

Appl. Sci. 2023, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/applsci

Article 1

DroidDetectMW: A Hybrid Intelligent Model for Android Mal- 2

ware Detection 3

Fatma Taher 1, Omar AlFandi 2, Mousa Al Kfairy 3, Hussam Al Hamadi 4 and Saed Alrabaee 5 * 4

1 Zayed University; Fatma.Taher@zu.ac.ae 5
2 Zayed University; Omar.AlFandi@zu.ac.ae 6
3 Zayed University; Mousa.Al-kfairy@zu.ac.ae 7
4 University of Dubai; halhammadi@ud.ac.ae 8
5 UAE University; salrabaee@uaeu.ac.ae 9
* Correspondence: Fatma.Taher@zu.ac.ae; 10

Abstract: Malicious apps specifically aimed at the Android platform have increased in tandem with 11

the proliferation of mobile devices. Malware is now so carefully written that it is difficult to detect. 12

Due to the exponential growth in malware, manual methods of malware are increasingly ineffective. 13

Although prior writers have proposed numerous high-quality approaches, static and dynamic as- 14

sessments inherently necessitate intricate procedures. The obfuscation methods used by modern 15

malware are incredibly complex and clever. As a result, it cannot be detected using only static mal- 16

ware analysis. As a result, this work presents a hybrid analysis approach, partially tailored for mul- 17

tiple-feature data, for identifying Android malware and classifying malware families to improve 18

Android malware detection and classification. This paper offers a hybrid method that combines 19

static and dynamic malware analysis to give a full view of the threat. Three distinct phases make up 20

the framework proposed in this research. Normalization and feature extraction procedures are used 21

in the first phase of pre-processing. Both static and dynamic features undergo feature selection in 22

the second phase. Two feature selection strategies are proposed to choose the best subset of features 23

to use for both static and dynamic features. The third phase involves applying a newly proposed 24

detection model to classify android apps; this model uses a neural network optimized with an im- 25

proved version of HHO. Application of binary and multi-class classification is used, with binary 26

classification for benign and malware apps and multi-class classification for detecting malware cat- 27

egories and families. By utilizing the features gleaned from static and dynamic malware analysis, 28

several machine-learning methods are used for malware classification. According to the results of 29

the experiments, the hybrid approach improves the accuracy of detection and classification of An- 30

droid malware compared to the scenario when considering static and dynamic information sepa- 31

rately. 32

Keywords: malware; harris hawks optimization, feature selection; benign; multiclass classification; 33

multi-verse optimization; moth-flame optimization; machine learning. 34

 35

1. Introduction 36

Smartphones have rapidly grown in popularity over the past decade, with billions of 37

users, according to an analysis of Statista in 2021[1]. The reason is that smartphones are 38

so handy and convenient [2]. Sending emails, playing games, taking photographs and 39

videos, searching the web, using GPS, and more are just some of the many uses for 40

smartphones. Applications are being developed and improved daily, making it possible 41

to achieve this, particularly on Android's operating system, which first appeared as a 42

hacked Linux kernel optimized for touchscreen mobile gadgets. 43

Citation: To be added by editorial

staff during production.

Academic Editor: Firstname Last-

name

Received: date

Revised: date

Accepted: date

Published: date

Copyright: © 2023 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0333.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

mailto:Fatma.Taher@zu.ac.ae
mailto:Omar.AlFandi@zu.ac.ae
mailto:Mousa.Al-kfairy@zu.ac.ae
mailto:halhammadi@ud.ac.ae
mailto:salrabaee@uaeu.ac.ae
https://doi.org/10.20944/preprints202305.0333.v1
http://creativecommons.org/licenses/by/4.0/

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 20

Moreover, last year Android OS apps extended to more than 3 million apps [3]. Bank- 44

ing, social media, healthcare, education, and entertainment are just some of the many pos- 45

sible uses for these Android apps [4]. As a result, most of these apps are employed to 46

benefit their end consumers. Some of them, however, are used maliciously by hackers and 47

exploiters. Malware refers to these harmful applications, defined as invasive software that 48

steals data or causes damage to another user's computer [5]. 49

Cybercriminals create malware to function in many ways, including adware, worms, 50

ransomware, and Trojan viruses [6]. Because malicious software is always evolving, it is 51

increasingly challenging to foil security breaches [7]. For instance, in 2021, Cybersecurity 52

Check Point warned Android users that millions of mobile smartphones were vulnerable 53

to Agent Smith malware [8]. The spyware also uses WhatsApp as a cover to attack An- 54

droid systems. In 2021, coccus reported that more than a billion Android smartphones 55

would be vulnerable to hacking because they lacked the latest security upgrades [9]. Ad- 56

ditionally, experts from Kaspersky Lab in 2020 found that numerous hackers had used the 57

Google Play app store to spread complex malware [10] for years. Recently, many Facebook 58

accounts were hacked using the android malware "FlyTrap" app [11]. 59

The Android operating system has a built-in authorization module that checks 60

whether or not a security policy has been breached before granting the permissions re- 61

quested by an Android app. The four categories of Android permissions correspond to 62

the four levels of security outlined in [12]. Also, the dataset includes four types of malware 63

that may be labeled as such: ransomware [13] adware [14], SMS malware, and scareware 64

[15]. The ever-expanding and changing nature of malware has prompted numerous pro- 65

posals for detecting and avoiding it. The research community has revealed two methods 66

for spotting malware. Static, dynamic, and hybrid malware analysis are three types of 67

analyzing android malware. Static malware analysis is where applications are inspected 68

without being run, while dynamic analysis evaluates the behavior of malware in a sand- 69

box after it has been run [16]. Despite the role of current technologies in improving quality 70

of life and expanding the cyber world, cyber-threats have reached a new level and are 71

increasing at a scary rate [17]. More importantly, new attacks that can breach a 72

smartphone's defenses are constantly being developed and released. 73

Violating the security policy might take various forms, depending on the mobile de- 74

vice's OS. This paper focuses on the Android operating system and new threats that 75

threaten its security. The presence of malware in a mobile app has been investigated by 76

several previous research [18-22], some of which made use of API calls and permissions. 77

According to their findings, Dynamic analysis is also necessary since Static analysis is in- 78

sufficient for detecting malware in obfuscated apps. It has been found in some research 79

[23] that deep learning can be utilized to detect malware in mobile apps. This paper aims 80

to provide a highly effective method for discovering and naming novel forms of malware, 81

thus overcoming all these restrictions. 82

This is why we have put time and effort into Android malware detection and family 83

classification. Here, "malware" and "benign" represent two classes in a binary classifica- 84

tion problem, whereas "family classification" represents 13 classes in a multi-class classi- 85

fication problem. Android malware family refers to a collection of malicious apps that act 86

similarly and are based on the same code. To identify and categorize malicious Android 87

apps, we propose a hybrid classification. It depends on combining dynamic static mal- 88

ware analysis. At first, we run a static malware analysis to pull out static features like 89

command strings, API calls, intents, and permissions. Then, we used CuckooDroid [24]to 90

analyze dynamic malware to extract features. To do the automated analysis of suspicious 91

Android files, CuckooDroid is an add-on to the cuckoo sandbox [25]. 92

A standard method for malware detection using static and dynamic features, feature 93

selection has received considerable attention [26]. Managing these massive datasets is no 94

easy feat due to their complexity. It could hinder one's learning ability or even lengthen 95

the time. Feature reduction methods are essential to reduce the dimensionality of data 96

because some attributes in datasets are unnecessary and redundant [27-29]. 97

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 20

Accordingly, one of the most critical steps in developing a pattern classifier system 98

is the feature selection phase, during which an appropriate feature subset is selected by 99

analyzing possible feature subsets. For this reason, two feature selection strategies, static 100

and dynamic, are proposed for the best possible malware classification in the used dataset. 101

Using fuzzy logic [30,31] in conjunction with metaheuristic optimization, a two-stage fea- 102

ture selection strategy is proposed for selecting dynamic features. To detect and categorize 103

An-droid malware applications, a hybrid model based on fuzzy optimization mixed with 104

meta-heuristic optimization methods, hybrid of enhanced MFO [32] and MVO [33] is eval- 105

uated as wrappers. Three feature selection methods, fisher score, chi-square, and infor- 106

mation gain, are applied to static features, eliminating more irrelevant features. Then, a 107

subset of candidate features from both static and dynamic features was fed to several ma- 108

chine learning algorithms to produce the best detection results. 109

Several researchers have proposed artificial neural network (ANN) based models to 110

replace more conventional approaches to malware detection and classification [34]. It has 111

been shown that ANNs can model the relationships between inputs and outputs more 112

accurately than other methods [34,35]. Additional restrictions on ANN use include diffi- 113

culties in extrapolating beyond training data and overtraining the network due to exten- 114

sive iterations during the training process. Therefore, the primary goals of this research 115

are to (1) develop a better ANN model using the enhanced version of Harris Hawks opti- 116

mizer (EHHO) and (2) check the accuracy of this model. The EHHO's primary goal is to 117

establish the optimal parameters for the ANN. 118

The following are the original contributions made by us in this paper: 119

•DroidDetectMW is proposed as a functional and systematic model for detecting and 120

identifying Android malware and its family and category based on a combination of Dy- 121

namic and Static attributes. 122

•Methods are proposed for selecting features, either statically or dynamically, to use. 123

• A hybrid fuzzy-metaheuristics-optimization approach is proposed for selecting the 124

optimal dynamic feature subset. 125

•An enhanced version of the HHO algorithm is proposed to optimize the parameters 126

of ANN for malware detection. 127

•A Comparison is applied between the results of the proposed Deep learning 128

method with those of more traditional machine learning classifiers in determining how 129

well DroidDetectMW works. 130

•Evaluate the performance of DroidDetectMW in comparison to seven traditional 131

machine learning methods: the Decision Tree (DT), the support vector machine (SVM), 132

the K-Nearest Neighbor, the Multilayer Perceptron (MLP), the Sequential Minimal Opti- 133

mization (SMO), Random Forest (RF) and the Naive Bayesian (NB). 134

•Compared to traditional machine learning algorithms and state-of-the-art studies, 135

DroidDetectMW significantly improves detection performance and achieves good accu- 136

racy on both Static and Dynamic attributes. 137

In the remaining sections of the study, the following structure is used: understanding 138

the fundamentals of Harris Hawks Optimization is covered in Section 2. In Section 3, we 139

detail the methodology we'll be using. Section 4 focuses on the experiments and findings, 140

while Section 5 discusses the conclusion and directions for the future. 141

2. Preliminary 142

2.1. Harris Hawks optimization (HHO) 143

HHO was developed by [36], and it is a population-based optimization method with 144

inspiration drawn from the natural world. Harris' hawks' cooperative chasing of prey, 145

known as the surprise pounce, is an inspiration for HHO. Hawks use this strategy by 146

swooping in from all sides to catch their prey off guard. The HHO consists of two primary 147

phases: exploitation and exploration and a transition between exploitative actions. The 148

hawks in the desert are the potential solutions, and the prey they're waiting for is the best 149

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 20

at each stage. Harris' hawks begin their haunting by randomly picking areas and waiting 150

to see whether they can detect any prey during the exploring phase. The first method 151

relies on the locations of other hawks also involved in haunting the prey, whereas the 152

second relies on the absence or presence of tall trees within the haunt range. 153

In both cases, the decision is based on the first strategy being chosen if q ≥ 0.5 and the 154

second strategy being chosen if q <0.5. The vector of hawk positions in the next cycle is 155

defined as X(t+1). The current iteration's prey position is denoted by Xrabbit (t), a hawk's 156

position is chosen at random using Xrand (t), and the hawks' positions are represented by 157

X(t). Lower and upper bounds LB and UB are iteratively updated for the random values 158

r4, r2, r1, r3, and q in the interval (0,1) as shown in Equation 1. 159

 160

𝑥(𝑡 + 1) = {
𝑋rand (𝑡) − 𝑟1 ∣ 𝑋rand (𝑡) − 2𝑟2𝑋(𝑡) 𝑞 ≥ 0.5

(𝑋rabbit (𝑡) − 𝑋𝑚(𝑡)) − 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵)) 𝑞 < 0.5
 (1) 161

 162

Equation 2 can be used to determine the mean position of the current population of 163

hawks, denoted by the symbol Xm(t). Where Xi(t) defines the position of the hawk i in 164

recent iteration, and N is the whole number of hawks. 165

 166

𝑋𝑚(𝑡) =
1

𝑁
∑  𝑁

𝑖=1 𝑋𝑖(𝑡) (2) 167

 168

During the exploitation stage, Harris' hawks initiate attacks on victims using the sur- 169

prise pounce. In response to repeated attempts at evasion by their victim, hawks modify 170

their pursuit strategies. As a result, hawks employ four distinct chasing strategies: the Soft 171

Besiege, the Hard Besiege, the Hard Besiege with progressive rapid dives, and the Soft 172

Besiege with progressive quick dives. 173

As the victim expends energy to flee the haunt, its remaining reserve determines 174

which of the four strategies it will employ. This means that the individual can switch be- 175

tween several forms of exploitation. Equation 3 is a valid modeling of the energy of the 176

prey, where T is the highest number of iterations with E0 is the initial energy of the prey. 177

 178

 𝐸 = 2𝐸0 (1 −
𝑡

𝑇
) (3) 179

 180

The soft besiege takes place when |E|≥0.5 and if the prey has a probability of r ≥ 0.5 181

of being able to leak from the hawks. If r <0.5, then the soft besiege strategy with progres- 182

sive rapid dives is employed. Both approaches are shown in Equations 4 and 5, respec- 183

tively. The instruction to assess the hawks' next move during a soft besiege is denoted by 184

Y, where ΔX(t) represents the difference between the rabbit's position vector and the lo- 185

cation stored in the current iteration t. Only if the Y rule isn't successful may the mislead- 186

ing zigzag motion shown in the Levy Flight LF move be used. Readers can find Z, Y, and 187

LF in the original literature. 188

 189

𝑋(𝑡 + 1) = Δ𝑋(𝑡) − 𝐸|𝐽𝑋rabbit (𝑡) − 𝑋(𝑡)| (4) 190

 191

 192

 193

𝑋(𝑡 + 1) = {
𝑌 if 𝐹(𝑌) < 𝐹(𝑋(𝑡))
𝑍 if 𝐹(𝑍) < 𝐹(𝑋(𝑡))

 (5) 194

 195

If |E|<0.5, then the Hard besiege strategy is used, provided that r ≥0.5. In that case, a 196

hard be-siege with progressive quick dives will be applied. For hard besiege with ad- 197

vanced rapid dives, the same Equation 5 is employed, except that Y considers the average 198

locations of the hawks instead, as shown in Equation 6. 199

 200

 𝑋(𝑡 + 1) = 𝑋rabbit (𝑡) − 𝐸|Δ𝑋(𝑡)| (6) 201

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 20

 202

2.2. Dataset and malware categories 203

We determined that the Canadian Institute for Cybersecurity (CIC) [37] offers a com- 204

petent real-world dataset named CICAndMal2017 after examining the most comprehen- 205

sive and coherent set of related papers. First, the CIC amassed around 4,000 malware apps 206

from various sources as Contagiodumpst [38] and VirusTotal [39]. In addition, nearly 207

6,000 benign apps from 2015 to 2017 that were uploaded to the Google Play market were 208

collected. CIC has only been able to install 5,000 (benign 5,065 and malware 429) on actual 209

An-droid smartphones to undertake real-world scenario testing. Several articles make use 210

of the Drebin dataset. A total of 5,560 apps from 179 distinct malware families are included 211

in this data collection. The MobileSandbox project generously provided us with samples 212

gathered between August 2010 and October 2012. A total of 4890 recent Android apps 213

were downloaded from virusshare and apkmirror and selected from DREBIN, CICIn- 214

vesAndMal2017, datasets of them there are 1910 samples of malware and 2980 samples of 215

benign. The used dataset consisted of static and dynamic features to evaluate the pro- 216

posed model. 217

 In this data set, labels can be found at various depths. Beginning with a binary clas- 218

sification system, files are either malware or benign. There are four broad classes of mal- 219

ware in the second level: 220

•Adware: To generate as much revenue as possible from unsolicited banner ads, the 221

ad-ware will display these ads automatically [40]. 222

•Ransomware: One goal of malicious software is to prevent apps from accessing sys- 223

tem resources. To extort money from users, it can encrypt their files and demand payment 224

before allowing them to access their files or recover their devices [41]. 225

•Scareware: This malware software uses scare tactics to convince users to buy bogus 226

security updates [42]. 227

•SMS malware: A malicious malware that makes sms calls and sends text messages 228

with-out the user's permission. The malware operator can use the compromised handsets 229

as a high-end SMS distribution channel [43]. 230

3.Proposed Framework 231

Here, we'll review the recommended process for locating and categorizing Android 232

apps by family. Data preprocessing, feature selection, detection, and family categorization 233

are its three main phases. The feature values are normalized in the first phase, and dupli- 234

cate apps are removed from the dataset. Then, feature extraction of both static and dy- 235

namic malware features is applied. In this phase's end stage, the extracted features are 236

vectorized and put in binary vectors for further processing. He pulled static characteris- 237

tics, including Command strings, API calls, intents, and permissions. Extracted elements 238

from dynamic malware analysis include cryptographic activities, dynamic approvals, sys- 239

tem calls, and information leakage. In the second phase, feature selection is employed for 240

static and dynamic features extracted from the feature extraction stage. Three filter ap- 241

proaches are applied for static attributes, and the optimum feature subgroup is selected. 242

For dynamic features, a two-stage fuzzy-metaheuristic method is applied to attain the best 243

set of dynamic features. In the third phase, a proposed deep learning approach based on 244

enhanced HHO is used to categorize the categories of malware and families. Then, the 245

Android apps are identified and classified using the proposed detection approach against 246

several distinct classifiers based on machine learning and deep learning, such as SMO, RF, 247

DT, K-NN, NB, SVM, SMO, and MLP. The process flow of the proposed approach is pro- 248

posed in Figure 1. 249

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 20

 Figure 1. The proposed model. 250

 3.1. Data Pre-processing 251

The best results from a machine learning or deep learning model can only be 252

achieved after extensive preprocessing. Duplicate instance cleanup, NaN removal, and 253

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 20

normalization/scaling are all examples of everyday preprocessing operations. We use 254

MinMax scaling to normalize the features because the given dataset has minimal variance 255

and ambiguity. The term normalizing describes the operation of rescaling values with a 256

fundamental number component to a speci-fied interval (e.g., 0 and 1). If your model 257

depends on the absolute values of inputs, you must ensure that they are appropriately 258

scaled. Data is normalized by applying the formula presented in for MixMax scaling using 259

Eq. 7: 260

𝑋norm =
𝑋𝑖−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (7) 261

Where Xi is the feature's initial value, the denominator represents the difference between 262

the feature's new normalized maximum and minimum values. 263

To filter out duplicates, the gathered Android apps are hashed using the MD5 264

method. There are now only 3514 unique Android apps after the copies have been 265

removed, which consists of 1479 samples of malware and 2035 samples of benign. 266

Features can be extracted from malware using both dynamic and static analysis. 267

According to the analysis of static features, we have collected intents, API calls, command 268

strings, and permissions using a custom-written python script that uses the Apktool tool. 269

According to the analysis of dynamic features, we have used CuckooDroid to extract 270

dynamic permissions, cryptographic operations, system calls, and information leakage. 271

3.2. Feature Selection 272

It's a tool for reducing the number of dimensions in a problem, which aids in select- 273

ing the most critical aspects—lowering the quality and accuracy of a classification model, 274

and irrelevant and redundant features might have. More processing time and storage 275

were needed for higher-dimensional datasets [44]. The time and space complexity can be 276

reduced and the accuracy improved by selecting the necessary features. We have used 277

feature selection methods that consider both static and dynamic features in this paper. 278

The features that are generated as a byproduct are the most helpful set of features for the 279

subsequent classification and detection processes. The results demonstrated that combin- 280

ing static and dynamic attributes is superior to using either alone. To eliminate and de- 281

crease the unnecessary static features, three filter techniques were employed to generate 282

three candidate subsets; the best of these was then used for static feature selection. To 283

select the optimal feature subset of dynamic features, a two-stage hybrid metaheuristic 284

optimization algorithm using a fuzzy approach is proposed. More specific instructions for 285

doing so are provided below. 286

To rationally evaluate the static features and improve the algorithm's performance, 287

feature selection is required. We use a filter-based methodology to ensure that feature 288

selection does not rely on the underlying detection technique. See Algorithm 1 for further 289

explanation. Three potential feature subsets were obtained using the chi-square test, the 290

Fisher score, and the mutual information gain. The detection models are further compared 291

in terms of their performance on the three feature subsets to determine which one is the 292

most effective. The optimal detection model is chosen by averaging the results of various 293

algorithmic models applied to the feature subset. The optimal feature subset is then se- 294

lected by examining the effects of the chosen optimal model applied to the different fea- 295

ture subsets. Using experimental results, the chi-square test is the superior technique for 296

determining features using the random forest anomalies detection model. The above 297

methods were implemented using scikit-learn [45] a Python machine-learning package. 298

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 20

This study proposes combining fuzzy and meta-heuristic optimization to eliminate 299

redundant information and improve performance. Both fuzzy benchmarking and meta- 300

heuristic optimization techniques, such as Multi-Verse Optimization (MVO) and En- 301

hanced Moth Flame Optimized (EMFO), executed within Machine Learning (ML) wrap- 302

pers, are utilized to discover the best features. 303

In Figure 2, we see a schematic of the proposed dynamic feature selection frame- 304

work. This phase generates fuzzy sets for each feature retrieved in the previous phase [23]. 305

To get the fuzzy optimal feature set, each feature's standard deviation (SD) is computed 306

and compared to a threshold value. Fuzzification filters feature before sending them on 307

to metaheuristic swarm optimization methods [46]. Following classification, the reduced 308

feature set is sent into machine learning algorithms for testing their ability to categorize 309

Android API calls into benign and malicious categories. While there are various feature 310

optimization techniques to choose from, we have focused on MVO and MFO due to their 311

lack of attention in the mal-ware detection literature. Following is a breakdown of the 312

proposed hybrid method: 313

 314
Figure 2. The proposed dynamic feature selection approach. 315

3.3. Detection and Family Classification 316

This section introduces the proposed detection approach and the comparative results 317

with other machine learning models. 318

 As mentioned in section two, the HHO algorithm is based on observations of how 319

different Harris hawks approach prey. A solution's efficacy determines how quickly HHO 320

moves between exploitation and exploration. When it comes time to exploit the catch, 321

Hawk swoops in for the kill. 322

Despite the remarkable performance of basic HHO, through simulations, we learn 323

that improving both the exploration and exploitation processes improves the original 324

HHO. Incorporating a QRL technique has been shown to improve both intensification and 325

diversification. 326

To improve upon both the worst Xworst and best solution Xbest, the proposed method 327

employs the QRL at each iteration. In this method, the following expression is used to get 328

quasi-reflective solutions: 329

 330

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 20

𝑋𝑗
𝑞𝑟

= rnd (
𝐿𝐵𝑗+𝑈𝐵𝑗

2
, 𝑋𝑗) (8) 331

Where, rnd (
𝐿𝐵𝑗+𝑈𝐵𝑗

2
, 𝑥𝑗) generates random numbers from a uniform distribution in the

range and, [
𝐿𝐵𝑗+𝑈𝐵𝑗

2
, 𝑋𝑗]calculates the average of the upper and lower bound for every pa-

rameter j. Finally, Xbest and Xworst are replaced by 𝑋best
𝑞𝑟 and 𝑋worst

𝑞𝑟 respectively, if and only if

𝑋best
𝑞𝑟 's fitness is greater than the previous best solution.

The proposed method for the malware families and categories detection phase using EHHO-

ANN is depicted in Figure 3.

Figure 3. The flowchart of the proposed EHHO-ANN.

In this classification, models for identifying and categorizing Android malware are 332

construct-ed using a wide range of ML techniques (including RF, SVM, DT, SMO, K-NN, 333

MLP and NB). To gauge the efficacy of our proposed method, we employ these models 334

for analysis. To train these models, the entire dataset is split into five sections called 335

"folds." Every part of the model is run, four pieces are utilized for training, and the re- 336

maining two are used for testing. Brief descriptions of ML algorithms and the criteria by 337

which they are judged are provided here. 338

In this work, we used the following machine-learning algorithms: 339

•K-Nearest Neighbors (K-NN) is a simple supervised learning technique. This con- 340

cept shares terminology with the lazy learner [47]. This technique does not care about the 341

underlying data structure when a new instance appears. Instead, it uses distance meas- 342

urements (e.g., Euclidean distance, Manhattan distance) to determine which training sam- 343

ples are most similar to the incoming instance. Majority voting notions ultimately deter- 344

mine this new instance's class. 345

•Sequential Minimal Optimization (SMO) takes a set of points as its input. The 346

method generates a hyperplane that separates points within the same class by analyzing 347

the gaps between them. Kernel functions fill in the blanks in SMO by revealing data about 348

the distance between two spots. 349

•SVM is a technique [48] that uses a hyperplane to partition the information. In a 350

nutshell, it's a dividing line from which to choose. Distances between the nearest data 351

points are called support vectors, and the hyperplane is calculated randomly after the hy- 352

perplane is drawn. It searches for the optimal hyperplane that maximizes the profit. 353

•Random Forest (RF): A considerable number of independent decision trees are 354

used in RF to form a unified whole [49]. Each decision tree generates an output 355

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 20

classification for the input data, then compiled by RF and represented graphically based 356

on a majority vote. 357

•A Decision Tree (DT) is organized in the form of a tree, where each node (whether 358

internal, leaf, terminal) represents a test on an attribute, and each branch (whether inter- 359

nal, leaf, or terminal) carries a class name and the results of the test. The C4.5 algorithm 360

has been utilized in this work to categorize Android malware [50]. 361

•Bayes' theorem provides the theoretical foundation for the NB idea. The program 362

predicts the probabilities of class membership or the likelihood that a set of tuples belongs 363

to a specific class. Multi-class and binary classification problems [51] both benefit from 364

their application. 365

•Multilayer Perceptron (MLP): There are the hidden and output layers and the input 366

layer. It can produce results in several different measurement systems. The hidden layer's 367

output units are fed into the subsequent layer as input. [52] applied deep learning ap- 368

proaches like ANNs classifiers to various classification challenges. The authors use MLP 369

to identify and categorize Android malware when classifying and predicting gait data. 370

The MLP is executed using a hidden layer of h=3 and sigmoid activation function for the 371

binary classification and h=5 and softmax activation function for the multi-class classifi- 372

cation. Learning is assumed to occur at a rate of 0.35. For a high-level overview of how 373

backpropagation works in a neural network, see Figure 4. 374

 375

 376
Figure 4. Methodology of backpropagation in neural network. 377

4. Experiments 378

Specifically, we conduct three primary experiments to measure the efficacy of the 379

proposed DroidDetectMW: The first experiment, detection, and identification, is to deter- 380

mine whether or not a specific app is a malware; the second experiment seeks to identify 381

the family of malware, and the last one is the impact of feature selection proposed ap- 382

proach for both static and dynamic features. In the previous experiment, a comparison 383

between with and without feature selection approaches is applied over different models, 384

including the proposed detection approach. To begin, we divide the dataset into two clas- 385

ses: malware and benign apps. Ransomware, SMS malware, scareware, and adware sam- 386

ples comprise the four subcategories of malware used in the second stage of classification 387

of the dataset. The data set is further annotated with labels for 13 families of malware. 388

4.1. Evaluation measures and experimental setup 389

Several measures are used to evaluate the classifiers' efficacy, such as Matthews cor- 390

relation coefficient (MCC), precision, F-measure, true positive rate (TPR), Area under 391

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 20

curve (AUC), and false positive rate (FPR). The evaluation measures are based on false 392

positive (FP), true negative (TN), true positive (TP), and false negative (FN). We used 20% 393

of the data during the experiment for testing, while 80% was for training. The following 394

Equations provide further information. The experimental computing setup is listed in Ta- 395

ble 1. 396

 Table 1. The experimental environment settings. 397

Setting Parameter

PU Intel(R) Core(TM)i7-2.40 GHz

Operating System Windows 10 Home Single

GPU NVIDIA 1060

RAM 32 GB

Python Version 3.8

•TPR - Recall: It is calculated by dividing the number of confirmed positive results 398

by the total number of positive results. As illustrated in Eq., it can be estimated by Eq. 9: 399

𝑻𝑷𝑹 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
 (9) 400

•FPR: This metric represents the proportion of false positive cases relative to the total 401

number of true negative cases. The calculation is described by the following Eq. 10: 402

 𝑭𝑷𝑹 =
𝑭𝑷

𝑻𝑵+𝑭𝑷
 (10) 403

•Precision is calculated by dividing the number of correct predictions by the total 404

number of correct predictions. It can be calculated by Eq. 11: 405

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
 (11) 406

•F-measure: It indicates the harmonic mean of precision and recall. Eq. 12 is used to 407

deter-mine this is: 408

 𝐹 − measure =
2×(Precision × Recall)

(Precision + Recall)
 (12) 409

•Accuracy: It is calculated by dividing the number of cases by the sum of the in- 410

stances that are both true negatives and true positives. Eq. 13 used to determine this is: 411

 Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (13) 412

•MCC: It is a standard for evaluating the efficacy of binary classifiers. Its numerical 413

value ranges from +1 to -1. Here, a value of +1 indicates an exact prediction, while a value 414

of -1 indicates an opposite forecast. Eq. 14 used to determine this is: 415

𝑴𝑪𝑪 =
𝑻𝑷×𝑻𝑵−𝑭𝑷×𝑭𝑵

√(𝑻𝑷+𝑭𝑵)(𝑻𝑷+𝑭𝑷)(𝑻𝑵+𝑭𝑷)(𝑻𝑵+𝑭𝑵)
 (14) 416

•AUC curve: The F-measure is a crucial indicator of a classification model's effi- 417

cacy. It is a quantitative indicator of how easily things can be separated. 418

Where, True Positives (TP) are cases that were expected to be in the "Yes" category 419

and were found there. False positives (FP) occur when a case is incorrectly labeled as 420

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 20

belonging to the YES category. True Negative (TN) means the case was not included in 421

the YES list but was expected to be. When a case is predicted to not be in the YES col- 422

umn but is, this is called a False Negative (FN). 423

4.2. Malware binary detection based on Static features 424

The results for the binary detection using static features are shown in Table 2. With 425

DroidDetectMW, accuracy is maximized to 96.9%. The accuracy of some other standard 426

meth-ods, including KNN, SMO, SVM, RF, DT, NB, and MLP, ranges from 92.3% to 427

93.5.0%, 92.3%, 95.8%, 95%, 94.2%, and 93.5%, respectively. Since NB's accuracy relies on 428

the probability distribution, additional data examples would have helped it perform bet- 429

ter. The mentioned models work reasonably well on binary classification with static fea- 430

tures and feature selection. The MCC of DroidDetectMW is recorded at 93.8%. When com- 431

pared to other standard models, DroidDetectMW demonstrates a substantial performance 432

gain. When tested, DroidDetectMW achieves a maximum accuracy of 96.9% at the 7th 433

epoch. Accuracy in training ranges from 0.811% to 0.987%. This leads to a consistent con- 434

vergence of training accuracy. The passing accuracy of a test might be anywhere from 435

0.795% to 0.951%. 436

Table 2. The effectiveness of static feature selection for binary malware classification. 437

Algorithm K-NN SMO SVM RF DT NB MLP Proposed

Accuracy (%) 0.923 0.935 0.923 0.958 0.950 0.942 0.935 0.969

FPR (%) 0.071 0.064 0.077 0.049 0.056 0.069 0.058 0.029

TPR (%) 0.917 0.933 0.924 0.966 0.957 0.957 0.926 0.967

Precision (%) 0.917 0.925 0.908 0.942 0.933 0.917 0.933 0.967

F-measure (%) 0.917 0.929 0.916 0.954 0.945 0.936 0.929 0.967

MCC (%) 0.845 0.868 0.845 0.915 0.899 0.884 0.869 0.938

AUC (%) 0.923 0.931 0.915 0.946 0.939 0.924 0.938 0.969

4.3. Malware category detection based on Static features 438

The results of the static features selection on the detection of malware category can 439

be shown in Table 3. Using DroidDetectMW, the highest accuracy possible is 94.2%. The 440

accuracy of some other standard methods, including KNN, SMO, SVM, RF, DT, NB, and 441

MLP, is 86.5%, 89.6%, 87.3%, 92.3%, 92.3%, 90.4%, and 88.80%. To improve the probability 442

distribution, NB requires more data examples. 443

Table 3. The effectiveness of static feature selection for malware category classification. 444

Algorithm K-NN SMO SVM RF DT NB MLP Proposed

Accuracy (%) 0.865 0.896 0.873 0.923 0.923 0.904 0.888 0.942

FPR (%) 0.138 0.105 0.126 0.083 0.071 0.092 0.117 0.069

TPR (%) 0.87 0.897 0.872 0.931 0.917 0.899 0.896 0.957

Precision (%) 0.833 0.875 0.85 0.9 0.917 0.892 0.858 0.917

F-measure (%) 0.851 0.886 0.861 0.915 0.917 0.895 0.877 0.936

MCC (%) - - - - - - - -

AUC (%) 0.848 0.885 0.862 0.908 0.923 0.900 0.871 0.924

 445

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 20

In this analysis, we look at category as a feature in the malware dataset, and we find that 446

its ROC AUC curve is 92.4%. When compared to conventional approaches, 447

DroidDetectMW demonstrates a noticeable performance gain. With an improved f-score 448

of 93.6%, DroidDetectMW is an intelligent solution. 449

4.4. Malware family classification and detection based on Static features selection 450

The result of the malware family classification using the static feature selection is 451

shown in Table 4. DroidDetectMW 's accuracy of 91.5% is the best for identifying malware 452

belonging to the same family. The accuracy of other standard methods, including KNN, 453

SMO, SVM, RF, DT, NB, and MLP, is 85.8%, 85.4%, 85%, 86.9%, 86.2%, 83.5%, and 84.6%. 454

Due to its focus on probability distribution, Naive Bayes obtains a minimum accuracy of 455

83.5% in this scenario and requires more data examples to improve. This analysis deter- 456

mines that family is a significant feature in the malware dataset, with an MCC of 83% and 457

an Area Under the Curve (AUC) of 90.1%. 458

 Table 4. The effectiveness of static feature selection for malware family classification. 459

Algorithm K-NN SMO SVM RF DT NB MLP Proposed

Accuracy (%) 0.858 0.854 0.850 0.869 0.862 0.835 0.846 0.915

FPR (%) 0.129 0.155 0.142 0.132 0.134 0.170 0.158 0.090

TPR (%) 0.843 0.866 0.840 0.871 0.856 0.841 0.851 0.922

Precision (%) 0.850 0.808 0.833 0.842 0.842 0.792 0.808 0.892

F-measure (%) 0.846 0.836 0.837 0.856 0.849 0.815 0.829 0.907

MCC (%) - - - - - - - -

AUC (%) 0.860 0.826 0.846 0.855 0.854 0.811 0.825 0.901

4.5. Malware binary detection based on dynamic features selection 460

The result of the binary classification using the dynamic feature selection is shown 461

in Table 5. 462

Table 5. The effectiveness of dynamic feature selection for binary classification. 463

Algorithm K-NN SMO SVM RF DT NB MLP Proposed

Accuracy (%) 0.927 0.938 0.935 0.942 0.935 0.935 0.931 0.973

FPR (%) 0.094 0.069 0.082 0.050 0.064 0.051 0.076 0.028

TPR (%) 0.955 0.948 0.956 0.934 0.933 0.919 0.940 0.975

Precision (%) 0.883 0.917 0.900 0.942 0.925 0.942 0.908 0.967

F-measure (%) 0.918 0.932 0.927 0.938 0.929 0.930 0.924 0.971

MCC (%) 0.854 0.876 0.869 0.884 0.868 0.869 0.861 0.946

AUC (%) 0.895 0.924 0.909 0.946 0.931 0.945 0.916 0.969

DroidDetectMW 's accuracy of 97.3% is the best. The accuracy of some other standard 464

meth-ods, including KNN, SMO, SVM, RF, DT, NB, and MLP, is 92.7%, 93.8%, 93.5%, 465

94.2%, 93.5%, 93.5%, and 93.1. The MCC of DroidDetectMW is at 94.6%. The proposed 466

approach is superior to other models in evaluation metrics for dynamic feature selection 467

as it obtains high accuracy and f-measure. 468

 469

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 20

4.6. Malware category detection based on dynamic features selection 470

The result of the malware category classification based on dynamic feature selection 471

is displayed in Table 6. By utilizing DroidDetectMW, we can improve accuracy to 89.2%. 472

Accuracy levels of 79.6%, 80.8%, 93.5%, 84.6%, 81.2%, 81.2%, 83.5%, and 80.8% are attained 473

using the alternative traditional methods of KNN, SMO, SVM, RF, DT, NB, and MLP, 474

respectively. When compared to conventional approaches, DroidDetectMW demonstrates 475

a noticeable performance gain. Regarding f-score, accuracy, precision, and recall, 476

DroidDetectMW displays a competent growth of 88.2%, 89.2%, 87.5%, and 89%, respec- 477

tively. This work finds that the MCC is 78.3%, and the ROC AUC curve is 88.5%. 478

Table 6. The effectiveness of dynamic feature selection for malware category classification. 479

Algorithm K-NN SMO SVM RF DT NB MLP Proposed

Accuracy (%) 0.796 0.808 0.935 0.846 0.812 0.835 0.808 0.892

FPR (%) 0.204 0.179 0.082 0.143 0.173 0.183 0.188 0.106

TPR (%) 0.796 0.792 0.956 0.833 0.793 0.860 0.802 0.890

Precision (%) 0.750 0.792 0.900 0.833 0.800 0.767 0.775 0.875

F-measure (%) 0.773 0.792 0.927 0.833 0.797 0.811 0.788 0.882

MCC (%) - - - - - - - -

AUC (%) 0.773 0.807 0.909 0.845 0.814 0.792 0.794 0.885

4.7. Malware family classification and detection based on Dynamic feature selection 480

In Table 7, we see that DroidDetectMW achieves the highest accuracy, 82.7% when 481

applied to Malware Family classification using dynamic feature selection. 482

Table 7. The effectiveness of dynamic feature selection for malware family classification. 483

Algorithm K-NN SMO SVM RF DT NB MLP Proposed

Accuracy (%) 0.788 0.804 0.812 0.812 0.804 0.800 0.808 0.827

FPR (%) 0.229 0.209 0.210 0.206 0.213 0.222 0.204 0.194

TPR (%) 0.816 0.822 0.845 0.838 0.829 0.833 0.824 0.857

Precision (%) 0.700 0.733 0.725 0.733 0.725 0.708 0.742 0.750

F-measure (%) 0.753 0.775 0.780 0.782 0.773 0.766 0.781 0.800

MCC (%) - - - - - - - -

AUC (%) 0.735 0.762 0.757 0.763 0.756 0.743 0.769 0.778

Accuracy rates of 78.8%, 80.4%, 81.2%, 81.2%, 80.4%, 80%, and 80.8% are attained by the 484

traditional methods of KNN, SMO, SVM, RF, DT, NB, and MLP, respectively. When 485

compared to standard models, DroidDetectMW demonstrates a substantial performance 486

gain. According to this check of the family as a feature in the malware dataset, the ROC 487

AUC curve is 77.8%. 488

 4.8. Classification Results Based on hybrid Features 489

The malware's execution stalling and obfuscation make a single static or dynamic 490

technique insufficient for correct classification. As a result, we employ a hybrid method 491

of analysis to address this issue. We integrated the dynamic and static malware analysis 492

results to get a complete picture. Along with the proposed model, seven ML algorithms 493

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 20

are used for both detection and classification of binary malware. Binary classification eval- 494

uation results using ML approaches on integrated features are shown in Table 8. The pro- 495

posed DroidDetectMW model is superior and more accurate than the classifiers men- 496

tioned earlier. DroidDetectMW's accuracy is 98.1%, whereas RF and DT only manage 497

96.9% and 96.2%, respectively. The results of a comparison of ML methods using inte- 498

grated features for classification are shown in Table 9. Compared to the rest of these clas- 499

sifiers, DroidDetectMW is superior in terms of performance and precision. DroidDetect- 500

MW's detection accuracy is 96.9%, with RF and K-NN each achieving 94.6 percent. 501

DroidDetectMW achieves superior outcomes than other classifiers in terms of precision 502

(95%) as well as TPR (98.3%) and F-measure (96.6%). In Figure 5, we compare seven dif- 503

ferent classifiers to the proposed model and other methods we tested for binary classifi- 504

cation to see which one yielded the best results in terms of MCC and accuracy.Integrated 505

with the results in table 10, it is evident that combining static and dynamic information 506

leads to gains in accuracy and MCC for all classifiers. This suggests that greater identifi- 507

cation and classification of Android malware is possible when dynamic and static features 508

are used together. 509

Table 8. The effectiveness of integrated feature selection for malware binary classification. 510

Algorithm K-NN SMO SVM RF DT NB MLP Proposed

Accuracy (%) 0.946 0.958 0.942 0.969 0.962 0.946 0.946 0.981

FPR (%) 0.068 0.049 0.063 0.035 0.042 0.056 0.056 0.021

TPR (%) 0.965 0.966 0.949 0.975 0.966 0.949 0.949 0.983

Precision (%) 0.917 0.942 0.925 0.958 0.950 0.933 0.933 0.975

F-measure (%) 0.940 0.954 0.937 0.966 0.958 0.941 0.941 0.979

MCC (%) 0.892 0.915 0.884 0.938 0.923 0.892 0.892 0.961

AUC (%) 0.924 0.946 0.931 0.962 0.954 0.938 0.938 0.977

 511

 512

 (a) 513

 514

 515

 516

0.880

0.900

0.920

0.940

0.960

0.980

1.000

A
cc

u
ra

cy

Classifiers

static dynamic integrated

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 20

 517

 518

 (b) 519

Figure 5. Classifiers for binary malware classification were compared based on (a) Accuracy and 520
(b) MCC with dynamic, static, and integrated features. 521

Table 9. The effectiveness of integrated feature selection for malware category classification. 522

Algorithm K-NN SMO SVM RF DT NB MLP Proposed

Accuracy (%) 0.946 0.915 0.919 0.946 0.942 0.923 0.931 0.969

FPR (%) 0.068 0.096 0.101 0.063 0.063 0.095 0.082 0.042

TPR (%) 0.965 0.930 0.946 0.957 0.949 0.946 0.947 0.983

Precision (%) 0.917 0.883 0.875 0.925 0.925 0.883 0.900 0.950

F-measure (%) 0.940 0.906 0.909 0.941 0.937 0.914 0.923 0.966

MCC (%) - - - - - - - -

AUC (%) 0.924 0.894 0.887 0.931 0.931 0.894 0.909 0.954

Figure 6 compares seven classifiers to the proposed model in terms of accuracy con- 523

cerning different approaches in our tests for malware category classification. 524

 525

Figure 6. Accuracy and precision of different classifiers using static, dynamic and integrated 526
features in malware category classification 527

0.750

0.800

0.850

0.900

0.950

1.000
K-NN

SMO

SVM

RF

DT

NB

MLP

Proposed

static dynamic integrated

0
0.2
0.4
0.6
0.8

1
1.2

A
cc

u
ra

cy

Classifiers

static dynamic integrated

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 20

It demonstrates that the integrated approach outperforms the dynamic and static fea- 528

tures separately for all classifiers. 529

4.9. Comparative analysis 530

Precision and recall are evaluated between the two dataset versions in Tables 10 and 531

11. Taheri et al. [21] conducted the study, calculating the dataset's precision and recall 532

with the help of the random forest algorithm. Using the DroidDetectMW algorithm, our 533

method delivers the best results. Our research improves upon previous studies' findings 534

in Static and Dynamic feature analysis. Table 10 shows that our approach has a maximum 535

precision of 96.7% when classifying malware binaries. Compared to the state-of-the-art, 536

binary malware classification performance is enhanced by Static and dynamic classifica- 537

tion performance. 538

Table 10 shows that with static feature selection malware binary classification, 539

DroidDetectMW achieves the maximum precision of 96.7%. Other investigations' highest 540

levels of precision are 93%, 89%, and 85%. Table 11 shows that when applied to the dy- 541

namic feature selection for the malware category classification problem, DroidDetectMW 542

's 87.5% precision utilising optimized ANN is the best. For comparison, the highest levels 543

of precision were found in other research. 544

Table 10. Binary malware classification using static features selection: a comparison of results. 545

Related work Precision Recall

Abuthawabeh et al. [49] 89%(RF) 83.22%(RF)

Taheri et al. [21] 85.8%(RF) 88.3%(RF)

Abuthawabeh et al. [49] 85.7% (DT) 86.1%(DT)

Lashkari et al. [45] 85.4%(KNN) 88.1%(KNN)

Jiang et al. [48] 93.8 (DT) 94.36 (DT)

DroidDetectMW 96.7 96.7

 Table 11. Malware category classification using dynamic features selection: a comparison of 546
results. 547

Related work Precision Recall

Abuthawabeh et al. [49] 80.2%(RF) 79.6%(RF)

Taheri et al. [21] 49.9%(RF) 48.5%(RF)

Lashkari et al. [45] 47.8%(DT) 45.9%(DN)

Lashkari et al. [45] 49.5%(KNN) 48%(KNN)

Abuthawabeh et al. [49] 77%(DT) 77%(DT)

DroidDetectMW 87.5% 89%

4.10. Feature selection effect on static and dynamic features 548

The proposed two approaches for feature selection for static and dynamic features 549

significantly impact the number of features. When the number of features is reduced, the 550

evaluation metrics are improved. The filter approaches for feature selection in static fea- 551

tures select the optimal subset of features to participate in the detection phase. The feature 552

selection approach with the proposed model for malware detection improves the detec- 553

tion ability and reduces the false negatives and positives of malware apps. 554

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 20

5.Conclusion and future work 555

For Android malware detection and classification, this research suggested a hybrid 556

analysis-based process, enhancing both static and dynamic features gleaned from net- 557

work traffic. The proposed mode can be broken down into three distinct phases. The fea- 558

tures are then sent into the selection phase after being extracted. There are two primary 559

stages within the feature selection process: dynamic feature selection and static feature 560

selection. We will work to lower the total amount of static and dynamic features through- 561

out the two phases. Static feature selection employs a variety of filtering methods to zero 562

in on the best static features. Fuzzy and metaheuristic optimization techniques are used 563

in the second stage of the dynamic feature selection process. When the feature selection 564

process is complete, the resulting subset of features is used in the detection stage. Within 565

the scope of the detection process, we introduced a novel detection technique that uses an 566

artificial neural network. The best architecture of ANN may be chosen with the help of a 567

revised version of HHO, which is presented here. The detection method and the feature 568

selection procedure are assessed by comparing the improved ANN to other ML models. 569

Experiments are run utilizing a variety of binary, malware category, and malware family 570

samples to gauge effectiveness. The results validated the proposed model's ad-vantage 571

over competing methods. Overall performance is measured using a variety of assessment 572

criteria. 573

There is a significant risk that the use of code obfuscation and encryption will invalidate 574

the results of this experiment. Some dynamic analysis features, such as traffic files, may 575

not be enough to effectively detect malware that is not primarily network-based because 576

they are employed in isolation from other features like memory device and logs infor- 577

mation logs. The reliability of the experiment is also significantly affected by this. There is 578

also a lack of transparency in interpreting dynamic analytic techniques. Our future efforts 579

will center on these concerns. 580

References 581

 582
1. ODea,S. Smartphone users worldwide."https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ 583

(accessed 2016-2023) 584
2. Mosa, A. S. M.Yoo, I. and Sheets, L. A systematic review of healthcare applications for smartphones. BMC medical informatics 585

and decision making, 2021, vol. 12, no. 1, pp. 1-31. 586
3. Taher, F. Elhoseny, M., Hassan, M., brahim, I. and El-Hasnony.V. A Novel Tunicate Swarm Algorithm with Hybrid Deep Learn- 587

ing Enabled Attack Detection for Secure IoT Environment. Published in IEEE Access, 2022, vol. 10, pp. 127192 – 127204. 588
4. Alzaylaee, M. K. Yerima, S. Y. and Sezer, S. DL-Droid: Deep learning based android malware detection using real devices. 589

Computers & Security, 2020, vol. 89, p. 101663. 590
5. Dhalaria M. and Gandotra, E. Android malware detection techniques: A literature review. Recent Patents on Engineering,2021, 591

vol. 15, no. 2, pp. 225-245. 592
6. Wang, X. and Li, . Android malware detection through machine learning on kernel task structures. Neurocomputing,2021, vol. 593

435, pp. 126-150. 594
7. Agrawal, P. and Trivedi, B. Machine learning classifiers for Android malware detection. Data Management, Analytics and Inno- 595

vation: Springer, 2021, pp. 311-322. 596
8. Rajagopal, A. Incident of the week: Malware infects 25m android phone."https://www.cshub.com/malware/articles/incident-of- 597

the-week-malware-infects-25m-android phones (accessed 2019). 598
9. BBC. "One billion android devices at risk of hacking. https://www.bbc.com/news/technology-51751950 (accessed 2021). 599
10. D. GOODIN. Google play has been spreading advanced android malware for years, 2021. 600
11. Vaas. L. Android malware flytrap hijacks facebook accounts. https://threatpost.com/android-malware-flytrap-facebook/168463/ 601

(accessed 2022). 602
12. Wang, C., Xu, Q., Lin, X., and Liu, S. Research on data mining of permissions mode for Android malware detection. Cluster 603

Computing,2019, vol. 22, no. 6, pp. 13337-13350. 604
13. Ko, J.-S. , J.-S. Jo, Kim, D.-H., Choi, S.-K. and Kwak, J. Real time android ransomware detection by analyzed android applica- 605

tions. International Conference on Electronics, Information, and Communication (ICEIC), IEEE,2019, pp. 1-5. 606

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 20

14. Ideses, I. and Neuberger, A.(2014).Adware detection and privacy control in mobile devices. IEEE 28th Convention of Electrical 607
& Electronics Engineers in Israel, 2014, pp. 1-5. 608

15. Faghihi, F. ,Abadi, M. and Tajoddin, A. Smsbothunter: A novel anomaly detection technique to detect sms botnets. 15th Inter- 609
national ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC), IEEE, 2018, pp. 1-6. 610

16. Sikorski,M. and Honig, A. Practical malware analysis: the hands-on guide to dissecting malicious software. no starch press, 611
2012. 612

17. Iwendi., C. Keysplitwatermark: Zero watermarking algorithm for software protection against cyber-attacks. IEEE Access, vol. 8, 613
2020, pp. 72650-72660. 614

18. Yu, J. and Yamauchi, T. Access control to prevent attacks exploiting vulnerabilities of webview in android OS. IEEE 10th Inter- 615
national Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and 616
Ubiquitous Computing, 2013: IEEE, pp. 1628-1633. 617

19. Nishimoto, Y., Kajiwara, N., Matsumoto, S., Hori, Y.and Sakurai, K. Detection of android api call using logging mechanism 618
within android framework. International Conference on Security and Privacy in Communication Systems, 2013: Springer, pp. 393-404. 619

20. Song, S., Kim, B. and Lee, S. The effective ransomware prevention technique using process monitoring on android platform. 620
Mobile Information Systems, 2016. 621

21. Taheri, L., Kadir, A. F. A. and Lashkari, A. H. Extensible android malware detection and family classification using network- 622
flows and API-calls. International Carnahan Conference on Security Technology (ICCST), 2019: IEEE, pp. 1-8. 623

22. Tchakounté, F., Djakene Wandala, A.,and Tiguiane, Y. Detection of android malware based on sequence alignment of permis- 624
sions. Int. J. Comput.(IJC), 2019, vol. 35, no. 1, pp. 26-36. 625

23. Yuan, Z., Lu, Y.and Xue, Y. Droiddetector: android malware characterization and detection using deep learning. Tsinghua Sci- 626
ence and Technology, 2016, vol. 21, no. 1, pp. 114-123. 627

24. "CuckooDroid." https://cuckoo-droid.readthedocs.io/en/latest/installation/. (accessed). 628
25. Gandotra, E., Bansal, D., and Sofat, S. Malware intelligence: beyond malware analysis. International Journal of Advanced Intelli- 629

gence Paradigms, 2019, vol. 13, no. 1-2, pp. 80-100. 630
26. Abid, R. Rizwan, M., Veselý, P. , Basharat, A., Tariq, U. and Javed, A. R. Social Networking Security during COVID-19: A 631

Systematic Literature Review. Wireless Communications and Mobile Computing, 2022. 632
27. Lakovic, V. Crisis management of android botnet detection using adaptive neuro-fuzzy inference system. Annals of Data Science, 633

2020,vol. 7, no. 2, pp. 347-355. 634
28. Saridou, B. , Rose, J. R. , Shiaeles, S. and Papadopoulos, B. SAGMAD—A Signature Agnostic Malware Detection System Based 635

on Binary Visualisation and Fuzzy Sets. Electronics, 2022, vol. 11, no. 7, p. 1044. 636
29. Gupta, D. , Ahlawat, A. K. , Sharma, A., and Rodrigues, J. J. Feature selection and evaluation for software usability model using 637

modified moth-flame optimization. Computing, 2020, vol. 102, no. 6, pp. 1503-1520. 638
30. Sahu, P. C. , Bhoi, S. K. , Jena, N. K. , Sahu, B. K.,and Prusty, R. C. A robust Multi Verse Optimized fuzzy aided tilt Controller 639

for AGC of hybrid Power System. 1st Odisha International Conference on Electrical Power Engineering, Communication and Compu- 640
ting Technology (ODICON), 2021: IEEE, pp. 1-5. 641

31. Rahnamayan, S., Tizhoosh, H. R. , and Salama, M. M. Quasi-oppositional differential evolution. IEEE congress on evolutionary 642
computation, 2007, pp. 2229-2236. 643

32. Strumberger, I. , Bacanin, N., Tuba, M., and Tuba, E. Resource scheduling in cloud computing based on a hybridized whale 644
optimization algorithm. Applied Sciences, 2019, vol. 9, no. 22, p. 4893. 645

33. Strumberger, I. , Minovic, M., Tuba, M. and Bacanin,N. Performance of elephant herding optimization and tree growth algo- 646
rithm adapted for node localization in wireless sensor networks. Sensors, vol. 19, no. 11, pp. 2515. 647

34. Heidari, A. A. , Mirjalili, S. , Faris, H., Aljarah, I., Mafarja, M., and Chen, H. Harris hawks optimization: Algorithm and appli- 648
cations. Future generation computer systems, 2019, vol. 97, pp. 849-872. 649

35. Lashkari, A. H. , Kadir, A. F. A. , Taheri, L. and Ghorbani, A. A. Toward developing a systematic approach to generate bench- 650
mark android malware datasets and classification. International Carnahan Conference on Security Technology (ICCST), 2018: IEEE, 651
pp. 1-7, 2018. 652

36. Parkour, M. Contagio malware database. contagiodump. 2013. 653
37. Virustotal: Virustotal Free Antivirus Scanners. https://support.virustotal.com/hc/en-us/categories/360000160117-About-us (ac- 654

cessed. 655
38. Ahvanooey, M. T. , Li, Q., Rabbani, M. and Rajput, A. R. A survey on smartphones security: software vulnerabilities, malware, 656

and attacks. arXiv preprint arXiv:2001.09406, 2020. 657
39. Liao, Q. Ransomware: a growing threat to SMEs. Conference Southwest Decision Science Institutes,: Southwest Decision Science In- 658

stitutes USA, pp. 1-7. 2008. 659
40. Gupta, S.(2013). Types of Malware and its Analysis. International Journal of Scientific and Engineering Research, vol. 4, no. 1, 2013, 660

pp. 1-13. 661
41. Hamandi, K. , Chehab, A. , Elhajj, I. H. and Kayssi, A. (2013). Android SMS malware: Vulnerability and mitigation. 27th Inter- 662

national Conference on Advanced Information Networking and Applications Workshops, 2013: IEEE, pp. 1004-1009. 663
42. Chizi, B. and Maimon, O. Dimension reduction and feature selection. Data mining and knowledge discovery handbook: 664

Springer, 2009, pp. 83-100. 665
43. Pedregosa, F.. Scikit-learn: Machine learning in Python. the Journal of machine Learning research, vol. 12, 2011, pp. 2825-2830. 666

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1

Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 20

44. Sapre, S. and Mini, S. Emulous mechanism based multi-objective moth–flame optimization algorithm. Journal of Parallel and 667
Distributed Computing, 2021, vol. 150, pp. 15-33. 668

45. Darrell, T. , Indyk, P. and Shakhnarovich, G. Nearest-neighbor Methods in Learning and Vision: Theory and Practice. MIT Press, 669
2005. 670

46. Keerthi, S. S. and Gilbert, E. G. (2002). Convergence of a generalized SMO algorithm for SVM classifier design. Machine Learn- 671
ing, vol. 46, no. 1, 2002, pp. 351-360, 2002. 672

47. Liaw, A. and Wiener, M. Classification and regression by randomForest. R news, vol. 2, no. 3, 2002, pp. 18-22. 673
48. Quinlan, J. R.. Program for machine learning. C4. 5, 1993. 674
49. Domingos, P. and Pazzani, M.(1997).On the optimality of the simple Bayesian classifier under zero-one loss. Machine learning, 675

vol. 29, no. 2, 1997, pp. 103-130. 676
50. Jiang, J. Android malware family classification based on sensitive opcode sequence. Symposium on Computers and Communica- 677

tions (ISCC), 2019: IEEE, pp. 1-7. 678
51. Abuthawabeh, M. K. A. and Mahmoud, K. W. Android malware detection and categorization based on conversation-level net- 679

work traffic features. International Arab Conference on Information Technology (ACIT), 2019: IEEE, pp. 42-47. 680
52. Semwal, V. B, Mondal, K. and Nandi, G. C. Robust and accurate feature selection for humanoid push recovery and classification: 681

deep learning approach. Neural Computing and Applications, vol. 28, no. 3,2017, pp. 565-574. 682
 683

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2023 doi:10.20944/preprints202305.0333.v1

https://doi.org/10.20944/preprints202305.0333.v1

