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Abstract: Convolutional neural networks (CNN) have attracted much attention as a commonly used method for hy-

perspectral image (HSI) classification in recent years, however, CNNs can only be applied to Euclidean data and have 

limitations in dealing with relationships due to the limitations of local feature extraction. However, each pixel of a 

hyperspectral image contains a set of spectral bands that are correlated and interact with each other, and the methods 

used to process Euclidean data cannot effectively obtain these correlations. In contrast, the graph convolutional net-

work (GCN) can be used in non-Euclidean data, but usually leads to oversmoothing and ignoring local detail features 

due to the need for superpixel segmentation processing to reduce computational effort. To overcome the above prob-

lems, we constructed a network a fusion network based on GCN and CNN, which contains two branches: a graph 

convolutional network based on superpixel segmentation and a convolutional network with added attention mecha-

nism. The graph convolutional branch can extract the structural features and capture the relationships between the 

nodes, and the convolutional branch can extract the detailed features in the local fine region. Owing to the fact that the 

features extracted from the two branches are different, the classification performance can be improved by fusing the 

complementary features extracted from the two branches. To validate the proposed algorithm, experiments were con-

ducted on three widely used datasets, namely Indian Pines, Pavia University, and Salinas, and the overall accuracy of 

98.78% was obtained in the Indian Pines dataset, and the overall accuracy of 98.99% and 98.69% was obtained in the 

other two datasets. The results showed that the proposed fusion network can obtain richer features and achieve high 

classification accuracy. 
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1. Introduction 

With the advancement of hyperspectral imaging technology, hyperspectral imaging systems can simultaneously 

acquire abundant spectral information and two-dimensional spatial information of a feature and then form a hyper-

spectral image(HSI)[1–3]. HSI provides tens to hundreds of continuous spectral bands[4]. The abundance of spectral 

information greatly enhances the ability to distinguish objects. Therefore, HSI has been commonly used in disaster 

monitoring, vegetation classification, fine agriculture and medical diagnosis due to its extremely high spectral resolu-

tion[1,2,5]. 

HSI classification task as the focus of the field of hyperspectral image analysis has always received much attention 

from scholars. Hyperspectral image classification aims to classify each pixel point in the image [6]. In the early days, 

most HSI classification methods mainly relied on some traditional machine learning algorithms[7], which were mainly 

divided into two processes: traditional manual feature engineering and classifier classification[8]. Feature engineering 

is aimed at processing data based on knowledge so that the processed features can be better used in subsequent classi-

fication algorithms, commonly used feature engineering methods include principal component analysis (PCA), inde-

pendent component analysis and other dimensionality reduction methods. 

Typical classification algorithms such as support vector machine (SVM)[9], random forest (RF)[10]and k-nearest 

neighbor (KNN)[11], etc. The above machine learning approaches only focus on the spectral information of HSI, and it 
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is inaccurate to use the spectral information only for the classification task, thus limiting the improvement of classifica-

tion accuracy and gradually being eliminated. 

As a result of the triumph of deep learning in areas such as computer vision, many approaches based on deep 

learning have also been adopted for hyperspectral image classification [12]. Among the deep learning methods, convo-

lutional neural networks(CNN) [13] have become a popular method for hyperspectral image classification due to their 

excellent performance. Deep learning-based methods represented by CNN have replaced traditional machine learning-

based HSI classification methods and have become a research spot[14]. 

Deep learning methods of 1D-CNN [15] and 2D-CNN were first applied to hyperspectral image classification, and 

the performance surpassed machine learning methods, but the above methods suffer from underutilization of spatial 

and spectral information. Therefore, the 3D-CNN model [16] was proposed, which can extract spatial-spectral features 

simultaneously and therefore obtain better classification results, but the model has a large computational burden. To 

extract richer features, some scholars proposed a hybrid spectral CNN (HybridSN) [16], which combines 3D-CNN and 

2D-CNN to exploit the spatial-spectral features of HSI with less computational burden than 3D-CNN. 

With the purpose of finding correlations between data, highlight important features and ignore irrelevant noise 

information, attention mechanism has been proposed. Li et al. proposed a two-branch double attention network 

(DBDA)[17], which contains two branches to extract spatial and spectral features, and added attention mechanism to 

obtain better classification results. In order to capture richer features, deeper network layers are needed, but the deeper 

network layers will lead to computational complexity and make the model training difficult. Zhong et al. introduced a 

residual structure based on the 3D-CNN model[18], constructed a spectral residual module and a spatial residual mod-

ule, achieved more satisfactory classification results. 

Although the classification results achieved by CNN-based classification methods have been good, there are still 

some limitations. First, CNN is designed for Euclidean data, and the traditional CNN model can only convolve regular 

rectangular regions, so it is difficult to obtain complex topological information; Second, CNN cannot capture and utilize 

the relationship between different pixels or regions in hyperspectral images, it can only extract detailed features in the 

local fine region, but the structure features and dependency relationship between the nodes may provide useful infor-

mation for the classification process[19,20]. 

In order to obtain the relationship between objects, graph convolutional networks(GCN) have been developed 

rapidly in recent years. GCN is designed to process graph structured data，CNN is used for processing Euclidean data 

such as images, which are regular matrix, so no matter where the convolution kernel of a CNN is located in the image, 

the consistency of the result of the operation is guaranteed, and we call it translational invariance. However, the graph 

structured data is non-Euclidean data, and the graph structure is irregular so it is impossible to apply CNN on graph 

data. The graph convolution is designed to resolve this situation. The most important innovation of GCN is to overcome 

the inapplicability of translation invariance on non-Euclidean data, so it can be applied to extract the features of the 

graph structure. 

 

Kipf et al. proposed the GCN model [21], which is able to operate on non-Euclidean data and extract the structural 

relationship between different nodes. [19]. Some scholars have tried to apply GCN to hyperspectral classification 

tasks[22], and studies have shown that the classification results are not only affected by spectral information, but also 

related to spatial structure information of the pixels[20,23]. By treating each pixel or superpixel in the HSI as a graph 

node, the hyperspectral image can be converted into graph structured data, and then the GCN can be used to obtain the 

spatial structure information in the image and provide more effective information for classification. Hong et al [20]pro-

posed the miniGCN method and constructed an end-to-end fusion network which was able to sample images in small 

batches, classify images as subgraphs and achieved good classification results. Wan et al proposed MDGCN [24], which 

is different from the commonly used GCN working on a fixed graph model, MDGCN is able to make the graph structure 

update dynamically, so that the two steps benefit each other. In addition, we cannot consider each pixel of a HSI as a 

graph node due to the limitation of computational complexity, so hyperspectral images are usually preprocessed as 

superpixels. Superpixel segmentation technique is applied to the construction of graph structure, which reduces the 

complexity of model training significantly. But the superpixel segmentation technique leads to another problem, super-

pixel segmentation often leads to smooth edges of the classification map and lack of local detail information of the 

features. This problem has restricted the improvement of the classification performance and has an impact on the anal-

ysis of the results. 

To obtain the relational features of HSI and to solve the problem of missing details due to superpixel segmentation, 

inspired by [25], we designed a feature fusion of CNN and GCN networks (FCGN), the algorithm consisted of two 
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branches, GCN branch and CNN branch. We apply the superpixel segmentation technique in the GCN branch. Super-

pixel segmentation technique can aggregate similar pixels into a superpixel, and then we treat these superpixels as 

graph nodes. Graph convolution processes the data by aggregating the features of each node as well as its neighboring 

nodes. This approach can capture the structure features and dependency relationship between the nodes and thus better 

represent the features of the nodes. Compared with CNN branch, GCN branch based on superpixel segmentation can 

acquire structure information of longer distance, while the CNN branch can obtain the pixel-level features of the HSI 

and perform fine classification of local regions. Finally, the different features acquired by the two branches are fused to 

obtain richer image features by complementing their strengths. In addition, the attention mechanism and depthwise 

separable convolution algorithm[26] are applied to further optimize the classification results and network parameters. 

2. Methodology 

This section presents the proposed FCGN for HSI classification which includes the overall structure of FCGN and 

the function of each module in the network.  

 

2.1. General Framework 

To solve the problem of missing local details in classification maps due to superpixel segmentation, we proposed 

a feature fusion of CNN and GCN network, as shown in Figure 1, the proposed network framework contains a spectral 

dimension reduction module (see Section 2.2 for details), a graph convolutional branch(see Section 2.3 for details), a 

convolutional branch(see Section 2.4 for details), a feature fusion module and a softmax classifier. It should be noted 

that the features extracted from convolutional neural networks are different from those of graph convolutional net-

works. Feature fusion methods can utilize different features of an image to complement each other's strengths, thus 

obtaining more robust and accurate results. Because of that, it is the reason why it is possible to obtain better classifica-

tion results than a single branch by fusing features from two branches.  

The original HSI is handled by the spectral dimensionality reduction module first, which is used for spectral infor-

mation transformation and feature dimensionality reduction. Then, we use convolutional neural networks to extract 

the detailed features in a local fine region, considering the problem that CNN-based method may overfitting with too 

many parameters and insufficient number of training samples, we use a depth separable convolution to reduce the 

parameters and enhance the robustness. To further improve the model, we add attention modules to the convolution 

branch. We use the SE attention module to optimize the proposed network[27]. SE module can obtain the weight matrix 

of different channels. Then, the weight values of each channel calculated by the SE module are multiplied with the two-

dimensional matrix of the corresponding channel of the original feature map. We use graph convolutional networks to 

extract the superpixel-level contextual features, in this branch, we apply a graph encoder and a graph decoder to im-

plement the transformation of pixel features and superpixel-level features(see Section 2.5 for details). Next, the different 

features acquired by the two branches are fused to obtain richer image features by complementing their strengths. 

Finally, after the processing of the softmax classifier, we can get the label of each pixel. 

                

Figure 1. The framework of the FCGN algorithm. (a1) and (a2) Feature conversion module;(b1) and (b2) SE attention 

module;. 

2.2.Spectral dimension reduction module 

There is a lot of redundant information in the original hyperspectral image, by using dimension reduction modules, 

it is possible to significantly reduce the computational cost without significant performance loss. 1×1 convolutional layer 

has the ability to remove useless spectral information and increase nonlinear characteristics. Moreover, it is usually used 
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as dimension reduction module to remove computational cost. As shown in Figure 2. In the FCGN network, hyperspec-

tral images are first processed by two 1×1 convolutional blocks. Specifically, each of 1×1 convolutional block contains a 

BN layer, a 1×1 convolution layer, and an activation function layer. The role of the BN layer is to speed up the conver-

gence of the network, and the activation function layer can significantly increase the network nonlinearity to achieve 

better expressiveness. The activation function in this module adopts Leaky ReLU.    

 

Figure 2. Dimension reduction module. 

We have 

*

h,w,n x,y,b,n h,w,b x,y,b,n

x,y,b

( )= +X W X B , (1) 

where
h,w,bX denotes input feature map, h,w,bX denotes the batch-normalized input feature map, *

h,w,nX denotes output 

feature map, x,y,b,nW denotes the convolution kernel of the input feature map in row x, column y, x,y,b,nB  denotes bias 

and n is the number of convolution kernels.  represents the Leaky ReLU activation function. 

2.3.Graph Convolution Branch 

Numerous studies have shown that the classification accuracy can be effectively improved by combining the dif-

ferent features of images. Traditional CNN models can only convolve images in regular image regions using convolu-

tion kernels of fixed size and weight, resulting in the inability to obtain global features and structural features of images, 

so it is often need to deepen the network layer to alleviate this problem. However, as the number of network layers 

deepens, the chance of overfitting increases subsequently, especially when processing data with a small amount of 

training samples like HSI, such a result is unacceptable to us.      

Therefore, a GCN branch based on superpixel segmentation is constructed to obtain the structural features. Differ-

ent from CNN, GCN is a method used for graph structure. GCN branch can extract the structure features and depend-

ency relationship between the nodes from images. These features are different from the neighborhood spatial features 

in a local fine region region extracted by the CNN branch.Finally, the property of the network can be enhanced by 

fusing the different features extracted from the two branches. The graph structure is a non-Euclidean structure that can 

be defined as G=(V,Ε) , where V is the set of nodes and E is the set of edges, V and E are usually encoded into a degree 

matrix D and node matrix A , where D records the relationship between each pixel of the hyperspectral image, and A 

denotes the number of edges associated with each node. 

Because the degree of each graph node in the graph structure is not the same, GCN cannot directly use the same 

size local graph convolution kernel for all nodes like CNN. Considering that the convolution in the spatial domain is 

equivalent to the product in the frequency domain, researchers hope to implement the convolution operation on topo-

logical graphs with the help of the theory of graph spectra, they proposed the frequency domain graph convolution 

method[28]. The Laplacian matrix of the graph structure is defined as L = D- A , The symmetric normalized Laplacian 

matrix is defined as 

1/2 1/2

N

− −= −L I D AD , (2) 

the graph convolution operation can be expressed by equation (3) 

( ) TΛg x g x• = U U , (3) 

where U is the orthogonal matrix composed of the feature vectors of the Laplacian matrix L by column, ( )Λg  is a 

diagonal matrix consisting of parameter θ , representing the parameter to be learned. The above is the general form of 

graph convolution, but equation (3) is computationally intensive, because the complexity of the eigenvector matrix U is 
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2( )O N  ,therefore, Hammond et al [29] showed that this process can be obtained by fitting a Chebyshev polynomial, as 

in equation (4)  

( )
0

K

k k

k

g x T L x•

=

=θ

, 
(4) 

where 
max

2
NL L I


= −   and max  is the largest eigenvalue of L  , kθ  is the vector of Chebyshev coefficients. In order 

to reduce the computational effort, the literature [30] only calculates up to K = 1, max is approximated as 2, then we 

have 

( )1/2 1/2

Ng x x − −
•  +I D AD

. (5) 

                          In addition, self-normalization is introduced 

1/2 1/2 1/2 1/2

N

− − − −+ →I D AD D AD
, (6) 

where N= +A A I ,
ii ij

j

=D A , finally, the graph convolution is 

( )1 1/2 1/2l l l+ − −=H D AD H W
. 

(7) 

2.4.SE Attention Mechanism  

The attention mechanism can filter key information from the input images and enhance the accuracy of the model 

with limited computational capability. Therefore, we applied the attention mechanism to the convolutional branch. For 

simplicity, we chose the SE attention mechanism. The SE module consists of three steps.Firstly, the compression oper-

ation, which performs feature compression from the spatial dimension to turn the feature of H×W×B into a 1×1×B fea-

ture. Secondly, the excitation operation, which generates weights for each feature channel by introducing the w param-

eter. Finally, the weights output from the excitation block are considered as the importance of each feature channel after 

selection, and the weights of each channel calculated by the SE module are multiplied with the two-dimensional matrix 

of the corresponding channel of the original feature map to complete the rescaling of the original features in the channel 

dimension, so as to highlight the important features. As shown in Figure 3. 

 

Figure 3. SE Module. 

2.5. Superpixel segmentation and feature conversion module 

GCN can only be applied on graph structured data, and in order to apply GCN to hyperspectral images, the hy-

perspectral image needs to be constructed as a graph structure first. The simplest method is to consider each pixel of 

the image as each node of the graph structure, but this method leads to huge computational cost. So it is common to 

first apply superpixel segmentation to the HSI. 

Currently, common superpixel segmentation algorithms include SLIC[31], QuickShift[32], Mean-Shift[33]. Among 

them, the SLIC algorithm assigns image pixels to the nearest clustering centers to form superpixels based on the distance 

and color difference between pixels, and this method is computationally simple and has excellent results compared 

with other segmentation methods. 

In general, the SLIC algorithm has only one parameter, the number of superpixels K. Suppose an image with M 

pixel is expected to be partitioned into K superpixel blocks, then each superpixel block contains M/K pixels. Under the 
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assumption that the length and width of each superpixel block are uniformly distributed the length and width of each 

superpixel block can be defined as S, S = sqrt(M /K).  

Secondly, in order to avoid the seed points falling on noisy points or line edges of the image and thus affecting the 

segmentation results, the positions of the seed points are also adjusted by recalculating the gradient values of the pixel 

points in the 3×3 neighborhood of each seed point and setting the new seed point to the minimum gradient in that 

neighborhood. 

Finally, the new clustering centers are calculated iteratively by clustering. The pixel points in the 2S×2S region 

around the centroid of each superpixel block are traversed. After that, each pixel is divided into the superpixel blocks 

closest to it, and thus an iteration is completed. The coordinates of the centroid of each superpixel block are recalculated 

and iterated, and convergence is usually completed in 10 iterations. 

In this paper, the number of superpixel is not the same in each dataset, but varies according to the total number of 

pixels in the dataset, for which the number of superpixels is specified as K (H W) / =  , where H and W are the length 

and width of the dataset, and  is a segmentation factor to control the number of superpixels, which is 100 in this 

paper.  

It is worth noting that since each superpixel has a different number of pixels, since the data structures of the two 

branches are different, the CNN branch and the GCN branch cannot be fused directly. Inspired by [25], we apply a data 

transformation module that allows the features obtained from the GCN branch to be fused with the features from the 

CNN branch, as shown in Figure 4. 

 

Figure 4. Pixel and superpixel data conversion module. 

X i denotes the i-th pixel in the flattened HSI, and V j
denotes the average radiance of the pixels contained in the super-

pixels
jS , let HW ZQ R be the association matrix between pixels and superpixels, where Z denotes the number of su-

perpixels, then we have 

,
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where Flatten( )=X X , ,i jQ denotes the value of Q at association matrix, iX denotes the i- th pixel in X . Finally, the 

feature conversion process can be represented by 

Tˆ( ) flatten( )Encoder= =V X;Q Q X , (9) 

( ) ( ); reshapeDecoder= =X V Q QV , (10) 
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where Q̂ denotes the normalized Q by column, ( )reshape QV denotes restoring the spatial dimension of the flattened 

data. V denotes the nodes composed of superpixels, X denotes the feature converted back to Euclidean domains. In 

summary, features can be projected from the image space to the graph space using the graph encoder. Accordingly, the 

graph decoder can assign node features to pixels. 

3. Experiments and discussion 

The overall accuracy (OA), average accuracy (AA), kappa coefficient (kappa) and Mean Intersection over Un-

ion(MIoU) were employed as the evaluation indices of the classification performance. 

3.1. Experimental Data Sets 

To evaluate the effectiveness of the model, three commonly used hyperspectral datasets: Indian Pines(IP), Pavia 

University(PU) and Salinas(SA) were used to evaluate the FCGN algorithm in this paper. 

The IP dataset was acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over the 

northwestern Indian region. This dataset contains 145×145 pixels with 220 spectral bands ranging from 0.4-2.5µm. After 

removing 20 water absorption and noisy spectral bands, 200 bands are reserved for the experiment. The land cover 

scene consists of 16 classes with 10,366 labeled pixels. The dataset is divided into training, validation, and test sets, for 

this dataset, the sample size is relatively small and the number of samples of each class is extremely unbalanced. 5%, 

1%, and 94% of samples per class are randomly selected for training, validation, and testing, as presented in Table 1. 

  Table 1. The data set division for each class of IP dataset. 

 

The PU dataset was captured by the reflective optics system imaging spectrometer (ROSIS) sensor in the Pavia 

University. This dataset contains 610×340 pixels with 125 spectral bands ranging from 0.43-0.86µm. 103 bands are uti-

lized after discarding noisy bands. There are 9 land cover categories in this dataset.0.5%, 0.5%, and 99% of samples per 

class are randomly selected for training, validation, and testing, as listed in Table 2. 

 

 

 

 

 

NO. CLASS Train Val. Test. 

1 Alfalfa 3 1 50 

2 Corn-notill 72 14 1348 

3 Corn-mintil 42 8 784 

4 Corn 12 2 220 

5 Pasture 25 4 468 

6 Trees/Grass 37 7 703 

7 Pasture-mowed 2 1 23 

8 Hay-windrowed 24 4 461 

9 Oats 1 1 18 

10 Soybeans-notill 48 9 911 

11 Soybeans-mintill 123 24 2321 

12 Soybeans-cleantill 31 6 577 

13 Wheat 11 2 199 

14 Woods 65 12 1217 

15 Building-Grass 19 3 358 

16 Stone-steelTowers 5 1 89 

Total 520 99 9747 
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Table 2. The data set division for each class of PU dataset. 

 

The SA dataset is another commonly used dataset for hyperspectral image classification. It was recorded by the 

AVIRIS sensor over the Salinas Valley. This dataset contains 512×217 pixels with 224 spectral bands and 204 bands are 

utilized. There are 16 land cover categories in this dataset. Because this dataset has a larger number of samples compared 

with Indian Pines, so 0.5% of the labeled samples are selected as the training set and the validation set, and 99% of 

samples per class are randomly selected for testing, as listed in Table 3. 

Table 3. The data set division for each class of SA dataset. 

 

3.2.Experimental Settings 

The proposed architecture consists of three modules, the number of layers in the spectral dimension reduction 

module, graph convolution branch and convolution branch are all set to 2. The spectral dimension reduction modules 

starts with two 1 × 1 convolution layers (128 filters and 128 filters). The size of the convolution kernels in the CNN 

branch are set to 3 ×3 (128 and 64 filters), and the sample output dimension in GCN branch are set to 128 and 64. We 

NO. CLASS Train Val. Test 

1 Asphalt 34 34 6563 

2 Meadows 94 94 18461 

3 Gravel 11 11 2077 

4 Trees/Grass 16 16 3032 

5 Metalsheets 7 7 1331 

6 Baresoil 26 26 4977 

7 Bitumen 7 7 1316 

8 Bricks 19 19 3644 

9 Shadows 5 5 937 

Total 219 219 42338 

 

NO. CLASS Train Val. Test 

1 Brocoli_green_weds_1 11 11 1987 

2 Brocoli_green_weds_2 19 19 3688 

3 Fallow 10 10 1956 

4 Fallow_rough_plow 7 7 1380 

5 Fallow_smooth 14 14 2650 

6 Stubble 20 20 3919 

7 Celery 18 18 3543 

8 Grapes_untrained 57 57 11157 

9 Soil_vinyard_develop 32 32 6139 

10 Corn_senesced_green_weeds 17 17 3244 

11 Lettuce_romaine_4wk 6 6 1056 

12 Lettuce_romaine_5wk 10 10 1907 

13 Lettuce_romaine_6wk 5 5 906 

14 Lettuce_romaine_7wk 6 6 1058 

15 Vinyard_untrained 37 37 7194 

16 Vinyard_vertical_trellis 10 10 1787 

Total 279 279 53571 
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use Adam optimizer to train our model with a learning rate 0.001 and the training epoch is set to 500. The number of 

superpixels for each dataset is set to 1/100 of the number of pixels. 

The proposed algorithm is implemented in Python 3.8.12 and Pytorch1.1.0 using the Python language. The hard-

ware used for training is an i7-10750H CPU and a NVIDIA GeForce RTX 2060s GPU. 

3.3.Classifification Results 

To verify the performance of the model, several advanced HSI classification methods were selected for comparison 

with this model, including 3D-CNN[34], GCN[21], MiniGCN[20], HybirdSN[16], DBDA[17] and MDGCN[24]. The 

number of training samples and test samples selected for each method are the same, and the hyperparameters are the 

same as in the original paper. The classification accuracies of the different methods on each dataset are showed in Tables 

4-6, and the classification maps obtained by these methods are illustrated in Figures 5-7. 

For the IP dataset. Table 4 shows the classification results of the different models on the IP dataset. The lack of 

training samples on the IP dataset and the imbalance in the number of samples from different categories makes classi-

fication challenging, but our classification method obtained the best classification results. It can be observed that the 

classification accuracy obtained by 3D-CNN is lower than other methods, which might be due to the fact that 3D-CNN 

has more parameters, but the number of training samples is small in this experiment, and another reason might be that 

it does not take full advantage of the relationship information contained in the samples, which eventually leads to poor 

classification results. HybirdSN combines 3D-CNN layers with 2D-CNN layers, which has stronger feature representa-

tion capability by combining spatial and spectral information and lower number of parameters, but the accuracy is still 

lower in the case of small number of samples. DBDA contains two branches to obtain spatial-spectral features respec-

tively, and introduces the attention mechanism into it and eventually achieves better classification results than Hy-

birdSN. The GCN-based classification method can generally obtain better classification results with a smaller number 

of samples. MiniGCN adds a convolutional branch and adopts a small batch strategy compared with GCN, and achieves 

better classification results, but without taking into account the different importance of different features. In contrast, 

the FCGN obtains the best classification results, which is greatly due to the design of two branches to obtain comple-

mentary features, the graph convolution branch based on superpixel segmentation can obtain the large scale irregular 

features of the image and the relationship between different nodes, reducing the classification error caused by noise. 

The convolutional neural network with added attention mechanism can acquire regular image features at small image 

scale and generate detailed edge features, which complement the smooth features acquired by the superpixel segmen-

tation-based graph convolution branch to obtain better classification results at both large and small scales. The convo-

lution branch is able to process the local fine area to obtain the detailed features of the image, due to the misclassification 

of pixels, the classification result of the convolution branch contains more noise. By fusing the features of the two 

branches, the influence of noise on the classification results is greatly reduced. In terms of running time, FCGN has a 

medium running time compared to other comparison algorithms, it is due to the use of depth-separable convolution 

algorithm. 

Table 4. Classification results of the IP data set. 

Class 3DCNN GCN MiniGCN HybirdSN DBDA MDGCN FCGN 

1 80.00 94.66 93.73 83.44 99.51 88.88 100.00 

2 90.16 70.37 72.54 80.38 93.55 96.16 96.51 

3 80.05 66.89 76.83 82.21 94.11 94.17 98.46 

4 86.54 86.88 98.16 99.19 96.42 92.59 97.36 

5 84.43 89.27 93.40 96.47 97.64 96.79 97.13 

6 79.12 93.38 92.64 98.81 96.23 99.50 100.00 

7 67.22 92.91 88.48 86.89 96.66 96.82 92.89 

8 90.87 96.14 97.59 98.04 91.35 95.72 98.68 

9 70.00 100.00 99.73 73.11 89.37 99.98 100.00 

10 79.11 85.37 75.98 90.41 70.30 85.70 97.30 

11 90.81 68.45 79.42 74.23 90.32 96.06 98.63 
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12 72.50 78.90 79.51 91.00 97.38 98.88 95.17 

13 70.88 99.84 98.93 71.88 97.99 97.21 99.59 

14 85.83 85.12 87.88 98.33 98.34 99.93 99.33 

15 92.30 82.67 89.82 94.48 96.25 96.17 95.71 

16 69.22 97.41 100.00 70.22 86.66 94.82 97.75 

OA(%) 78.47 86.67 88.67 87.99 94.55 97.62 98.78 

AA(%) 80.57 86.77 89.04 86.82 93.26 95.58 97.80 

Kappa 80.70 84.38 88.39 87.44 94.01 95.49 97.99 

MIoU(%) 73.44 78.91 84.12 83.50 90.36 92.04 95.11 

Train 

time(s) 

250.11 59.02 342.55 220.99 298.32 1204.15 204.50 

Test 

time(s) 

15.04 5.60 15.38 14.51 21.77 20.33 5.92 

 

 

Figure 5. The classification maps for Indian Pines. (a) False-color image;(b) Ground-truth;(c) 3DCNN;(d) GCN;(e) 

MiniGCN;(f) HybirdSN;(g) DBDA;(h) MDGCN;(i) FCGN;. 

For the Pavia University dataset, table 5 shows the classification results of the different models on the Pavia Uni-

versity dataset. It can be observed that the classification results of each algorithm have slightly improved relative to 

those of the IP dataset, which may be because of fewer sample classes in the PU dataset and the number of samples in 

each class is similar. It is remarkable that DBDA obtains better classification results than HybirdSN, which may result 

from the two branch structure of HybirdSN and the attention mechanism. FCGN performs better than the compared 

methods with an OA of 98.99%, because FCGN can fully exploit the features of the samples and the addition of attention 

mechanism also improves the classification results. The runtime of FCGN algorithm is slightly increased compared to 

some comparison algorithms, but considering the competitive classification results of this algorithm and the short test-

ing time, the increase in runtime is worth it. 
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Table 5. Classification results of the PU data set. 

Class  3DCNN GCN MiniGCN HybirdSN DBDA MDGCN FCGN 

1 80.85 77.26 86.22 94.10 96.36 99.00 98.41 

2 80.49 76.97 92.21 94.36 99.11 98.21 99.91 

3 69.77 69.19 86.13 82.40 90.32 86.81 97.35 

4 95.99 90.88 92.06 95.27 97.99 94.55 97.96 

5 91.30 94.27 95.11 95.77 99.01 99.76 99.73 

6 90.57 92.98 90.34 92.44 97.55 99.80 99.00 

7 80.21 82.81 88.99 89.06 94.37 98.07 99.89 

8 89.73 86.91 82.77 80.04 88.94 96.92 98.68 

9 91.12 95.55 92.87 99.11 98.39 98.38 98.41 

OA(%) 86.33 85.41 89.67 92.99 97.22 98.22 98.99 

AA(%) 85.56 85.20 89.63 92.81 95.78 96.83 98.81 

Kappa 85.21 80.37 87.09 89.98 96.72 97.27 97.90 

MIoU(%) 81.16 78.39 84.99 85.72 91.66 93.71 95.23 

Train 

time(s) 

131.44 251.59 1058.37 122.61 145.88 3265.31 1283.37 

Test time(s) 88.21 17.33 50.15 65.48 118.37 57.29 38.94 

 

 

 

Figure 6. The classification maps for Pavia University. (a) False-color image; (b) Groundtruth; (c) 3DCNN; (d) GCN; (e) 

MiniGCN; (f) HybirdSN; (g) DBDA; (h) MDGCN; (i) FCGN;. 

For the Salinas dataset. Table 6 shows the classification results of the different models on the Salinas dataset. We 

can see that FCGN is superior to other methods in terms of OA, AA, and Kappa coefficient, this proves the effectiveness 

of the FCGN algorithm again. We can see from Figure 6 that the FCGN method has fewer misclassified pixels than other 

methods and is more accurate for classifying large scale regions. 
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Table 6. Classification results of the SA data set. 

Class 3DCNN GCN MiniGCN HybirdSN DBDA MDGCN FCGN 

1 88.31 98.64 96.19 99.34 99.62 100.00 99.74 

2 88.35 98.99 99.02 98.61 99.14 100.00 100.00 

3 82.01 73.84 86.32 94.38 97.45 99.16 100.00 

4 84.02 99.49 98.32 97.04 94.77 100.00 99.82 

5 87.76 99.66 96.35 98.24 98.02 94.32 97.71 

6 91.42 99.97 99.55 99.03 99.99 99.98 98.98 

7 90.94 93.54 98.54 96.89 97.62 98.85 99.99 

8 80.07 94.70 91.40 86.55 87.35 86.18 94.25 

9 94.88 100.00 99.74 99.12 89.37 99.97 99.97 

10 88.76 70.82 84.25 89.89 89.57 93.84 96.68 

11 83.62 80.85 83.51 91.23 90.32 98.29 99.01 

12 87.99 95.05 94.99 97.92 97.38 94.98 99.99 

13 72.15 94.94 89.47 99.46 98.99 97.00 99.36 

14 73.05 97.82 98.94 97.66 95.69 97.12 99.10 

15 91.34 54.25 67.39 81.47 86.77 95.92 94.56 

16 92.96 65.60 64.61 99.28 96.34 98.65 98.67 

OA(%) 86.30 91.47 91.76 96.25 92.55 96.80 98.69 

AA(%) 86.10 90.92 90.53 95.38 94.90 97.14 98.61 

Kappa 85.09 88.01 88.39 92.09 93.37 95.34 97.18 

MIoU(%) 80.83 84.13 83.77 88.59 90.08 92.11 95.13 

Train 

time(s) 

153.09 269.04 1094.67 146.96 176.55 3377.41 1357.15 

Test time(s) 93.37 23.02 57.47 72.72 120.17 65.33 42.46 
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Figure 7. The classification maps for Salinas. (a) False-color image; (b) Ground truth; (c) 3DCNN; (d) GCN; (e) MiniGCN; 

(f) HybirdSN; (g) DBDA; (h) MDGCN; (i) FCGN;. 

4. Discussion 

4.1.Influence of Label Ratio 

To evaluate the generalizability and robustness of the proposed FCGN and other methods, we set the number of 

training samples per class from 5 to 25 with an interval of 5. Figure 8 shows the OA obtained by the different methods 

on the three datasets. It can be observed that the proposed FCGN achieves better classification accuracy than other 

methods, and the classification accuracy of each method improves as the number of training samples increases, which 

proves the great robustness of the proposed FCGN. 

 

Figure 8. The classification performance of each method with different training set ratios. (a) India Pines; (b) Pavia Uni-

versity; (c) Salinas;. 

4.2. Influence of segmentation factor 

The larger the segmentation factor, the smaller the number of superpixels and therefore the larger the size of the 

superpixels, preserving larger objects and suppressing more noise. Conversely, the smaller the segmentation factor, the 

larger the number of superpixels, the smaller the size of the segmentation map obtained, preserving smaller objects and 

containing more noise. 

In order to investigate the influence of the number of super pixel blocks on the performance of FCGN, in this 

section, the segmentation coefficients are set to 50, 100, 150 and 200, and the influence of different segmentation factors 

on the classification accuracy of FCGN is tested on the three datasets, as shown in Figure 9. It can be seen that the 
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classification accuracy of FCGN on the IP dataset decreases with the increase of the segmentation coefficients, which is 

due to the fact that the samples in the IP dataset of smaller scale. The size of superpixel is too large, which makes the 

sample detail information missing. The OA of the PU dataset is similar when the segmentation factor is 50 and 100, and 

the highest accuracy is achieved when the factor is 100. The sample scale on the SA dataset is much larger, so as the size 

of the superpixels increases, the classification results do not decrease, but rather more noise effects are removed, making 

the accuracy increase. However, when the segmentation factor reaches a certain size, the classification accuracy is bound 

to decrease gradually. In order to prevent the classification map from being smooth and missing too much detail infor-

mation, the segmentation factor is set to 100 in this chapter. 

 

Figure 9. The classification performance with different segmentation factor. (a) India Pines; (b) Pavia University; (c) Sa-

linas;. 

4.3.Ablation Study 

The proposed FCGN mainly contains a graph convolutional branch based on superpixel segmentation and a con-

volutional branch with an added attention mechanism. To further validate the contribution of the two branches, we 

tested the OA of the two branches on three datasets separately. In addition, we tested the impact of the attention mech-

anism. We can intuitively see from table 7 that the overall classification accuracy decreases when any branch is missing, 

which proves that the complementary features obtained by combining the graph convolution branch and the convolu-

tion branch can indeed improve the classification performance. We can also observe that the addition of attention mech-

anisms has some improvement on the classification results, which indicates that by adding appropriate attention mech-

anisms to the network, we can obtain the importance of different features and capture long-range features and high-

level features to improve the classification results. 

Table 7. OA(%) indices of the ablation experiment of FCGN. 

 

5. Conclusions 

In recent years GCN has been applied in the field of hyperspectral image classification by virtue of its ability to 

process graph structured data. Compared with CNN, GCN is able to extract the structural features and capture the 

relationships between the nodes in irregular image regions. In order to reduce the computational complexity, superpixel 

segmentation is often performed on HSI first, however, superpixel segmentation processing leads to similar features 

within each superpixel node, resulting in a lack of local details in the classification map. To solve the above problems, 

a new hyperspectral image classification algorithm FCGN is proposed in this paper, in which a graph convolutional 

network based on superpixel segmentation is fused with an attentional convolutional network for feature fusion, a GCN 

network based on superpixel segmentation is used to extract superpixel-level features, an attentional convolutional 

network is used to extract local detail features, and finally the obtained complementary features are used to improve 

the classification results. In order to verify the effectiveness of the algorithm, experiments are conducted on three da-

tasets and compared with some excellent algorithms. Experimental results showed that FCGN achieved better classifi-

cation performance. Although FCGN achieves better classification results but there are still some shortcomings, this 

paper does not consider the variability of different neighbor nodes during the construction of the graph structure, which 

Dataset Branch1 Branch2 Without SE FCGN 

Indian Pines 93.58 94.69 96.44 98.78 

PaviaUniversity 95.65 93.41 97.98 98.99 

Salinas 97.33 94.50 97.88 98.69 
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may limit the ability of the model .In addition, only a simple feature splicing fusion method is used in this paper, so the 

construction of graph structure and new fusion mechanism will be further explored in the subsequent research. 
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