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Abstract: Expert system approach, although quite old, is still quite effective in scientific areas where 

experts are required to make diagnoses and predictions. One of those areas is fish disease diagnosis. 

It is an application domain that currently employs complicated processes, which require high level 

skills for making accurate diagnoses. On the other hand, complete datasets for full diagnosis to be 

able to use machine learning techniques are not available. Therefore, in aquaculture, now more than 

ever, fish farmers do not have the required expertise or equipment to accurately diagnose a fish 

disease. For that reason, expert systems that can help in the diagnosis, prevention and treatment of 

diseases have been developed. In this paper, we attempt to give an overview of the expert system 

approaches for fish disease diagnosis developed in the last two decades. Based on the analysis of 

their technical and non-technical characteristics, we propose an expert system architecture and a 

fish disease diagnosis process aiming at improving the deficiencies of existing such systems. The 

proposed system can handle all kinds of fish diseases based on image and non-image data as well 

as on molecular tests results and can provide explanations. The diagnosis process goes through four 

consecutive levels, where each next level considers an additional category of parameters and 

provides diagnoses with higher certainty. 

Keywords: expert systems; aquaculture; fish health management; fish disease diagnosis 

 

1. Introduction 

With the rapid development of aquaculture worldwide, the need for quality seafood products 

has become almost imperative [1]. Fish is an important source of protein required for human body, 

and it is suggested as a “healthy diet” to the consumers [2]. Therefore, the consumption of fish 

products is continuously increasing together with the request of its “sustainable" supply [3]. The same 
happens with the development of marine fish farming [4]. Management of fish farming concerns 

various tasks, like species identification, fish counting, fish health and welfare management including 

disease diagnosis and treatment, fish product marketing, etc [5,6]. Contemporary management 

requires automation of those tasks alongside preciseness [7,8].  

The most important and challenging task of them is fish disease diagnosis and treatment. Quite 

often, the appearance of diseases in the fish farms restricts the quality and the overall fish production 

[9]. Fish disease is considered a major factor causing about 50% of overall production loss [10], 

generating severe insurance claims for compensation [11]. On the other hand, most farmers have 

trouble identifying and treating fish diseases, because they lack the necessary expertise and 

experience to do so [12]. Therefore, it is necessary to develop systems that can automatically predict 

and/or diagnose fish diseases in real-time, to keep fish healthy and safe and to prevent and control 

disease transmission in aquaculture. To achieve that, artificial intelligence (AI) techniques should be 

employed [13]. 

Diagnosis of fish diseases is a classification problem. There are two general AI approaches to 

tackle such a problem: the expert system (ES) approach and the machine learning (ML) approach 
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[14,15]. An expert system is a computer program that reasons in a similar way as a human expert. It 

mainly includes a knowledge base, which often consists of if-then rules, and an inference engine, 

which uses the rules to produce conclusions. To construct an expert system, you need to acquire 

knowledge from experts and represent it in the knowledge base. A machine learning approach 

consists in finding a model, called a classifier, that can detect fish diseases. Such a model can be a 

decision tree, a neural network (NN), or a statistical model. To be able to construct such a model, you 

need to have an adequate dataset consisting of real cases. Modern deep neural networks (DNNs) 

require very large datasets to be trained. 

Fish disease full diagnosis considers a variety of parameters: environmental, clinical, 

microscopic, and molecular [16]. Although the expert system approach is quite old, it still dominates 

as an approach for full disease diagnosis. This is because good real datasets including all parameters 

are not available. Therefore, modern ML approaches, like deep learning (DL), are used only for 

image-based diagnosis, which however is part of a full diagnosis. Image-based diagnosis alone 

cannot give definite disease results, but only detect problematic situations [13]. Image-based 

diagnosis with “traditional” ML algorithms, like Naïve Bayes, k-NN, SVM and Random Forest, are 

used for image-based diagnosis, after image preprocessing, which results in feature extraction hence 

in a data set creation. DL networks, like CNN, do not require image preprocessing, but require a very 

large number of images to be trained, which usually is not available. On the other hand, ML methods 

act like black-boxes and cannot explain their reasoning, which is very important in such cases [17]. 

To the best of our knowledge, none of existing fish disease diagnostic systems considers for its 

diagnosis all the above parameters. So, their diagnosis is rather approximate. In this paper, we focus 

on the expert system approach for fish disease diagnosis, which is the basis for a complete diagnosis. 

Therefore, we present an overview of such systems created during the last two decades and specify 

their characteristics, such as the AI approach they use, the types of fish and diseases they cover. Based 

on this, we propose an intelligent system for full fish disease diagnosis, which combines traditional 

ES approach with pattern matching or ML approach for image-based diagnoses. 

The organization of the paper is as follows: section 2 presents the collection of the works that 

utilize expert systems for fish disease diagnosis, section 3 constitutes of a small description of the 

development of own expert system and section 4 concludes the paper. 

 

Figure 1. Basic expert system architecture. 

2. Background Knowledge 

2.1.  Knowledge representation in expert systems 

An expert system consists of three main units, the knowledge base (KB), the inference engine 

(IE) and the database (DB) (Figure 1). KB contains the expert knowledge, represented via a knowledge 

representation (KR) language, as expressions of the KR language. IE uses the expressions in KB to 

make inferences, i.e., to produce new facts. DB is a storage, where initial facts about a problem and 

produced (new) facts by the IE are stored. There are several KR languages used in expert systems 

[18,19]. The most common in expert systems for fish disease diagnosis are presented in this section. 
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2.1.1. Production rules 

Production rules is the oldest and most popular KR language used in expert systems and the 

one that characterizes them. Their popularity comes from the fact that they are natural 

representations of human knowledge, which makes them easy to comprehend the represented 

knowledge. Fish disease domain is one of those where rule-based expert systems are used for 

diagnoses. In such cases, each rule represents a knowledge that reflects the way an expert 

(ichthyologist) makes diagnoses: from various evidence (e.g., clinical symptoms, fish images and test 

results) he/she makes a hypothesis (diagnosis) about the disease of a fish. The basic structure of a rule 

is the following: 

if <antecedents> 

then <consequence> 

where <antecedents> represents evidence and <consequence> the hypothesis. The antecedents of a 

rule are connected between each other with logical connectives, commonly with “and”. When the 
antecedents of a rule hold (or observed), the consequence is derived, and the rule is said to be fired. 

Rules represent general knowledge regarding a domain. The following is an example rule: 

R1: if fish-body is pale and fish-belly is swollen and fish-poop is no 

   then fish-disease is dropsy 

In such systems, there are two basic inference strategies: forward chaining and backward chaining. 

The first, also called bottom-up, is more common and natural for such cases; starts from the evidence 

(known facts in the DB) and goes towards the hypotheses, to find the disease(s). Technically, IE finds 

the rules that can fire and produces their conclusions, until a fish disease conclusion is reached. The 

second, also called top-down, starts from the hypotheses (conclusions) and tries to reach the evidence 

(known facts). Technically, IE finds rules that have a conclusion related to a disease and examines 

whether their evidence (antecedents) holds. 

The forward chaining process in a rule-based system is as follows: 

1. Initialize the database (DB) 

2. Repeat 

2.1. Find the fireable rules (conflict set) 

2.2. If there is no fireable rule, stop (failure) 

2.3. Select one of the fireable rules 

2.4. Update DB with the conclusion of the rule 

Until DB contains a solution fact 

3. Stop (success). 

2.1.2. Rules with Certainty Factors 

Given that in many situations, things are not always certain, there is need to represent that 

uncertainty in the KB. Certainty may refer to a rule itself or to evidence. Rules provided by experts 

may be not 100% certain. Certainty Factors (CFs), introduced in the expert system MYCIN [20], is an 

old, empirical, but widely used method of dealing with uncertainty in rule-based systems, especially 

in the medical domain [21]. 

CFs can take values in the interval [-1, 1], where “-1” means “totally uncertain”, “1” means 
“totally certain” and “0” means “undefined” (this is an impractical case). Usually, CFs take positive 
values. The above rule is presented below using rule CF: 

 

R1: if fish-body is pale and fish-belly is swollen and fish-poop is no 

    then fish-disease is dropsy (0.8) 

 

where CFR1 = 0.8. This means that the rule has certainty 0.8, that is when it is fired and fact “fish-

disease is dropsy” is derived, it has a certainty CF = 0.8 (out of 1.0). When using CFs, more than one 

rule having the same consequent (hypothesis), but different antecedents, may be fired. In such a case, 
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if we have two rules, R1 and R2 with certainties CFR1 and CFR2, the common consequent is derived 

with a certainty CFR1R2 calculated by the following formula (which can be used for more rules 

consecutively), given that CFR1 and CFR2 are positive: 

CFR1R2 = CFR1 + CFR2 (1- CFR1) 

In case that the truth of antecedents (evidence) is not totally certain, the certainty of the consequent 

is also reduced. For example, in the above rule, if we have the following CFs for the three antecedents, 

CF1 = 0.6, CF2 = 0.8 and CF3 = 1.0, the CF of the consequent will be calculated as follows:  

CF = CFe * CFR1, CFe = min (CF1, CF2, CF3) 

given that we have only the “and” connective in the antecedents. So, CF = min (0.6, 0.8, 1.0) * 0.8 

= 0.6 * 0.8 = 0.48. 

Although CFs can be theoretically calculated via two measures, the measure of belief MB and 

the measure of disbelief MD, in practice, due to the difficulties to calculate the required probabilities, 

a rule’s CF is given by the expert(s) during the design of RB, and CFs of the antecedents are given by 

the user(s) of the system, when is asked to input values. Alongside a value he/she is asked about how 

certain the value is. In such systems, all possible results are derived and the one with the largest CF 

is proposed as the answer. 

2.1.3. Fuzzy Logic and Rules 

Another way to represent uncertain knowledge is using aspects of fuzzy logic [22] in rules. 

Fuzzy rules are the same as normal production rules, where, apart from that only linguistic values 

are allowed for the variables in the antecedents, the values are represented as fuzzy sets. A fuzzy set 

is a set for which the relation “belongs to” has not only two values, yes (1) and no (0), but all the 
values in [0, 1], where “0” means does not belong and “1” means (fully) belongs. So, an element may 
belong to a (fuzzy) set in a degree of 0.8 (out of 1.0), which is called membership value or degree of 

membership denoted by μ. Fuzzy sets are used to represent vague expert expressions, like “very 
much”, “slight”, “little”, “medium” etc, in cases we have variables with numerical values. For 

example, in Figure 2 the fuzzy variable ‘body-wounds’ has three fuzzy (linguistic) values: ‘minor’, 
‘medium’ and ‘major’, which are represented as fuzzy sets (having a trapezoid scheme). The 
horizontal axis represents the values of “body-wounds” and the vertical the membership value. So, 
if wounds cover 37% of the fish body, this value denotes that wounds are by 0.8 ‘medium’ and by 0.4 
‘major’. 

Below is an example fuzzy rule, where S1, S2 and S3 are symptoms, D1 is a disease, and ‘slight’, 
‘little’, ‘severe’, and ‘medium-certain’ are linguistic (fuzzy) values. 

 R2: if S1 is slight and S2 is little and S3 is severe 

    then D1 is medium-certain 

 

Figure 2. Fuzzy sets as linguistic values. 
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Figure 3. Defuzzification example. 

Given that the input values of fuzzy variables are numerical, it is necessary to convert them into 

fuzzy ones, to be able to work with the rules. This is called fuzzification process. If the antecedents of 

a fuzzy rule match the facts in DB, the rule is fired. Now, firing of a rule is a different process than in 

normal rules. Some inference rule is applied to the membership values of the linguistic values of the 

antecedents of the rule, its result is applied to the consequent, and a fuzzy set of the variable of the 

consequent is produced. Again, all rules that can be fired are fired and their results (fuzzy sets) are 

combined to produce the final result, which consequently needs to be converted into a numerical 

value, to be comprehensive. For example, the shape in Figure 3 is a potential result for D1. To convert 

it into a crisp value, various methods can be used. The most common of them is the ‘centroid method’, 
which finds the ordinate of the gravity center of the shape (let say 62.5 in our case). This is called 

defuzzification process.  

 

Figure 4. Basic Fuzzy Expert System Architecture. 

Because of the above, the architecture of a fuzzy expert system is different from that of a normal 

one. It is depicted in Figure 4, where FIE is the fuzzy inference engine. When a final result is produced, 

it goes through the Defuzzification unit. Again here, more than one rule can be fired and produce 

different results. The one with the most certain value is proposed as final. The difficulty in this 

approach is the specification of the fuzzy sets, apart from the knowledge acquisition from the 

expert(s). 

2.1.4. Case-Based Representation 

Case-based reasoning (CBR) is a relatively recent KR&R method. The main idea is to store a large 

set of previous (solved) cases with their solutions in a case base (or case library) and use them to deal 

with (solve) new (similar) cases. [23,24]. 

There is no specific way for representation of stored cases. Various KR schemes can be used for 

that, like semantic nets, frames, objects, patterns, even rules; the frame or object-based representations 

dominate. So, CBR is a reasoning method rather than a representation one. 

CBR works in a way that can be represented by the so-called CBR cycle [25]:  

1. retrieve the most similar case(s) 
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2. reuse those case to create a solution 

3. revise the solution to adapt to the case 

4. retain the produced case as a new case 

Whenever, a new input case has to be dealt with, the case-based system performs an inference 

following those four phases. In the retrieval phase, the system retrieves from the case base the most 

relevant stored case(s) to the new case. In the reuse phase, a solution for the new case is created based 

on the retrieved most relevant case(s). The revise phase validates the correctness of the proposed 

solution, perhaps with the intervention of the user. Finally, the retain phase decides whether the 

knowledge learned from the solution of the new case is important enough to be incorporated into the 

system’s case base.  

Indexing is a mechanism necessary for assigning indices to stored cases to assure efficient 

retrieval of them. Several indexing methods have been used, such as checklist-based indexing, 

difference-based indexing, inductive learning methods and explanation-based techniques.  

Similarity assessing methods are also necessary for best matching case(s) retrieval. Similarity 

metrics assess the relevance of the retrieved cases to the new case. There are various such methods, 

like the nearest neighbors approach, the most used for small case bases, and induction-based 

methods.  

Quite often the solution contained in the retrieved case(s) is adapted to meet the requirements 

of the new case. Usual adaptation methods are substitution, transformation, and derivational replay. 

For the adaptation task, domain knowledge, usually in the form of rules, is employed. Incorporation 

of knowledge during the operation of a case-based system enhances its reasoning capabilities. 

Case-based representation and reasoning has its own advantages and disadvantages compared 

to rule-based representation and reasoning [26]. 

2.2. Neural Networks 

Apart from the expert system approach, also the machine learning approach (ML) is used in 

classification problems [27]. The ML approach more often used for fish disease diagnosis is artificial 

neural networks (ANNs). An artificial neural network (or simply neural net) is a parallel and 

distributed structure (see Figure 6). A neural net consists of several interconnected nodes, called 

neurons. There are weights attached to the connections between neurons: each connection from a 

neuron uj to a neuron ui is associated with a numerical weight wi,j, which represents the influence of 

uj to ui. Each neuron has also a weight attached to itself, called the bias. Each neuron acts as a local 

processor, which computes its output (connection) (ui) based on the weighted sum of (the values of) 

its input connections (u1, u2, …, un) and an activation function f (see Figure 5). The activation 

function may be of various types: a threshold, a sigmoid function, the softmax, the relu etc. The 

connection weights and the structure of a neural net define its behavior [28]. 

 

Figure 5. Computational Model of Neuron. 
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Figure 6. A two-layer feedforward neural network. 

The most popular neural net architecture is the feedforward network . Feedforward neural 

networks (FNNs) are nets that do not contain cycles. They are usually organized in layers. So, we 

distinguish between the input layer, intermediate layer(s) and output layer (see Figure 6). Input layer 

consists of input neurons (illustrated as rectangles in Figure 6), which are pseudo-neurons, are used 

to transfer externally given values to neurons to further layer(s), do not perform any computation 

and are taken as the inputs of the network. The outputs of the neurons at the output layer are taken 

as the outputs of the network. Intermediate neurons are used for intermediate computations and are 

often called hidden neurons. 

A neural net can store empirical knowledge and make some kind of inference. Empirical 

knowledge comes in the form of training examples. Each example consists of input values and the 

corresponding correct output. They are used to ‘train’ the net, i.e., to calculate the weights so that, the 

training examples are correctly classified (i.e., the combination of the inputs in each example 

produces the specified output). This is called the supervised learning model (the other is called the 

unsupervised learning model, where no correct outputs are specified). There are several training 

algorithms for supervised learning. A well-known such training (or learning) algorithm is back-

propagation [29]. Thus, neural nets are representatives of empirical machine learning systems. 

Empirical learning usually requires a large, but possibly incomplete, training set from which they can 

generalize. They may also need some domain knowledge such as information regarding the most 

relevant features of the training examples as well as the values they can take. 

Knowledge can be represented in a neural net via its topology and its weights if some semantics 

is attached to neurons and the activation values. For example, semantics may include associations 

between concepts of the problem and neurons of the network. 

Neural networks of more than two hidden layers and large number of neurons are called deep 

neural networks (DNNs). There have been many types of DNNs, depending on their architecture and 

the domain they apply. For example, CNN is a type of DNN that is very effective in image-based 

recognition, and consists of many different types of layers, like convolutional layer, max pooling layer 

etc [30]. Also, more effective learning algorithms, like Adam [31], are used in such cases. 

Neural networks have their own advantages and disadvantages compared to rule-based 

representation and reasoning. 

2.3. Fish Diseases and Diagnostic Parameters 

Fish diseases can be distinguished in the following categories [32]: 

• Parasitic 

• Bacterial 

• Viral 

• Fungal 

Parasitic infections are caused by various parasites, including protozoans, monogeneans, and 

cestodes. Symptoms can include skin and gill irritation, weight loss, and poor growth. Bacterial 

infections are caused by various bacteria, including Aeromonas, Pseudomonas, Vibrio, and 
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Edwardsiella. Symptoms can include ulcers, fin and tail rot, and swollen eyes. Viral infections are 

caused by viruses such as Infectious Hematopoietic Necrosis Virus (IHNV), Viral Hemorrhagic 

Septicemia Virus (VHSV), and Infectious Pancreatic Necrosis Virus (IPNV). Symptoms can include 

lethargy, abnormal swimming behavior, and hemorrhaging. Finally, fungal infections are caused by 

various fungi, including Saprolegnia and Achlya. Symptoms can include white or gray patches on 

the skin or fins. 

Diagnosis of fish diseases is based on several diagnostic parameters [33] that could be 

categorized as follows:  

• Environmental parameters 

• External clinical signs 

• Physical signs 

• Behavioral signs 

• Internal clinical signs 

• Microscopic image findings 

• Molecular test results 

Environmental conditions refer to parameters like water temperature, water quality and growth 

phase of fish, which is mainly related to the weight of fish. External or visual clinical signs concern 

situations that are eye observable. We can distinguish them in physical and behavioral. Physical 

symptoms of fish disease can include changes in skin color, ulcers or lesions on the skin, fin rot or 

other damage to the fins, and abnormal growths or swellings. Behavioral symptoms refer to changes, 

like decreased activity, loss of appetite, hiding or remaining in one area of the tank, and abnormal 

swimming patterns. Internal signs are more difficult to diagnose, and may include changes in the 

size, shape or color of internal organs, or the presence of abnormal fluids or growths within the fish's 

body. Dissection of the fish is required to trace such signs. Microscopic examination of fish tissues or 

fluids can provide important diagnostic information in the identification of fish diseases. When 

examining tissues or fluids under a microscope, veterinary professionals or fish health experts can 

look for signs of infection or inflammation, such as the presence of bacteria, fungi, parasites, or 

abnormal cells. Molecular diagnostic tests can help to identify the specific pathogens causing fish 

disease by analyzing DNA or RNA sequences. These tests can be very accurate and can help to guide 

treatment decisions. So, a complete diagnosis of a fish disease may require taking into account all the 

above parameters. 

Also, systems can use two types of data for specifying values of parameters: 

• Image data 

• Non-image data 

Image data are mainly used to get values for external behavioral and internal clinical signs. 

3. Expert Systems for Farmed Fish Disease Diagnosis 

A variety of expert systems have been developed since last century, to help fish farmers deal 

with fish diseases. Those systems are often able to achieve disease diagnosis and treatment in time, 

as well as provide consultancy for prevention of further fish infection. Most of them use traditional 

expert system approach methods. In this section, a collection of works utilizing expert systems for 

fish disease diagnosis and treatment in the last 20 years are presented. We present them in groups of 

ESs that use the same or similar AI approaches. 

3.1. Pure rule-based systems 

Fish-Expert [34] is a web-based expert system for fish disease diagnosis which can diagnose 

about 126 kinds of fish diseases related to nine primary freshwater fish. It consists of the traditional 

modules of an expert systems, such as a knowledge base and an inference engine, as well as a 

database (where material about symptoms, diseases, microscopic examinations etc is stored), a 

knowledge elicitation tool, an explanation module, and a fish farming information system. The online 

fish farming information system provides information about fish farming and is being constantly 

updated. The knowledge base contains the rules which are matched with the symptoms to identify 
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the disease and treatment and the inference process is responsible for querying the system. 

Knowledge was acquired by using questionnaires (sent to 130 fish farmers) and interviewing 35 fish 

disease experts. Rules diagnose diseases and propose treatments. Finally, a multimedia interface 

allows the users to choose text and images to describe fish symptoms.  

In [35], the authors created an expert system for diagnosis diseases of the freshwater Betta fish. 

They use a forward chaining rule-based approach, where rules were produced from a disease-

symptoms association table completed by experts in the field and related sources of knowledge, 

which afterwards was converted in a decision tree. Only external clinical signs are considered. The 

system interface includes a cultivator menu, where the cultivator reports the fish problem for which 

consultation by the system is needed, and a disease menu, where information about Betta fish 

diseases is displayed as well as case of users that visited the system. No evaluation of the system is 

reported. 

The system in [36] uses a forward chaining rule-based approach for Catfish disease diagnosis. 

Again, a disease-symptoms association table is used for extracting production rules. The system 

provides an interface for problem data input and a result display after diagnosis is performed. Only 

external clinical signs are considered. No evaluation of the system is reported. 

3.2. Systems using CFs 

FIDSS (Fish Intelligent Decision Support System) is dealt with in [37], where the phases of its 

development are presented in detail. The final representation scheme is rules with CFs in their 

antecedents, where CFs are calculated as the posterior diagnostic probabilities. Each CF denotes the 

significance of corresponding antecedent in drawing the conclusion (consequent) of the rule. Also, 

each rule is assigned such a CF. Probabilities were calculated based on 300 fish clinical records. A 

hybrid reasoning mechanism combining forward, and backward reasoning was adapted at the 

intermediate stage of the system development. A set of suspicious diseases was specified through 

forward chaining and a set of suspicious symptoms through backward chaining. A decision was 

made after comparing and matching the inputted symptoms with the suspicious ones. Finally, 

parsimonious covering theory was adapted as the core reasoning mechanism. 

Another example of an expert system based on CFs method is [38]. It does not use rules but 

works directly with CFs. Symptoms are associated with diseases of Catfish and a weight is associated 

with each symptom, representing its influence on the associated diseases. 16 symptoms and 7 

diseases are considered in total. The user is asked to specify the symptoms and the system calculates 

the CFs of all affected diseases. The disease with the larger CF is the most certain. The MYCIN 

calculation formulas are used. Three example cases are provided. However, there are a few problems 

with this paper. First, the provided CFs (weights) have only two different values (0.7, 0.8). Second, 

same weight of each symptom is considered for all diseases, which may be not reasonable. Third, 

there are wrong calculations in the paper.  

Koi’s fish disease diagnosis is the subject of the system presented in [39]. Rules with CFs are 

used for knowledge representation and reasoning. A disease-symptoms association table is used for 

extracting rules. Weights of the symptoms were specified by numerical interpretation of the uncertain 

terms (e.g. not probably, maybe not, probably, almost certainly) used by the experts during 

knowledge elicitation and considered as CFs of corresponding rule antecedents. Also, rule CFs were 

assigned in the same way. Only external signs are considered. An interface with five menus was 

constructed. The most important are: information menu (refers to diseases and symptoms), input 

menu (for providing current case data) and diagnosis menu (displays diagnosis result). The users can 

complete an input form by choosing the symptoms of the koi fish and answering some questions 

regarding the symptoms. After the validation is over, a solution is presented along with a level of 

confidence. It treats six diseases. No evaluation of the system is reported. 

3.3. Systems using fuzzy logic 

Fish-Vet is a diagnosis system for multiple fish diseases [40]. It uses a combination of rules and 

fuzzy logic for making diagnoses. The user selects species, water type and the symptoms observed 
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in the fish. A diagnosis is run which results in a list of candidate diseases, where each disease is given 

a number indicating its distance from the most likely disease. This is performed by the rule-based 

component. All symptoms related to the diseases in the list are presented to the user and the user 

may reconsider his/her input symptoms. This is performed by the fuzzy logic module, which expands 

the list of symptoms via fuzzy relations. This is repeated 2-3 times until the second most likely 

candidate disease has a large enough distance from the most likely one. About 40 experts from 17 

countries were used for the construction of the information and the knowledge included in the 

system. Authors admit that due to the generality of the system, its results are not always valid. 

The system in [41] uses fuzzy rules for making decisions about Discus fish diseases. It deals with 

9 diseases and 5 external clinical symptoms. Design of representation and reasoning is based on two 

tables. The first is a disease-symptoms association table, where symptoms are distinguished in three 

physical and two behavioral signs. In the second table, each symptom is associated with three 

linguistic values corresponding to a measurable interval related to some symptoms. For example, 

symptom P2 is associated with the linguistic values: slight/some/severe, with corresponding “range 
values”: 0-16/15-40/35-60, and “measurements”: “fin section”/”the head and gills sections”/”whole 
body and bleeding”. The linguistic values are assigned corresponding fuzzy sets and are used in the 

designed rules. Finally, 243 fuzzy rules were generated. The system architecture follows the standard 

one (Figure 2). The system was evaluated against experts using 31 images of diseased Discus fish. 

The expert system detected correctly the 28 cases, which results in an 90.32% accuracy. 

3.4. Systems using case-based representation 

The system in [42], although is hybrid, we classify it as a case-based reasoning system, given that 

CBR is its main framework, which matches its title too. Cases are created as two matrices product. 

The one matrix (5X8) concerns five diseases and eight symptoms, and the other (8X5) concerns the 

symptoms and their weights in diagnosing the diseases. The system also includes a strong case index 

mechanism. A rule base is used for case similarity checking. The symptoms mainly concern external 

clinical signs. No specific fish is mentioned. No evaluation of the system is reported. 

The paper [43] presents an Android-based expert system for fish disease diagnosis, implemented 

in SQLite. It uses a case-based diagnostic reasoning combined with expert symptom scoring method. 

Both methods are used after the input of symptoms and their results are compared. If the results are 

different, the system shows the symptoms of both diseases to the user and asks for re-entering 

symptoms, until common results are produced. If the results are the same, then the case similarity 

metric is checked: its value should be between 0.65 and 0.95. If it is not, the user is asked either to 

accept it, despite the low similarity, or re-enter symptoms. 

A pure CBR system is used in [44] for fish disease diagnosis. Knowledge elicited from experts 

and other sources were formulated in 10 cases concerning 6 diseases and 15 symptoms, mainly 

concerning external clinical signs, and considered as the golden cases. Euclidean distance metric is 

used for estimating case similarities. The system was evaluated with a set of 40 new cases and 

achieved an accuracy of 95% compared with diagnosis results of an expert. There is no reference to 

specific fish. The case base looks quite simplistic 

3.5. Systems based on Neural Networks 

Artificial neural networks can also help in the development of an expert system for fish disease 

diagnosis, as in the case of [45]. Two feedforward neural networks (NNs) were designed and trained 

using data provided by a University Laboratory in Brazil. Data concerned 12 bacterial diseases (43 

external and internal clinical signs) and 8 protozoan diseases (28 external and internal clinical signs). 

The first NN deals with bacterial diseases, has 43 inputs, 20 neurons in the hidden layer with sigmoid 

activation function, and 12 neurons in the output layer with linear activation function. The second 

deals with protozoan diseases, has 28 inputs, 22 sigmoid neurons in the hidden layer and 8 neurons 

with linear activation in the output layer. Thirty-one records of diagnosed diseases caused by bacteria 

were used for training (80%) and testing (20%) of the bacteria NN. Similarly, thirty records of 
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diagnosed diseases caused by bacteria were used for training (80%) and testing (20%) of the 

protozoan NN. Both NNs performed a 97% accuracy on test set. 

The system in [46], also uses a neural network for fish disease diagnosis. The basic idea here is 

that old cases of fish disease are used to train the neural network, which then in turn makes the 

disease diagnosis. Firstly, the expert’s diagnostic instances are stored and organized. Then, the 

learning algorithm is called to acquire important knowledge for the knowledge base. Each time new 

instances arrive, they are automatically studied and the knowledge base is updated. The users enter 

the symptoms that they observe on the fish and select the inference mechanism module. The inference 

mechanism queries the knowledge base and calculates data. And finally, the results of the diagnosis 

are displayed by the Human Machine Interface. 

3.6. Systems using hybrid representations 

SEDPA is an expert system for diagnosis of eel diseases, based on a hybrid representation and 

reasoning scheme [47]. The scheme combines ATN (Augmented Transition Net), a FLC (Fuzzy Logic 

Controller) and the DST (Dempster-Shafer Theory). ATN access data stored in the domain database. It 

allows calculation of relative frequencies between pathologies, associated with the observed 

lesions/symptoms. FLC has two input fuzzy sets: the minimum relative frequency (MRF) for each 

symptom and the incidence of each one of the pathologies, and one output: the categorical belief level that 

one or more of the pathologies are responsible for the disease. SEDPA was evaluated against experts and 

its success rate was higher than human experts’ rates. However, it cannot provide explanations. 

In [48], a web-based expert system for diagnosis and treatment of crab diseases is presented. It 

uses an expert system shell, namely XF6.2, which facilitates knowledge acquisition from experts and 

offers a hybrid knowledge representation method, namely object-oriented knowledge body strategy. 

This combines rule-based and frame-based/object-based representation and reasoning. It provides a 

friendly user interface. 

A grass carp disease diagnosis expert system based on a fuzzy neural network (FNN) is 

presented in [49]. The system takes advantage of fuzzy logic representational capabilities and 

acquisition methods, as well as the reasoning mechanism, and combines them with the strong self-

learning ability of neural networks. The fuzzy neural network consists of three modules. The first one 

is a module where values of disease symptoms are converted into fuzzy sets (values) represented by 

corresponding membership values. In other words, it is a fuzzification module. This module consists 

of two layers, an input layer and a quantitative input layer. The nodes of the first input layer represent 

the input variables which in turn represent the 10 symptoms, while the aim of the second one is to 

blur the input variables, that is to assign membership values. The second module, a learning 

reasoning module which is responsible for the diagnosis, consists of a three layers of back 

propagation neural network. These three layers are an input layer, where 25 membership values of 

the fuzzy module output are used as inputs, a hidden layer, having smaller number of nodes, and an 

output layer, having 7 neurons corresponding to 7 diseases, where the membership values of the 

diseases are returned as outputs. Finally, the defuzzification module compares the largest 

membership value of disease with a threshold and if this value is greater than the threshold, the 

disease is diagnosed. It delas with 25 symptoms and 7 diseases. Symptoms include environmental, 

external, and internal symptoms. 

3.7. Other systems 

The system presented in [50] does not provide any explicit information about the technique(s) used 

to make initial diagnosis, so we cannot classify it according to that. It works in two stages. In the first stage, 

a diagnosis is made based on environmental, external, and internal clinical signs, resulting in a set of 

candidate disease(s). If the first stage sub-system suggests so, diagnosis proceeds to the second stage, 

where a final diagnosis is made based on microscopic image processing. It also provides suitable 

treatment method and guidance for drug administration. The system deals with 14 diseases of olive 

flounder fish, which are distinguished in 5 bacterial, 3 parasitic and 6 viral diseases. Only diagnosis of 

parasitic diseases may need to pass in the second stage. No evaluation is reported in the paper. 
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In Table 1, we present the above expert systems in terms of their technical and non-technical 

characteristics, to be able to make a comparison. NS means “not specified”. 

Table 1. Expert Systems for Fish Disease Diagnosis from 2000 to 2022. 

ES Method Explanation Image 

Process 

Water 

type 

Parameters Diseases Fish 

type 

Treat-

ment 

Evalua-

tion 

Fish-Vet 

[40], 

2000 

Rules 

and 

fuzzy 

logic 

No No NS External, 

Internal 

NS General No No 

Fish-

Expert 

[34], 

2002 

Rules Yes No Fresh All except 

Molecular 

126 (NS) Nine fish 

(NS) 

Yes No 

SEDPA 

[47], 

2005 

Hybrid 

(ATN, 

Fuzzy 

logic, 

DST) 

No No Both External NS Eel No Yes 

Crab-

Expert: 

[48], 

2006 

Hybrid 

(rules 

and 

objects) 

No No Marine All except 

molecular 

NS Crab Yes No 

[42], 

2009 

CBR 

(with 

rules) 

No No NS External Five General No No 

FIDSS: 

[37], 

2009 

Rules 

with CFs 

No No NS NS NS General No No 

[45], 

2011 

Neural 

Net 

No No NS NS Bacterial, 

Protozoan 

General No Yes 

[50], 

2011 

Not 

explicitly 

specified 

No Yes NS All except 

molecular 

Bacterial, 

Parasitic, 

Viral 

Olive 

Flounder 

Yes No 

[49], 

2012 

Hybrid 

(FNN) 

No No Fresh 10 

symptoms 

(NS) 

7 diseases Grass 

Carp 

No No 

[46], 

2013 

Neural 

Net 

No No NS 8 symptom 

classes 

8 diseases General No Yes 

[41], 

2015 

Fuzzy 

rules 

No No Fresh External 9 diseases Discus No Yes 

[43], 

2016 

Case-

Based 

No No NS NS NS NS No No 

[38], 

2017 

Rules 

with CFs 

No No Fresh External 

(16) 

7 diseases Catfish No No 

[39], 

2018 

Rules 

with CFs 

Yes No Fresh External 

(15) 

6 diseases Koi’s 
fish 

No No 

[44], 

2021 

CBR No No NS External 

(15) 

6 diseases General No Yes 

[35], 

2021 

Rules No No Fresh External 

(15) 

7 

diseases: 

Parasitic, 

Bacterial, 

Fungal 

Betta 

fish 

No No 

[36], 

2022 

Rules Yes No Fresh External 

(27) 

Bacterial, 

Parasitic 

Catfish No No 

3.8. Discussion 

From the above overview and Table 1 we can infer the following: 

• Rules remain the basic AI method for fish disease diagnosis, completed with CFs or combined 

with other methods, like fuzzy logic or CBR. This is due to the fact that full fish diagnosis data 

are not available, and experts remain the main source for knowledge acquisition.  
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• In systems that use CFs, authors usually consider the weights (the influence of a symptom in 

deriving the conclusion) of symptoms as CFs. However, this is not the right semantics of CFs (a 

weight does not denote the certainty of a symptom) and may lead to wrong results. On the other 

hand, the certainty of a symptom is given on the fly, when the system is running, not in advance. 

• Also, the way which fuzzy values are produced in most of the systems that use fuzzy logic does 

not seem to be proper. For example, in [41], fuzzy values of “slight”, “some” and “severe” are 
used for a parameter called “wounds on body”. To be able to construct corresponding fuzzy 

sets, the authors consider three “artificially” produced value ranges: “0-16”, “15-40” and “35-60” 
that correspond to the “measurements”: “fin section”, “the head and gills section”, and “whole 
body and bleeding” respectively, which are not really countable.  

• Only three systems offer an explanation mechanism, all using a rule-based approach. Several of 

the systems, however, offer information about the diseases (symptoms, images), but they do not 

explain the current decision chain. 

• Only one system includes image processing for identifying symptoms, but it does it only for 

microscopic image cases. 

• Most of the systems consider a limited number of symptoms for making diagnoses; they usually 

consider only external symptoms, which lead to quite approximate conclusions. 

• None of them considers modern diagnostic methods for almost certain diagnoses, like molecular 

techniques. 

• None of them seems to make diagnoses for all disease categories. Most common categories are 

bacterial and parasitic diseases. 

• More than half systems are dedicated to a specific fish. This makes their diagnoses more accurate. 

All of them are freshwater fish, due to the Chinese origination of the corresponding research. 

• Most of them do not provide a treatment proposal. 

• Most of them have not been systematically evaluated. 

4. Proposed system architecture 

The “Fish AI” project (www.fishai.upatras.gr) is a collaboration of three Greek universities and 
two fish farms aiming at the improvement of the competitiveness of Greek fish farming through 

innovative actions to the whole production process. An intelligent system for the diagnosis of fish 

diseases in Mediterranean fish farms is under development, which will provide simultaneous 

response to the issues of treatment and drug information. The system deals with the diseases of the 

two majors farmed fish species: sea bass and sea bream [51,52].  

Four experts have been interrogated for knowledge acquisition and other sources have been 

studied. Based on knowledge acquisition results and the above overview of expert systems, we 

present here the proposed architecture (Figure 7) and the diagnosis process flow (Figure 8) of our 

system. 

 

Figure 7. Proposed Expert System Architecture. 
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According to the architecture in Figure 7, our system consists of six units: Inference Engine (IE), 

Knowledge Base (KB), Database (DB), Explanation Mechanism (EM), Image Processing Unit (IPU) 

and Information System (IS). KB consists of rules with CFs (each rule has a CF provided by the 

experts). DB is used for storing data given by the user, results (intermediate or final) produced by the 

IE using the rules in KB, and results from IPU. EM gives explanations about the reasoning that 

reached a diagnosis, whereas IPU uses image processing techniques to extract values for internal or 

external symptoms from corresponding fish images, as well as results from microscopic images. 

Image matching techniques or ML techniques could be used here. IS is an e-learning system that 

includes material about fish diseases (diseases, symptoms, images, decision trees), as well as stuff for 

learning the use of the expert system. 

 

Figure 8. The diagnosis process flowchart. 
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In Figure 8, the flowchart of the fish disease diagnosis process to be implemented by the expert 

system is presented. Diagnosis is made in five stages (levels). Each stage gives an increased certainty 

diagnosis. Each level diagnosis is based on an increased number of symptoms or parameters. So, a 

fish farm can use it as far as its technical and human resources allow. 

At the first level, only environmental parameters, like water temperature or fish growth phase 

(represented by its weight class), are considered. These parameters can exclude some of the possible 

diseases; so, the rest are provided as its output, ordered according to their CFs. It may happen that it 

is adequate in some cases. If it is not, then the process goes to the next level, where external symptoms 

of the fish are considered. If an image of the fish concerning external features (like body, head, tail 

etc) is available, then IP unit takes over and produces values for the involved parameters. Otherwise, 

the human-user gives those values by observation. After that, a revised list of possible diseases is 

presented to the user. If the result is still not satisfying, e.g., because more than one disease is 

diagnosed and/or achieved CFs have not adequately high values, the system (selected by the human-

user) proceeds to the third level.  

At the third level, internal symptoms are used for diagnosis. If an image of the fish concerning 

internal features (image of a dissected fish) is available, then IP unit takes over and produces values 

for the involved parameters. Otherwise, the human-user gives those values by observation. After 

that, a third revised list of possible diseases is presented to the user. If the result is still not satisfying, 

e.g., because more than one disease is diagnosed, and/or achieved CFs have not adequately high 

values, the system (selected by the human-user) proceeds to the fourth level. 

The decision of the user to proceed to the fourth level are based on shortage of resources 

(microscope) or urgency or cost. At the fourth level, microscopic result is considered too, either using 

the IP unit or the opinion of an expert-user (observing through the microscope). This, depending on 

the findings, may lead to the last level, where final diagnosis is made through a molecular test (e.g., 

PCR). A factor for proceeding or not to the last level is cost in time and money. 

5. Conclusions 

This paper presents an overview of expert systems for farmed fish disease diagnosis and 

treatment. The overview specifies important technical and non-technical characteristics of the 

existing systems. Based on them, we propose an expert system architecture that includes all 

components necessary for complete diagnoses of fish diseases. So, it can handle symptoms related to 

both image and non-image data. Symptoms related to non-image data are explored by the user-expert 

of the system. Symptoms related to image data can be alternatively explored either by the user-expert 

or by an image processing unit that uses pattern matching or machine learning techniques. Also, the 

diagnosis process is level wise, and proceeds from low certainty decisions (based on environmental 

parameters) to higher certainty ones, going through four consecutive decision levels. At each level 

more parameters/symptoms are considered (from clinical to cellular and then to molecular). Rules 

with some kind of CFs is the proposed knowledge representation and reasoning scheme. Diagnosis 

process can stop at any level, where a list of possible diseases is displayed to the user, ordered by 

their CFs, given the satisfiability of the user and/or the shortage of further evidence. Explanations 

may be provided at any stage of the reasoning process. 

Our further work consists in a) a more detailed specification of the architecture and the diagnosis 

process, and b) the implementation of the resulted system and diagnosis process for sea bass and sea 

bream. 
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