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Abstract: Malicious apps specifically aimed at the Android platform have increased in tandem with 11 

the proliferation of mobile devices. Malware is now so carefully written that it is difficult to detect. 12 

Due to the exponential growth in malware, manual methods of malware are increasingly ineffective. 13 

Although prior writers have proposed numerous high-quality approaches, static and dynamic as- 14 

sessments inherently necessitate intricate procedures. The obfuscation methods used by modern 15 

malware are incredibly complex and clever. As a result, it cannot be detected using only static mal- 16 

ware analysis. As a result, this work presents a hybrid analysis approach, partially tailored for mul- 17 

tiple-feature data, for identifying Android malware and classifying malware families to improve 18 

Android malware detection and classification. This paper offers a hybrid method that combines 19 

static and dynamic malware analysis to give a full view of the threat. Three distinct phases make up 20 

the framework proposed in this research. Normalization and feature extraction procedures are used 21 

in the first phase of pre-processing. Both static and dynamic features undergo feature selection in 22 

the second phase. Two feature selection strategies are proposed to choose the best subset of features 23 

to use for both static and dynamic features. The third phase involves applying a newly proposed 24 

detection model to classify android apps; this model uses a neural network optimized with an im- 25 

proved version of HHO. Application of binary and multi-class classification is used, with binary 26 

classification for benign and malware apps and multi-class classification for detecting malware cat- 27 

egories and families. By utilizing the features gleaned from static and dynamic malware analysis, 28 

several machine-learning methods are used for malware classification. According to the results of 29 

the experiments, the hybrid approach improves the accuracy of detection and classification of An- 30 

droid malware compared to the scenario when considering static and dynamic information sepa- 31 

rately. 32 

Keywords: malware; harris hawks optimization, feature selection; benign; multiclass classification; 33 

multi-verse optimization; moth-flame optimization; machine learning. 34 

 35 

1. Introduction 36 

Smartphones have rapidly grown in popularity over the past decade, with billions of 37 

users, according to an analysis of Statista in 2021[1]. The reason is that smartphones are 38 

so handy and convenient [2]. Sending emails, playing games, taking photographs and 39 

videos, searching the web, using GPS, and more are just some of the many uses for 40 

smartphones. Applications are being developed and improved daily, making it possible 41 

to achieve this, particularly on Android's operating system, which first appeared as a 42 

hacked Linux kernel optimized for touchscreen mobile gadgets. 43 
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Moreover, last year Android OS apps extended to more than 3 million apps [3]. Bank- 44 

ing, social media, healthcare, education, and entertainment are just some of the many pos- 45 

sible uses for these Android apps [4]. As a result, most of these apps are employed to 46 

benefit their end consumers. Some of them, however, are used maliciously by hackers and 47 

exploiters. Malware refers to these harmful applications, defined as invasive software that 48 

steals data or causes damage to another user's computer [5]. 49 

Cybercriminals create malware to function in many ways, including adware, worms, 50 

ransomware, and Trojan viruses [6]. Because malicious software is always evolving, it is 51 

increasingly challenging to foil security breaches [7]. For instance, in 2021, Cybersecurity 52 

Check Point warned Android users that millions of mobile smartphones were vulnerable 53 

to Agent Smith malware [8]. The spyware also uses WhatsApp as a cover to attack An- 54 

droid systems. In 2021, coccus reported that more than a billion Android smartphones 55 

would be vulnerable to hacking because they lacked the latest security upgrades [9]. Ad- 56 

ditionally, experts from Kaspersky Lab in 2020 found that numerous hackers had used the 57 

Google Play app store to spread complex malware [10] for years. Recently, many Facebook 58 

accounts were hacked using the android malware "FlyTrap" app [11]. 59 

The Android operating system has a built-in authorization module that checks 60 

whether or not a security policy has been breached before granting the permissions re- 61 

quested by an Android app. The four categories of Android permissions correspond to 62 

the four levels of security outlined in [12]. Also, the dataset includes four types of malware 63 

that may be labeled as such: ransomware [13] adware [14], SMS malware, and scareware 64 

[15]. The ever-expanding and changing nature of malware has prompted numerous pro- 65 

posals for detecting and avoiding it. The research community has revealed two methods 66 

for spotting malware. Static, dynamic, and hybrid malware analysis are three types of 67 

analyzing android malware. Static malware analysis is where applications are inspected 68 

without being run, while dynamic analysis evaluates the behavior of malware in a sand- 69 

box after it has been run [16]. Despite the role of current technologies in improving quality 70 

of life and expanding the cyber world, cyber-threats have reached a new level and are 71 

increasing at a scary rate [17]. More importantly, new attacks that can breach a 72 

smartphone's defenses are constantly being developed and released. 73 

Violating the security policy might take various forms, depending on the mobile de- 74 

vice's OS. This paper focuses on the Android operating system and new threats that 75 

threaten its security. The presence of malware in a mobile app has been investigated by 76 

several previous research [18-22], some of which made use of API calls and permissions. 77 

According to their findings, Dynamic analysis is also necessary since Static analysis is in- 78 

sufficient for detecting malware in obfuscated apps. It has been found in some research 79 

[23] that deep learning can be utilized to detect malware in mobile apps. This paper aims 80 

to provide a highly effective method for discovering and naming novel forms of malware, 81 

thus overcoming all these restrictions.  82 

This is why we have put time and effort into Android malware detection and family 83 

classification. Here, "malware" and "benign" represent two classes in a binary classifica- 84 

tion problem, whereas "family classification" represents 13 classes in a multi-class classi- 85 

fication problem. Android malware family refers to a collection of malicious apps that act 86 

similarly and are based on the same code. To identify and categorize malicious Android 87 

apps, we propose a hybrid classification. It depends on combining dynamic static mal- 88 

ware analysis. At first, we run a static malware analysis to pull out static features like 89 

command strings, API calls, intents, and permissions. Then, we used CuckooDroid [24]to 90 

analyze dynamic malware to extract features. To do the automated analysis of suspicious 91 

Android files, CuckooDroid is an add-on to the cuckoo sandbox [25]. 92 

A standard method for malware detection using static and dynamic features, feature 93 

selection has received considerable attention [26]. Managing these massive datasets is no 94 

easy feat due to their complexity. It could hinder one's learning ability or even lengthen 95 

the time. Feature reduction methods are essential to reduce the dimensionality of data 96 

because some attributes in datasets are unnecessary and redundant [27-29].  97 
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Accordingly, one of the most critical steps in developing a pattern classifier system 98 

is the feature selection phase, during which an appropriate feature subset is selected by 99 

analyzing possible feature subsets. For this reason, two feature selection strategies, static 100 

and dynamic, are proposed for the best possible malware classification in the used dataset. 101 

Using fuzzy logic [30,31] in conjunction with metaheuristic optimization, a two-stage fea- 102 

ture selection strategy is proposed for selecting dynamic features. To detect and categorize 103 

An-droid malware applications, a hybrid model based on fuzzy optimization mixed with 104 

meta-heuristic optimization methods, hybrid of enhanced MFO [32] and MVO [33] is eval- 105 

uated as wrappers. Three feature selection methods, fisher score, chi-square, and infor- 106 

mation gain, are applied to static features, eliminating more irrelevant features. Then, a 107 

subset of candidate features from both static and dynamic features was fed to several ma- 108 

chine learning algorithms to produce the best detection results.  109 

Several researchers have proposed artificial neural network (ANN) based models to 110 

replace more conventional approaches to malware detection and classification [34]. It has 111 

been shown that ANNs can model the relationships between inputs and outputs more 112 

accurately than other methods [34,35]. Additional restrictions on ANN use include diffi- 113 

culties in extrapolating beyond training data and overtraining the network due to exten- 114 

sive iterations during the training process. Therefore, the primary goals of this research 115 

are to (1) develop a better ANN model using the enhanced version of Harris Hawks opti- 116 

mizer (EHHO) and (2) check the accuracy of this model. The EHHO's primary goal is to 117 

establish the optimal parameters for the ANN. 118 

The following are the original contributions made by us in this paper: 119 

•DroidDetectMW is proposed as a functional and systematic model for detecting and 120 

identifying Android malware and its family and category based on a combination of Dy- 121 

namic and Static attributes. 122 

•Methods are proposed for selecting features, either statically or dynamically, to use. 123 

• A hybrid fuzzy-metaheuristics-optimization approach is proposed for selecting the 124 

optimal dynamic feature subset. 125 

•An enhanced version of the HHO algorithm is proposed to optimize the parameters 126 

of ANN for malware detection. 127 

•A Comparison is applied between the results of the proposed Deep learning 128 

method with those of more traditional machine learning classifiers in determining how 129 

well DroidDetectMW works. 130 

•Evaluate the performance of DroidDetectMW in comparison to seven traditional 131 

machine learning methods: the Decision Tree (DT), the support vector machine (SVM), 132 

the K-Nearest Neighbor, the Multilayer Perceptron (MLP), the Sequential Minimal Opti- 133 

mization (SMO), Random Forest (RF) and the Naive Bayesian (NB). 134 

•Compared to traditional machine learning algorithms and state-of-the-art studies, 135 

DroidDetectMW significantly improves detection performance and achieves good accu- 136 

racy on both Static and Dynamic attributes. 137 

In the remaining sections of the study, the following structure is used: understanding 138 

the fundamentals of Harris Hawks Optimization is covered in Section 2. In Section 3, we 139 

detail the methodology we'll be using. Section 4 focuses on the experiments and findings, 140 

while Section 5 discusses the conclusion and directions for the future. 141 

2. Preliminary 142 

2.1. Harris Hawks optimization (HHO) 143 

HHO was developed by [36], and it is a population-based optimization method with 144 

inspiration drawn from the natural world. Harris' hawks' cooperative chasing of prey, 145 

known as the surprise pounce, is an inspiration for HHO. Hawks use this strategy by 146 

swooping in from all sides to catch their prey off guard. The HHO consists of two primary 147 

phases: exploitation and exploration and a transition between exploitative actions. The 148 

hawks in the desert are the potential solutions, and the prey they're waiting for is the best 149 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2023                   doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1


Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 20 
 

at each stage. Harris' hawks begin their haunting by randomly picking areas and waiting 150 

to see whether they can detect any prey during the exploring phase. The first method 151 

relies on the locations of other hawks also involved in haunting the prey, whereas the 152 

second relies on the absence or presence of tall trees within the haunt range. 153 

In both cases, the decision is based on the first strategy being chosen if q ≥ 0.5 and the 154 

second strategy being chosen if q <0.5. The vector of hawk positions in the next cycle is 155 

defined as X(t+1). The current iteration's prey position is denoted by Xrabbit (t), a hawk's 156 

position is chosen at random using Xrand (t), and the hawks' positions are represented by 157 

X(t). Lower and upper bounds LB and UB are iteratively updated for the random values 158 

r4, r2, r1, r3, and q in the interval (0,1) as shown in Equation 1. 159 

 160 

𝑥(𝑡 + 1) = {
𝑋rand (𝑡) − 𝑟1 ∣ 𝑋rand (𝑡) − 2𝑟2𝑋(𝑡) 𝑞 ≥ 0.5

(𝑋rabbit (𝑡) − 𝑋𝑚(𝑡)) − 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵)) 𝑞 < 0.5
              (1) 161 

 162 

Equation 2 can be used to determine the mean position of the current population of 163 

hawks, denoted by the symbol Xm(t). Where Xi(t) defines the position of the hawk i in 164 

recent iteration, and N is the whole number of hawks. 165 

 166 

𝑋𝑚(𝑡) =
1

𝑁
∑  𝑁

𝑖=1 𝑋𝑖(𝑡)                                (2) 167 

 168 

During the exploitation stage, Harris' hawks initiate attacks on victims using the sur- 169 

prise pounce. In response to repeated attempts at evasion by their victim, hawks modify 170 

their pursuit strategies. As a result, hawks employ four distinct chasing strategies: the Soft 171 

Besiege, the Hard Besiege, the Hard Besiege with progressive rapid dives, and the Soft 172 

Besiege with progressive quick dives. 173 

As the victim expends energy to flee the haunt, its remaining reserve determines 174 

which of the four strategies it will employ. This means that the individual can switch be- 175 

tween several forms of exploitation. Equation 3 is a valid modeling of the energy of the 176 

prey, where T is the highest number of iterations with E0 is the initial energy of the prey. 177 

 178 

 𝐸 = 2𝐸0 (1 −
𝑡

𝑇
)                                     (3) 179 

 180 

The soft besiege takes place when |E|≥0.5 and if the prey has a probability of r ≥ 0.5 181 

of being able to leak from the hawks. If r <0.5, then the soft besiege strategy with progres- 182 

sive rapid dives is employed. Both approaches are shown in Equations 4 and 5, respec- 183 

tively. The instruction to assess the hawks' next move during a soft besiege is denoted by 184 

Y, where ΔX(t) represents the difference between the rabbit's position vector and the lo- 185 

cation stored in the current iteration t. Only if the Y rule isn't successful may the mislead- 186 

ing zigzag motion shown in the Levy Flight LF move be used. Readers can find Z, Y, and 187 

LF in the original literature. 188 

 189 

𝑋(𝑡 + 1) = Δ𝑋(𝑡) − 𝐸|𝐽𝑋rabbit (𝑡) − 𝑋(𝑡)|                            (4) 190 

 191 

 192 

 193 

𝑋(𝑡 + 1) = {
𝑌  if 𝐹(𝑌) < 𝐹(𝑋(𝑡))
𝑍  if 𝐹(𝑍) < 𝐹(𝑋(𝑡))

                     (5) 194 

 195 

If |E|<0.5, then the Hard besiege strategy is used, provided that r ≥0.5. In that case, a 196 

hard be-siege with progressive quick dives will be applied. For hard besiege with ad- 197 

vanced rapid dives, the same Equation 5 is employed, except that Y considers the average 198 

locations of the hawks instead, as shown in Equation 6. 199 

 200 

 𝑋(𝑡 + 1) = 𝑋rabbit (𝑡) − 𝐸|Δ𝑋(𝑡)|                                 (6) 201 
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 202 

2.2. Dataset and malware categories 203 

We determined that the Canadian Institute for Cybersecurity (CIC) [37] offers a com- 204 

petent real-world dataset named CICAndMal2017 after examining the most comprehen- 205 

sive and coherent set of related papers. First, the CIC amassed around 4,000 malware apps 206 

from various sources as Contagiodumpst [38] and VirusTotal [39].  In addition, nearly 207 

6,000 benign apps from 2015 to 2017 that were uploaded to the Google Play market were 208 

collected. CIC has only been able to install 5,000 (benign 5,065 and malware 429) on actual 209 

An-droid smartphones to undertake real-world scenario testing. Several articles make use 210 

of the Drebin dataset. A total of 5,560 apps from 179 distinct malware families are included 211 

in this data collection. The MobileSandbox project generously provided us with samples 212 

gathered between August 2010 and October 2012. A total of 4890 recent Android apps 213 

were downloaded from virusshare and apkmirror and selected from DREBIN, CICIn- 214 

vesAndMal2017, datasets of them there are 1910 samples of malware and 2980 samples of 215 

benign. The used dataset consisted of static and dynamic features to evaluate the pro- 216 

posed model. 217 

 In this data set, labels can be found at various depths. Beginning with a binary clas- 218 

sification system, files are either malware or benign. There are four broad classes of mal- 219 

ware in the second level: 220 

•Adware: To generate as much revenue as possible from unsolicited banner ads, the 221 

ad-ware will display these ads automatically [40]. 222 

•Ransomware: One goal of malicious software is to prevent apps from accessing sys- 223 

tem resources. To extort money from users, it can encrypt their files and demand payment 224 

before allowing them to access their files or recover their devices [41]. 225 

•Scareware: This malware software uses scare tactics to convince users to buy bogus 226 

security updates [42]. 227 

•SMS malware: A malicious malware that makes sms calls and sends text messages 228 

with-out the user's permission. The malware operator can use the compromised handsets 229 

as a high-end SMS distribution channel [43].   230 

3.Proposed Framework 231 

Here, we'll review the recommended process for locating and categorizing Android 232 

apps by family. Data preprocessing, feature selection, detection, and family categorization 233 

are its three main phases. The feature values are normalized in the first phase, and dupli- 234 

cate apps are removed from the dataset. Then, feature extraction of both static and dy- 235 

namic malware features is applied. In this phase's end stage, the extracted features are 236 

vectorized and put in binary vectors for further processing. He pulled static characteris- 237 

tics, including Command strings, API calls, intents, and permissions. Extracted elements 238 

from dynamic malware analysis include cryptographic activities, dynamic approvals, sys- 239 

tem calls, and information leakage. In the second phase, feature selection is employed for 240 

static and dynamic features extracted from the feature extraction stage. Three filter ap- 241 

proaches are applied for static attributes, and the optimum feature subgroup is selected. 242 

For dynamic features, a two-stage fuzzy-metaheuristic method is applied to attain the best 243 

set of dynamic features. In the third phase, a proposed deep learning approach based on 244 

enhanced HHO is used to categorize the categories of malware and families. Then, the 245 

Android apps are identified and classified using the proposed detection approach against 246 

several distinct classifiers based on machine learning and deep learning, such as SMO, RF, 247 

DT, K-NN, NB, SVM, SMO, and MLP. The process flow of the proposed approach is pro- 248 

posed in Figure 1. 249 
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   Figure 1. The proposed model. 250 

 3.1. Data Pre-processing 251 

The best results from a machine learning or deep learning model can only be 252 

achieved after extensive preprocessing. Duplicate instance cleanup, NaN removal, and 253 
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normalization/scaling are all examples of everyday preprocessing operations. We use 254 

MinMax scaling to normalize the features because the given dataset has minimal variance 255 

and ambiguity. The term normalizing describes the operation of rescaling values with a 256 

fundamental number component to a speci-fied interval (e.g., 0 and 1). If your model 257 

depends on the absolute values of inputs, you must ensure that they are appropriately 258 

scaled. Data is normalized by applying the formula presented in for MixMax scaling using 259 

Eq. 7: 260 

𝑋norm =
𝑋𝑖−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                              (7) 261 

Where Xi is the feature's initial value, the denominator represents the difference between 262 

the feature's new normalized maximum and minimum values. 263 

To filter out duplicates, the gathered Android apps are hashed using the MD5 264 

method. There are now only 3514 unique Android apps after the copies have been 265 

removed, which consists of 1479 samples of malware and 2035 samples of benign. 266 

Features can be extracted from malware using both dynamic and static analysis. 267 

According to the analysis of static features, we have collected intents, API calls, command 268 

strings, and permissions using a custom-written python script that uses the Apktool tool. 269 

According to the analysis of dynamic features, we have used CuckooDroid to extract 270 

dynamic permissions, cryptographic operations, system calls, and information leakage. 271 

3.2. Feature Selection  272 

It's a tool for reducing the number of dimensions in a problem, which aids in select- 273 

ing the most critical aspects—lowering the quality and accuracy of a classification model, 274 

and irrelevant and redundant features might have. More processing time and storage 275 

were needed for higher-dimensional datasets [44]. The time and space complexity can be 276 

reduced and the accuracy improved by selecting the necessary features. We have used 277 

feature selection methods that consider both static and dynamic features in this paper. 278 

The features that are generated as a byproduct are the most helpful set of features for the 279 

subsequent classification and detection processes. The results demonstrated that combin- 280 

ing static and dynamic attributes is superior to using either alone. To eliminate and de- 281 

crease the unnecessary static features, three filter techniques were employed to generate 282 

three candidate subsets; the best of these was then used for static feature selection. To 283 

select the optimal feature subset of dynamic features, a two-stage hybrid metaheuristic 284 

optimization algorithm using a fuzzy approach is proposed. More specific instructions for 285 

doing so are provided below. 286 

To rationally evaluate the static features and improve the algorithm's performance, 287 

feature selection is required. We use a filter-based methodology to ensure that feature 288 

selection does not rely on the underlying detection technique. See Algorithm 1 for further 289 

explanation. Three potential feature subsets were obtained using the chi-square test, the 290 

Fisher score, and the mutual information gain. The detection models are further compared 291 

in terms of their performance on the three feature subsets to determine which one is the 292 

most effective. The optimal detection model is chosen by averaging the results of various 293 

algorithmic models applied to the feature subset. The optimal feature subset is then se- 294 

lected by examining the effects of the chosen optimal model applied to the different fea- 295 

ture subsets. Using experimental results, the chi-square test is the superior technique for 296 

determining features using the random forest anomalies detection model. The above 297 

methods were implemented using scikit-learn [45] a Python machine-learning package. 298 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2023                   doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1


Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 20 
 

This study proposes combining fuzzy and meta-heuristic optimization to eliminate 299 

redundant information and improve performance. Both fuzzy benchmarking and meta- 300 

heuristic optimization techniques, such as Multi-Verse Optimization (MVO) and En- 301 

hanced Moth Flame Optimized (EMFO), executed within Machine Learning (ML) wrap- 302 

pers, are utilized to discover the best features.  303 

In Figure 2, we see a schematic of the proposed dynamic feature selection frame- 304 

work. This phase generates fuzzy sets for each feature retrieved in the previous phase [23]. 305 

To get the fuzzy optimal feature set, each feature's standard deviation (SD) is computed 306 

and compared to a threshold value. Fuzzification filters feature before sending them on 307 

to metaheuristic swarm optimization methods [46]. Following classification, the reduced 308 

feature set is sent into machine learning algorithms for testing their ability to categorize 309 

Android API calls into benign and malicious categories. While there are various feature 310 

optimization techniques to choose from, we have focused on MVO and MFO due to their 311 

lack of attention in the mal-ware detection literature. Following is a breakdown of the 312 

proposed hybrid method: 313 

 314 
Figure 2. The proposed dynamic feature selection approach. 315 

3.3. Detection and Family Classification 316 

This section introduces the proposed detection approach and the comparative results 317 

with other machine learning models. 318 

 As mentioned in section two, the HHO algorithm is based on observations of how 319 

different Harris hawks approach prey. A solution's efficacy determines how quickly HHO 320 

moves between exploitation and exploration. When it comes time to exploit the catch, 321 

Hawk swoops in for the kill. 322 

Despite the remarkable performance of basic HHO, through simulations, we learn 323 

that improving both the exploration and exploitation processes improves the original 324 

HHO. Incorporating a QRL technique has been shown to improve both intensification and 325 

diversification. 326 

To improve upon both the worst Xworst and best solution Xbest, the proposed method 327 

employs the QRL at each iteration. In this method, the following expression is used to get 328 

quasi-reflective solutions: 329 

 330 
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𝑋𝑗
𝑞𝑟

= rnd (
𝐿𝐵𝑗+𝑈𝐵𝑗

2
, 𝑋𝑗)                            (8) 331 

Where, rnd (
𝐿𝐵𝑗+𝑈𝐵𝑗

2
, 𝑥𝑗) generates random numbers from a uniform distribution in the 

range and, [
𝐿𝐵𝑗+𝑈𝐵𝑗

2
, 𝑋𝑗]calculates the average of the upper and lower bound for every pa-

rameter j. Finally, Xbest and Xworst are replaced by 𝑋best 
𝑞𝑟  and 𝑋worst 

𝑞𝑟 respectively, if and only if 

𝑋best 
𝑞𝑟 's fitness is greater than the previous best solution. 

The proposed method for the malware families and categories detection phase using EHHO-

ANN is depicted in Figure 3. 

 
Figure 3. The flowchart of the proposed EHHO-ANN. 

 

In this classification, models for identifying and categorizing Android malware are 332 

construct-ed using a wide range of ML techniques (including RF, SVM, DT, SMO, K-NN, 333 

MLP and NB). To gauge the efficacy of our proposed method, we employ these models 334 

for analysis. To train these models, the entire dataset is split into five sections called 335 

"folds." Every part of the model is run, four pieces are utilized for training, and the re- 336 

maining two are used for testing. Brief descriptions of ML algorithms and the criteria by 337 

which they are judged are provided here. 338 

In this work, we used the following machine-learning algorithms:  339 

•K-Nearest Neighbors (K-NN) is a simple supervised learning technique. This con- 340 

cept shares terminology with the lazy learner [47]. This technique does not care about the 341 

underlying data structure when a new instance appears. Instead, it uses distance meas- 342 

urements (e.g., Euclidean distance, Manhattan distance) to determine which training sam- 343 

ples are most similar to the incoming instance. Majority voting notions ultimately deter- 344 

mine this new instance's class. 345 

•Sequential Minimal Optimization (SMO) takes a set of points as its input. The 346 

method generates a hyperplane that separates points within the same class by analyzing 347 

the gaps between them. Kernel functions fill in the blanks in SMO by revealing data about 348 

the distance between two spots. 349 

•SVM is a technique [48] that uses a hyperplane to partition the information. In a 350 

nutshell, it's a dividing line from which to choose. Distances between the nearest data 351 

points are called support vectors, and the hyperplane is calculated randomly after the hy- 352 

perplane is drawn. It searches for the optimal hyperplane that maximizes the profit. 353 

•Random Forest (RF):  A considerable number of independent decision trees are 354 

used in RF to form a unified whole [49]. Each decision tree generates an output 355 
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classification for the input data, then compiled by RF and represented graphically based 356 

on a majority vote. 357 

•A Decision Tree (DT) is organized in the form of a tree, where each node (whether 358 

internal, leaf, terminal) represents a test on an attribute, and each branch (whether inter- 359 

nal, leaf, or terminal) carries a class name and the results of the test. The C4.5 algorithm 360 

has been utilized in this work to categorize Android malware [50]. 361 

•Bayes' theorem provides the theoretical foundation for the NB idea. The program 362 

predicts the probabilities of class membership or the likelihood that a set of tuples belongs 363 

to a specific class. Multi-class and binary classification problems [51] both benefit from 364 

their application. 365 

•Multilayer Perceptron (MLP): There are the hidden and output layers and the input 366 

layer. It can produce results in several different measurement systems. The hidden layer's 367 

output units are fed into the subsequent layer as input. [52] applied deep learning ap- 368 

proaches like ANNs classifiers to various classification challenges. The authors use MLP 369 

to identify and categorize Android malware when classifying and predicting gait data. 370 

The MLP is executed using a hidden layer of h=3 and sigmoid activation function for the 371 

binary classification and h=5 and softmax activation function for the multi-class classifi- 372 

cation. Learning is assumed to occur at a rate of 0.35. For a high-level overview of how 373 

backpropagation works in a neural network, see Figure 4. 374 

 375 

 376 
Figure 4. Methodology of backpropagation in neural network. 377 

4. Experiments 378 

Specifically, we conduct three primary experiments to measure the efficacy of the 379 

proposed DroidDetectMW: The first experiment, detection, and identification, is to deter- 380 

mine whether or not a specific app is a malware; the second experiment seeks to identify 381 

the family of malware, and the last one is the impact of feature selection proposed ap- 382 

proach for both static and dynamic features. In the previous experiment, a comparison 383 

between with and without feature selection approaches is applied over different models, 384 

including the proposed detection approach. To begin, we divide the dataset into two clas- 385 

ses: malware and benign apps. Ransomware, SMS malware, scareware, and adware sam- 386 

ples comprise the four subcategories of malware used in the second stage of classification 387 

of the dataset. The data set is further annotated with labels for 13 families of malware.  388 

4.1. Evaluation measures and experimental setup 389 

Several measures are used to evaluate the classifiers' efficacy, such as Matthews cor- 390 

relation coefficient (MCC), precision, F-measure, true positive rate (TPR), Area under 391 
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curve (AUC), and false positive rate (FPR). The evaluation measures are based on false 392 

positive (FP), true negative (TN), true positive (TP), and false negative (FN). We used 20% 393 

of the data during the experiment for testing, while 80% was for training. The following 394 

Equations provide further information. The experimental computing setup is listed in Ta- 395 

ble 1. 396 

        Table 1. The experimental environment settings. 397 

Setting Parameter 

PU Intel(R) Core(TM)i7-2.40 GHz 

Operating System Windows 10 Home Single 

GPU NVIDIA 1060 

RAM 32 GB 

Python Version  3.8 

•TPR - Recall: It is calculated by dividing the number of confirmed positive results 398 

by the total number of positive results. As illustrated in Eq., it can be estimated by Eq. 9: 399 

𝑻𝑷𝑹 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
                                      (9) 400 

•FPR: This metric represents the proportion of false positive cases relative to the total 401 

number of true negative cases. The calculation is described by the following Eq. 10: 402 

   𝑭𝑷𝑹 =
𝑭𝑷

𝑻𝑵+𝑭𝑷
                                    (10) 403 

•Precision is calculated by dividing the number of correct predictions by the total 404 

number of correct predictions. It can be calculated by Eq. 11: 405 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
                                    (11) 406 

•F-measure: It indicates the harmonic mean of precision and recall. Eq. 12 is used to 407 

deter-mine this is: 408 

          𝐹 −  measure =
2×( Precision × Recall )

( Precision + Recall )
                          (12) 409 

•Accuracy: It is calculated by dividing the number of cases by the sum of the in- 410 

stances that are both true negatives and true positives. Eq. 13 used to determine this is: 411 

 Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
                                (13) 412 

•MCC: It is a standard for evaluating the efficacy of binary classifiers. Its numerical 413 

value ranges from +1 to -1. Here, a value of +1 indicates an exact prediction, while a value 414 

of -1 indicates an opposite forecast. Eq. 14 used to determine this is: 415 

𝑴𝑪𝑪 =
𝑻𝑷×𝑻𝑵−𝑭𝑷×𝑭𝑵

√(𝑻𝑷+𝑭𝑵)(𝑻𝑷+𝑭𝑷)(𝑻𝑵+𝑭𝑷)(𝑻𝑵+𝑭𝑵)
                            (14) 416 

•AUC curve: The F-measure is a crucial indicator of a classification model's effi- 417 

cacy. It is a quantitative indicator of how easily things can be separated. 418 

Where, True Positives (TP) are cases that were expected to be in the "Yes" category 419 

and were found there. False positives (FP) occur when a case is incorrectly labeled as 420 
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belonging to the YES category. True Negative (TN) means the case was not included in 421 

the YES list but was expected to be. When a case is predicted to not be in the YES col- 422 

umn but is, this is called a False Negative (FN). 423 

4.2. Malware binary detection based on Static features 424 

The results for the binary detection using static features are shown in Table 2. With 425 

DroidDetectMW, accuracy is maximized to 96.9%. The accuracy of some other standard 426 

meth-ods, including KNN, SMO, SVM, RF, DT, NB, and MLP, ranges from 92.3% to 427 

93.5.0%, 92.3%, 95.8%, 95%, 94.2%, and 93.5%, respectively. Since NB's accuracy relies on 428 

the probability distribution, additional data examples would have helped it perform bet- 429 

ter. The mentioned models work reasonably well on binary classification with static fea- 430 

tures and feature selection. The MCC of DroidDetectMW is recorded at 93.8%. When com- 431 

pared to other standard models, DroidDetectMW demonstrates a substantial performance 432 

gain. When tested, DroidDetectMW achieves a maximum accuracy of 96.9% at the 7th 433 

epoch. Accuracy in training ranges from 0.811% to 0.987%. This leads to a consistent con- 434 

vergence of training accuracy. The passing accuracy of a test might be anywhere from 435 

0.795% to 0.951%.  436 

Table 2. The effectiveness of static feature selection for binary malware classification. 437 

Algorithm K-NN SMO SVM RF DT NB MLP Proposed 

Accuracy (%) 0.923 0.935 0.923 0.958 0.950 0.942 0.935 0.969 

FPR (%) 0.071 0.064 0.077 0.049 0.056 0.069 0.058 0.029 

TPR (%) 0.917 0.933 0.924 0.966 0.957 0.957 0.926 0.967 

Precision (%) 0.917 0.925 0.908 0.942 0.933 0.917 0.933 0.967 

F-measure (%) 0.917 0.929 0.916 0.954 0.945 0.936 0.929 0.967 

MCC (%) 0.845 0.868 0.845 0.915 0.899 0.884 0.869 0.938 

AUC (%) 0.923 0.931 0.915 0.946 0.939 0.924 0.938 0.969 

4.3. Malware category detection based on Static features 438 

The results of the static features selection on the detection of malware category can 439 

be shown in Table 3. Using DroidDetectMW, the highest accuracy possible is 94.2%. The 440 

accuracy of some other standard methods, including KNN, SMO, SVM, RF, DT, NB, and 441 

MLP, is 86.5%, 89.6%, 87.3%, 92.3%, 92.3%, 90.4%, and 88.80%. To improve the probability 442 

distribution, NB requires more data examples.  443 

Table 3. The effectiveness of static feature selection for malware category classification. 444 

Algorithm K-NN SMO SVM RF DT NB MLP Proposed 

Accuracy (%) 0.865 0.896 0.873 0.923 0.923 0.904 0.888 0.942 

FPR (%) 0.138 0.105 0.126 0.083 0.071 0.092 0.117 0.069 

TPR (%) 0.87 0.897 0.872 0.931 0.917 0.899 0.896 0.957 

Precision (%) 0.833 0.875 0.85 0.9 0.917 0.892 0.858 0.917 

F-measure (%) 0.851 0.886 0.861 0.915 0.917 0.895 0.877 0.936 

MCC (%) - - - - - - - - 

AUC (%) 0.848 0.885 0.862 0.908 0.923 0.900 0.871 0.924 

 445 
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In this analysis, we look at category as a feature in the malware dataset, and we find that 446 

its ROC AUC curve is 92.4%. When compared to conventional approaches, 447 

DroidDetectMW demonstrates a noticeable performance gain. With an improved f-score 448 

of 93.6%, DroidDetectMW is an intelligent solution. 449 

4.4. Malware family classification and detection based on Static features selection 450 

The result of the malware family classification using the static feature selection is 451 

shown in Table 4. DroidDetectMW 's accuracy of 91.5% is the best for identifying malware 452 

belonging to the same family. The accuracy of other standard methods, including KNN, 453 

SMO, SVM, RF, DT, NB, and MLP, is 85.8%, 85.4%, 85%, 86.9%, 86.2%, 83.5%, and 84.6%. 454 

Due to its focus on probability distribution, Naive Bayes obtains a minimum accuracy of 455 

83.5% in this scenario and requires more data examples to improve. This analysis deter- 456 

mines that family is a significant feature in the malware dataset, with an MCC of 83% and 457 

an Area Under the Curve (AUC) of 90.1%.  458 

 Table 4. The effectiveness of static feature selection for malware family classification. 459 

Algorithm K-NN SMO SVM RF DT NB MLP Proposed 

Accuracy (%) 0.858 0.854 0.850 0.869 0.862 0.835 0.846 0.915 

FPR (%) 0.129 0.155 0.142 0.132 0.134 0.170 0.158 0.090 

TPR (%) 0.843 0.866 0.840 0.871 0.856 0.841 0.851 0.922 

Precision (%) 0.850 0.808 0.833 0.842 0.842 0.792 0.808 0.892 

F-measure (%) 0.846 0.836 0.837 0.856 0.849 0.815 0.829 0.907 

MCC (%) - - - - - - - - 

AUC (%) 0.860 0.826 0.846 0.855 0.854 0.811 0.825 0.901 

4.5. Malware binary detection based on dynamic features selection 460 

The result of the binary classification using the dynamic feature selection is shown 461 

in Table 5.  462 

Table 5. The effectiveness of dynamic feature selection for binary classification. 463 

Algorithm K-NN SMO SVM RF DT NB MLP Proposed 

Accuracy (%) 0.927 0.938 0.935 0.942 0.935 0.935 0.931 0.973 

FPR (%) 0.094 0.069 0.082 0.050 0.064 0.051 0.076 0.028 

TPR (%) 0.955 0.948 0.956 0.934 0.933 0.919 0.940 0.975 

Precision (%) 0.883 0.917 0.900 0.942 0.925 0.942 0.908 0.967 

F-measure (%) 0.918 0.932 0.927 0.938 0.929 0.930 0.924 0.971 

MCC (%) 0.854 0.876 0.869 0.884 0.868 0.869 0.861 0.946 

AUC (%) 0.895 0.924 0.909 0.946 0.931 0.945 0.916 0.969 

DroidDetectMW 's accuracy of 97.3% is the best. The accuracy of some other standard 464 

meth-ods, including KNN, SMO, SVM, RF, DT, NB, and MLP, is 92.7%, 93.8%, 93.5%, 465 

94.2%, 93.5%, 93.5%, and 93.1. The MCC of DroidDetectMW is at 94.6%. The proposed 466 

approach is superior to other models in evaluation metrics for dynamic feature selection 467 

as it obtains high accuracy and f-measure.  468 

 469 
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4.6. Malware category detection based on dynamic features selection 470 

The result of the malware category classification based on dynamic feature selection 471 

is displayed in Table 6. By utilizing DroidDetectMW, we can improve accuracy to 89.2%. 472 

Accuracy levels of 79.6%, 80.8%, 93.5%, 84.6%, 81.2%, 81.2%, 83.5%, and 80.8% are attained 473 

using the alternative traditional methods of KNN, SMO, SVM, RF, DT, NB, and MLP, 474 

respectively. When compared to conventional approaches, DroidDetectMW demonstrates 475 

a noticeable performance gain. Regarding f-score, accuracy, precision, and recall, 476 

DroidDetectMW displays a competent growth of 88.2%, 89.2%, 87.5%, and 89%, respec- 477 

tively. This work finds that the MCC is 78.3%, and the ROC AUC curve is 88.5%.  478 

Table 6. The effectiveness of dynamic feature selection for malware category classification. 479 

Algorithm K-NN SMO SVM RF DT NB MLP Proposed 

Accuracy (%) 0.796 0.808 0.935 0.846 0.812 0.835 0.808 0.892 

FPR (%) 0.204 0.179 0.082 0.143 0.173 0.183 0.188 0.106 

TPR (%) 0.796 0.792 0.956 0.833 0.793 0.860 0.802 0.890 

Precision (%) 0.750 0.792 0.900 0.833 0.800 0.767 0.775 0.875 

F-measure (%) 0.773 0.792 0.927 0.833 0.797 0.811 0.788 0.882 

MCC (%) - - - - - - - - 

AUC (%) 0.773 0.807 0.909 0.845 0.814 0.792 0.794 0.885 

4.7. Malware family classification and detection based on Dynamic feature selection 480 

In Table 7, we see that DroidDetectMW achieves the highest accuracy, 82.7% when 481 

applied to Malware Family classification using dynamic feature selection. 482 

Table 7. The effectiveness of dynamic feature selection for malware family classification. 483 

Algorithm K-NN SMO SVM RF DT NB MLP Proposed 

Accuracy (%) 0.788 0.804 0.812 0.812 0.804 0.800 0.808 0.827 

FPR (%) 0.229 0.209 0.210 0.206 0.213 0.222 0.204 0.194 

TPR (%) 0.816 0.822 0.845 0.838 0.829 0.833 0.824 0.857 

Precision (%) 0.700 0.733 0.725 0.733 0.725 0.708 0.742 0.750 

F-measure (%) 0.753 0.775 0.780 0.782 0.773 0.766 0.781 0.800 

MCC (%) - - - - - - - - 

AUC (%) 0.735 0.762 0.757 0.763 0.756 0.743 0.769 0.778 

Accuracy rates of 78.8%, 80.4%, 81.2%, 81.2%, 80.4%, 80%, and 80.8% are attained by the 484 

traditional methods of KNN, SMO, SVM, RF, DT, NB, and MLP, respectively. When 485 

compared to standard models, DroidDetectMW demonstrates a substantial performance 486 

gain. According to this check of the family as a feature in the malware dataset, the ROC 487 

AUC curve is 77.8%. 488 

 4.8. Classification Results Based on hybrid Features 489 

The malware's execution stalling and obfuscation make a single static or dynamic 490 

technique insufficient for correct classification. As a result, we employ a hybrid method 491 

of analysis to address this issue. We integrated the dynamic and static malware analysis 492 

results to get a complete picture. Along with the proposed model, seven ML algorithms 493 
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are used for both detection and classification of binary malware. Binary classification eval- 494 

uation results using ML approaches on integrated features are shown in Table 8. The pro- 495 

posed DroidDetectMW model is superior and more accurate than the classifiers men- 496 

tioned earlier. DroidDetectMW's accuracy is 98.1%, whereas RF and DT only manage 497 

96.9% and 96.2%, respectively. The results of a comparison of ML methods using inte- 498 

grated features for classification are shown in Table 9. Compared to the rest of these clas- 499 

sifiers, DroidDetectMW is superior in terms of performance and precision. DroidDetect- 500 

MW's detection accuracy is 96.9%, with RF and K-NN each achieving 94.6 percent. 501 

DroidDetectMW achieves superior outcomes than other classifiers in terms of precision 502 

(95%) as well as TPR (98.3%) and F-measure (96.6%). In Figure 5, we compare seven dif- 503 

ferent classifiers to the proposed model and other methods we tested for binary classifi- 504 

cation to see which one yielded the best results in terms of MCC and accuracy.Integrated 505 

with the results in table 10, it is evident that combining static and dynamic information 506 

leads to gains in accuracy and MCC for all classifiers. This suggests that greater identifi- 507 

cation and classification of Android malware is possible when dynamic and static features 508 

are used together.  509 

Table 8. The effectiveness of integrated feature selection for malware binary classification. 510 

Algorithm K-NN SMO SVM RF DT NB MLP Proposed 

Accuracy (%) 0.946 0.958 0.942 0.969 0.962 0.946 0.946 0.981 

FPR (%) 0.068 0.049 0.063 0.035 0.042 0.056 0.056 0.021 

TPR (%) 0.965 0.966 0.949 0.975 0.966 0.949 0.949 0.983 

Precision (%) 0.917 0.942 0.925 0.958 0.950 0.933 0.933 0.975 

F-measure (%) 0.940 0.954 0.937 0.966 0.958 0.941 0.941 0.979 

MCC (%) 0.892 0.915 0.884 0.938 0.923 0.892 0.892 0.961 

AUC (%) 0.924 0.946 0.931 0.962 0.954 0.938 0.938 0.977 

 511 

        512 
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 514 

 515 
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 517 

                                    518 

                           (b) 519 

Figure 5. Classifiers for binary malware classification were compared based on (a) Accuracy and 520 
(b) MCC with dynamic, static, and integrated features. 521 

Table 9. The effectiveness of integrated feature selection for malware category classification. 522 

Algorithm K-NN SMO SVM RF DT NB MLP Proposed 

Accuracy (%) 0.946 0.915 0.919 0.946 0.942 0.923 0.931 0.969 

FPR (%) 0.068 0.096 0.101 0.063 0.063 0.095 0.082 0.042 

TPR (%) 0.965 0.930 0.946 0.957 0.949 0.946 0.947 0.983 

Precision (%) 0.917 0.883 0.875 0.925 0.925 0.883 0.900 0.950 

F-measure (%) 0.940 0.906 0.909 0.941 0.937 0.914 0.923 0.966 

MCC (%) - - - - - - - - 

AUC (%) 0.924 0.894 0.887 0.931 0.931 0.894 0.909 0.954 

Figure 6 compares seven classifiers to the proposed model in terms of accuracy con- 523 

cerning different approaches in our tests for malware category classification.  524 

 525 

Figure 6. Accuracy and precision of different classifiers using static, dynamic and integrated 526 
features in malware category classification 527 
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It demonstrates that the integrated approach outperforms the dynamic and static fea- 528 

tures separately for all classifiers. 529 

4.9. Comparative analysis 530 

Precision and recall are evaluated between the two dataset versions in Tables 10 and 531 

11. Taheri et al. [21] conducted the study, calculating the dataset's precision and recall 532 

with the help of the random forest algorithm. Using the DroidDetectMW algorithm, our 533 

method delivers the best results. Our research improves upon previous studies' findings 534 

in Static and Dynamic feature analysis. Table 10 shows that our approach has a maximum 535 

precision of 96.7% when classifying malware binaries. Compared to the state-of-the-art, 536 

binary malware classification performance is enhanced by Static and dynamic classifica- 537 

tion performance. 538 

Table 10 shows that with static feature selection malware binary classification, 539 

DroidDetectMW achieves the maximum precision of 96.7%. Other investigations' highest 540 

levels of precision are 93%, 89%, and 85%. Table 11 shows that when applied to the dy- 541 

namic feature selection for the malware category classification problem, DroidDetectMW 542 

's 87.5% precision utilising optimized ANN is the best. For comparison, the highest levels 543 

of precision were found in other research.  544 

Table 10. Binary malware classification using static features selection: a comparison of results. 545 

Related work Precision Recall 

Abuthawabeh et al. [49] 89%(RF) 83.22%(RF) 

Taheri et al. [21] 85.8%(RF) 88.3%(RF) 

Abuthawabeh et al. [49] 85.7% (DT) 86.1%(DT) 

Lashkari et al. [45] 85.4%(KNN) 88.1%(KNN) 

Jiang et al. [48] 93.8 (DT) 94.36 (DT) 

DroidDetectMW   96.7 96.7 

                                     Table 11. Malware category classification using dynamic features selection: a comparison of 546 
results. 547 

Related work Precision Recall 

Abuthawabeh et al. [49] 80.2%(RF) 79.6%(RF) 

Taheri et al. [21] 49.9%(RF) 48.5%(RF) 

Lashkari et al. [45] 47.8%(DT) 45.9%(DN) 

Lashkari et al. [45] 49.5%(KNN) 48%(KNN) 

Abuthawabeh et al. [49] 77%(DT) 77%(DT) 

DroidDetectMW   87.5% 89% 

4.10. Feature selection effect on static and dynamic features 548 

The proposed two approaches for feature selection for static and dynamic features 549 

significantly impact the number of features. When the number of features is reduced, the 550 

evaluation metrics are improved. The filter approaches for feature selection in static fea- 551 

tures select the optimal subset of features to participate in the detection phase. The feature 552 

selection approach with the proposed model for malware detection improves the detec- 553 

tion ability and reduces the false negatives and positives of malware apps. 554 
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5.Conclusion and future work 555 

For Android malware detection and classification, this research suggested a hybrid 556 

analysis-based process, enhancing both static and dynamic features gleaned from net- 557 

work traffic. The proposed mode can be broken down into three distinct phases. The fea- 558 

tures are then sent into the selection phase after being extracted. There are two primary 559 

stages within the feature selection process: dynamic feature selection and static feature 560 

selection. We will work to lower the total amount of static and dynamic features through- 561 

out the two phases. Static feature selection employs a variety of filtering methods to zero 562 

in on the best static features. Fuzzy and metaheuristic optimization techniques are used 563 

in the second stage of the dynamic feature selection process. When the feature selection 564 

process is complete, the resulting subset of features is used in the detection stage. Within 565 

the scope of the detection process, we introduced a novel detection technique that uses an 566 

artificial neural network. The best architecture of ANN may be chosen with the help of a 567 

revised version of HHO, which is presented here. The detection method and the feature 568 

selection procedure are assessed by comparing the improved ANN to other ML models. 569 

Experiments are run utilizing a variety of binary, malware category, and malware family 570 

samples to gauge effectiveness. The results validated the proposed model's ad-vantage 571 

over competing methods. Overall performance is measured using a variety of assessment 572 

criteria. 573 

There is a significant risk that the use of code obfuscation and encryption will invalidate 574 

the results of this experiment. Some dynamic analysis features, such as traffic files, may 575 

not be enough to effectively detect malware that is not primarily network-based because 576 

they are employed in isolation from other features like memory device and logs infor- 577 

mation logs. The reliability of the experiment is also significantly affected by this. There is 578 

also a lack of transparency in interpreting dynamic analytic techniques. Our future efforts 579 

will center on these concerns. 580 
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