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Abstract: Equipped with an early social predisposition immediately post-birth, humans typically form
associations with mothers and other family members through exposure learning, canalized by a spontaneous
predisposition to biological motion, face configuration, and other cues of animacy. If impaired, reduced social
preferences can lead to social interaction impairments such as autism spectrum disorder (ASD) via misguided
canalization. Despite being taxonomically distant, domestic chicks also follow a homologous developmental
trajectory toward adaptive socialization through imprinting, which is guided via predisposed preferences that
are homologous to those of humans, thereby suggesting that chicks are valid animal models of ASD. In addition
to the convergent similarities in predisposition with human newborns, accumulating evidence suggests the
construct validity of the chick model. Considering the recent progress in the evolutionary neurobiology of
vertebrates, we reviewed the advantages and limitations of the chick model of developmental mental diseases
in humans.
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1. In search of valid animal models of developmental psychiatric disorders

Biological psychiatry and comparative psychology share the common scientific issue of
neurocognitive homology among animals under study. Since the Cambrian period, the nervous
system of vertebrates has held a highly conserved “Bauplan” [1-3]. Accordingly, homologies are
widely found from the level of composite molecules (transmitters, hormones, receptors, and second
messengers) to neural pathways and cytoarchitectonic organizations at the macroscopic level [4,5]
(specifically for the mammal-bird homologies [5]). Despite its conservative nature, huge phenotypic
diversification occurs in the behavioral and cognitive aspects of vertebrates through differentiated
development [6], complicating the untangling of homology issues.

In the present review, encouraged by recent progresses of avian model studies [7,8], we argue
that chicks and humans exhibit an evolutionary convergence in neurobehavioral traits and examine
the validity of domestic chicks as autism spectrum disorder (ASD) animal models on the surface and
construct validity (as Willner [9] proposed for the depression model). The former (surface validity)
includes an examination of the similarity of behaviors and developmental processes, particularly the
perceptual predisposition to faces and biological motion. The latter (construct validity) includes
shared neural substrates and molecular cascades, particularly the potential roles of nicotinic
acetylcholine (NAChR) transmission in the fetal brain in controlling excitation-inhibition balance in
neonates.

2. Diverse environmental risk factors of ASD remain to be specified

ASD is the most prevalent developmental disorder primarily characterized by underdeveloped
social interactions and communication [10,11]. It is speculated that the heterogeneous diagnostic
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phenotypes, as well as the dimensional nature of this disorder, could be associated with a wide range
of underlying genetic and environmental factors [12]. In addition to apparent genetic risks [13] (for
an exhaustive hereditability study in Sweden); also see [14] for de novo mutations and [15] for
common variations), exposure to environmental toxicants during pregnancy and the neonatal period
remains a major social and scientific concern [16]. For example, a large-scale twin study [17] revealed
high concordance rates among siblings, indicative of the role of genetic factors; however, the authors
also reported that common environmental factors shared by these twins could substantially
contribute to autism/ASD liability. Complex interactions are thought to occur between the genetic
background of ASD susceptibility and the chemical agents acting during pregnancy and the early
post-natal period.

However, this hypothesis does not imply that these chemicals need to be eliminated. For
example, valproic acid (VPA) has been identified as a risk factor for ASD (see below for details);
however, it remains an indispensable antiepileptic medication [18]. The associated risks must be
precisely evaluated in close consideration with known benefits. But, a lack of reliable measures often
obscures environmental risk management. Studies using appropriate animal models are critical [19].
Rodents (mice and rats) are the most popular model animals [20,21] but cannot be deemed identical
to humans. Rodents and primates have undergone distinct evolution since their separation during
the late Cretaceous period over 65 million years ago.

As an alternative animal model, we have focused on newly hatched domesticated chicks (Gallus
gallus domesticus) [22-25]. Birds are descendants of theropod dinosaurs, the major group of
sauropsids, whereas primitive mammals diversified as a minor group of synapsids during the
Carboniferous Period, ~ 300 million years ago. Considering such a taxonomically distinct animal as a
valid model for human psychiatric disorders may sound unrealistic. If the adult phenotypes are
solely compared, humans can never be chickens. However, as the hourglass bottleneck theory
suggests [26], humans and chickens achieve developmental convergence during the prenatal/early
neonatal periods in terms of specific neurocognitive aspects (Figure 1). Determining whether certain
animals are human-like demands the elucidation of how phenotypic similarities arise through their
respective ontogenies.
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Figure 1. Hourglass “bottleneck” model of the convergent evolution of peri-natal epigenetic control
of social behaviors.
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3. Visual predispositions canalize the development of social behaviors: common developmental
features for the surface validity.

It is speculated that the development of socialized behaviors during the early neonatal period
depends on a predisposed visual preference. Human babies exhibit biased visual attention, which
subsequently forms social attachments with siblings and parents. The predisposed “Conspec” [27] or
“core knowledge” [28] could include a variety of visual features (for reviews see [29-34]), however,
most studies have focused on face configuration, biological motion, and other cues of animacy.

Face Differential tuning to face configuration has been demonstrated in adolescents with ASD
when compared with typically developing controls (for one of the earliest reviews, see [35,36]; also
see [37] for a recent study using pictures resembling the food-face paintings by Giuseppe Arcimboldo).
Based on the finding that infants prefer faces at 2-4 months old [38,39], a predisposed face preference
has been suggested as a reliable diagnostic indicator for ASD. Typically, a definitive ASD diagnosis
can be achieved in toddlers aged ~3 years; reliable biomarkers at earlier ages, if available, could
facilitate treatment at the early stages [40]. In addition to behavioral measures, physiological
measures, such as electroencephalography (EEG), can be employed in newborn babies [41].

Based on data from brain studies, it can be suggested that the subcortical visual pathway
(superior colliculus/pulvinar to the amygdala) is responsible for the proto-face configuration (three
blobs configured at a low spatial frequency) in human neonates [36]; see [42] for the most reliable
account of this pathway in rhesus monkeys. Visually naive monkeys deprived of social stimuli
(including human faces) preferred faces [43], indicating robust development of face perception. Even
human fetuses in the third trimester of pregnancy reportedly exhibit head-turn responses to upright
face configurations [44]. Consistently, damage to the amygdala has been shown to cause some ASD-
like deficiencies according to the “theory of minds” (ToM [45]), although the causal link between the
ToM and ASD remains controversial [46].

Considering that the subcortical face pathway is functional in the early prenatal period and
critical for the typical development of social behavior [47], we would expect to detect differentiated
visual attention to the face in infants with familial risk of ASD and more specifically, in those who
are later diagnosed with ASD. However, the use of the “face pop-up” task in these infants revealed
clear attention to face similar to that observed in control individuals (or even higher) at 7 and 14
months of age [48]. Conversely, another longitudinal developmental study has reported a steady
decline in selective eye-fixating behavior in infants who were subsequently diagnosed with ASD; the
finding was observed in typically developed individuals [49]. Therefore, developmental changes
need to be carefully examined [50]. More recently, it has been reported that newborns with a high
familial risk of ASD (6-10 days of age) show a reduced face preference when compared with low-risk
controls [51]; also see [52] for the follow-up longitudinal study on 4-month-old infants).

In addition, visually naive, newly hatched chicks exhibit an evident inborn preference for faces
[53-55]. Fetal exposure to VPA substantially reduced the face preference score [56], possibly
paralleling that observed in humans. The subcortical visual pathway of birds (optic tectum and
arcopallium/nucleus taeniae amygdala) is known to functionally mature early, and newly hatched
chicks start actively pecking small conspicuous objects at 1-2 days old. Furthermore, immediate early
gene imaging studies have revealed that telencephalic limbic nuclei are involved in the predisposition
preference of chicks [57-59]. Moreover, traditional rodent models fail to spontaneously exhibit a
comparable visual predisposition.

Biological motion Biological motion (BM) preference comprises another aspect of the
“Conspec” process; it is easily tested using highly reduced animations composed of relatively few
light points (~ a dozen). Both human and chick neonates exhibit BM preference without visual
experience ([60,61] in human infants; [62] in chicks; also see [63] for the association of the BM
preference with brain asymmetry). In addition to the commonality in their appearance at the early
neonatal stage, both human infants and chicks show a clear inversion effect, that is, a preference for
the upright walking motion over the inverted upside-down display ([64] in human infants; [65] in
chicks).
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The motion characteristics of both local movements (such as the movements of the lower limbs)
and global features (shape of the body) are critical in humans [66,67]. However, it remains unclear
which of these visual components is associated with the development of social cognition. [68]
reported that infants depend more on local cues, whereas [69] highlighted the importance of
translational displacement of the body. [70] have proposed an integrative hypothesis of the two-
process theory, wherein the “step detector” responsible for the local motions of feet below the body
precedes the “bodily action evaluator” that processes the global processing of action types and styles.
Several studies in both human adults and children have suggested the association between reduced
sensitivity to BM and ASD [71-74] (also see the recent meta-analysis [75]). Importantly, it should be
noted that, in our current context, visual preferences for social stimuli (face inversion, averted eye
gaze, and BM) markedly differ between the two groups of infants with high and low familial risk of
autism [51]. Further longitudinal studies are needed to determine the association between visual
preference and the subsequent development of social interactions.

Animacy In addition to the face and BM, both chicks and humans have a visual predisposition
to other cues of animacy ([25,76,77] for reviews). For example, living organisms are characterized by
self-propelling animacy, a well-established preference in both human babies [78] and visually naive
chicks [79,80]. Unpredictable speed changes in motion are a critical feature of animacy in newborn
human babies [81], as observed in newly hatched chicks with distinct inherited variability [82,83] (for
involvement of septal and hypothalamic nuclei, see [84]). Both variability in body orientation and the
unpredictable temporal contingency of motion are critical in chicks [85,86]. It should also be noted
that avoidance of looking at (threatening) objects is also considered to be innately predisposed [87].

4. Imprinting and the early process of attachment formation

In chicks, the BM preference is functionally linked to filial imprinting. Imprinting is a complex
process that involves predisposition and experience-based learning; thus, it may be homologous to
the processes of attachment formation in human babies. Newly hatched domestic chicks and
ducklings form lasting attachments, even when the first object seen is a non-biological artifact rather
than a conspecific animal [88,89]. Artifacts such as rotating blue boxes were actually effective as
imprinting objects [90]. However, contrary to this popularly accepted idea, memorized preference for
artifacts is short-lived and is gradually replaced by more naturalistic stimuli such as stuffed hens [91-
93]. Accordingly, an innate predisposition gradually emerges after learned attachment fades. In
contrast, BM preference emerges first and subsequently guides learning.

Perfectly naive chicks show an apparent preference for BM, although with a relatively small
effect size [62]. When imprinted by motion pictures, the BM preference is enhanced or “permissively
induced” [94]. Induction is nonspecific to the exposed stimulus, and any motion (even randomized
point-light animation) is a similarly effective inducer. Furthermore, the BM preference facilitates
imprinting [95]. BM animations were more effective than non-BM animations, and chicks with a
higher BM preference exhibited higher imprinting scores.

Imprinting memory is coupled with BM induction through enhanced thyroid hormone activity.
Exposure to motion increases the expression of Dio2, which is responsible for the conversion of
circulating thyroid hormone (Ts) to its active form (Ts) in the epithelial cells of telencephalic capillaries
[96]. The enhanced Ts influx into the dorsal pallium (intermediate medial mesopallium, IMM, an
avian homolog of the mammalian neocortex, including the association areas) reopens the sensitive
period and acutely strengthens learning and BM scores [97,98]. In aged chicks, Ts can reactivate the
preference for animate objects [99]. Accordingly, imprinting allows chicks to remain imprintable for
a prolonged period, guiding subsequent learning during the extended sensitive period to objects
bearing BM features. Notably, these two aspects of imprinting (i.e., memory formation and induced
predisposition) appear tightly coupled and not dissociable [100].

Newly hatched domestic chicks could serve as a valid animal model for studying environmental
risk factors for ASD, at least at the surface phenomena level. The following section examines how
ASD-like deficiencies could arise in the chick model and whether the underlying mechanisms are
shared.
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5. VPA, an anticonvulsant drug, mediates ASD-like impairment of social behavior development
and acute suppression of spontaneous fetal movements

Given that VPA was identified as an environmental risk factor for ASD during pregnancy [101-
103], studies have attempted to clarify the underlying mechanisms using rodent models (see reviews
[20,21,104]). Fetal exposure to VPA impairs social behavior also in chicks [105-109]. These studies
have consistently reported impaired social behavior in newborns and hatchlings after fetal VPA
exposure, although drug-induced phenotype disorders were not necessarily identical, probably due
to task-dependent variation among individuals. For example, [109] reported low imprinting scores
exclusively in individuals with a low BM preference,.

VPA has a wide spectrum of pharmacological effects, including actions on N-methyl-D-
aspartate type glutamate receptors (NMDA-R [110]) and inhibitory GABA transmission [111].
Moreover, VPA is well-accepted as a potent inhibitor of histone deacetylases (HDACs [112]). Acute
anticonvulsant action on the fetus may induce ASD-like phenotypes, as VPA effectively suppresses
fetal motion [109]. Spontaneous motion is ubiquitous among fetuses of vertebrates [113] (see also
[114,115] for more recent reviews), although its functional roles remain unclear. Nevertheless,
suppression of fetal movements fails to account for ASD-like deficiencies, since similarly effective
suppressers (e.g., selective blockers of NMDA-R MK-801) failed to cause ASD-like symptoms.

The brain regions and molecular events that are responsible for the VPA-mediated ASD
phenotypes remain elusive. In a rat model, VPA enhanced NMDA-R expression and synaptic
potentiation in the hippocampus [116], thereby causing an imbalance between excitatory and
inhibitory transmission (E-I imbalance; see [117,118] for comprehensive reviews). In support of the
hyperexcitation hypothesis, post-natal blockade of NMDA-R by memantine (a drug prescribed for
Alzheimer’s disease) rescued social interaction impairment [119]. Consistent with studies performed
in rodent models, administering bumetanide (a selective blocker of NKCC1 co-transporter)
immediately before training could rescue chicks with VPA-induced impaired imprinting [109]; the
impact of bumetanide will be discussed subsequently.

6. Selective impairment of BM predisposition via fetal interference with nAChR receptors,
including neonicotinoid insecticides

Pesticide chemicals, particularly considering the rapidly increasing consumption of
neonicotinoid insecticides (NNs [120]), are another serious concern in the etiology of ASD. NNs were
designed to selectively block cholinergic neurotransmission in insects with low toxicity in
vertebrates. Early ecological reports have highlighted the population decline of insectivorous birds
[121]. Following concerns regarding the high persistence of NNs in plants and soil, NNs were found
to impair the migratory ability of granivorous birds [122,123]. Several recent epidemiological studies
have reported the risk of maternal exposure to environmental NNs [124-127]. An early study [124]
estimated the association between the indoor usage of imidacloprid (IML one of the most heavily
used NNs for flea and tick treatment for pet animals) and ASD, detecting an alarming odds ratio of
~2.0. Prenatal exposure to agricultural pesticides was found to be associated with low intelligence
quotient and verbal comprehension [125]. A large-scale study on the association between ambient
pesticide usage (NNs included) and ASD in California’s agricultural region [126] detected
considerable odd ratios for various pesticide chemicals; the effects of prenatal exposure were boosted
by additonal exposure in neonatal infants. A rodent model study assessing acetamiprid (ACE;
another NNs) has reported the abnormal development of social and anxiety-related behaviors in
males after prenatal and lactational exposure [128] (see [127] for a recent systemic review).

Our study using a chick model [109] revealed high concordance with these reports in humans
and rodents. Selective and non-selective blockade of nAChR (using tubocurarine and selective a7
subtype inhibitor), as well as impaired nAChR transmission mediated by IMI, could suppress fetal
movements and impair the BM preference of hatchlings. Notably, nAChR blockade did not impair
imprinting memory formation, thus revealing distinct dimensions of social behavior malformation
from those induced by VPA.
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7. Thyroid hormone, E-I imbalance in humans and chicks

Maternal hypothyroidism (gestational hypothyroxinemia) is another risk factor for ASD [129-
131]. Circulating levels of thyroid hormones (THs, T4 in particular) could be a potential early
biological marker for ASD. To date, no consensus has been reached regarding the role of THs in the
development of ASD, given that both positive [132] and negative [133] results have been reported. In
addition to being a critical determinant of imprinting in chicks [96], TH plays critical roles in diverse
neurodevelopmental processes [134], particularly in the maturation of GABAergic transmission via
the rapamycin (mTOR; mechanistic target of rapamycin) cascade [135]. The mTOR-GABA cascade
may mediate the acute facilitatory effects of THs in chicks [96,136,137]. Ts acutely enhances
GABAergic transmission in slice preparations of the chick pallium [138], although its functional link
to the behavioral effects remains elusive.

Interestingly, in humans, symptomatic autism comorbid with fragile X syndrome and tuberous
sclerosis complex (TSC) is accompanied by mutations in the mTOR signaling pathway. Rapamycin
was shown to rescue social impairment in a mouse model of TSC [139]. A more recent study
addressing macrocephaly in infants with ASD has suggested that synaptic pathology related to the
mTOR pathway is responsible for hyperconnectivity [140].

In the central nervous system, the metabolic control responsible for the balanced management
of energy income and growth may underlie appropriate socialization during the early stages of life
in humans and chicks. In addition, premature E-I balance (or delayed GABA switch from
depolarizing to hyperpolarizing response) could be a key event in neural maturation, affording a
potential target for developing effective pharmacotherapies for ASD.

8. GABA switch, nicotinic transmission, and treatment using bumetanide and oxytocin

GABA exerts depolarizing transmission via GABA-A receptors in the embryonic stage, and
excitatory GABA exerts trophic functions for the functional maturation of the brain. During the
perinatal period, excitation is converted to adult-type inhibitory neurotransmission ([141-143] for
comprehensive reviews; [144] for the hippocampal development; also see [145] specifically for the
schizophrenia etiology); this conversion (referred to as the GABA switch) is mediated by a reduction
in the intracellular chloride ion ([CL]i), which, in turn, can be attributed to the enhanced expression
of cation-linked co-transporters responsible for the efflux of Cl- (KCC2 over NKCC1). To identify
regulatory mechanisms underlying the GABA switch, nicotinic cholinergic transmission was found
to be critical in the chick ciliary ganglion [146]. Further analyzing the phosphorylation of KCC2
molecules revealed protein kinase C-mediated modulation by glutamatergic and serotonergic
actions, as well as the activation of muscarinic acetylcholine receptors [147] (for more recent
comprehensive reviews see [148,149]).

The association between GABA switch retardation and ASD was based on the finding that
diazepam (an anxiolytic drug, a positive modulator of GABA-mediated inhibition used to relieve
anxiety) could paradoxically increase aggressive behaviors in autistic children [150]. Subsequent
studies have shown that dysfunctional GABA inhibition could play a pivotal role in ASD etiology
[151,152]. Bumetanide has attracted attention as a potent candidate for ameliorating ASD symptoms,
given that this agent selectively blocks the NKCC1 co-transporter responsible for Cl- influx [153].
Although initial open-label small-sized trials appeared positive and promising [154,155], recent
phase-2 trials failed to afford positive outcomes [156]. A detailed follow-up analysis has identified
heterogeneous phenotypes of neurocognitive impairment in patients with ASD, some of which were
unaffected by bumetanide [157]. In a chick model, bumetanide treatment immediately before training
rescued impairments in both imprinting (by VPA) and BM preference (by nAChR blockade) [109].
Further studies are required to identify underlying targets and pharmacology.

Oxytocin and related nonapeptides comprise another group of candidate drugs for ASD. In
humans, intranasal application of oxytocin can acutely ameliorate social deficiencies such as BM
perception and social communication in cases of relatively low severity [158,159]. In typically
developing individuals, oxytocin receptors peak during early childhood, whereas this peak is absent
in those with ASD [160]. Similar facilitatory effects of oxytocin on prosocial behaviors have been
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observed in dogs [161,162], birds [163-165], and fish [166]; also see [167] for the zebrafish model of
developmental disorders), suggesting its ubiquitous role in vertebrates. Considering the underlying
mechanisms, a study using oxytocin-receptor knock-out mice has suggested that KCC2 is regulated
by oxytocin [168]. A more recent study in mice identified a link between the genetic risk of ASD and
the oxytocinergic signaling pathway [169]. In chicks, intracranially administered mesotocin (an avian
counterpart of oxytocin) enhanced the preference of naive chicks [165].

Although disadvantageous as a genetic model of ASD owing to the limited availability of
powerful tools for gene manipulation, the chick model could substitute rodent models in several
technical aspects. Firstly, maternal complications are disregarded in chicks as direct fetal
administration is possible in eggshells. Secondly, the time course and dosage of chemicals can be
precisely controlled. The short incubation time and quick testing (usually 8 days after drug
application) enable the rapid screening of harmful chemicals. Third, the use of chicks satisfies the 3Rs
of animal experiments (https://nc3rs.org.uk/who-we-are/3rs): replacement with mammals, reduction
in number due to controlled chemical treatments, and refinement by sophisticated visual
predispositions like humans.

Chicks are unique models for studying neurocognitive disorders in humans. The fundamental
question is, why? Why did chicks converge to human neonates despite distinct evolutionary
separations over 300 million years? This remains an unresolved puzzle, which could be addressed by
analyzing behavioral phenotypes and disorders (surface validity) and the underlying mechanisms
(construct validity). Biological psychiatry and comparative psychology ask the same question: What
are we?
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