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Abstract: Electrical power quality is one of the main elements in power generation systems. At
the same time, it is one of the most significant challenges regarding stability and reliability. Due
to different switching devices in this type of architecture, different kinds of power generators,
and non-linear loads are used for different industrial processes. As a result of this, the need to
classify and analyze Power quality disturbance (PQD) to prevent and analyze the degradation of
the system reliability affected by the non-linear and non-stationary oscillatory nature. This paper
presents A Novel Mul-titasking Deep Neural Network (MDL) for the Classification and Analysis of
Multiple Electrical Disturbances. The characteristics are extracted with a specialized and adaptive
methodology for non-stationary signals, Empirical Mode Decomposition (EMD). The methodology’s
design, devel-opment, and various performance tests are carried out with 28 different difficulty
levels, such as severity, disturbance duration time, and noise in the 20 dB to 60 dB signal range. MDL
was devel-oped with a diverse data set in difficulty and noise, with a quantity of 4500 records of
different samples of multiple electrical disturbances. The analysis and classification methodology has
an average accuracy percentage of 95% with multiple disturbances. In addition, an average accuracy
percentage of 90% in analyzing important signal aspects for studying electrical power quality such as
crest factor, Per Unit voltage analysis, Short Term Flicker Perceptibility (Pst), and Total Harmonic
Distortion (THD), among others.

Keywords: artificial intelligence; neural networks; deep learning; multitasking learning; solar
photovoltaic; smart grids; multiple electrical disturbances; power quality

1. Introduction

Power generation systems comprise different levels: generation, distribution, transmission, and
consumption [1]. Electrical energy monitoring, analysis, and quality are essential at all these levels
and the main challenges within these distribution, transmission, and consumption infrastructures.
Monitoring and analyzing energy quality in real-time is essential to subsequently apply corresponding
mitigation actions and not interrupt industrial or critical processes [2]. According to IEEE 1159 standard
and European EN 50160 standard, electromagnetic phenomena that disturb electrical power quality
in generation systems are called power quality phenomena or Power Quality Disturbances (PQDs).
These two documents define the physical properties and characteristics of the PQDs and, in simple
terms, define the PQDs as the deviation of voltage and current from their ideal sinusoidal shape. The
intrinsic characteristics of these phenomena are attributed to elements such as intermittent power
flow caused by the use of maximum power point tracking control and harmonic current injections
caused by various power converters using type control techniques. With the introduction of necessary
elements in the industry 4.0 paradigm, the internet of things, and automatic manufacturing systems in
these paradigms, many power converters based on high-frequency switching power electronic devices
are necessary [3]. These phenomena or deviations severely affect the reliability and interoperability of
industrial processes and electronic equipment. The negative impacts are diverse, including economic
losses for the industries, such as effects on the distribution architecture and impact on the devices that
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consume the generated energy. The power quality problem has become increasingly prominent, so
the main task is to guarantee voltage stability in power generation and distribution systems [4]. In
this context, guaranteeing a high-quality power supply has become one of the tasks to be resolved
urgently [5]. The architectures where the quality of electric power is most unstable are in microgrids
because these types of schemes often use renewable distributed generators, which depend on natural
resources[6]. Figure 1 shows an example of the architecture of microgrids.

Point of common 
coupling (PCC)

Control 
unit

Energy 
management 
system

Storage 
systemsLinear 

loads

Wind turbines PV panels
Fuel cell

Non-linear 
loads

Figure 1. Smart microgrid architecture.

Power quality in microgrids is a critical issue as it directly affects the efficiency and reliability
of electricity supply [7]. Microgrids are designed to operate independently by integrating multiple
types of distributed power generators, such as solar and wind, and storage systems with batteries and
sometimes connected to the main grid [8]. Ensuring high power quality in a smart microgrid requires
analyzing, quantifying, and monitoring the voltage signal, and the subsequent task of controlling and
compensating for disturbances is necessary. The nature of microgrids as well as electrical disturbances,
is stochastic [9]. PQDs not only occur individually but also occur in multiple or triggered manners .
That is, it is common for frequency and voltage effects to occur jointly and randomly. The appearance
of new combinations of PQDs means that monitoring and analysis schemes must be able to adapt
and process new behaviors concerning already-known information [10]. As a result of this need,
artificial intelligence has played an essential role in classifying and analyzing multiple PQDs. The
methodologies proposed over the years have been diverse and innovative in feature extraction,
classification strategies, difficulty levels, and learning methodologies. However, most of them face
the dilemma of the stochastic and random behavior of PQDs. This work was carried out in the study,
analysis, design, and development of a methodology necessary for classifying and analyzing the
different electrical disturbances. The quantification of the electrical disturbance is also performed to
study the severity of the impact of electrical disturbances on the quality of electric power and facilitate
studies in electrical energy. The main contributions of this work are:

• This paper presents a novel multitasking deep learning model for classifying and quantification
multiple electrical disturbances.

• This study proof how deep multitasking learning is an excellent model for solving the challenge
of quantitative analysis and classification of multiple electrical disturbances without the level of
complexity or noise in the signal being a problem.
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• Graphs are shown where the assessment of the quality of electrical power with electrical
disturbance can be observed. This way, assessing the quality and impact of linear and linear
loads is simpler.

• The extraction of characteristics is proposed using an adaptive oscillatory methodology. Due to
the random nature of the electrical disturbances, proof how using traditional strategies presented
in other articles is ineffective.

• The development and testing were conducted with 29 electrical disturbances, from single
disturbances to several simultaneous electrical disturbances, with noise levels ranging from 20
dB to 50 dB.

• The development of additional tests performed on an island network with a photovoltaic
system and high-switching elements will be described in future sections. In addition, electrical
disturbances of all 29 levels with noise levels between 20 dB and 50 dB were constantly injected.

The organization of the article is divided into: Section 1 Introduction, Section 2 Related Works
present briefly reviews the main contributions and methodologies proposed by several authors in
monitoring and processing of electrical disturbances. Section 3 Theoretical Background, Section 4
Materials and Methods, Section 5 Analysis and Results and Section 6 Conclusions.

2. Related Works

The Table 1 presents some relevant contributions in aspects such as feature extraction methodology
and signal classification methodology. Shows a great diversity of methodologies but, at the same
time, a clear trend for the classification of electrical disturbances. Phases such as the extraction of
signal characteristics, classification methodologies, and the type of output of the neural network are
detected in these contributions. Within the first phase of feature extraction, researchers traditionally use
strategies such as Discrete Wavelet Transform, Hilbert Transform, S-Transform, power quality indices,
statistical signal characteristics, deep neural network layers, discrete Fourier Transform, Fast Fourier,
Etc. However, they are good strategies for working with signals, analyzing, and extracting information.
PQDs possess an intrinsic nature of behaving as non-linear and non-stationary signals. Due to this, the
methodology for extracting characteristics is a vital phase for the algorithm because it will be the input
values of our signal analyzer and classifier algorithm. The Discrete Wavelet Transform (DWT) is based
on wavelets, which are mathematical functions that efficiently represent the characteristics of a signal.
The Wavelet Transform (WT) extracts information in time and frequency domains, suitable for dynamic
signals, but it needs help when the data is noisy; its level of precision drops considerably. Discrete
Fourier Transform (DFT) and Short Time Fourier Transform (STFT) are elements of low computational
consumption, but they have problems analyzing and detecting frequency phenomena. Stockwell
Transform (St) is a combination between STFT and WT; it has a better extraction and characterization of
the signals; however, it is a redundant representation of the time-frequency domain, and its processing
time is longer if the sampling time increases. Using statistical strategies or power quality indices as
important signal characteristics is a good strategy. However, the learning algorithm needs precise
characteristics of the types of signals, and these types of quantifiable values can have a considerable
level of variability between types of signals. In addition, feature extraction methodologies often
generate information that can cause problems due to the amount of information generated that is
only sometimes significant; as a result, multiple authors implement algorithms such as Principal
Component Analysis, LDA, or metaheuristic algorithms. Due to the nature of electrical disturbances
being non-linear and non-stationary signals, the methodology becomes more complex and, to some
extent, with overfitting and precision problems.
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Table 1. Comparison of methodologies in multiple electrical disturbances.

Paper Year Feature extraction methodology Signal classification Methodology

[11] 2018 Initial layers in the neural network Deep neural network

[12] 2019
One-dimensional convolutional,
pooling, and batch normalization
layers to capture multi-scale features

Closed-loop deep-learning method

[13] 2019
Empirical wavelet Transform-based
adaptive filtering technique

Multiclass support vector machine
(SVM)

[14] 2019
Root Mean Square, Skewness,
Range, Kurtosis

Improved Principal Component
Analysis (IPCA) and 1-Dimensional
Convolution Neural Network
(1-D-CNN)

[15] 2020 Initial layers in the neural network

Long Short Term Memory (LSTM),
Convolutional Neural Networks
(CNN), Convolutional Neural
Networks Long Short Term Memory
(CNN-LSTM), and CNN-LSTM

[16] 2020
Global power quality indices
(GPQIs)

Cluster analysis (CA)

[17] 2021 Stockwell Transform Extreme Learning Machine (ELM)

[18] 2021 Discrete Wavelet Transform
Model assembled with Logistic
Regression (LR), Naïve Bayes, and J48
decision tree

[19] 2021
Discrete Wavelet Transform and
adaptive salp swarm algorithm

Probabilistic neural network

[20] 2022
Hilbert Transform and Wavelet
Transform

Support Vector Machine

[21] 2022 Discrete Wavelet Transform Artificial Neural Network

Another critical point is the development of the models, which can observe a great diversity
among the strategies, most residing in neural networks, varying between simple networks or deep
networks. Softer strategies like support vector machines, Logistic Regression (LR), Naïve Bayes, and
J48 decision tree are also presented. The output of each of these models is a variable or label which
determines the type of electrical disturbance; that is, the output is traditionally a label such as "Sag"
or "Swell." All these methodologies solve the electrical signal classification task by only determining
the taxonomy of the multiple PQDs from different classification and feature extraction perspectives.
However, this does not mean that the taxonomy is the only element for the proper monitoring of
the quality of electrical energy. The analysis of the signal and the quantification of essential values
to assess the severity of the disturbance are scarce characteristics in this type of contribution. As a
result of this need being detected within electrical power quality monitoring systems in this context,
this paper proposes a novel methodology Multitasking Deep Neural Network for the Classification
and Analysis of Multiple Electrical Disturbances with the capacity to process, analyze and classify
signals, not stations for the in-depth study of the quality of electrical energy. In addition, the Design,
development, and the different tests were carried out with about 29 levels of difficulty and a data set
with high diversity in time parameters and severity of electrical disturbances and different noise levels
in a range of 10 dB up to 50 dB. The performance quantification shows an accuracy above 98% in the
training, validation, and test phases. Performance tests were carried out in different scenarios of power
generation systems with different configurations and levels of complexity.

3. Theoretical Background

Developing a system monitoring electrical power quality has been a potential development area
in recent years. This section presents essential elements for developing the classification, analysis, and
monitoring proposal described in this paper.
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3.1. Empirical mode decomposition

Empirical Mode Decomposition (EMD) is a data analysis method used in signal processing and
time series analysis. It is a non-linear and non-stationary signal processing technique that decomposes
a signal into its underlying oscillatory components, called Intrinsic Mode Functions (IMFs). The EMD
method is based on the concept of "mode", which refers to a quasi-periodic oscillation that can be
extracted from a signal. It uses a sifting process to isolate these IMFs by repeatedly decomposing a
signal into high and low-frequency components until the residual is a monotonic function [22].

1. Initialize the signal x(t) to be decomposed into a set of intrinsic mode functions (IMFs).
2. For each IMF component i(i = 1, 2, . . . , N), repeat the following sifting process until convergence:

a. Identify all local maxima and minima of x(t) to obtain the upper and lower envelopes,
respectively.

b. Calculate the average of the upper and lower envelopes to obtain the mean envelope h(t).
c. Subtract the mean envelope h(t) from the signal x(t) to obtain a "detrended" signal d(t).
d. Check whether d(t) is a valid IMF by verifying the following conditions:

i. The number of zero-crossings and extrema must be equal or differ at most by one.
ii. The local mean of d(t) is zero.

e. If d(t) satisfies the above conditions, it is considered an IMF, and the sifting process for this
IMF is complete.

f. If d(t) does not satisfy the above conditions, it is added to the residual signal, and the sifting
process is repeated on the residual signal.

3. The residual signal obtained after sifting all IMFs is the final trend component of the signal.

The EMD algorithm is an iterative process that extracts the oscillatory components of the signal
by sifting out the trend component at each iteration. The resulting IMFs are typically sorted in order of
decreasing frequency, with the first IMF representing the highest frequency oscillation in the signal.
The EMD algorithm can be computationally intensive and may require careful tuning of parameters to
achieve accurate decomposition [23].

3.2. Multitasking deep neural network

Learning paradigms within deep learning and machine learning, such as supervised learning,
offer fast and accurate classification and regression solutions in various intelligent systems and
real-world applications [24]. The traditional methodology of learning paradigms is to learn a function
that maps each given input to a corresponding output [25]. For classification problems, the output is a
label or an identifier character. For data regression problems, it is a single predictive value, such as
temperature and amount of money. A traditional learning paradigm is an excellent tool for solving
various problems; however, sometimes, it needs to adapt better to the growing needs of today’s
complex decision-making [26]. From this arises the pressing need to develop learning paradigms; thus,
born Multi-head neural networks or multi-head deep learning models are also known as Multi-output
Deep Learning models (MLD). MLD takes advantage of the relationship between tasks to improve
the performance of learning models [27]. The Figure 2 compares the architecture of a traditional deep
neural network and an MLD.

Task 1

Task 1

Task 2

Task 3

Figure 2. Comparison of architectures between deep learning supervised learning and deep learning
multitasking learning.
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The Figure 2 is an example of how MLD works in images. This methodology can detect and
classify elements in an image that could be undetectable to the human eye. It is essential to mention
that MLD is widely used in medicine and has good performance results. In [27], MLD is used for
surgical assistance in analyzing surgical gestures and predicting the progress and status of surgical
movements. MLD has also been applied to determine ship positions in the contribution [28]; they
analyze satellite images to detect multiple ship positions and determine the position coordinates in
case the ship sensors fail and have to track ships with industrial containers. Deep learning multitasking
refers to the ability of a deep learning model to perform multiple tasks or learn multiple functions
simultaneously. The model is trained to perform more than one task, such as image classification
and object detection or natural language processing. Deep learning multitasking can have several
advantages, including improved performance on each task, reduced training time and computational
resources, and the ability to learn shared representations that can benefit all tasks. It can also be more
robust to noisy or incomplete data, as it can leverage information from multiple sources.

3.3. Performance indices

The performance indices are elements used to quantify the behavior of the proposal in this work
at different levels of complexity of PQDs and electrical generation systems with different architectures
or scalability. The Table 2 shows the PQDs analysis, quantification, and regression task indices.

Table 2. Performance indices for data prediction.

Performance indices Formula Meaning of symbology

Mean absolute error MAE =
1
N

N

∑
i=1

|yi − yp|

yp is the predicted value

yi is real value
N is the total number of data

The absolute mean
percentage error

MAPE =
1
N

N

∑
i=1

100
|yi − yp|

yi

yp is the predicted value

yi is real value
N is the total number of data

For the task of classifying PQDs by labels, indices were used, which are aided by the Confusion
Matrix (CM) shown in the Figure 3. A CM is a table that evaluates a classification algorithm’s
performance for a classification problem. It compares the predicted class labels to the actual class labels
of a data set.

Actual

Pr
ed

ic
te
d

NegativePositive

N
eg

at
iv

e
Po

si
tiv

e True Positive

False Negative True Negative
Type 2 Error

False Positive

Type 1 Error

Figure 3. Confusion Matrix Example.

The rows of the CM represent the actual class labels, while the columns represent the predicted
class labels. The CM main diagonal represents the correctly classified samples, while the off-diagonal
elements represent the misclassified samples. A CM typically has four entries:

• True positives (TP): Corresponds to the samples correctly predicted as positive.
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• False positives (FP): Corresponds to the incorrectly predicted as positive.
• True negatives (TN): Corresponds to the correctly predicted as negative.
• False negatives (FN): Corresponds to the incorrectly predicted as negative.

The CM provides valuable information of a classification algorithm, such as accuracy, precision,
recall, and F1-score.

Table 3. Performance indices for data classification.

Performance indexes Formula

Accuracy Accuracy =
TP + TN

TP + TN + FP + FN

Recall Recall =
TP

TP + FN

Specificity Speci f icity =
TN

TN + FP

4. Materials And Methods

Figure 4 shows the methodology used to analyze and classify the different levels of complexity of
electrical disturbances.

Voltage signal with 
electrical disturbance

Empirical mode 
decomposition

Multitasking deep neural 
network

Classification and analysis of 
electrical disturbance

 EMD_3 EMD_2 EMD_1

-129.38
-128.70

-129.96

-127.93
-127.07

-178.06
-178.63
-179.10

-15.50
-15.35

-15.64

-15.20

-0.0016
-0.0016

-15.05

-0.0016

-2.57
-2.60
-2.62

-2.55

0.0075

-2.52

 0.0074
 0.0074

Volt_
128.66
128.46
128.26
128.06
127.86

129.05
129.25
129.44

.... .... .... ....

Voltage p.u
Crest Factor

THD

Pst

Notch depth

Figure 4. Methodology for the analysis and classification of multiple electrical disturbances.

First, there is the electrical disturbance generation block. In later sections, the nature and properties
of the different electrical disturbances throughout the proposal of this paper are deepened. The second
block corresponds to the extraction phase of the characteristics of the different electrical disturbances
with the algorithm of empirical decomposition, which breaks down into Intrinsic Mode Functions
(IMF). The first three IMF for electrical disturbances is recommended since they have more relevant
information. The first two components contain high frequencies, and the third is information related
to disturbances in the fundamental component. Further, this is implemented to lower computational
consumption time and fast response. In addition to these values, the voltage value of the electrical
disturbance is added. These values form a matrix comprising the three IMF columns and the voltage
value of the signal, which are the input values of the Multitasking Deep Neural Network system.
Subsequently, when introducing these values to the architecture of the Multitasking Neural Network,
it processes them. In later sections, the architecture and components of this multitasking deep neural
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network will be discussed in more detail. The output of the neural architecture presents a vector that
is composed of two groups of fields. The first is a numerical identifier of the type of disturbance that
goes from 1 to 29; later sections will explain what assignment each of these has numbers. The other
group of values is an essential element for the analysis and quantification of the quality of electrical
energy, that is, to evaluate the quality in amplitude and frequency. These elements include voltage per
unit, the crest factor, Total Harmonic Distortion (THD), Short Term Flicker Perceptibility (Pst), notch
area, and depth.

4.1. Synthesis Of Electrical Disturbances And Database

The electromagnetic phenomena used to test and develop the Multitasking Deep Neural Network
model were made synthetically. Developing a synthesizer system of multiple electrical disturbances
was carried out, the physical characteristics of which vary. However, the voltage signal without
electrical disturbances has the following characteristics.

Table 4. General characteristics of synthesis of electrical disturbances.

Parameter Value

sample rate 16 kHz
Peak Voltage 180 V

Frequency 60 Hz

The synthesis of the different levels of electrical disturbances was based on different mathematical
models, which are presented in Appendix A, these mathematical models are the scientific contribution
of [29], and each electrical disturbance has different characteristics individually, such as duration time,
disturbance severity characteristics such as p.u voltage rise or voltage loss, among other characteristics
used in mathematical models for their correct synthesis. The Table 5 shows a fragment of the table
in Appendix A with the first five levels of types of electrical disturbances. This table shows essential
fields such as the name of the electrical disturbance and the numerical identifier, which is used as one
of the output parameter elements of the Multitasking Deep Neural Network model. This identifier is
associated with the level of complexity of the electrical disturbance. The table in Appendix A shows 29
different levels, and, as can be seen, the complexity increases as the value of the identifier increases.

Table 5. Fragment of the table in Appendix A of mathematical models of electrical disturbances.

Power quality
disturbance

Identifier Mathematical model
Synthesis
parameters

Normal Signal 1 v(t) = 180 sin(ωt − φ)
ω = 2π ∗
60 rad

s
Sag 2 v(t) = 180(1 − α(u(t − t1)− u(t − t2))) sin(ωt − φ) 0.1 ≤ α ≤ 0.9
Swell 3 v(t) = 180(1 + β(u(t − t1)− u(t − t2))) sin(ωt − φ) 0.1 ≤ β ≤ 0.9

Table 5 shows the mathematical model of the electrical disturbance, which was used to synthesize
the multiple electrical disturbances and used in the development of the model and the different
performance tests. Different parameters are shown in all formulas for electrical disturbances, such as
the duration time where t is the total time, the parameter t1, and the parameter t2, which is the end of
the electrical disturbance. Also have different synthesis parameters that represent the severity of the
electrical disturbance. These values are determined randomly to have a diverse data set to develop
the Multitasking Deep Neural Network model better. In addition, this multiple electrical disturbance
synthesis system developed a data set for the training, validation, and testing of the Multitasking Deep
Neural Network models. About 5000 different electrical disturbances were synthesized in aspects of a
disturbance duration time, the severity of electrical disturbance, and synthesis parameters; the only
fixed value is the sampling frequency of 16 kHz. In this way, 70% of the data set was used for training,
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equivalent to 3500 electrical disturbances. And 15% for the validation and test phases, the equivalent
of 750 disturbances of the 29 levels of electrical disturbances with a great variety of syntheses.

4.2. Description of power system

The microgrid model used is an island type grid with a photovoltaic system developed in the
Matlab 2021b environment with the Simulink and AppDesigner tools and introducing different
electrical disturbances with different levels of complexity, as shown in the previous section. A
photovoltaic system mainly integrates the configuration of the island-type microgrid model shown in
Figure 2. A user can manipulate the variables of temperature and solar irradiation through an interface
developed in App Designer.

+

Multiple electrical 

disturbance 

generator

Renewable energies and inverter

Multitasking Deep 

Neural Network for 

Classification And 

Analysis

Figure 5. Photovoltaic power generator system for additional tests with multiple electrical disturbance
injector system.

The solar photovoltaic system generate a maximum power of 250 kW in STC (cell temperature
of 25 °C with solar irradiance of 1000 W

m2 ). The system also has an integrated DC-DC Boost type
charge controller and a DC-AC voltage source inverter (VSI). Maximum power point tracking (MPPT)
controller with a DC-DC boost type voltage controller. The MPPT control helps to generate the proper
voltage by extracting the maximum power and adjusting the duty cycle to avoid performance problems
due to changes in temperature and solar irradiance that are simulated in the system. For the Voltage
Source Inverter (VSI), a full bridge inverter works at 1000 Hz switching.

4.3. Deep neural network multitasking architecture

The Figure 6 shows the architecture used for multi-tasking learning. The following points show the
description of each layer and discuss different issues, such as how the layer works and its objective in
the deep neural network, among other important points discussed. To observe more straightforwardly
the function and composition of the neural network and how the information flows, how the data are
processed, and how they are normalized to reduce computational consumption.

• Batch Normalization: This layer is used to improve the training speed and stability of the model.
The basic idea behind batch normalization is to normalize the input data of each layer [30]. This
is done by subtracting the batch mean from each input data point and dividing it by the batch
standard deviation. The batch means and standard deviation are estimated using the input data
of a batch rather than the entire dataset [31]. Batch normalization helps to reduce the problem of
internal covariate drift, which occurs when there is high variation in the input data. This can
lead to slower convergence and overfitting [32]. Batch normalization is a powerful technique
that improve the performance of deep neural networks [33].

• Convolutional layer or conv layer: is a crucial building block of convolutional neural networks
(CNNs). It is designed to perform feature extraction from input data such as images, video, or
audio. The basic idea behind convolutional layers is to apply a set of learnable filters (kernels or
weights) to the input data to extract essential features [34]. Each filter performs a convolution
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operation on the input data, which involves sliding the filter over the input and computing
the dot product between the filter weights and the local input values at each position [35]. In
a Convolutional Neural Network (CNN) used for regression, the convolutional layers will be
designed to extract relevant features from the input data that help predict the target values. The
convolutional layers are an essential part of the network architecture for regression problems
because they allow the network to capture important local patterns in the input data, which can
be highly relevant for predicting the target values. By stacking multiple convolutional layers
with increasing filter sizes, the network can learn increasingly complex and abstract features
from the input data, making more accurate predictions [36].

• Polling: is used for down-sampling. The aim is to scale and map the data after feature extraction,
reduce the dimension of the data and extract the important information, thus performing feature
reduction efficiently within the neural architecture. Avoiding adding extra phases and reducing
computational consumption. [37]. There are several types of pooling layers, but the most
common ones are max pooling and average pooling. Max Pooling Layers in these layers reduce
the spatial dimensions of the output from the convolutional layers by taking the maximum value
within each pooling window [38].

• Dropout: randomly drops out some of the neurons in the previous layer during training, which
helps prevent overfitting and improves the network’s generalization ability. The main idea
behind dropout is that the network learns to rely on the remaining neurons to make accurate
predictions. This forces the network to learn more robust features that are not dependent on any
specific set of neurons [39].

• SoftMax: is a typical activation function used in neural networks, particularly in multi-class
classification problems. The SoftMax function takes a vector of real-valued scores as input and
normalizes them into a probability distribution over the classes [40].

• The flatten layer: is a layer that converts multidimensional inputs into a one-dimensional vector.
This is often done to connect a convolutional layer to a fully connected layer, which requires
one-dimensional inputs [41].

• Fully connected layer or dense layer: is a layer where each neuron is connected to every neuron
in the previous layer. Each neuron performs a weighted sum of the activations from the previous
layer and then applies an activation function to the sum to produce an output. The weights and
biases are learned during training using backpropagation, where the gradients are propagated
backward from the output to the input layer [42].
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Figure 6. The architecture of a Novel Multitasking Deep Neural Network for Classification and
Analysis of Multiple Electrical Disturbances.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2023                   doi:10.20944/preprints202305.0282.v1

https://doi.org/10.20944/preprints202305.0282.v1


11 of 20

5. Analysis and Results

The Figure 7 shows the graphical display of feature extraction with the Empirical Mode
Decomposition (EMD) algorithm. Various multiple or ultrafast disturbances with noise and without
noise are shown. It is essential to do this so that the difference in complexity is noticed when developing
a system trained with clean signals to work with signals with noise between 10 dB and 50 dB. Figure 7
in the left shows an ultrafast frequency disturbance called Spike, which is difficult to detect with the
human eye and often with sophisticated analysis and detection systems because the phenomenon lasts
nanoseconds. The Figure 7 in the rigth shows a spike without noise on the left side and a Spike with
noise on the right side.
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Figure 7. Feature extraction with EMD algorithm left) Spike right) Spike with noise.

The image is divided into three fringes; the first is the complete signal with the electrical
disturbance, and the other is the Intrinsic Mode Functions (IMF) extracted as characteristics of the
electrical disturbance. In the Spike image show how difficult it is to detect the disturbance; however,
with IMFs, it is easier to detect it, even when the signal has much noise. The following image presents
the extraction of Notch features, which happens the same behavior as the previous image.
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Figure 8. Feature extraction with EMD algorithm left) Notch right) Notch with noise.

At a first glance, noticing where the electrical disturbance is located in which seconds is located is
complex. However, extracting characteristics helps to detect where the ultra-fast disturbance occurs. In
the same way with the Oscillatory transient, it can see how it shows the characteristics of the electrical
disturbance that can be detected even with high noise levels.
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Figure 9. Feature extraction with EMD algorithm left) Oscillatory transient right) Oscillatory transient
with noise.

5.1. Signal classification performance indices

Figure 10 (a) shows the learning curve of the classification layer. This image graphically represents
the behavior of the model in training and validation. It plots the value of the loss function (or error
function) on the y-axis against the number of training iterations or epochs on the x-axis. The loss
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function measures the difference between the predicted outputs of the model and the actual outputs
and is used to optimize the model during training.
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Figure 10. Model training performance evaluation left) Precision of Multitasking Deep Neural Network
- Classification. right) Loss of Multitasking Deep Neural Network - Classification.

Overall, the loss curve is an essential tool for understanding the performance of a machine
learning algorithm during training and for diagnosing problems that may arise during the training
process. On the other hand, Figure 10 (b) shows the learning curve as a function of precision. It is
possible to observe how it reaches an exact precision according to the graph and between values.
However, performance is quantified beyond learning curves.

Tests were performed using the test data segment and graphically displayed in the following
confusion matrix. Figure 11 on the left shows the confusion matrix of the first 16 levels of electrical
disturbances, the data set with about 750 electrical disturbances with different levels of complexity:
clean disturbances and noisy disturbances between 10 dB and 50 dB. It can be observed how there
are erroneous data, oscillating with an error between 5% and 2% error. Figure 11 on the right side
shows the second part, levels 17 to 29. It can be seen how a percentage ranging from 1.8% to 8.3% is
obtained. Because this part’s complexity level increases, the model needs clarification to analyze the
taxonomy of the last levels. This is because the last levels have much affinity between them due to the
characteristics of the signals.
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Figure 11. Model training performance evaluation left) Test Data Segment Confusion Matrix - Part 2.
right) Test Data Segment Confusion Matrix - Part 2.

Additionally, tests were carried out on the power generation system described in section 4.2.
Figure 12 on the left shows shows the transition matrix of the first part, that is, from levels 1 to 16 of
electrical disturbances. It can notice how the percentage rises more, but this was because the number
of disturbances was around 200 of the 29 levels. However, it can notice how it retains a high accuracy
value. Figure 12 on the right side shows part 2 of levels 17 to 29. Interestingly, the error level increases
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slightly in the last disturbances from 23 to 29. This is because levels from 23 to 29 tend to have more
affinity between them. However, an accuracy above 80% is maintained.
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Figure 12. Model training performance evaluation left) Test confusion matrix in photovoltaic power
generating system-Part 1. right) Test confusion matrix in photovoltaic power generating system-Part 2.

5.2. Performance indices in data regression

For the regression task, Figure 13 left shows the training curve in the context of error measurement.
Figure 13 right shows the training curve in the context of the accuracy of the regression task on the
training and validation data segments.
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Figure 13. Model training performance evaluation Left) Precision curve. Right) Loss Learning curve .

Figure 14 left shows the voltage analysis per unit of an electrical disturbance at 0.12 seconds. It can
see how it detects a disturbance in the amplitude of more than 80%; that is, it is a severe disturbance.
Figure 14 right shows the same analysis, but with a noise of 40 dB, it can see how it is not affected and
shows a voltage drop of 80%.
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Figure 14. Analysis of voltage per unit in the electrical disturbance left) Voltage p.u in 0.12 seconds
without dB disturbance or noise right) Voltage p.u in 0.12 seconds with Noise disturbance.
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Figure 15 shows the analysis of the crest factor of a disturbance, remembering that the average
value in the voltage signals is 1.4. Figure 15 in the left shows how there are essential increases to
consider. Figure 15 in the right shows the analysis but in a disturbance with a noise of 40 dB. In this
way, it is noted how the noise does not represent problems for the analysis and quantification model.
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Figure 15. Analysis of crest factor in the electrical disturbance left) No dB disturbance or noise right)
Noise disturbance.

5.3. Analysis of results

The Table 6 compares critical elements for classifying methodologies for multiple electrical
disturbances. Such as the precision of the models, methodology to extract characteristics, classificatory
methodology, levels of complexity of electrical disturbances, the noise levels used, and finally, if
any of these proposals offer any other methodology for the analysis and quantification of electrical
disturbances.

Table 6. Comparison of investigations with the contribution in this paper.

Characteristics
Reference [15] [43] [12] [20] Current

Accuracy percentage 79.14% - 83.66% 90% 88% - 98% 91.3% - 99% 98% -99%

Feature extraction methodology short time Fourier
Transform

Higher-Order
Statistics

1-D
convolutional

Wavelet
Transform

Empirical
Mode
Decomposition
(EMD)

Classification methodology

Convolutional
Neural Networks
Long Short-Term
Memory

Multi-layer
perceptron
(MLP)
Support
Vector
Machine
(SVM)

Deep
convolutional
neural
network

Support Vector
Machine (SVM)

Multitasking
Deep Neural
Network

Electrical disturbance levels 7 levels 2 levels, Sags,
and swells 15 levels 5 levels 28 levels

Noise levels Without noise 40 dB to 60 dB 40 dB to 60 dB Without noise 10 dB to 50 dB

Qualitative analysis of electrical
disturbance

Does not perform
quantification or
analysis

Does not
perform
quantification
or analysis

Does not
perform
quantification
or analysis

Does not
perform
quantification or
analysis

Quantitative
analysis of
the different
electrical
disturbances

With this comparative table, exciting points are inferred. First, the percentage of precision is
not very variable among the classification proposals, and most remain above 90%. However, there is
beginning to be a high concentration in the following attributes, feature extraction, and classification
methodologies based on deep learning or machine learning. Artificial intelligence is a discipline that
has played a significant role in various contexts in the analysis and monitoring of electrical disturbances.
The levels of electrical disturbances see how some are reduced to sags and swell, with five levels
of disturbances or 15 levels. These contributions present a notable bias to classify disturbances that
emerge from the amplitude. This is because working with frequency disturbances could often be
complex and challenging if noise is added. This element in which is compare this proposal, although
the range oscillates between 40 dB and 60 dB This advantage is because it represents less noise than 10
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dB or 20 dB. The level of complexity increases as the signal is noisier. It is important. Furthermore, it
can note how none of these proposals works with quantifying and analyzing electrical disturbances.
They only give a taxonomy with labels for the type of disturbance that occurs. It is essential to
mention that measuring and analyzing the main quality and energy factors develops more direct and
informative energy quality reports. In summary, the following important points of the proposed model
can be highlighted.

1. Extraction of adaptive multi-resolution features of the signal
2. Processing, signal classification analysis
3. The noise affects the classification of the signal; however, due to the analysis task, it helps to

identify the affectations on the quality of the electric wave.
4. Introducing the analysis and quantification of primary elements to quantify the quality of

electrical energy. An opportunity to make more visually appealing power quality reports
with data science tools is outlined, in addition to performing the compensation of electrical
disturbances intelligently.

6. Conclusions

This article proposes a new multitasking deep neural network for classifying and analyzing
multiple electrical disturbances. The Empirical Mode Decomposition (EMD) algorithm was used
to extract the signal characteristics, specialized in non-stationary signals and non-linear intrinsic
elements of electrical disturbances. The methodology’s performance was quantified using traditional
performance indices for the regression and classification layers of the signal. Under different levels of
complexity of noise and levels of complexity in disturbances. This methodology shows an accuracy of
over 90% regardless of the noise level and the electrical disturbances’ complexity. The different tests
showed how the methodology performs excellently, classifying and analyzing the ultra-fast frequency
and amplitude disturbances. In addition to having noise in the signal, the percentage of precision
remained above 90%. The EMD feature extraction algorithm was an excellent tool for processing
the data and preserving the accuracy of the algorithm. It is essential to mention that in addition to
presenting a methodology for the classification and quantification of essential values for the quality
of electrical energy and its study, with a high degree of precision and different levels of difficulty.
The development of a methodology with various synthetic disturbances is presented, having as an
advantage the ease of generating a diverse set of data and performing performance tests with different
levels and diversity of electrical disturbances and with generators of different power. In this way, the
proposed methodology is tested to face the scalability challenge of the different electricity generation
systems.
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Abbreviations

The following abbreviations are used in the manuscript:
PQD Power Quality Disturbance MDL Mul-titasking Deep Neural Network
EMD Empirical Mode Decomposition Pst Short Term Flicker Perceptibility
THD Total Harmonic Distortion SVM support Vector Machine
D-CNN Dimensional Convolution Neural Network
LSTM Long Short Term Memory CNN-LSTM Convolutional Neural Networks Long Short

Term Memory
CA Cluster analysis ELM Extreme Learning Machine
GPQIs Global power quality indices DWT crete Wavelet Transform
WT Wavelet Transform DFT Discrete Fourier Transform
STFT Time Fourier Transform LR Logistic Regression
LDA algo EMD Empirical Mode Decomposition
IMFs Intrinsic Mode Functions MLD Deep Learning models
TP True positives FP False Positrives
TN True Negatives FN False Negatives
VSI tage source inverter IMF Intrinsic Mode Functions
MPPT maximum power point tracking PWM Pulse Width Modulation

Appendix A

Table A1. Mathematical models of electrical disturbances.

ID: 1 PQD: Normal Signal Synthesis parameters
Model: Frecuency = 60Hz

v(t) = 180 sin(wt − φ) Amplitude = 180V
ω = 2π ∗ 60 rad

s

ID: 2 PQD: Sag Synthesis parameters
Model: v(t) = 180(1 − α(u(t − t1)− u(t − t2))) sin(ωt − φ) 0.1 ≤ α ≤ 0.9

ID: 3 PQD: Swell Synthesis parameters
Model: v(t) = 180(1 + β(u(t − t1)− u(t − t2))) sin(ωt − φ) 0.1 ≤ β ≤ 0.9

ID: 4 PQD: Interruption Synthesis parameters
Model: v(t) = 180(1 + ρ(u(t − t1)− u(t − t2))) sin(ωt − φ) 0.9 ≤ ρ ≤ 1

ID: 5 PQD: Transient DIV Impulse DIV Spike Synthesis parameters

Model: v(t) = 180
[

sin(ωt − φ)− ψ
(

e−750(t−ta ) − e−344(t−ta )
)

(u(t − ta)− u(t − tb))
]

0.222 ≤ ψ ≤ 1.11

ID: 6 PQD: Oscillatory transient Synthesis parameters
Model:

v(t) = 180
[

sin(ωt − φ) + βe−
t−tI

τ sin(ωn(t − tI )− θ)(u(t − tI I)− u(t − tI ))

] 300 ≤ fn ≤ 900
8 ms≤ τ ≤ 40 ms

0.1 ≤ β ≤ 0.9
ID: 7 PQD: Harmonics Synthesis parameters

Model: 0.05 ≤ α3 ≤ 0.15

v(t) = 180

[

sin(ωt − φ) +
7

∑
n=3

αn sin(nωt + θn)

]

0.05 ≤ α5 ≤ 0.15
0.05 ≤ α7 ≤ 0.15

ID: 8 PQD: Harmonics with Sag Synthesis parameters
Model: 0.1 ≤ α ≤ 0.9α3

v(t) = 180(1 − α(u(t − t1)− u(t − t2)))

[

sin(ωt − φ) +
5

∑
n=3

αn sin(nωt + θn)

]

0.05 ≤ α5 ≤ 0.15
0.05 ≤ α7 ≤ 0.15

ID: 9 PQD: Harmonics with Swell Synthesis parameters
Model: 0.1 ≤ β ≤ 0.9α3

v(t) = 180(1 + β(u(t − t1)− u(t − t2)))

[

sin(ωt − φ) +
5

∑
n=3

αn sin(nωt + θn)

]

0.05 ≤ α5 ≤ 0.15
0.05 ≤ α7 ≤ 0.15

ID: 10 PQD: Flicker Synthesis parameters
Model: v(t) = 180(1 + λ sin(ω f t)) sin(wt − φ) 0.05 ≤ λ ≤ 0.1

8 ≤ f ≤ 25
ID: 11 PQD: Flicker with Sag Synthesis parameters

Model:
v(t) = 180(1 + λ sin(ω f t)− α(u(t − t1)− u(t − t2))) sin(ωt − φ)

0.05 ≤ λ ≤ 0.1
8 ≤ f ≤ 25

0.1 ≤ α ≤ 0.9
ID: 12 PQD: Flicker with Swell Synthesis parameters

Model:
v(t) = 180(1 + λ sin(ω f t)− β(u(t − t1)− u(t − t2))) sin(ωt − φ)

0.05 ≤ λ ≤ 0.1
8 ≤ f f ≤ 25

0.1 ≤ β ≤ 0.9
ID: 13 PQD: Sag with Oscillatory transient Synthesis parameters

Model: v(t) = 180[ sin(ωt − φ)(1 − α(u(t − t1)− u(t − t2)))

+βe−(
t−tI

τ ) sin(ωn(t − tI )− θ)(u(t − tI I )− u(t − tI ))

]

0.1 ≤ α ≤ 0.9θ
300 ≤ fn ≤ 900

8 ms ≤ τ ≤ 40 ms
0.1 ≤ β ≤ 0.9
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Table A1. Cont.

ID: 14 PQD: Swell with Oscillatory transient Synthesis parameters
Model:

v(t) = 180[ sin(ωt − φ)β(u(t − t1)− u(t − t2))

+βe−(
−t−tI

τ ) sin(ωn(t − tI )− θ)(u(t − tI I)− u(t − tI ))

]

0.1 ≤ β ≤ 0.9θ
300 ≤ fn ≤ 900

8 ms ≤ τ ≤ 40 ms
0.1 ≤ β ≤ 0.9

ID: 15 PQD: Sag with Harmonics Synthesis parameters

Model:
v(t) = 180

[

sin(ωt + θ1) + (−α(u(t − t1)− u(t − t2)))
5

∑
n=3

αn sin(nωt + θn)

]

0.1 ≤ α ≤ 0.9α3

ID: 16 PQD: Swell with Harmonics Synthesis parameters
Model:

v(t) = 180

[

sin(ωt + θ1) + β(u(t − t1)− u(t − t2)))
5

∑
n=3

αn sin(nωt + θn)

] 0.1 ≤ β ≤ 0.9α3
0.05 ≤ α5 ≤ 0.15
0.05 ≤ α7 ≤ 0.15

ID: 17 PQD: Notch Synthesis parameters

Model:
v(t) = 180

[

sin(ωt − φ)− sin(ωt − φ)
N·c−1

∑
n=0

k(u(t − (tc + s · n))− u)(t − (td + s · n))

]

c = 1, 2, 4, 6

ID: 18 PQD: Harmonics with Sag with Flicker Synthesis parameters
Model:

v(t) = 180(1 + λ sin(ω f t))

[

sin(ωt − φ) +
5

∑
n=3

αn sin(nωt + θn)

]

(1 − α(u(t − t1)− u(t − t2)))

0.1 ≤ α ≤ 0.9α3
0.05 ≤ α5 ≤ 0.15
0.05 ≤ α7 ≤ 0.15
0.05 ≤ λ ≤ 0.1

8 ≤ f ≤ 25
ID: 19 PQD: Harmonics with Swell with Flicker Synthesis parameters

Model:
v(t) = 180(1 + λ sin(ω f t))

[

sin(ωt − φ) +
5

∑
n=3

αn sin(nωt + θn)

]

(1 + β(u(t − t1)− u(t − t2)))

0.1 ≤ β ≤ 0.9α3
0.05 ≤ α5 ≤ 0.15
0.05 ≤ α7 ≤ 0.15
0.05 ≤ λ ≤ 0.1

8 ≤ f ≤ 25
ID: 20 PQD: Sag with Harmonics with Flicker Synthesis parameters

Model:
v(t) = 180( sin(ωt + θ1)

+ (1 + λ sin(ω f t)(−α(u(t − t1)− u(t − t2))
5

∑
n′′

αn′′ sin(n′′ωt + θn′′ ))

0.1 ≤ α ≤ 0.9α3
0.05 ≤ α5 ≤ 0.15
0.05 ≤ α7 ≤ 0.15
0.05 ≤ λ ≤ 0.1

8 ≤ f ≤ 25
ID: 21 PQD: Swell with Harmonics with Flicker Synthesis parameters

Model:
v(t) = 180( sin(ωt + θ1)

+ (1 + λ sin(ω f t)(β(u(t − t1)− u(t − t2))
5

∑
n′′

αn′′ sin(n′′ωt + θn′′ ))

0.1 ≤ β ≤ 0.9α3
0.05 ≤ α5 ≤ 0.15
0.05 ≤ α7 ≤ 0.15
0.05 ≤ λ ≤ 0.1

8 ≤ f ≤ 25
ID: 22 PQD: Sag with Harmonics with Oscillatory transient Synthesis parameters

Model: v(t) = 180[ sin(ωt + θ1)

+ (−α(u(t − t1)− u(t − t2))
5

∑
n′′

αn′′ sin(n′′ωt + θn′′ )

+βe−(
t−tI

τ ) sin(ωn(t − tI )− θ)(u(t − tI I )− u(t − tI )

]

0.1 ≤ α ≤ 0.9α3
0.05 ≤ α5 ≤ 0.15
0.05 ≤ α7 ≤ 0.15
300 ≤ fn ≤ 900

8 ms≤ τ ≤ 40 ms
0.1 ≤ β ≤ 0.9

ID: 23 PQD: Swell with Harmonics with Oscillatory transient Synthesis parameters
Model:

v(t) = 180[ sin(ωt + θ1) + (β(u(t − t1)− u(t − t2))
5

∑
n′′

αn′′ sin(n′′ωt + θn′′ )

+βe−(
t−tI

τ ) sin(ωn(t − tI )− θ)(u(t − tI I)− u(t − tI )

]

0.1 ≤ β ≤ 0.9α3
0.05 ≤ α5 ≤ 0.15
0.05 ≤ α7 ≤ 0.15
300 ≤ fn ≤ 900

8 ms≤ τ ≤ 40 ms
0.1 ≤ β ≤ 0.9

ID: 24 PQD: Harmonics with Sag with Oscillatory transient Synthesis parameters
Model:

v(t) = 180[1−α(u(t − t1)− u(t − t2))
5

∑
n′′

αn′′ sin(n′′ωt + θn′′ )

+βe−(
t−tI

τ ) sin(ωn(t − tI )− θ)(u(t − tI I)− u(t − tI )

]

0.1 ≤ β ≤ 0.9α3
0.05 ≤ α5 ≤ 0.15
0.05 ≤ α7 ≤ 0.15
300 ≤ fn ≤ 900

8 ms≤ τ ≤ 40 ms
0.1 ≤ β ≤ 0.9

ID: 25 PQD: Harmonics with Swell with Oscillatory transient Synthesis parameters
Model:

v(t) = 180[1 + β(u(t − t1)− u(t − t2))
5

∑
n′′

αn′′ sin(n′′ωt + θn′′ )

+βe−(
t−tI

τ ) sin(ωn(t − tI )− θ)(u(t − tI I)− u(t − tI )

]

0.1 ≤ β ≤ 0.9α3
0.05 ≤ α5 ≤ 0.15
0.05 ≤ α7 ≤ 0.15
300 ≤ fn ≤ 900

8 ms ≤ τ ≤ 40 ms
0.1 ≤ β ≤ 0.9
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Table A1. Cont.

ID: 26 PQD: Harmonics with Sag with Flicker with Oscillatory transient Synthesis parameters
Model:

v(t) = 180[1 − α(u(t − t1)− u(t − t2))
5

∑
n′′

αn′′ sin(n′′ωt + θn′′ )

+βe−(
t−tI

τ ) sin(ωn(t − tI )− θ)(u(t − tI I )− u(t − tI )1 + λ sin(ω f t))

]

0.05 ≤ α3 ≤ 0.15
0.05 ≤ α5 ≤ 0.15
0.05 ≤ α7 ≤ 0.15
0.1 ≤ α ≤ 0.9λ
300 ≤ fn ≤ 900

8 ms≤ τ ≤ 40 ms
0.1 ≤ β ≤ 0.9

ID: 27 PQD: Harmonics with Swell with Flicker with Oscillatory transient Synthesis parameters
Model:

v(t) = 180[1 + β(u(t − t1)− u(t − t2))
5

∑
n′′

αn′′ sin(n′′ωt + θn′′ )

+βe−(
t−tI

τ ) sin(ωn(t − tI )− θ)(u(t − tI I )− u(t − tI )1 + λ sin(ω f t))

]

0.05 ≤ α3 ≤ 0.15
0.05 ≤ α5 ≤ 0.15
0.05 ≤ α7 ≤ 0.15
0.1 ≤ β ≤ 0.9λ
0.05 ≤ λ ≤ 0.1

8 ≤ f ≤ 25θ
300 ≤ fn ≤ 900

8 ms≤ τ ≤ 40 ms
0.1 ≤ β ≤ 0.9

ID: 28 PQD: Sag with Harmonics with Flicker with Oscillatory transient Synthesis parameters
Model:

v(t) = 180[ sin(ωt + θ1) + α(u(t − t1)− u(t − t2))
5

∑
n′′

αn′′ sin(n′′ωt + θn′′ )

+βe−(
t−tI

τ ) sin(ω(t − tI )− θ)(u(t − tI I )− u(t − tI )1 + λ sin(ω f t))

]

0.1 ≤ α ≤ 0.9α3
0.05 ≤ α3 ≤ 0.15
0.05 ≤ α5 ≤ 0.15
0.05 ≤ α7 ≤ 0.15
0.05 ≤ λ ≤ 0.1

8 ≤ f ≤ 25θ
300 ≤ fn ≤ 900

8 ms≤ τ ≤40 ms
0.1 ≤ β ≤ 0.9

ID: 29 PQD: Swell with Harmonics with Flicker with Oscillatory transient Synthesis parameters
Model: 0.1 ≤ β ≤ 0.9α3

v(t) =180
[

sin(ωt + θ1)

+ (β(u(t − t1)− u(t − t2))
5

∑
n′′

αn′′ sin(n′′ωt + θn′′ )

+βe−
t−tI

τ sin(ωn(t − tI )− θ)(u(t − tI I )− u(t − tI )1 + λ sin(ω f τ))

]

0.05 ≤ α3 ≤ 0.15
0.05 ≤ α5 ≤ 0.15
0.05 ≤ α7 ≤ 0.15
0.05 ≤ λ ≤ 0.1

8 ≤ f ≤ 25θ
300 ≤ fn ≤ 900

8 ms ≤ τ ≤ 40 ms
0.1 ≤ β ≤ 0.9
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