
Citation: Pedraza, A.; del Río, D.;

Bautista-Juzgado, V.;

Fernández-López, A.; Sanz-Andrés,

A. Study of the feasibility of

decoupling temperature and strain

from a φ-PA-OFDR over an SMF

using Neural Networks. Preprints

2023, 1, 0. https://doi.org/

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Study of the feasibility of decoupling temperature and strain
from a φ-PA-OFDR over an SMF using Neural Networks
Andrés Pedraza 1, Daniel del Río 2, Víctor Bautista-Juzgado 3, Antonio Fernández-López 4, Ángel Sanz-Andrés 5∗

1 Instituto " Ignacio da Riva", IDR - Universidad Politécnica de Madrid; a.pedraza@upm.es
2 ETSIAE-Universidad Politécnica de Madrid; daniel.delrio.velilla@upm.es
3 ETSIAE-Universidad Politécnica de Madrid; victor.bautista.juzgado@alumnos.upm.es
4 Instituto " Ignacio da Riva", IDR - Universidad Politécnica de Madrid; antonio.fernandez.lopez@upm.es
5 Instituto " Ignacio da Riva", IDR - Universidad Politécnica de Madrid; angel.sanz.andres@upm.es
* Correspondence: angel.sanz.andres@upm.es

Abstract: Despite existing several techniques for distributed sensing (temperature and strain) using
standard Single Mode optical Fiber (SMF), compensating or decoupling both effects is mandatory for
many applications. Currently, most of the decoupling techniques require special optical fibers and
are difficult to implement with high spatial resolution distributed techniques, such as φ-PA-OFDR.
So, this work’s objective is to study the feasibility of decoupling temperature and strain out of a
φ-PA-OFDR readouts taken over an SMF. For this purpose, the readouts will be subjected to a study
using several Machine Learning algorithms, among them, Deep Neural Networks. The motivation
which underlies this target is the current blockage in the widespread use of Fiber Optic Sensors in
situations where both strain and temperature change, due to the coupled dependence of currently
developed sensing methods. Instead of using other types of sensors or even other interrogation
methods, the objective of this work is to analyze the available information in order to develop a
sensing method capable of providing information about strain and temperature simultaneously.
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1. Introduction

The general interest in Distribute Optical Fiber Sensors (DOFS) has increased in the
past few decades [9,19,24]. Due to the huge variety of phenomena related to light propaga-
tion along an optical fiber and depending on the interrogator and the fiber used, there are
more than 60 types of sensors [3]. This technology has been applied in several fields such
as Structural Health Monitoring [23], Geo-Hydrological applications [2], Acoustic sensing
[22] or even medicine [16].

Basically, a Distributed Optical Fiber Sensor consists of a segment of optical fiber
within which monochromatic light is propagated forward (transmission) and backward
(backscattering). The fiber core shape is varied, going from a simple circle up to the
polarization-maintaining configurations shown in Figure 1. The dimension of this core
determines the number of modes that can be propagated. In the present work, light
propagation into an SMF is studied. This type of fiber is preferred due to its lower cost and
reduced size when compared with other types of optical fiber (PMF), where, moreover, the
decoupling has been achieved currently.
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Figure 1. Different existing core shapes for optical fiber.

Commonly, light propagated within the fiber is emitted by a tunable laser source;
and the backscatter radiation is analyzed by a photodetector after passing through some
filters and beamsplitters [12]. Both photonic systems are usually integrated into the same
equipment, the emitted and analyzed light wavelength determines the type of interrogator:
Raman, Rayleigh, or Brillouin [24]; and with the appropriate beamsplitters and filters both
States Of Polarization (SOP) can be studied separately. The phase analysis needs a special
configuration in the photodetector to compare the signal received with a local oscillator
[21]. For the present work, a Phase-sensitive and Polarization Analyzer Optical Frequency
Domain Reflectometer (φ-PA-OFDR) was used.

Light backscattering is sensible to both temperature and strain changes and is nowa-
days the principal limitation when implementing this technology. The solutions are diverse
and depend on the type of DOFS chosen, but two main groups can be distinguished. The
first type of solution is to integrate sensors in parallel, which are usually either strain
gauges or thermocouples along with Optical Fiber Sensors (OFS) in order to obtain one
independent measure. The second type of solution consists of a signal treatment which
requires either a second type of interrogator or a signal post-processing. In Table 1 some of
the methods developed for different OFS are listed.

Table 1. A summary of the strain/temperature discrimination methods using DOFS configurations
(see [5] for more information, note that the last method’s configuration is not properly described
there) .

Method Configuration

Brillouin Brillouin frequency shift
Brillouin amplitude effects with LEAF fiber

Brillouin and Raman hybrid Raman-Brillouin gains
Photonic crystal fiber (PCF) Brillouin
FBG Dual wavelength
FBG on PMF Polarization Maintaining Fiber analysis
OFDR PMF, Rayleigh scattering, autocorrelation function

More specifically, the last one is the most similar to the present work. In it [10], Froggat
et al. use a φ-PA-OFDR over a PMF. However, in the present work, the fiber studied is
an SMF because of its higher availability and lower price (around two magnitude orders
[30,31]). The behavior of SOP in an SMF is different and the same technique used by Froggat
et al. cannot be implemented. More specifically, the birefringence vector’s randomness
causes fast and slow polarization modes to have different time arrivals. Besides that,
they will decompose into both the fast and slow modes of the next segment, leading to
polarization-mode coupling [17].

Artificial Intelligence has been applied successfully to Optical Fiber Sensors [18]. Be-
cause of that, before trying to find an analytical approach to the SOP evolution through the
fiber or any statistical analysis of the signals acquired, Artificial Intelligence (AI) methods
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have been applied to the problem in the present work, in order to determine the feasibility
of decoupling temperature and strain from a φ-PA-OFDR readout.

2. Materials and Methods
2.1. Resources used

The optical fiber and interrogator used are described in Table 2. Moreover, the signal
was analyzed using Python open libraries as Scipy [29] and Numpy [28].

Table 2. Resources used.

Resource Supplier Model Reference

Single Mode Fiber Corning SMF-28e+ [25]
Optical Frequency Domain Reflectometer LUNA OBR-4600 [26,27]

2.2. Experimental data acquisition

For a proper creation of an Artificial Intelligence model, it is imperative to have a huge
and reliable experimental dataset [14,20]. For this purpose, the optical fiber was subjected
to mechano-thermal tests where the longitudinal fiber strain and temperature were varied.
The SMF was converted into a succession of overlapping sensors with a sensor length of 20
mm and a sensor spacing of 2 mm. This is possible because of the interferometer used that
provides 2000 samples per sensor which allows signal processing calculations.

In Figure 2 the experimental setup is illustrated.

Figure 2. Test configuration: aluminium plate (E = 70.3 GPa, α =24 µm/(m·K) ) with dimensions
300x30x2 mm. Up to four 50 g weights have been added at the end (since the weight is maintained
with temperature).

2.3. Interferometer readouts

A φ-PA-OFDR provides information about the two SOP of the interference between
the backscattered electromagnetic field Em and the one generated by a local oscillator Elo
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(see Figure 3 or [12] for more details). This means that two complex measures is and ip are
received by the photo-detectors every time that the optical fiber is interrogated

is(ω) = 2 Re
{〈

Elo

∣∣∣∣T†
s Tsr(ω)

∣∣∣∣Em

〉
exp[jω(t)∆τ]

}
,

ip(ω) = 2 Re
{〈

Elo

∣∣∣∣T†
pTpr(ω)

∣∣∣∣Em

〉
exp[jω(t)∆τ]

}
,

(1)

where the matrix operators Ts and Tp represent the beam splitter action.
By means of a Discrete Inverse Fourier Transform (DIFT) the time-domain response of

the Device Under Test (DUT) can be obtained. Then, knowing the speed of light into the
fiber, obtaining the spatial distribution is trivial.
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Figure 3. Measurement network for a PA-OFDR. TLS = Tunable Laser Source, ADC = Analog to
Digital Converter, PC = Polarization Controller, PBS = Polarization Beam Splitter, τtr = differential
time delay of the two paths in the trigger interferometer. See [12] for further information.

3. Results
3.1. Dataset

The process carried out to create the dataset is illustrated in Figure 4. The readings
obtained from the test under controlled conditions have been labeled with the test condi-
tions themselves. Then each of these signals has been taken and divided into segments
that act as a point sensor, i.e. they can be assigned a single temperature and a single strain
value. Finally, these segments have been taken two by two and the temperature and strain
increment corresponding to the pair has been computed, thus storing the two segment
signals (P and S) and the difference of states. As a priori the most suitable pre-treatment
of the signals was not known, it was decided to keep both signals (P1, S1, P2, S2) in full in
order to evaluate the performance of the different transformations.

From the test performed, data have been obtained at four temperatures: 20, 30, 40,
and 50 oC; and five strain states associated with an end deflection of: 0, 3.11, 6.22, 9.33, and
12.45 mm. These combined states result in 20 different states which, combined two by two,
amount up to 190 possible combinations. By means of the optical interrogator used, the
optical fiber was converted into a succession of overlapping sensors with a sensor length
of 20 mm (with a sampling period of 10 µm) and a sensor spacing of 2 mm (see Figure 2).
Then, for a fiber length of 300 mm of which only measurements between 100 and 280 mm
have been selected (to avoid possible errors). Taking randomly a percentage of the number
of combinations, a dataset of 13950 samples has been created by taking, randomly again, a
60 % for training, 20 % for validation and the remaining 20 % for testing.
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The temperature range has been determined by the room temperature at the time of
the test (since the oven does not have refrigeration) and the characteristics of the adhesive
used, cyanoacrylate, to adhere the optical fiber to the aluminum plate.

Controlled condition test Global transfer functions (P(x) and S(x)) labeled
 with global sate variables: temperature (T) and deflection (δ)

Slicing each global signal in local samples

associated with a position and labeled with global state variables

If

For each pair of samples in the same position with different conditions

AI Dataset creation

X will be transformed before
entering the neural net

Figure 4. Process carried out to obtain the dataset with which the model has been trained.

3.2. Pre-processing

Sometimes, when talking about Artificial Intelligence, it is presented as a tool capable
of solving any problem with just the corresponding training time. Nothing could be further
from the truth, the proper dataset pre-processing is key not only in the success or failure of
the model but also in its accuracy and efficiency [4,8].

In this case, several signal treatment options were considered, but finally the correla-
tion between signals,

X = [P1 ? P1, P1 ? P2, P2 ? P2, S1 ? S1, S1 ? S2, S2 ? S2] ,
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has been chosen. The decision was made using an unsupervised machine learning model
aimed at dimensionality reduction for the reasons explained in the next subsection (Subsec-
tion 3.3).

3.3. Clustering

Before starting to apply machine learning models, a clustering algorithm was used to
determine if the pre-processed data is capable of being classified into groups that somehow
could be related to strain and temperature increments. Note that this is an iterative process
where the dataset was exposed to different pre-processing methods, however, only the final
results of the clustering algorithm are shown in Figure 5. As can be seen, the algorithm
(TSNE) spontaneously generates temperature groups and orders the deformations within
them, which means that, although there is some confusion within some groups, an artificial
intelligence model is able to differentiate both variables.

Figure 5. Clustering algorithm results.

3.4. Neural Network

Input data
Once this check has been carried out, the artificial intelligence model capable of

discerning between temperature increase and deformation from the signals of the differ-
ent polarizations is designed. After trying several options to train the model, an input
vector, composed of the cross-correlation of the two polarization states and the four auto-
correlations of the four available measurements, is selected due to the clustering algorithm
results. The input to the network is finally as follows:

xj = [P1 ? P1, P1 ? P2, P2 ? P2, S1 ? S1, S1 ? S2, S2 ? S2, ∆ν] ,

where the frequency increment ∆ν has been added to provide scaling information (since
the same equipment can operate in different frequency ranges).

Normalization
These input vectors have been previously normalized since training is much more

efficient with normalized values. In this case, the normalization of each variable separately
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has been finally selected as it is the only one with which the model has been able to fit the
data:

X =


x1
x2
...

xns−1
xns

→ Xmax i = max
(
{X0i, ..., Xji, ...Xnsi}

)
Xmin i = min

(
{X0i, ..., Xji, ...Xnsi}

) →

→ X̂ji =
Xji − Xmin i

Xmax i − Xmin i
,

(2)

where index i refers to the column index, that is, to each of the items that make up the
vector xj; on the other hand, index j refers to the sample number.

Architecture
The network architecture is as shown in Figure 6 and is basically a compendium of

densely connected layers with hyperbolic tangent-type activation functions that add to its
nonlinearity.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2023                   doi:10.20944/preprints202305.0310.v1

https://doi.org/10.20944/preprints202305.0310.v1


8 of 15

P1 S1P2 S2

٭ ٭ ٭ ٭ ٭ ٭

Input data (12001)

Δ
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-


Linear: 3000x1500
Tanh

Linear: 100x50

Tanh

Linear: 50x25

Tanh

Linear: 16x4
Tanh

Linear: 4x1
ReLU


Linear: 25x16
Tanh

Linear: 350x300
Tanh
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Tanh
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Tanh
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Tanh
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Tanh
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Tanh

Figure 6. Diagram of the neural network used. In the upper part, in blue, the pre-processing of the
signal prior to the neural network is shown; the operation marked with the ∗ denotes correlation
between two input signals.

Training
The results of the network training are shown in Figure 7. The training has been

carried out with an Adam-type optimizer with a learning rate of 10−6, and computing the
error with the mean squared error (MSE) criterion.
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Figure 7. Training and validation of the network for both target variables.

As can be seen at the 100 training epochs, the behavior is asymptotic, which indicates
that the model is not able to fit the data. On the other hand, from the behavior of the
validation curves, it can be determined that the model has not undergone overfitting.

Results
Once the model has been trained, it is evaluated with the test data. In Figures 8 and 9

error histograms for the target variables are shown together with an approximation of
normal distribution, whose coefficients are shown in Table 3. In addition, confidence
intervals of 99% and 95% have been computed and the limits of these intervals are also
shown in Table 3.
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Figure 8. Histogram of temperature errors and their normal distributions, as well as its confidence
interval limits.
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Figure 9. Histogram of strain errors and their normal distributions, as well as its confidence interval
limits.

For a better comprehension, the predicted versus target values have also been plotted
on a plane (see Figures 10 and 11) to create the equivalent of a confusion matrix but with
continuous data. If the model worked perfectly, the predicted and target data would be
the same, thus plotting a diagonal. For this reason, a least squares regression line has been
plotted over the plane. The regression line has the form y = m x + n where x represents the
target value and y the predicted one, m the slope of the straight line and n the ordinate at
the origin. Additionally, the value of r2 has also been computed to determine the dispersion
of the values. All of the above values can be also found in Table 3.

Table 3. Deep Learning AI model error metrics.

Normal distribution Confident intervals Linear regression
µ σ2 99% 95% m n r2

∆ T [K] -0.5948 2.4044 [-4.5889,3.3994] [-3.6339,2.4444] 0.94 -0.61 0.96
∆ µε -27.2083 71.4478 [-48.9810,-5.4357] [-43.7753,-10.6414] 0.93 -27.39 0.94
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Figure 10. 2D representation of predicted versus target values and linear regression for temperature
data.
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Figure 11. 2D representation of predicted versus target values and linear regression for strain data.

Explainable Artificial Intelligence (XAI)
Explainable Artificial Intelligence (XAI) consists of a series of methods aimed at

converting the results provided by an Artificial Intelligence (AI) in a way that can be
understood by humans. It contrasts with the ”black box” concept of machine learning,
where even its designers cannot explain why an AI arrived at a particular decision. Thanks
to XAI methods, features can be extracted that allow existing knowledge to be confirmed,
existing knowledge to be questioned, and new hypotheses to be generated.

In this case, the XAI allows explaining how the developed model interprets the
correlations of the signals to reveal the information on which the actions are based. To
implement the XAI methods on this model, the Lime-For-Time repository (see [11]) has been
used, in which the LIME library ([1]) is used to analyze time series.
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The analysis consists of taking an example signal and dividing it into segments, which
in this case have been 120, given the composition of the signal. Next, the neural network is
studied as a classifier in which each segment constitutes a class and which contributes, to a
greater or lesser extent, to the final decision. From the example signal, multiple variations
of the parameters are made to interpret how the model behaves to the different inputs.
From these data, the relevance of each of the segments can be determined. Taking the 12
most relevant segments and displaying their weights in a histogram, the images shown in
Figure 12 and 13 are produced.

Figure 12. Weight in the final decision of each of the segments in order of importance for the
temperature decision.

Figure 13. Weight in the final decision of each of the segments in order of importance for the strain
decision.
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If these segments are displayed over the signal, it can be seen which regions are the
most relevant. In this case, to represent the importance, an opacity has been assigned
according to the weights previously shown in the histograms. The result of this graphical
representation is the one shown in Figures 14 and 15.

Figure 14. Most relevant regions of the signal for each of the model predictions, above for the
temperature prediction.

Figure 15. Most relevant regions of the signal for each of the model predictions for the strain
prediction.

4. Discussion

From the results shown in the previous section (Section 3.4), it can be said that an
Artificial Intelligence capable of distinguishing between strain and temperature readings
has been trained successfully and so, the readout of the φ-PA-OFDR contains enough
information to obtain the measure of the two magnitudes (strain and temperature) even
when an SMF is used for sensing.

The results show how the artificial intelligence recognizes the spectral shift by com-
paring the values of segments 88, 30, and 89; which correspond to the central area of the
cross-correlations between the two compared signals. On the other hand, studying the
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rest of the values is interesting as this is where the ability to discern between thermal and
mechanical effects lies.

Comparing the two images in Figures 14 and 15 it can be seen how, to determine
the temperature, the model takes two symmetrical regions of the autocorrelation of the
polarization state P of the first signal and similar regions of the autocorrelation of the
polarization state S of the second one. Besides that, to determine the deformations, it is
observed that the last values of the autocorrelation of the polarization state S of the second
signal are interpreted by some kind of integral.

Additionally, the temperature-related decision seems to focus more on the behavior of
the peak of the autocorrelation of the P polarization state of the second signal whereas the
deformations focus on the peak of the autocorrelation of the S polarization state of the first
one.

This information allows us to determine that the autocorrelation of the signals does
provide additional information that can be key in determining unequivocally at what
temperature and state of deformation the optical fiber is.

5. Conclusions

From these results, the following conclusions can be drawn:

• Readouts provided by a φ-PA-OFDR (as OBR-4800 is) contains are capable of providing
more information than what nowadays is used.

• Artificial Intelligence methods are suitable for analyzing DOFS data in order to decou-
ple temperature and strain phenomena.

• More specifically, the Neural Network model designed and trained for this purpose in
the present work has reached the precision and accuracy shown in Table 4.

Table 4. Deep Learning AI model error metrics.

Normal distribution Confident intervals Linear regression
µ σ2 99% 95% m n r2

∆ T [K] -0.5948 2.4044 [-4.5889,3.3994] [-3.6339,2.4444] 0.94 -0.61 0.96
∆ µε -27.2083 71.4478 [-48.9810,-5.4357] [-43.7753,-10.6414] 0.93 -27.39 0.94

• In addition, explainable AI offers a deeper analysis of the AI model, which can be used
to chart the course for future research.
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