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Abstract: We determined the optimal composition of reactive magnetron sputtered TiO2-SnO2 

mixed layers for electrochromic purposes. We determined and mapped the composition and optical 

parameters by Spectroscopic Ellipsometry (SE). The Ti- and Sn- targets have been placed separately, 

and the Si-wafers on glass substrate (30 cm× 30 cm) were moved under the two separated targets (Ti 

and Sn) in Ar-O2 plasma. Different (Effective Medium Approximation (EMA) and oscillator-type) 

optical models were used to obtain the composition maps and thickness of the sample layer. Scan-

ning Electron Microscopy (SEM) with Energy-Dispersive X-ray Spectroscopy (EDS) has been used 

to check the SE results. The ’goodness’ of diverse optical models have been compared, according to 

the conditions of sample preparation. We show that in the case of molecular-level mixed layers 2-

Tauc-Lorentz oscillator model is better than the Bruggeman Effective Medium Approximation 

(BEMA). The electrochromic properties of mixed metal oxides that deposited by reactive sputtering 

have been mapped, too. 

Keywords: Titanium-Tin Oxide; reactive sputtering; spectroscopic ellipsometry; electrochromic ma-
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1. Introduction 

Metal oxides are widely studied with respect to their electrochromic behavior and 

properties for the applications as display devices and smart windows. To decrease the 

absorbed heat in buildings, electrochromic films have been used as smart windows for 

preservation the glass windows from the extra heating [1]. Electrochromic materials have 

been applied in energy-effective vitrification, automobile sunroofs, smart windows, and 

mirrors. Transition metal oxides such as titanium, tungsten, nickel, vanadium, and mo-

lybdenum oxides have been considered the most promising electrochromic materials [2]. 

The formation of smart window contains a layer of electrochromic material bounded by 

metal oxide layers. To turn transparent glass opaque and back to the transparent state, 

low electric current is used. The transmittance can be controlled by modifying the optical 

properties. 

The protection from heat radiation through glass is made by semiconductor metal 

oxide film coatings on glass, such as TiO2, WO3, CrO, NiO, Nb2O5, and IrO2 [3], MoO3 [4, 

5].  Typically, nanoscale oxides are considered according to their high thermal conductiv-

ity, low thermal expansion coefficient and the insulation. Application of this type of coat-

ing gives advanced surface quality. The heat transfer rate and the thermal conductivity 

have been increased due to the increases in concentration of nano particles. [6, 7]. 
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  Several methods of deposition can be considered: sputtering [8], sol-gel method [4], 

sintering [9], Atmospheric Pressure Chemical Vapor Deposition (APCVD) [10], and dip-

ping [11]. 

  The colored state of pure TiO2 coatings is gray and this oxide was not used alone 

in electrochromic devices because its coloration is not very strong [3]. Titanium oxide films 

have been sputter-deposited in a non-aqueous medium, spray deposited from reactive 

sputtering. Chronoamperometric experiments associated with transmittance spectra in 

LiClO4-propylene carbonate solutions were carried out and compared with the optical 

properties of titanium oxide films with different stoichiometries. [12].  

  Spectroscopic Ellipsometry (SE) is a high accuracy optical characterization tech-

nique [13]. Many researchers have used SE for pure or combinatorial material investiga-

tion [14-21]. 

  Combinatorial approach to investigate mixed metal oxides has several advantages. 

Fried et al. [22] have used SE (which is fast, cost-effective, and non-destructive method) 

for investigation and mapping WO3-MoO3 mixed layers after sputtering. Different optical 

models (such as Effective Medium Approximation (EMA) and oscillator-type ones) have 

been used to achieve the composition map and thickness map of the sample layers.  

  While TiO2 was investigated as electrochromic material [23], SnO2 or TiO2-SnO2 [24, 

25] mixtures were studied only as photocatalytic materials. During this work, reactive 

magnetron sputtering (in Ar-O2 plasma) has been used to produce all combinations of 

TiO2-SnO2 mixed layers on silicon wafers. The sample preparation time took 4 hours in 

the vacuum chamber including the vacuum-preparation time. By using the combinatorial 

process, all the compositions have been achieved in the same sputtering chamber after one 

sputtering. Scanning Electron Microscopy (SEM) with Energy-Dispersive X-ray Spectros-

copy (EDS) has been used to check the SE results. 

  The object of this work was to investigate the goodness of TiO2-SnO2 mixed layers 

as electrochromic materials, and to contrast the 'goodness' of the diverse optical models, 

and to enhance the electrochromic properties demeanor of mixed metal oxides that were 

deposited by reactive sputtering. We expected that using different diameter metal atoms 

in the layer will have a positive effect. 

2. Materials and Methods 

  In the chamber of magnetron sputtering, the layers were deposited in a reactive (Ar 

+ O2) gas mixture in ~2 × 10−6 mbar high vacuum, was the pressure of the process was ~10−3 

mbar. 30 sccm/s Ar and 30 sccm/s O2 volumetric flow rate has been applied inside the 

chamber. The substrates were 4-inch diameter IC-grade and 3-inch diameter highly con-

ductive (0.001 Ωcm) Si-wafers.  

  The movement speed was 5 cm/s (back and forth) in the geometry which can be seen 

in Fig. 1. 50-50 % composition can be expected in the middle of the specimen. The Si-

wafers and control Si-stripes were placed on a 30 cm × 30 cm glass, see Fig.1. The power 

of the plasma was in the range of 0.75–1.5 kW for the two targets, and independently con-

trolled. 300 walking cycles were applied with 5 cm/s movement speed.  

  Figure 1 presents that sputtering targets have been placed at 35 cm from each other. 

According to the measurements, the two sputtered material fluxes ‘material streams’ are 

overlapped around the center. The Metal/Oxygen atomic ratio in the layers was 1:2 at the 

applied Oxygen partial pressure according to the SEM-EDS analysis technique. 
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Figure 1. Arrangements of the two targets in closer position (35 cm from each other). 

  The optical mapping [21] was performed by a Woollam M2000 SE equipment, the 

measurements were evaluated with the CompleteEASE software [26]. To obtain the map-

ping parameters, oscillator functions and compact optical models have been used. The 

„goodness” of the optical model depends on the value of the Mean Squared Error (MSE), 

so the lower MSE refers to the better fit because of the difference between curves. [13] The 

silicon wafers and Si-stripes (Fig. 2 (a) have been used for Scanning Electron Microscopy 

(SEM, Dual-beam SEM+FIB Thermo Scientific Scios2) with Energy Dispersive Spectros-

copy (EDS) measurements, too, see Fig. 2 (b). The Ti/Sn ratio has been calculated point-

by-point to compare and validate the results of the SE evaluation. 

    

(a)                                               (b) 

Figure 2. (a) Graded TiO2-SnO2-layer-on-3 inch-Si (circular sample, upper) and the Si-stripe sam-

ples, lower; (b) Combinatorial TiO2-SnO2 layer on a 4-inch Si-wafer in the SEM-chamber (Dual-beam 

SEM+FIB Thermo Scientific Scios2). 

  The coloration process was followed point by point of the layer deposited onto the 

3-inch diameter highly conductive (0.001 Ωcm) Si-wafer. Electrochemical measurements 

were performed in a liquid cell filled with 1M lithium perchlorate (LiClO4) / propylene 

carbonate electrolyte, and a Pt wire counter electrode was placed into the electrolyte 

alongside with a reference electrode, see Fig. 3. Controlled current was applied through 

the cell during a 4 min coloration. 
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Figure 3. Combinatorial TiO2-SnO2 layer on highly conductive 3-inch Si-wafer in an electrochemical 

fluid cell during in-situ, real-time SE measurements. 

  After the coloration process, the whole sample (in dry state) was mapped by SE. 

The edges were under the Teflon cover (during the coloration process) so only the central 

4 cm diameter part is interesting, see Fig. 3. 

3. Results 

  We compared two dispersion relations in our multilayer optical model (Si-sub-

strate/interface-layer/T-L(TiO2)+T-L(SnO2)-mixed layer/surface-roughness-layer). In the 

Bruggeman Effective Medium Approximation (EMA or BEMA [27]) calculation, the 

mixed-layer is considered as a physical combination of two distinct phases formed by TiO2 

and SnO2 with an appropriate volume fraction. The constituents are considered equiva-

lent; neither of the components is considered as a host material.The formula as in equa-

tions (1):  

0 = ∑fi(εi-ε)/(εi+2ε), (1) 

where ε is the effective complex dielectric function of the composite layer; fi and εi 

denote volume fraction and the complex dielectric function of the ith component. In the 

case of two components, the formula is a complex quadratic equation, where ε (the effec-

tive dielectric function) is the unknown and we can choose easily between the two solu-

tions (the wrong one is physically meaningless). The dielectric function of the two constit-

uents were determined from the extreme edges of the Si-stripes where the TiO2 and SnO2 

are in pure format. 

The Tauc-Lorentz (T-L) oscillator model is a combination of the Tauc and Lorentz 

models [28]. Tauc-Lorentz (T-L) oscillator model contains four parameters: Transition Am-

plitude, Broadening coefficient of the Lorentz oscillator, peak position for the Lorentz os-

cillator, and Bandgap Energy (Eg), which is taken to be the photon energy, where ε2 (E) 

reaches zero. When the E photon energy is less than the bandgap energy, Eg, ε2 (E) is zero. 

The real part of the dielectric function ε1 (E) can be obtained from ε2 (E) through the Kra-

mers-Kronig relation. 

In the mixed layers, five fitting parameters have been used: two Amplitudes for each 

materials (oscillator strengths) and the layer thickness. We used the measurements near 

the edges of the samples (pure component materials) to determine the fundamental pa-

rameters (Bandgap Energies, the Broadenings and the Peak positions) for the two materi-

als.  

For the electrochromic measurements, where the light absorption was interesting in 

the visible wavelength region over 400 nm, we used the simple Cauchy formula to de-

scribe the complex refractive as in formula: N = n + ik, where N is the complex refractive 

index, n is the real part of N, k is the imaginary part (extinction), i is the imaginary unit. 

Cauchy formula: n(λ) = A+B/λ2+C/λ4, k(λ) = ke U( 1239.84/λ − Eb), where A, B, C, k, and U are 

fitting parameters. The complex refractive index (N) and complex dielectric function (ε) 

are equivalents: (ε) = ε1+iε2 = N2, ε1 = n2−k2, ε2 = 2nk. 
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3.2. Comparison of the optical models 

We applied the 2-T-L and the EMA optical model to evaluate the mapping measure-

ments on the Si-stripes (see Fig. 4) and the 4-inch Si-wafer (see Fig. 5). Both modelling 

process gave good results, see Fig. 4 where the measured Psi and Delta spectra are in good 

agreement with the Model calculations. However, one can see that the MSE (Mean 

Squared Error) is significantly lower for the 2-T-L model especially around the 50-50 % 

composition, see Fig. 4 (c) and Fig. 5 lower row. The calculated thickness values are not 

different significantly, see Fig. 4 (d) and Fig. 5 middle row. 

 

 

(a) (b) 

  

(c)                                                                      (d) 

Figure 4. Comparison of (a) EMA; (b) 2T-L modelling (TiO2-SnO2); [(c) MSE for EMA (the blue 

curve) vs. 2T-L (the orange curve), (d) is the thickness (EMA (the blue curve) vs. 2T-L (the orange 

curve)] by home-made Python software. 
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Figure 5. TiO2-SnO2 maps from the 4 inch-wafer by EMA modelling (left) 2T-L modelling (right), 

upper row: EMA% (left) and Tauc-Lorentz amplitudes (right), middle row: total thickness maps, 

lower row: MSE maps (showing that the 2-T-L model is better). 
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4. Discussion 

  We validated the results of the SE modeling by SEM-EDS measurements, see Fig. 6 

(b). Fig. 6 (a) shows the EMA % (MAT2 - SnO2 %) values from the EMA model and the 

Amp1 (TiO2 oscillator strength) and the Amp2 (SnO2 oscillator strength) from the 2-

Tauc-Lorentz (2-T-L) model. Fig. 6 (c) shows the results together, where we normalized 

the Amp1 and Amp2 to 100 %. One can see the good agreement between the SEM-EDS 

and the 2-T-L results. 

  

(a)                                                        (b) 

 

(c) 

Figure 6. TiO2-SnO2 -4inch-ref-EMA-2TL; [(a) the blue curve for EMA %, the orange curve for Amp1 

(TiO2), the green curve for Amp2 (SnO2)]; (b) Ti/Sn ratio by SEM and EDS measurements, (the blue 

curve for Ti ratio and the orange curve for Sn ratio); (c) SnO2 % derived from EMA % (the blue 
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curve), 2-T-L models (the orange curve for Amp1 and the green curve for Amp2), the red curve for 

EDS % measurements] by home-made Python software. 

4.1. Electrochromic measurements 

  After the validation of the SE method (we can determine the composition of the 

layer) we performed in-situ electrochromic measurement, see Fig. 3. We could measure 

only at the central point of the highly conductive 3-inch Si-wafer. Fig. 7 show a typical 

example of one measured spectra pair with the Model calculation based on the Optical 

model shown on the right side. Low MSE value shows that the optical model is good. We 

could follow the process, calculating the change of the k parameter, see Fig. 8 (a). 

 

Figure 7. Shows a typical example of a fitted SE spectrum for the details of the model structure; SE 

spectra were evaluated using a multi-layer; multi-parameter optical model applying graded Cau-

chy-dispersion. 

  After the coloration process, we could map the colorized layer using a simple one-

layer Cauchy dispersion optical model. (Note, that this is not the same model as it was 

used in the in-situ measurement!) We see a maximum value (maximum light absorption) 

around 0.5 cm. Comparing this results with Fig. 6, we can state that the optimal composi-

tion is at TiO2 0,3-SnO2 0,7. 

  

(a)                                                        (b) 

Fit Results 

MSE = 11.760 

A = 2.052 ± 0.006368 

B = -0.00784 ± 0.001943 

C = 0.00832 ± 0.00028127 

k Amplitude = 0.14888 ± 0.001320 

Exponent = 0.273 ± 0.0202 

Thickness # 1 = 47.70 ± 0.358 nm 

n of Cauchy @ 632.8 nm = 1.68854 

Total Thickness = 97.70 ± 0.358 nm 

 

Optical Model 
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Figure 8. (a) Imaginary part of the Refractive index (k Amplitude) as a function of time for highly-

conductive-Si in liquid-cell during coloration (time-scan, simple Cauchy-model), here we can men-

tion that from (0-4) minute’s there is low absorption but from (4-8) minute’s there is a growing ab-

sorption; (b) Map of the k parameter after coloration (simple Cauchy-model). 

5. Conclusions 

  We could optimize the electrochromic properties of mixed metal oxides deposited 

by reactive sputtering. We prepared combinatorial samples by magnetron sputtering. 

These samples have been mapped (composition and thickness maps) by Spectroscopic 

Ellipsometry which is a fast, cost-effective, and non-destructive method. We can select 

between suitable optical models (the Bruggeman Effective Medium Approximation, 

BEMA vs. 2-Tauc-Lorentz oscillator model) according upon the process parameters. We 

have shown that in case of molecular-level mixed layers 2-Tauc-Lorentz oscillator model 

is better than the Bruggeman Effective Medium Approximation. We have shown that the 

optimal composition is at. TiO2 0,3-SnO2 0,7. 
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