the intended outcome.

The remaining part of section of this document is structured as follows: Literature Review, Research
Question and Gap analysis is discussed in Section 2 and Research Methodology is discussed in Section 3.
Experiment design along with entire implementation process for identifying misuse case scenarios, associating
threats using SMCD, designing malicious activity, producing test data using MC/DC and D/C, capturing the
inputs and triggers used in scenarios, and designing acceptance test cases for the misuse case scenarios are
mentioned in Section 4. The acceptance test cases created for security risks from both SMCD and USMCD are
also evaluated consistently in Section 4 of the report. Results, threats to validity and future work are discussed
in Section 5. Conclusion and future work mentioned in last Section 6.

https://doi.org/10.20944/preprints202305.0343.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 do0i:10.20944/preprints202305.0343.v1

2. Literature Review

The literature has covered test case prioritization extensively. Amita Jain presented a system that
prioritizes the independent pathways used during the path testing process. Test Coverage is a crucial
component of software maintenance and a significant indicator of the quality of the product. By
offering information on various coverage topics, it aids in evaluating the success of the testing
process. It takes a lot of time and money to create enough test data to reach 100% coverage. A greater
number of tests necessitates a longer testing period and more tester memory. However, the quantity
of tests needed to guarantee high coverage criteria has been rising, making test development more
difficult[16]. A subset of tests from a large baseline test set must be chosen when it is difficult to apply
all the (alleged) tests due to test time or tester memory limitations. Test data generation can be aimed
towards covering the ideal set rather of all the entities in the tested program in order to reduce the
testing effort. We generate a large amount of test data when we conduct model-based testing. The
main challenge in software testing is coming up with test data that meets a specific adequacy
criterion. As we will have different test data at the design level, more precisely when we conduct the
testing manually, this problem results from the test case subjectivity issue. The test case subjectivity
issue will be fixed because the design diagram was made precise with constraints specified in OCL
language [11]. Techniques like MC/DC and Decision coverage are used at the code level to increase
test coverage. It hasn't yet been determined in the literature review which of these two maximizes
test coverage through ideal test data creation at the design level, so we'll use both of these strategies
and compare the outcomes.

In [17], the author encourages us to use MC/DC at the design level since it increases test coverage
by creating test data at the code level. In [18] author, independently applied the suggested
methodology of producing test data using the MC/DC strategy for a search-based empirical
evaluation. The literature makes a strong case for the value of constraints specified in OCL at the
design level. By outlining models that cannot be included, Constraints specified in OCL help UML
models be comprehensive, consistent, and accurate when used with them [11]. The unified modelling
language (UML), which receives a lot of interest from scholars and professionals, has become a crucial
standard for modelling software systems [19]. Extensive test data is produced when we conduct
model-based testing[20]. Making test data that meet a specified adequacy criterion is a key challenge
in software testing.

In [21] author has generated acceptance test cases for security threats using an unstructured
misuse case description. By incorporating the misuse case description into the mal-activity
diagram, a misuse scenario is created and inputs and triggers are determined. The flow of usage
shown in the mal-activity diagram is used to design test cases. Test cases are created in [22] where
misuse instances pose security issues. Students that attend the university participate in the
experiments. On a web application for course management, the experiment is run. The findings show
that the suggested misuse case creation method offers superior coverage for security issues. Their
strategy, nevertheless, has to be better organized and provide a thorough explanation of the
procedure. The techniques to generate test cases from the use case were proposed in [23]. Web-based
apps were validated with the assistance of the provided method. A use case model is initially created
from the functional requirements. As a result of the use case model, test cases are created. The final
stage involves using commercially available tools to execute the prepared test cases. In [24] a useful
method for generating test sequences based on models was described. Using threat models, this
method produces extensive threat trees. By taking into account both valid and incorrect test input,
executable test cases and the security test sequence are built from the threat tree. In [25], author
proposed an approach to generate test cases from use cases, misuse cases, and 137 mitigation of use
case descriptions. Early on in a product's development, this includes security features. In misuse
scenarios, they recommend several improvements to make it easier to define security needs.

2.1. Research Question

The main challenge in software testing is coming up with test data that meets an established
adequacy criterion. It is evident from the literature, that test coverage in source code can be

https://doi.org/10.20944/preprints202305.0343.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0343.v1

maximized through optimal test data generation using MC/DC and Decision Coverage Approach
[17]. However, there is no evidence in the literature on how to maximize test coverage for SMCD
through optimal test data. To achieve our goal, we focus on the following research questions:

. RQ1: Which among Decision Coverage and MC/DC maximizes test coverage for security threats in
Structured Misuse case Description?

. Hypothesis 1: Decision Coverage maximizes test coverage for security threats in Structured Misuse case
Description

e Hypothesis 2: MC/DC maximizes test coverage for security threats in Structured Misuse case Description

3. Research Methodology

This section defines the thorough facts of our experiment, which we carry out. Let us discuss the
content in detail. Our research approach is quantitative because we have a numerical dataset and we
will use statistical analysis methods to test relationships between variables. Applying MC/DC and
Decision coverage criteria on Design Level for optimal test coverage of security requirements
generating Optimal Test and improving consistency for security requirements. We will perform an
experiment to generate optimal test coverage to reduce the testing effort by achieving maximum test
coverage through optimal test data.

Our research methodology is explanatory research, which aims to explain the causes and
consequences of a well-defined problem. Spending too much time in testing is a well-defined
problem; we will check the consistency of acceptance test cases for structured and unstructured
misuse case in first experiment. Similarly, for second experiment optimal test data generation using
MC/DC and Decision coverage approach for optimal test data generation.

There are often independent and dependent variables in a control experiment. Our research uses
the experimental method to determine the cause and effect between variables, including dependent
and independent variables. In our experiment, the dependent variable is the Optimal Set of test data,
and the independent variables are MC/DC and Decision Coverage.

4. Experiment Design

This study aims to Maximize test coverage for security threats using Optimal Test Data
Generation. One of the most common way to model security threats is through misuse case. In order
to maximize test coverage at the design level we generated test data through Modified Condition
Decision Coverage and Decision Coverage. In order to achieve our research goal, we undertake an
experiment to generate optimal test data. In the experiment, we generated test data through Modified
Condition Decision Coverage (MC/DC) and Decision Coverage from misuse case diagrams, with test
conditions extracted for seven constraints. Overall, this study contributes to the field of software
security by providing a methodology for generating optimal test data at the design level for security
threats.

Steps of proposed methodology are as follows:

Identify Security authentication and authorization threats.
Design structured Misuse case Description.

Draw Mal Activity from Structured Misuse case Description.
Specify constraints in Mal Activity Diagram using OCL.
Transform Constraints into Boolean Expression.

Transform Boolean expression into Truth Table Expression.

N 9k » =

Generate possible test data.
7.1 Through MC/DC (Modified Condition Decision Coverage)
7.2 Through Decision Coverage (D/C)
8 Compare and Find Optimal test data generated through MC/DC and D/C

https://doi.org/10.20944/preprints202305.0343.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 do0i:10.20944/preprints202305.0343.v1

9 Design Test Cases for generated optimal test data.

)

L ‘ . Draw Mal activity Specify Constraint
Identification Design Structured P Sty
of Security Misuse case il fron'1 structured] in Mal Activity [Step4]
Threats Description Misuse Case Diagram using
t \——) Description OCL
[Step1] [Step2] [Step 3]]
Transform [Step 51

Constraints into
Boolean Expression

Transform Boolean
expression into
Truth table

expression [Step 6]
[Step 7]

Generate Possible

Test Data
Through Modified
| Condition Decision
Through Coverage MC/DC
| Decision
[Step7.1]1 | coverage [Step7.2] "

Compare and Find

Optimal Test data

generated through
[Step 8] MC/DC and D/C ‘

(oic) : -f‘; -

/ Design Test Cases for\
| generated Optimal Test |

[Step9]

Figure 1. Proposed Methodology.

Step 1: Elicitation/Extraction of Security Requirements i.e. authentication and authorization

In the context of software development, security requirements refer to the set of features and
functionalities that ensure that the software system is secure and protected against unauthorized
access, data breaches, and other types of cyber-attacks. The first step in developing a secure software
system is to elicit or extract the security requirements.

"Elicitation/Extraction of Security Requirements" refers to the process of identifying and
defining these security requirements. In Table 1 Authentication and Authorization were addressed.

Table 1. Identification of Security Threats.

Elicitation of Security Requirement Goal Sub-Goal
The application should authenticate the Security Authentication
User using a valid wusername and
Password.
Authorization codes should be set up and Security Authorization

modified only by the System

Administrator.

Step 02: Structured Misuse case Description

https://doi.org/10.20944/preprints202305.0343.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 do0i:10.20944/preprints202305.0343.v1

Structured misuse case description is provided in following Table 2.

Table 2. Structured Misuse Case Description.

ID* SMC-SA-001
Goal* Security
Sub Goal* Authentication
Misuse case Name* Steal Login Details
IMPLEMENTS steal sensitive data
Associated Misusers* Information Thief
Author Name ABC
Date dd/mm/yy
Description* Misuser gets access through automated attacks

such as credential stuffing and brute force
technique to Login into the system to perform
illegal activities with the user data.

Preconditions* The login page is accessible to the Information
Thief.

Trigger* Information Thief clicks the login button

Basic Flow* Information Thief uses an automated attack tool
to generate many combinations of usernames and
passwords.

Login Details, i.e., username, Password, and
Captcha matched with the login details of the
system.

On Successful Login, a verification code will be
sent on the user email id/SMS for multifactor
authentication.

If a user receives a verification code and verifies
the login attempt, then the Information thief will
be redirected to the User's personal and sensitive
data pages.

Alternate Flow* BF-2. In case of non-authentic/invalid login
details, i.e., username, Password, and Captcha, or
the number of login attempts are greater than
three against the same IP, it will be blocked.
BEF-4. If the multifactor authentication verification
code is not received through Email/SMS, repeat

the Bf3.

Assumption The system has login forms feeding input into
database queries.

Threatens Use case* User Login

Business Rules The Hospital system shall be available to its end-
users over the internet.

Stakeholder & Threats Hospital O/ Maintenance Department, O/I User

Department, Store Keeper, Dispenser.

If deleted, data loss reveals sensitive information
to damage the business and reputation of the
hospital.

Threatens Use case Mitigation If a user from the same IP address attempt three
logins failed attempts, block the IP. Also, apply

https://doi.org/10.20944/preprints202305.0343.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 do0i:10.20944/preprints202305.0343.v1

Captcha and multifactor authentication to avoid
attacks.

Step 03 Designing Mal-Activity Diagram

In this step Mal-activity diagram is designed for Structured Misuse case Description. Structured
Misuse case descriptions are modelled into the mal-Activity diagram to identify the inputs and
triggers. Figure 2 illustrates the mal activity diagram modelled from the structured misuse
description.

Enter Credentials

(Usemame, Password & Captcha)

v

Check No. of
Login Attempts

Self.attempt=3

self.username="valid'and self.password="valid’
and self.captcha="valid’ and self.attempts=3

v

Multifactor
Authentication

self.code="invalid’

v

Verification
Code

self.code="valid’

v

Figure 2. Mal-activity diagram for SMC-SA-001.

Step 4 Specify constraints in Mal Activity Diagram using OCL

Following is specification of constraint in OCL that will be used for transformation into boolean
expression.

self. Username = ‘valid” and self. Password="valid' and self.captcha='valid'} and self.attempts<3
Step 5 Transformation of Constraints into Boolean Expression

self. Username = ‘valid’ A self. Password="valid') A (self.captcha='valid' A self.attempts<3))

After converting into logical operation, we applied the MC/DC and Decision Coverage to each
constraint.
Step 6 Transform Boolean expression into truth table expression

Multiple solutions are required corresponding to a constraint to generate test data according to
the MC/DC and D/C criterion. For example, consider a constraint as an expression C = A v B, where
A and B are the clauses of the constraint. There are four combinations of possible outcomes, two each
for p and q (TT, TF, FF, and FT). To reformulate an constraint for MC/DC and Decision Coverage,

https://doi.org/10.20944/preprints202305.0343.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 do0i:10.20944/preprints202305.0343.v1

we first identify the truth-value combinations required for MC/DC and Decision coverage of a given
constraint. For this purpose, we use the pair-table approach suggested by Chilenski and Miller[26].

To solve the constraint, we will specify them as following. In our experiment constraints are
specified as following in Table 3

Table 3. Explanation of constraints transformation.

a self. Username = ‘valid’
b self. Password="valid'
c self.captcha="valid'

d self.attempts<3

Constraints specified using Table 3 becomes ((a A b) A (c A d)).
In following Table 4, the Boolean expression, which is first transformed from constraint, is now
transformed into truth Table form.

Table 4. Transformation of Boolean Expression into truth table form.

NO. a b d d ((anb)A(cad))
1 F F F F F
2 F F F T F
3 F F T F F
4 F F T T F
5 F T F F F
6 F T F T F
7 F T T F F
8 F T T T F
9 T F F F F
10 T F F T F
11 T F T F F
12 T F T T F
13 T T F F F
14 T T F T F
15 T T T F F
16 T T T T T

Step 7 Generating Possible Test

We will use the Decision Coverage approach mentioned in [27] and MC/DC described by
Chilenski and Miller[26]. To obtain MC/DC and Decision Coverage, we need to solve the
combinations of true and false values required to achieve the MC/DC criterion. Multiple solutions
are required corresponding to a constraint to generate test data according to the MC/DC criterion.
For example, consider a constraint as an expression C = p v q, where p and q are the clauses of the
constraint. There are four combinations of possible outcomes, two each for p and q (TT, TF, FF, and
FT).

Step 7.1 Generating test data for MC/DC

The idea of the MC/DC is to select the subset of all possible combinations that directly impact
the outcome value of the actual constraint. In the case of C, these combinations are (FF, TF, and FT).

https://doi.org/10.20944/preprints202305.0343.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 do0i:10.20944/preprints202305.0343.v1

To identify this subset, the first step is to reformulate the original constraint to obtain more constraints
that satisfy the MC/DC criterion.

The pair table suggested in [26] provides several potential pairs for each clause, and we need to
select minimum subsets of pairs that cover all clauses. In our table potential pairs are (8,16) from A,
(12,16) from B, (14,16) from C and, (15,26) from D. For A, we need to test only conditions of (8,16);
for B, we need to test only (12,16). For C, we need to test only (14,16); for D, we must only test (15,16).
So, we need to test 5 Constraints (8, 12, 14, 15, 16) as specified in Table 5.

Table 5. Color Mapping for potential Constraints found in MC/DC.

z
o
)
o
o)
[o9

((@anb)A(cad))

N (O[O W
== o B o e o B e o B e s B o

Lo I B e B e o B o I A O I I e O e O I I e B e » B e w
MR R E R e R L

—_
(€M)

i

e T e - TR -T - T I U e e R R -

9 T
10 T
11 T

R -

T
T
T

i

Step 7.2 Generating test data for D/C

Decision coverage requires test cases to cover both branches of a decision. For each decision, the
D/C criterion requires two test cases. For example, for a decision, Boolean expression requires two
test cases, e.g., the test cases (A=true, A =False) [17].

We have 16 test combinations for decision coverage because we have to test whether each
combination is false or true for each condition, as mentioned in [17].

Step 08 Compare and Find Optimal Test Data

In the above example, we have 16 test conditions; for Decision coverage, we need to test all 16
test conditions to achieve maximum coverage for MC/DC. Therefore, it is required to test only 5 test
conditions which comprise the actual test conditions in terms of finding maximum errors. For
MC/DC, optimal test conditions were found, and for Decision Coverage, it is required to test all
conditions. So our hypothesis 2 ‘"MC/DC maximizes test coverage for security threats in Structured
Misuse case Description’ is true and hypothesis 1 will be negated in the results of this experiment.

In step 08, we find that test data generated for MC/DC requires fewer test combinations as

compared to Decision Coverage. Therefore In test case design we will use test combinations identified
for MC/DC.

4.2. Test Combinations Identified by M(C/DC:

https://doi.org/10.20944/preprints202305.0343.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0343.v1

10

There were total 16 constraints generated truth table as mentioned in Table 4. After applying
MC/DC found test conditions in MC/DC are 8,12,14,15,16 as specified in Table 5. These constraints
are identified after application of MC/DC on relevant OCL value for A,B,C,D. In following Table 3
color mapping is given for relevant OCL value i.e for A,B,C,D. For a potential constraints are 8,16
mapped in orange color. Similarly, for b potential constraints are 12,16 mapped in grey colour, for ¢
14,16 mapped in green and for d for 15,16 in purple. In result we found that the test combinations are
8,12,14,15,16 as specified in Table 5, for which the test case will be designed.

Step 09 Acceptance test case design through Structured Misuse Case Description

In step 08 we identified that potentional constraints are 8,12,14,15 and 16. In order to design test
case from these constraint we need to check the truth/false value for each a,b,c,d truth table value. In
case if the value is true constraint will remain same, incase if it’s false it will be reversed e.g in given
8 constraint we have £,t,t,t values for a,b,c and d respectively. We need to modify the constraint value
for a since we got F result for potentional 8 constraint. In original Constrain we have a= self.
Username = ‘valid’ referred to Table 1, after altering the F value it will become self. Username =
‘Invalid” and rest of the constraint will remain same. For all these potential constraint we have
updated the original constraint accordingly in following Table 6.

Table 6. Identified Test Combination for MC/DC.

Constraint Test Scenario Constraint

No.

8 Invalid Username self. Username = ‘Invalid A self.
Unsuccessful login Password="valid') A (self.captcha='valid' A

self.attempts<3)

12 Unsuccessful Login due self. Username = ‘valid’ A self.

to invalid Password Password="Invalid') A (self.captcha='valid' A
self.attempts<3))

14 Unsuccessful Login due self. Username = ‘valid’ A self.

to invalid Captcha Password="valid') A (self.captcha='Invalid' A
self.attempts<3))

15 Unsuccessful Login due self. Username = ‘valid’ A self.

to more than three login Password="valid') A (self.captcha='valid' A

attempts self.attempts>3))

16 Successful Login self. ~Username = ‘valid’ A self.
Password="valid') A (self.captcha='valid' A
self.attempts<3)))

Acceptance test cases through structured misuse case description will be designed from the
above mal-activity diagram SMC-SA-001. Test data is essential as it is used to execute test cases. We
use the equivalence class partitioning technique to generate test data. We have two scenarios in the
above activity diagram, and test cases will be designed for both scenarios. In the first scenario, users
enter their username and Password to Login. IP of the system will be blocked for more than three
invalid attempts from the same IP. When the login and password are valid and the user has made
fewer than three attempts, the system will create a verification code. The User will enter the

https://doi.org/10.20944/preprints202305.0343.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023

do0i:10.20944/preprints202305.0343.v1

11

verification code that was delivered to the email address in the second scenario. If the code entered
is authentic, the system will log the user in; otherwise, they must repeat scenario 1 until they obtain
the code. The acceptance test scenarios for incorrect usernames, passwords, Captchas, and login
attempts are shown in Table 3. For the second situation, we will now create a test case.

4.3. Acceptance test case Design

Acceptance test cases through structured misuse case description (SMCD) will be designed from
the above mal-activity diagram shown in Figure 1. Test data is essential as it is used to execute test
cases. We use the equivalence class partitioning technique to generate test data. We have two
scenarios in the above activity diagram, and test cases will be designed for both scenarios. In the first
scenario, users enter their username and Password to Login. IP of the system will be blocked for more
than three invalid attempts from the same IP. When the login and password are valid and the user
has made fewer than three attempts, the system will create a verification code. The User will enter
the verification code that was delivered to the email address in the second scenario. If the code
entered is authentic, the system will log the user in; otherwise, they must repeat scenario 1 until they
obtain the code. The acceptance test scenarios for incorrect usernames, passwords, Captchas, and
login attempts are shown.

For this situation, we will now create a test case. Username Valid Class: { A-Z},{ a-z } and Invalid
Class: { 0-9}, {{@#$%"&*()[]{} }, Password Valid Class: { A-Z},{ a-z},{ 0-9},{ |@#$%"&*();:[1{} } and
Invalid Class: { A-Z},{ a-z} Captcha Valid Class: {A-Z},{a-z},{0-9} and Invalid class: { |@#$%"&*();:[1{}
} Login Attempts Valid Class:{0 < attempt =<3 } and Invalid Class: {attempt > 3}.

In following Table 7, an acceptance test case is designed for structured Misuse case description.

Table 7. Acceptance test case Design.

TC# Scenario ECP Input Expected
Username Password Captcha Attempts Output
TC- Invalid Username: Adminl123 Admin@98ml As12 Unsuccessful
08 Username Invalid Class: {0-9, Login due to
Unsuccessful ~ @#$%"&*()[1{} } the wrong
login Password: admin_#@!'11 username
Valid: {A-Z, a-z, 0-
9,1@#$%"&*();:[I{} }
Captcha: AB23C
Valid Class: {A-
Z},{a-z},{0-9}
Login Attempts:
Valid: {0 < attempt
=<3 }
TC- Unsuccessful ~ Username: user Unsuccessful
SA- Login due to Valid: { A-Z, a-z } Login due to
12 invalid the wrong
Password Password: 1234 Password
Invalid Class:
Password ={ A-Z}{
a-z}
Captcha: XYZ88
Valid Class: {A-
Z}{a-z},{0-9}
Login Attempts:
Valid: {0 < attempt
=<3 }
TC- Unsuccessful ~ Username: ABC Unsuccessful
SA- Login due to Valid: { A-Z, a-z } Login due to
14 invalid invalid
Captcha Passsword: Admin&12345 Captcha

https://doi.org/10.20944/preprints202305.0343.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 do0i:10.20944/preprints202305.0343.v1

12

Valid: { A-Z, a-z, 0-
9, 1@#$%"&*();:[I{}}
Captcha: ZX&12
Invalid class: {

l@#$%"&*();:(1{} }

Login Attempts: 1
Valid Class:
{attempt > 3}
TC- Unsuccessful Username: User Unsuccessfu
SA- Login due to Valid:{A-Z, a-z} 1 Login due
15 more than to more than
three login Password: Admin&123 three login
attempts Valid: { A-Z, a-z, 0- attempts

9, @#$%"&*();:[1{}

1

Captcha: ZXCl12
Invalid class: {

1@#$%"&*();:[1{} }

Login Attempts: 4

Invalid Class:

{attempt > 3}
TC- Successful Username: User Successfully
SA- Login Valid: { A-Z, a-z } logged in
16

Passsword: Admin&123

Valid: { A-Z, a-z,

0-9,

l@#$%"&*();:[1{} }

Captcha: ZXC12

Valid Class: {A-

Z},{a-z},{0-9}

Login Attempts: 1

Valid Class:

{0 < attempt =<3}

The designed test cases for the identified test combinations have been effective in detecting
errors, while no other test combinations were found to be as effective other than those mentioned in
MC/DC. This result has given us satisfaction with our approach, and we can confidently conclude
that the test data generated for MC/DC is optimal. By following this process, we can ensure that the
software we develop is robust and reliable, meeting the needs of our users.

5. Results and Discussion

In this research, we have constraints with four n values. Constraints specified in OCL can be
with different n values. Test combinations identified are 5 for MC/DC and 16 for D/C. It is evident
from the results that test data generated for MC/DC is optimal in each design experiment used. We
performed a succinct analysis of the findings for n=1, n=2, n=3, and n=5. Additionally, we thoroughly
specified the complete test data generation procedure for n=4 in the experiment given in the paper.
It is important to note that for experiments involving n=2, n=3, and n=5, test data has been generated.
Furthermore, it should be noted that no constraint was accessible for n>5. Based on the conclusions
drawn from the findings of this study, a mathematical formula has been formulated for MC/DC and

https://doi.org/10.20944/preprints202305.0343.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0343.v1

13

D/C approaches. The details of this formula are elaborated upon in the concluding section of this
paper.

The following formula is derived for MC/DC on the basis of test data generated for all design
diagrams where n=2, 3, 4, 5 respectively for each diagram.
2t=n+l EQ1

The following formula is derived for D/C on basis of test data generated for all design diagrams
where n=2, 3, 4, 5 respectively for each diagram.
Yt=2" EQ2

The test condition results clearly show MC/DC have generated optimal test data from constraint
compared to Decision Coverage. As a next step, we have designed the test cases for optimal test
conditions through equivalence class portioning.

5.3. Threats to Validity

The groups chosen for experimentation might differ before receiving any treatment. Because we
have only utilized MC/DC and Decision Coverage to produce test data at the design level, it could be
dangerous if suddenly Decision Coverage performed better when expressions became more complex
or UML diagrams were altered. Additionally, if results are altered for higher constraint orders, i.e.,
more than 5, the formula obtained from the extracted data results may also alter.

6. Conclusion and Future Work

This research designs acceptance test cases for security threats through SMCD. In order to
maximize test coverage through optimal test data generation we model security threat mitigation in
SMCD. Mal activity diagram was designed from SMCD to generate consistent test data through
MC/DC and D/C. A comparative analysis explains that MC/DC maximizes test coverage through
optimal test data from SMCD in comparison to Decision Coverage. We have generated the test data
from constraints for both MC/DC and Decision Coverage. MC/DC generated test data is n+1 while
decision coverage is 2". Moreover, all the test data generated from the constraint is the same in each
case, irrespective of the tester. Therefore, consistent test data will be generated through MC/DC or
Decision Coverage due to constraint specification in Object Constraint Language. Thus reducing the
test case subjectivity. In this experiment, regular expression orders up to order 4 are employed. In the
future, it is possible to do it for constraint n>5 with higher complexity for other UML diagrams and
other test data generation approaches can use MC/DC and D/C at the design level for extensive
analysis.

Author Contributions: Conceptualization, T.H. and R.B.F.; data curation, T.H and R.B.F.; formal analysis, T.H.
and R.B.F,; funding acquisition, M.A., G.S., R.A,; investigation, T.H., R.B.F., A.K and M.A.; methodology, T.H.;
project administration, R.B.F.,, M.A., A. A, and G.S.; resources, T.H.; software, T.H.; supervision, R.B.F.;
validation, T.H., RB.F,A.K, M.A. A A; writing original draft, T.H.; writing ,review and editing, T.H, R.B.F, R.A.
and G.S . All authors have read and agreed to the published version of the manuscript.

Funding: This research is supported by Zarqa University, Jordan.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to extend their sincere appreciation to Zarqa University for
supporting this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. M. Bharathi, “Hybrid Particle Swarm and Ranked Firefly Metaheuristic Optimization-Based Software Test
Case Minimization,” Int.]. Appl. Metaheuristic Comput., vol. 13, no. 1, pp. 1-20, 2022, doi:

https://doi.org/10.20944/preprints202305.0343.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0343.v1

14

10.4018/ijamc.290534.

2. R.Mukherjee and K. S. Patnaik, “A survey on different approaches for software test case prioritization,” J.
King Saud Univ. - Comput. Inf. Sci., vol. 33, no. 9, pp. 1041-1054, 2021, doi: 10.1016/j.jksuci.2018.09.005.

3. A.]Jain, D. K. Tayal, M. Khari, and S. Vij, “Novel method for test path prioritization using centrality
measures,” Int. |. Open Source Softw. Process., vol. 7, no. 4, pp. 19-38, 2016, doi: 10.4018/IJOSSP.2016100102.

4. M. Shahid and S. Ibrahim, “An Evaluation of Test Coverage Tools in Software Testing,” 2011 Int. Conf.
Telecommun. Technol. Appl., vol. 5, mno. January, pp. 216222, 2011, [Online]. Available:
https://www.academia.edu/download/46300497/An_Evaluation_of_Test_Coverage_Tools_in_20160607-
12431-14n7edq.pdf

5. 5. M. Mohi-Aldeen, R. Mohamad, and S. Deris, “Optimal path test data generation based on hybrid
negative selection algorithm and genetic algorithm,” PLoS One, vol. 15, no. 11 November, pp. 1-21, 2020,
doi: 10.1371/journal.pone.0242812.

6. X. Yao and D. Gong, “Genetic algorithm-based test data generation for multiple paths via individual
sharing,” Comput. Intell. Neurosci., vol. 2014, 2014, doi: 10.1155/2014/591294.

7. C.Xue and R. D. Shawn, “A one-pass test-selection method for maximizing test coverage,” Proc. 33rd IEEE
Int. Conf. Comput. Des. ICCD 2015, pp. 621-628, 2015, doi: 10.1109/ICCD.2015.7357173.

8. M. Khari, A. Sinha, E. Verdd, and R. G. Crespo, “Performance analysis of six meta-heuristic algorithms
over automated test suite generation for path coverage-based optimization,” Soft Comput., vol. 24, no. 12,
pp- 9143-9160, 2020, doi: 10.1007/s00500-019-04444-y.

9. B. Lewis, L. Smith, M. Fowler, and]. Licato, “The robot mafia: A test environment for deceptive robots,”
28th Mod. Artif. Intell. Cogn. Sci. Conf. MAICS 2017, pp. 189-190, 2017, doi: 10.1145/1235.

10. M. Khari and P. Kumar, “An effective meta-heuristic cuckoo search algorithm for test suite optimization,”
Inform., vol. 41, no. 3, pp. 363-377, 2017.

11. M. U. Khan, H. Sartaj M. Z. Igbal, M. Usman, and N. Arshad, “AspectOCL: using aspects to ease
maintenance of evolving constraint specification,” Empir. Softw. Eng., vol. 24, no. 4, pp. 2674-2724, 2019,
doi: 10.1007/s10664-019-09717-6.

12. S. K. Barisal, A. Dutta, S. Godboley, B. Sahoo, and D. P. Mohapatra, “MC/DC guided Test Sequence
Prioritization using Firefly Algorithm,” Evol. Intell., vol. 14, no. 1, pp. 105-118, 2021, doi: 10.1007/s12065-
019-00322-6.

13. M. Marré and A. Bertolino, “Unconstrained duals and their use in achieving all-uses coverage,” ACM
SIGSOFT Softw. Eng. Notes, vol. 21, no. 3, pp. 147-157, 1996, doi: 10.1145/226295.226312.

14. I Rauf et al., “The Case for Adaptive Security Interventions,” ACM Trans. Softw. Eng. Methodol., vol. 31, no.
1, pp. 1-52, 2022, doi: 10.1145/3471930.

15. I Alexander, “Misuse cases help to elicit non-functional requirements,” Comput. Control Eng. J., vol. 14, no.
1, pp. 4045, 2003, doi: 10.1049/cce:20030108.

16. H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experimentation with testing techniques: An
infrastructure and its potential impact,” Empir. Softw. Eng., vol. 10, no. 4, pp. 405-435, 2005, doi:
10.1007/s10664-005-3861-2.

17. P.Languages, P. Languages, D. Coverage, D. Coverage, M. Condition, and D. Coverage, “Comparison of
DC and MC / DC code coverages”.

18. H. Sartaj, M. Z. Igbal, A. A. A. Jilani, and M. U. Khan, “A Search-Based Approach to Generate MC/DC Test
Data for OCL Constraints,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 11664 LNCS, no. August, pp. 105-120, 2019, doi: 10.1007/978-3-030-27455-9_8.

19. R. G. Tiwari, A. Pratap Srivastava, G. Bhardwaj, and V. Kumar, “Exploiting UML Diagrams for Test Case
Generation: A Review,” Proc. 2021 2nd Int. Conf. Intell. Eng. Manag. ICIEM 2021, pp. 457460, 2021, doi:
10.1109/ICIEM51511.2021.9445383.

20. G.Robles, T. Ho-Quang, R. Hebig, M. R. V. Chaudron, and M. A. Fernandez, “An extensive dataset of UML
models in GitHub,” IEEE Int. Work. Conf. Min. Softw. Repos., pp. 519-522, 2017, doi: 10.1109/MSR.2017.48.

21. M. El-Attar and H. A. Abdul-Ghani, “Using security robustness analysis for early-stage validation of
functional security requirements,” Requir. Eng., vol. 21, no. 1, pp. 1-27, 2016, doi: 10.1007/s00766-014-0208-
9.

22. S. Khamaiseh and D. Xu, “Software security testing via misuse case modeling,” Proc. - 2017 IEEE 15th Int.
Conf. Dependable, Auton. Secur. Comput. 2017 IEEE 15th Int. Conf. Pervasive Intell. Comput. 2017 IEEE 3rd Int.
Conf. Big Data Intell. Compu, vol. 2018-Janua, pp. 534-541, 2018, doi: 10.1109/DASC-PICom-DataCom-

https://doi.org/10.20944/preprints202305.0343.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 do0i:10.20944/preprints202305.0343.v1

15

CyberSciTec.2017.98.

23.]J. Hartmann, M. Vieira, H. Foster, and A. Ruder, “A UML-based approach to system testing,” Innov. Syst.
Softw. Eng., vol. 1, no. 1, pp. 12-24, 2005, doi: 10.1007/511334-005-0006-0.

24. Y.H. Wang and I. C. Wu, “Achieving high and consistent rendering performance of java AWT/Swing on
multiple platforms,” Softw. - Pract. Exp., vol. 39, no. 7, pp. 701-736, 2009, doi: 10.1002/spe.

25. V. V. Ribeiro, “Understanding Factors and Practices of Software Security and,” no. November, 2019.

26.].]. Chilenski and S. P. Miller, “Applicability of modified condition/decision coverage to software testing,”
Softw. Eng. |., vol. 9, no. 5, pp. 193-200, 1994, doi: 10.1049/sej.1994.0025.

27. M. W. Whalen, “The Effect of Program and Model Structure on MC / DC Test Adequacy Coverage,” pp.
161-170, 2008.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.20944/preprints202305.0343.v1

